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Abstract

In Andrews and Guggenberger (2003) a bias-reduced log-periodogram estima-
tor d̂LP (r) for the long-memory parameter d in a stationary long-memory time
series has been introduced. Compared to the Geweke and Porter-Hudak (1983)
estimator d̂GPH = d̂LP (0), the estimator d̂LP (r) for r ≥ 1 generally reduces the
asymptotic bias by an order of magnitude but inflates the asymptotic variance by
a multiplicative constant cr, e.g. c1 = 2.25 and c2 = 3.52. In this paper, we intro-
duce a new, computationally attractive estimator d̂WLP (r) by taking a weighted
average of GPH estimators over different bandwidths. We show that, for each
fixed r ≥ 0, the new estimator can be designed to have the same asymptotic
bias properties as d̂LP (r) but its asymptotic variance is changed by a constant
c∗r that can be chosen to be as small as desired, in particular smaller than cr.
The same idea is also applied to the local-polynomial Whittle estimator d̂LW (r)
in Andrews and Sun (2004) leading to the weighted estimator d̂WLW (r). We
establish the asymptotic bias, variance, and mean-squared error of the weighted
estimators, and show their asymptotic normality. Furthermore, we introduce a
data-dependent adaptive procedure for selecting r and the bandwidth m and
show that up to a logarithmic factor, the resulting adaptive weighted estimator
achieves the optimal rate of convergence.

A Monte-Carlo study shows that the adaptive weighted estimator compares
very favorably to several other adaptive estimators.
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1 Introduction

We consider estimation of the long-memory parameter d for a stationary process
{Yt : t = 1, ..., n}. The spectral density of the time series is given by

f(λ) = |λ|−2dg(λ), (1.1)

where d ∈ (−0.5, 0.5) is the long-memory parameter and g(·) is an even function on
[−π, π] satisfying 0 < g(0) <∞. The parameter d determines the long-memory prop-
erties of the process {Yt} and g(λ) determines its short-run dynamics. To maintain
generality of the short-run dynamics of {Yt}, we do not impose a specific functional
form on g(λ). Consistent with the literature on narrow-band semiparametric estima-
tion of the long-memory parameter, we only assume certain regularity conditions for
g(λ) near frequency zero.

Examples in the literature of the narrow-band approach include the widely-used
log-periodogram (LP, also known as the GPH estimator) regression estimator, in-
troduced by Geweke and Porter-Hudak (1983) and further analyzed by Robinson
(1995b) and Hurvich et al. (1998) and the local Whittle estimator (LW, also known
as the Gaussian semiparametric estimator), suggested by Künsch (1987) and further
studied by Robinson (1995a). These narrow-band approaches approximate ln g(λ)
by a constant in a shrinking neighborhood of the origin. As a consequence, these
estimators achieve a rate of mean-squared error (MSE) convergence of only n−4/5,
no matter how regular g(λ) is. In addition, these estimators can be quite biased
in finite samples due to contamination from high frequencies (see Agiakloglou et al.
(1993)). Given these problems, Andrews and Guggenberger (2003) and Andrews and
Sun (2004) (hereafter AG and AS, respectively) propose approximating ln g(λ) locally
by an even polynomial of degree 2r. This leads to the bias-reduced log-periodogram
estimator d̂LP (r) of AG and the local polynomial Whittle estimator d̂LW (r) of AS.
The main feature of these estimators is that for g(·) smooth in a neighborhood of
zero, the bias generally converges to zero at a faster rate than that achieved by the
GPH and local Whittle estimators. The bias improvement however comes at the
price of an increase in the asymptotic variance by a multiplicative constant cr, e.g.
c1 = 2.25 and c2 = 3.52.

In this paper, we introduce modified versions of the GPH and local Whittle estima-
tors that we denote by d̂WLP (r,m) and d̂WLW (r,m), respectively. These estimators
are given as a weighted average over finitely many GPH (or a k-step version of the
local Whittle) estimators d̂GPH(mi) calculated using different bandwidths mi. The
bandwidth set is of the form {[lim]}K

i=1 , for K ∈ N, m ∈ N, and li ∈ Q+. The idea
of the weighted estimator is to choose weights wi in such a way that the r dominant
bias terms of the underlying GPH (or k-step local Whittle) estimator are eliminated.
Building on results in Hurvich et al. (1998), Robinson (1995a, 1995b), AG, and AS,
we derive the asymptotic bias, variance, and MSE of the weighted estimators, and es-
tablish their asymptotic normality. Our asymptotic results imply that, if the weights
wi are chosen appropriately, the weighted estimator shares or even improves on the
asymptotic bias advantage of the estimators of AG and AS. The main advantage of
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the weighted estimator over the estimators of AG and AS is that the multiplicative
constant cr by which the asymptotic variance is inflated can be chosen to be arbitrar-
ily small. In other words, the new estimator can be designed to have the asymptotic
bias properties of the estimators of AG and AS but its asymptotic variance properties
are better. Under local smoothness assumptions on g, the weighted estimator can
be designed such that the order of the asymptotic bias gets arbitrarily close to the
parametric one, while at the same time its asymptotic variance can be made smaller
than the asymptotic variance of the GPH (or local Whittle) estimator.

By choosing the weights appropriately, we can obtain an estimator that has the
same asymptotic bias as the Gaussian semiparametric estimator but a smaller asymp-
totic variance. Robinson (1995a, p. 1640) conjectures that 1/4 is the semiparametric
efficiency bound for the estimation of the long-memory parameter for a given sequence
of bandwidths, say m, and that the Gaussian semiparametric estimator achieves this
bound. See also Hidalgo (2005) for further discussion of this issue. Our results do not
contradict Robinson’s conjecture, as the weighted estimator uses information beyond
bandwidth m. However, our results do imply that it is possible to design a more
efficient estimator than d̂LW (0) while maintaining or even reducing its asymptotic
bias. Most existing narrow-band estimators are based on only one bandwidth m. In
contrast, the weighted estimator is based on several bandwidths by averaging over
the estimators d̂([lim]) over a set of lis.

Apart from the theoretical properties, the weighted estimators are also compu-
tationally attractive. Both d̂WLP (r,m) and d̂WLW (r,m) (the latter estimator being
based on a k-step version of the local Whittle estimator) require only K OLS regres-
sions and one GLS regression. This is an advantage over the procedure in AS that
requires a nonlinear optimization routine to calculate the estimator.

The weighted estimator depends on the choice of the parameters r,m, and l. From
results in AG it follows that for a fixed l, the optimal choice of r and m in terms
of the rate of convergence of the estimator depends on the unknown smoothness of
g at zero. We provide an adaptive estimator of d (denoted “AWLW” for “adaptive
weighted local Whittle”), based on Lepskii (1990), that uses the data to select r and
m. We show that this estimator obtains the optimal rate of convergence up to a
logarithmic factor. We suggest rule of thumb choices for the sequence l based on the
relative performance of the weighted estimator in a Monte Carlo study.

In Monte Carlo simulations, using various models including one with nonsmooth
spectrum, we compare the root mean-square error (RMSE) performance of the AWLW
estimator with several other adaptive estimators, namely, with the ones in Giraitis
et al. (2000), Hurvich (2001), Iouditsky et al. (2001), and AS. The results are very
encouraging and show that if the contamination from the short-run component of
the spectrum is not too large, the AWLW estimator typically outperforms the other
adaptive estimators in RMSE performance.

Besides AG and AS, another bias reduction approach in the narrow-band litera-
ture is Robinson and Henry (2003), who consider a general class of semiparametric
M-estimators of d that utilize higher-order kernels to obtain bias-reduction. As they
state, their results are heuristic in nature, whereas the results in our paper are es-
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tablished rigorously under specific regularity conditions. Also, their estimators suffer
from a variance inflation that can be very large.

An alternative to the narrow-band approach to bias reduction is the so called
broad-band approach where one imposes regularity conditions on g over the whole
interval [0, π] and one utilizes a nonparametric estimator of g(λ) for λ ∈ [0, π]. Exam-
ples include Moulines and Soulier (1999, 2000), Hurvich (2001), Hurvich and Brodsky
(2001), Iouditsky et al. (2001), and Hurvich et al. (2002). In these papers, ln g(λ)
is approximated by a truncated Fourier series. It is established that under the given
regularity conditions the estimators exhibit an asymptotic MSE of order (lnn)/n
provided the number of parameters in the model goes to infinity at a suitable rate.

From a broad perspective, the weighted estimator bears some similarity to the
generalized jackknife estimator in the kernel smoothing literature. In that literature,
it has been suggested to average kernel estimators over different smoothing parame-
ters to achieve bias reduction, see e.g. Gray and Schucany (1972) and Härdle (1990,
Section 4.6).

We now quickly mention possible extensions of the paper. While we focus on
scalar time series satisfying (1.1), it should be possible to extend the idea to the
multivariate case along the lines of Robinson (1995b) and Lobato (1999). Although
our results are obtained for stationary processes, they can also be utilized when the
underlying process is nonstationary (see the discussion in AS, p. 571). In this case, a
preliminary consistent estimator, such as the estimator of Kim and Phillips (1999a,
1999b), Velasco (1999), Velasco and Robinson (2000), Phillips and Shimotsu (2004)
or Shimotsu and Phillips (2005) is required. While the asymptotic results for the
weighted Whittle estimator are derived without assuming Gaussianity, we require
such an assumption for the weighted log-periodogram estimator. Using the insight
of Velasco (2000), the assumption of Gaussianity could possibly be relaxed for the
latter estimator as well. Finally, rather than averaging over different d̂GPH(0) or (a
k-step version of) d̂LW (0) estimators as in this paper, we could apply the weighted
approach to d̂LP (r) or (a k-step version of) d̂LW (r) for r ≥ 1 to eliminate additional
bias terms. These extensions however are beyond the scope of this paper.

The remainder of this paper is organized as follows. In the next section, we review
the estimators of AG and AS and lay out the assumptions. Section 3 introduces
the new weighted estimators and establishes their asymptotic properties. Section
4 discusses adaptive estimation. Section 5 describes the simulation results and an
appendix provides proofs of the theorems.

By Cs(U) we denote the space of functions that are s-times continuously differ-
entiable. By [s] we denote the integer part of s ∈ R. For a matrix A we denote by
[A]i,.and [A]i,j the i-th row and the (i, j)-th element of the matrix A, respectively.
1(·) is the indicator function.

2 The Log-periodogram and Whittle Estimator

In this section we review the bias-reduced log-periodogram regression estimator d̂LP (r,m)
of AG and the local polynomial Whittle estimator d̂LW (r,m) of AS. These estimators
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are used as benchmarks for later comparisons. We also lay out the assumptions.
For i :=

√
−1, m ∈ N, and j = 1, ...,m define

λj:= 2πj/n, wj :=
1√
2πn

n∑
t=1

Yt exp(itλj), Ij := |wj |2, (2.1)

fj:= f(λj), and gj := g(λj).

The bias-reduced log-periodogram estimator d̂LP (r,m) is the least squares estimator
of d from the pseudo-regression of ln Ij on a constant, −2 lnλj , λ

2
j , ..., λ

2r−2
j , and λ2r

j

for j = 1, ...,m, where m is the number of fundamental frequencies employed in the
regression. The estimator is based on the identity derived from (1.1)

ln Ij = (ln g0 − C)− 2d lnλj +
r∑

k=1

b2k

(2k)!
λ2k

j + ej , (2.2)

where, if defined,
∑r

k=1(b2k/(2k)!)λ2k
j are the first terms of the Taylor series expansion

of ln(gj/g0), C := 0.57721... is the Euler constant, and

ej := ln(gj/g0)−
r∑

k=1

b2k

(2k)!
λ2k

j + ln Ij/fj + C

are regarded as regression errors. The GPH estimator is obtained by setting r = 0
and is based on approximating ln(gj/g0) by a constant around the origin1. As can be
shown, the dominant bias term of the GPH estimator is caused by the term ln(gj/g0)
rather than E ln Ij/fj + C. For r = 1, λ2

j is added as an additional regressor to the
pseudo-regression model which leads to the elimination of the dominant bias term of
the GPH estimator. For r ≥ 2, additional bias terms are eliminated.

For notational convenience we typically suppress the dependence of the estimator
on r and/or m and write d̂LP , d̂LP (r), or d̂LP (m) for d̂LP (r,m).

The local-polynomial Whittle estimator d̂LW = d̂LW (r,m) of AS is an M-estimator
that minimizes the (negative) local-polynomial Whittle log-likelihood. The latter is
given by

Qr(d,G, b) := m−1
m∑

j=1

{
ln
[
Gλ−2d

j exp(−pr(λj , b))
]

+
Ij

Gλ−2d
j exp(−pr(λj , b))

}
,

(2.3)
where the notation G := g0 is taken from Robinson (1995a) and AS and

pr(λj , b) :=
r∑

k=1

− b2k

(2k)!
λ2k

j and b := (b2, ..., b2r)′.

Concentrating Qr(d,G, b) with respect to G ∈ (−∞,∞) yields the concentrated LPW
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log-likelihood Rr(d, b):

Rr(d, b)=ln Ĝr(d, b)−m−1
m∑

j=1

pr(λj , b)− 2dm−1
m∑

j=1

lnλj + 1, where

Ĝr(d, b):= m−1
m∑

j=1

Ij exp(pr(λj , b))λ2d
j . (2.4)

The local polynomial Whittle estimator (d̂LW , b̂LW ) of (d, b) solves the following
minimization problem:

(d̂LW (r,m), b̂LW (r,m)) := arg min
d∈[d1,d2],b∈Θ

Rr(d, b), (2.5)

where Θ is a compact and convex set in Rr. Existence and uniqueness of (d̂LW , b̂LW )
hinge on strict convexity of Rr(d, b) (see AS, p. 576) and convexity and compactness
of the parameter space. The local Whittle estimator (Künsch (1987) and Robinson
(1995a)) is obtained by setting r = 0.

Before we state the assumptions we need the following definition. We say that a
real function h defined on a neighborhood of zero is “smooth of order 0 < s <∞ at
zero” if h ∈ C [s](U) for some neighborhood U of zero and its derivative of order [s],
denoted h

([s])
, satisfies a Hölder condition of order s−[s] at zero, i.e., |h([s])

(λ)−h([s])
(0)|

≤ C|λ|s−[s] for some constant C < ∞ and all λ ∈ U . We say that h is “smooth of
order ∞ at zero”, if h is smooth of order s for every finite s.

AG make the following assumptions to derive the asymptotic properties of the
log-periodogram estimator d̂LP (r,m).

Assumption AG1. f(λ) = |λ|−2dg(λ), where d ∈ (−1/2, 1/2).

Assumption AG2. (i) g is smooth of order s ≥ 2+2r at λ = 0 for some nonnegative
integer r. (ii) g is an even function on [−π, π], 0 < g(0) <∞, and

∫ π
−π|λ|

−2dg(λ)dλ <
∞.

Assumption AG3. The time series {Yt : t = 1, ..., n} is Gaussian.

Assumption AG4. m = m(n) →∞ and m/n→ 0 as n→∞.

For the local polynomial Whittle estimator AS make the following assumptions.2

Assumption AS1. Assumption AG1 holds for d ∈ [d1, d2] with −1/2 < d1 < d2 <
1/2.

Assumption AS2. Assumption AG2 holds.

Assumption AS3. (a) The time series {Yt : t = 1, ..., n} satisfies

Yt − EY0 =
∞∑

j=0

αjεt−j ,
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where
∞∑

j=0

α2
j<∞, E(εt|Ft−1) = 0 a.s., E(ε2t |Ft−1) = 1 a.s.,

E(ε3t |Ft−1)=σ3 a.s., E(ε4t |Ft−1) = σ4 a.s. for t = ...,−1, 0, 1, ...,

and Ft−1 is the σ-field generated by {εs : s < t}.
(b) In some neighborhood of the origin, (d/dλ)α(λ) = O(|α(λ)|/λ) as λ→ 0+, where
α(λ) =

∑∞
j=1 αje

−ijλ.

Assumption AS4. AG4 holds and m2.5+2r/n2+2r → χ ∈ (0,∞) as n→∞.

Under Assumptions AG1–AG4, Theorem 1 in AG gives the following formulae
for the asymptotic bias and variance of the d̂LP (r,m) estimator3. For certain real
numbers τr, cr, and for s given in AG2(i), we have

(a) Ed̂LP (r,m)− d = τrb2+2r
m2+2r

n2+2r
(1 + o(1)) +O(

mq

nq
) +O(

ln3m

m
), (2.6)

(b) V ar(d̂LP (r,m)) =
π2

24m
cr + o(

1
m

), where

q:= min{s, 4 + 2r}. (2.7)

If s = 2+2r, then the O(mq/nq) term can be replaced by o(mq/nq). The numbers τr
and cr are defined in AG, for example, τ0 = −2.19, τ1 = 2.23, τ2 = −.793 and c0 = 1,
c1 = 2.25, and c2 = 3.52.

If in addition AS4 is assumed, which asymptotically is the MSE-optimal choice
of m, AG (p. 687, comment 2) show that4

√
m(d̂LP (r,m)− d− τrb2+2r

m2+2r

n2+2r
) →d N(0,

π2

24
cr) (2.8)

or equivalently that

√
m(d̂LP (r,m)− d) →d N(χτrb2+2r,

π2

24
cr). (2.9)

Similarly, under AS1–AS4, AS show that for the d̂LW (r,m) estimator

√
m(d̂LW (r,m)− d− τrb2+2r

m2+2r

n2+2r
) →d N(0,

1
4
cr). (2.10)

Comparing the bias of d̂LP (r,m) (d̂LW (r,m)) with that of d̂LP (0,m) (d̂LW (0,m)),
one sees that the rate of convergence of the bias to zero is generally faster for the
former, whereas its variance is increased by the multiplicative constant cr. When
ln g(λ) is approximated reasonably well by ln g0 in a neighborhood of zero, the bias
reduction for d̂LP (r,m) (d̂LW (r,m)) over d̂LP (0,m) (d̂LW (0,m)) may be very small
and the increase in variance may dominate the reduction of bias in finite samples. It
would be desirable to have an estimator that shares the asymptotic bias properties
of the estimators of AG and AS without inflating the asymptotic variance or at least
inflating it by a constant smaller than the constant cr. In the next section, we describe
a new estimator for d that has these properties.
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3 Weighted Semiparametric Estimators

In this section, we introduce the new weighted estimator d̂We and investigate its
asymptotic properties. We first describe its general form as a weighted average of an
estimator d̂e(0,m) at different bandwidths m and then explicitly look at the cases e =
LP and e = LW. More precisely, rather than the local Whittle estimator d̂LW (0,m),
we work with a k-step local Whittle estimator d̂LW,k(m) defined in (3.12). The k-
step estimator is computationally more attractive than the local Whittle estimator
(because it is given in closed form) but shares its relevant asymptotic properties.

To motivate the weighted estimator, consider the d̂LP (0) estimator at two different
bandwidths m1 and m2 that are given as multiples of m for fixed numbers li, mi :=
[lim], i = 1, 2. Recall that under certain regularity conditions and rate conditions on
m, the asymptotic bias of the LP estimator can be written as

ABIAS(d̂LP (0,m)) = τ0b2
m2

n2
(1 + o(1)). (3.1)

Define a weighted estimator d̂WLP by

d̂WLP :=
m2

1

m2
1 −m2

2

d̂LP (0,m2)−
m2

2

m2
1 −m2

2

d̂LP (0,m1).

It follows from (3.1) that the asymptotic bias of d̂WLP is of order o(m2/n2) because
by choosing weights w2 := m2

1/(m
2
1 − m2

2) and w1 := −m2
2/(m

2
1 − m2

2) we have
eliminated the dominant bias terms of d̂LP (0,m1) and d̂LP (0,m2). By choosing l1
and l2 appropriately, we can in addition control the asymptotic variance of d̂WLP . In
the following we describe how to design weights and pick constants li such that the
weighted estimator has the same asymptotic bias as d̂LP (r,m) but smaller asymptotic
variance.

The example illustrates the idea of the weighted estimator. We now consider
the general case in which the average is taken over more than two different band-
widths and higher order biases may be eliminated. To describe it, let r (as in d̂LP (r)
and d̂LW (r)) be a nonnegative integer that denotes the number of dominant bias
terms to be eliminated, l = (l1, l2, ..., lK)′ be a K-vector that pins down the different
bandwidths5 mi := [lim] for m ∈ N, and finally w = (w1, w2, ..., wK)′ be a K-vector
of weights that satisfies

K∑
i=1

wi=1, (3.2)

K∑
i=1

wil
2k
i =0, for k = 1, ..., r. (3.3)

Occasionally, we impose an additional condition on the weights, namely

K∑
i=1

wil
2+2r
i = δ

K∑
i=1

l2+2r
i for a δ ∈ R\{0}. (3.4)
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The weighted estimator is then defined by6

d̂We := d̂We(r,m, l, δ) :=
K∑

i=1

wid̂e(0,mi), (3.5)

where in the next subsections we will explicitly focus on the cases e = LP and e = LW.
If d̂We is only subject to conditions (3.2)-(3.3) then of course d̂We := d̂We(r,m, l).

We now discuss conditions (3.2)-(3.4). Condition (3.2) guarantees that d̂We is
asymptotically unbiased. Condition (3.3) is motivated from Lemma 3.1(a) below
which states that the asymptotic bias of the LP estimator up to lower order terms
is given by

∑r+1
k=1τ

∗
k−1b2km

2k/n2k for some constants τ∗k . Therefore, the condition
implies that the highest order bias terms of d̂e up to m2r/n2r are eliminated for
d̂We. Under (3.2)-(3.3), we occasionally want to be able to control the multiplicative
constant for the resulting dominant bias term m2+2r/n2+2r of the weighted estimator.
For example, in this section we match the dominant bias term of d̂WLP (m) with that
of d̂LP (r,m) and then compare their asymptotic variances to deduce the superiority of
the weighted procedure in terms of MSE. Condition (3.4) pins down the multiplicative
constant of the dominant bias term through appropriate choice of δ. Condition (3.4)
is imposed mainly to make the bias/variance comparison of the weighted procedure
with other estimation methods. In Section 4 we will implement the adaptive weighted
estimator based solely on conditions (3.2)-(3.3).

Note that conditions (3.2)-(3.4) are invariant to renormalization of the vector l.
More precisely if r,m, l, δ satisfy conditions (3.2)-(3.4) then so does r, Lm, l/L, δ for
any positive constant L and we have d̂We(r,m, l, δ) = d̂We(r, Lm, l/L, δ). Therefore,
w.l.o.g. we can normalize l1 = 1. It should be noted that when δ is chosen to
match the asymptotic bias of d̂We(r,m, l, δ) with that of d̂We(r,m), as in Theorem
3.2 below, it is no longer innocuous to normalize l1 = 1. Nevertheless, we will use the
normalization l1 = 1 for the remainder of the paper unless otherwise stated.

Below we give some theory and Monte Carlo-based discussion and rules of thumb
of how to choose the parameters r,m, l, and δ. For now, we take these parameters as
given and describe an easy procedure to implement d̂We, i.e. a procedure to design
weights w satisfying conditions (3.2)-(3.4). The implementation without condition
(3.4) is analogous. Consider the following pseudo-regression of d̂e(0,mi) on a con-
stant, l2i , ..., l

2r
i , and l2+2r

i − δ
∑K

p=1 l
2+2r
p

d̂e(0,mi) = d+
r∑

j=1

β2jl
2j
i + β2+2r(l2+2r

i − δ

K∑
p=1

l2+2r
p ) + ui, i = 1, ...,K, (3.6)

where ui is the error term. Note that the regression coefficients β stand for different
quantities in the cases e = LP and e = LW. For notational convenience however, we
use β in both cases. Let

Zi := (1, l2i , l
4
i , ..., l

2r
i , (l

2+2r
i − δ

K∑
i=1

l2+2r
i )) and

Z := (Z ′1, ..., Z
′
K)′ ∈ RK×(2+r).
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The weighted estimator d̂We of d is defined as the first component of the GLS esti-
mator of (d, β) = (d, β2, β4, ..., β2+2r), i.e.

(d̂We, β̂)′ :=
(
Z ′Ω−1Z

)−1
Z ′Ω−1d̂e, (3.7)

where
Ω := (Ωij) ∈ RK×K , Ωij := 1/max(li, lj),

and d̂e is the K-vector with i-th element d̂e(0,mi). In Lemma 3.1(b) below we es-
tablish that up to a multiplicative constant Ω is the asymptotic variance matrix of
u = (u1, ..., uK). It is easy to see that d̂We is a weighted average of the d̂e(0,mi) with
weights given by

w′ :=
[(
Z ′Ω−1Z

)−1
Z ′Ω−1

]
1,.
. (3.8)

These weights satisfy conditions (3.2)-(3.4) and give rise to our weighted estimator
d̂We.

In the next two subsections, we analyze the properties of the weighted estima-
tor d̂We when the components of d̂e are the log-periodogram regression estimator
d̂LP (0,m) or a k-step version of the local Whittle estimator d̂LW (0,m). Both these
estimators are easy to compute. For example, for the estimator d̂WLP we only need
to first run K OLS regressions to get d̂LP (0,mi) and then one GLS regression (3.7)
to obtain d̂WLP .

3.1 The Weighted Log-Periodogram (WLP) Estimator

We now consider the weighted estimator d̂We in (3.7) when e = LP. The asymptotic
properties of d̂WLP depend crucially on those of d̂LP and the covariance structure of
{d̂LP (0,mi)}. We first state the following refinement of the results of Theorem 1 in
Hurvich et al. (1998).

Lemma 3.1 Suppose Assumptions AG1-AG4 hold. Then,
(a) The bias of d̂LP (0,m) satisfies

Ed̂LP (0,m)− d =
∑r+1

k=1τ
∗
k−1b2k

m2k

n2k
+O(

mq

nq
) +O(

ln3m

m
),

where

τ∗k−1 :=
−(2π)2kk

(2k)!(2k + 1)2

and q is defined in (2.7). If s = 2+2r the O(mq/nq) term can be replaced by o(mq/nq).
(b) The covariance between d̂LP (0,mi) and d̂LP (0,mj) is given by

Cov(d̂LP (0,mi), d̂LP (0,mj)) =
π2

24m
1

max(li, lj)
(1 + o(1)).

The lemma shows that we can actually ignore the o(·) term in the asymptotic bias
formula (2.6). This is crucial when proving the next theorem which is a corollary of
the lemma.
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Theorem 3.2 Let r and l be fixed constants and δ := τ/(τ∗r
∑K

i=1 l
2+2r
i ) for some

τ 6= 0. Then, under Assumptions AG1-AG4, we have

Ed̂WLP − d = τb2+2r
m2+2r

n2+2r
+O

(
mq

nq

)
+O(

ln3m

m
),

var(d̂WLP ) =
π2

24m
c∗r(1+o(1)), where

c∗r:=
[(
Z ′Ω−1Z

)−1
]
1,1

=
K∑

i,j=1

wiwj

max(li, lj)
,

where the O(mq/nq) term can be replaced by o(mq/nq) if s = 2 + 2r.

Remarks (a) If lim(m/nκ) ∈ (0,∞) for 1 > κ > (2 + 2r)/(3 + 2r), then the
dominant bias term of d̂WLP (r,m) is τb2+2rm

2+2r/n2+2r. From (2.6), the dominant
bias term of d̂LP (r,m) is τrb2+2rm

2+2r/n2+2r. Therefore, the asymptotic biases of the
two estimators converge to zero at the same rate. In particular, the rate is quicker
than that of the GPH estimator if r > 0 and b2 6= 0.

(b) Suppose lim(m/nκ) ∈ (0,∞) for some 0 < κ < 1 and the assumptions of
Theorem 3.2 hold. Then the asymptotic MSE of d̂WLP satisfies

AMSE(d̂WLP ) = τ2b22+2r(
m

n
)4+4r(1+o(1))+O(

m1+2r ln3m

n2+2r
)+

π2

24
c∗r
m

(1+o(1)). (3.9)

If κ > (2+2r)/(3+2r), then the O(·) term in (3.9) is of smaller order than the other
two terms. Ignoring the O(·) term and assuming that τ2b22+2r 6= 0, minimization of
AMSE(d̂WLP ) with respect to m gives the AMSE-optimal choice of m :

mopt =

[(
π2c∗r

24(4 + 4r)τ2b22+2r

)1/(5+4r)

n(4+4r)/(5+4r)

]
. (3.10)

Note that the AMSE-optimal growth rate of n(4+4r)/(5+4r) allows one to ignore the
O(·) term in (3.9). The bandwidthmopt depends on the unknown b2+2r.Guggenberger
and Sun (2003) propose a plug-in method to estimate mopt.

(c) To compare the asymptotic properties of d̂WLP (r,m) and d̂LP (r,m), we choose
τ = τr which makes the dominant bias terms of the two estimators equal. Table
I demonstrates that l can be chosen such that the constant c∗r in the asymptotic
variance of d̂WLP (r) is smaller than cr, that is, while having the same asymptotic
bias properties, the asymptotic variance properties of the new estimator are better
than those of d̂LP (r,m). We have c∗r = cr for r = 0 and r = 1 if lK = 1.2 and
lK = 1.85, respectively, and for larger choices of lK , the weighted estimator has
smaller asymptotic variance than the corresponding d̂LP (r) estimator in AG with
same asymptotic bias. Comparing with the GPH estimator d̂LP (0,m), the estimator
d̂WLP (r,m) can be designed such that it improves (if r > 0 and b2 6= 0) or retains (if
r = 0) the asymptotic bias and at the same time reduces the asymptotic variance.
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(d) From numerical results as the ones reported in Table I, we conclude that for
each r and ε > 0, l can be chosen such that c∗r ≤ ε. Therefore, asymptotic theory
suggests that larger values of lK in the definition of d̂WLP (r,m) imply better variance
properties while the asymptotic bias can remain unchanged. This is not surprising
because by Lemma 3.1(b) larger l values deliver LP estimates with smaller variance.
Therefore, there is no trade-off in the asymptotic bias and variance for the choice of
lK . However, in finite samples larger values for lK have a negative effect on the bias
properties of d̂WLP , that is, just as for the bandwidth m, there is a bias/variance
trade-off when choosing l in finite samples. The reason for the negative effect is that
the approximation of ln(gj/g0) by its Taylor polynomial b2λ2

j/2+ ...+b2+2rλ
2+2r
j /(2+

2r)! can be very poor for large values of j. Large values for l imply large values for
the mi and the bias reduction does not work as well as for smaller values of l.

(e) It might seem unfair to compare d̂LP (r,m) with d̂WLP (r,m) since the latter
estimator is based on more frequencies lKm and therefore is expected to have a smaller
variance. However, note that d̂WLP (r,m) (implemented using τ = τr) has the same
dominant higher order bias as d̂LP (r,m) and that increasing m in d̂LP (r,m) – while
reducing its asymptotic variance – would increase its asymptotic bias. It therefore
follows that in terms of asymptotic MSE d̂LP (r,m) is dominated by d̂WLP (r,m) for
appropriate choices of the vector l. To make this statement formal, let m∗ be the
AMSE-optimal bandwidth for d̂LP (r,m). AG (in their equation 3.17) show that
under weak regularity conditions m∗ is given by

m∗ = An(4+4r)/(5+4r),

where the positive number A is defined as

A := (
π2cr

24(4 + 4r)τ2
r b

2
2+2r

)1/(5+4r).

Ignoring higher order terms and using equation (3.19) in AG, the resulting optimal
AMSE of d̂LP (r,m) is then given by

AMSE(d̂LP (r,m∗)) = Wn−(4+4r)/(5+4r)

for

W := A4+4rτ2
r b

2
2+2r +A−1π

2

24
cr.

This is the smallest AMSE that d̂LP (r,m) can achieve as a function of m. In partic-
ular, note that using a larger bandwidth, say m∗lK for some lK > 1, would make the
AMSE only bigger.

Now, compare the above results to what we obtain for d̂WLP (r,m), using the
same bandwidth m = m∗ used above and δ = τr/(τ∗r

∑K
i=1 l

2+2r
i ). The choice of δ

ensures that d̂WLP (r,m∗, l) has the same dominant higher order bias as d̂LP (r,m∗),
see equation (2.6) and Theorem 3.2. Up to higher order terms, equation (3.9) states
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that

AMSE(d̂WLP (r,m∗, l)) = τ2
r b

2
2+2r(

m∗

n
)4+4r +

π2

24
c∗r
m∗

= W ∗n−(4+4r)/(5+4r)

for

W ∗ := A4+4rτ2
r b

2
2+2r +A−1π

2

24
c∗r .

As reported in Table I, c∗r < cr for appropriate choices of l1, ..., lK and hence W ∗ < W.
Therefore, d̂WLP (r,m), when implemented with the AMSE optimal choice m∗ of
d̂LP (r,m), has smaller AMSE than d̂LP (r,m∗). Clearly, if we used d̂WLP (r,m) with
its AMSE optimal choice mopt given in (3.10), the AMSE advantage would only
become larger.

(f) The same point about the superiority of the weighted estimator d̂WLP over the
estimator d̂LP in terms of AMSE can be made by making the asymptotic variances
of the estimators equal and then showing that the asymptotic bias of the weighted
estimator is smaller.7 It follows from Theorem 3.2 and (2.6) that in order to make the
asymptotic variance of the weighted estimator equal to that of d̂LP (r,m) (up to higher
order terms) we have to choose the bandwidth m∗ for the weighted estimator such
that c∗r/m

∗ = cr/m or m∗ = c∗r
cr
m.8 Again from Theorem 3.2 and (2.6) it then follows

that the leading term of the (squared) asymptotic bias of the weighted estimator
d̂WLP (r,m∗) differs from that of d̂WLP (r,m) by the factor ( c∗r

cr
)4 + 4r. The last two

rows of Table I show that this factor can be made smaller than 1 for appropriate
choices of lK . For example, for lK = 2.5 the factor ( c∗r

cr
)4 + 4r equals .33 and .03 for

r = 0 and r = 1, respectively. This proves again that, compared to d̂LP (r,m), the
weighted estimator can be implemented such that its AMSE is smaller: while it has
the same asymptotic variance, it has smaller (squared) bias. The title of the paper
is inspired by this way of looking at the superiority of the weighted estimator.

Table I. Values of c∗r for Different l Sequences
(where l1 = 1, τ = τr, and lj+1 − lj = .05 for j = 1, ...,K − 1)

Recall that c0 = 1, c1 = 2.25, and c2 = 3.52
lK 1.5 1.85 2.0 2.5 3.0 3.5 4.0 4.5 5.0
c∗0 .96 .90 .86 .76 .66 .59 .52 .47 .43
c∗1 3.86 2.25 1.97 1.46 1.19 1.01 .88 .78 .70
c∗2 31.87 6.48 4.57 2.42 1.77 1.44 1.23 1.08 .97

( c∗0
c0

)4 .86 .64 .56 .33 .19 .12 .08 .05 .03
( c∗1

c1
)8 75.2 1.01 .35 .03 .01 .00 .00 .00 .00

Using the results of Hurvich et al. (1998), Robinson (1995b), and AG, we now
establish the asymptotic normality of d̂WLP :
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Theorem 3.3 Under the assumptions of Theorem 3.2 and AS4, we have

√
m(d̂WLP − d− τb2+2rm

2+2rn−(2+2r)) →d N(0,
π2

24
c∗r).

For r ≥ 1, the assumptions of the theorem allow one to take m much larger than
for the asymptotic normality result for the GPH estimator (compare to Theorem 2 in
Hurvich et al. (1998)). Therefore, by choosing m appropriately, one has asymptotic
normality of d̂WLP (r) with a faster rate of convergence than is possible with d̂GPH .
This feature is also obtained for the estimator d̂LP (r). The difference between d̂LP (r)
and d̂WLP (r) is that the asymptotic variance of the latter estimator is smaller than
that of the former estimator when l is chosen such that c∗r < cr.

3.2 The Weighted Local Whittle (WLW) Estimator

In this subsection, we investigate the properties of the weighted estimator d̂We defined
in (3.7) when e stands for a k-step local Whittle estimator d̂LW,k. We show that for
given r ≥ 1, d̂WLW can be constructed to share the higher-order bias advantages of
d̂LW (r) but offers the additional advantage of a smaller variance than d̂LW (r) and
computational simplicity.

We first introduce the k-step estimator d̂LW,k and motivate its choice. As shown in
the Appendix (see (A.6) and Lemma A.2 for r = 0), for each k ≥ 1, d̂LW,k has the same
asymptotic N(0, 1/4) distribution as the LW estimator d̂LW (0) defined in (2.5) but
has a closed form expression. Hence, while sharing its relevant theoretical properties,
d̂LW,k has computational advantages over d̂LW (0). While in our simulations below
we take k = 1, we give the theory for general k ≥ 1.

For notational convenience, we write R(d) := R0(d, b); see equation (2.4). Let
Sm(d) := mR′(d) and Hm(d) := mR′′(d) be the normalized first (score) and second
(Hessian) derivatives of R(d), respectively. Define

Jm := X∗(m)′X∗(m), (3.11)

where X∗(m) is an m-vector with j-th element X∗
j (m) given by

X∗
j (m) := −2 lnλj −m−1

m∑
k=1

(−2 lnλk).

For notational simplicity, we usually writeX∗
j forX∗

j (m). The k-step (Gauss-Newton-
type) local Whittle estimator is defined recursively by9

d̂LW,j(m) := d̂LW,j−1(m)− J−1
m Sm(d̂LW,j−1(m)), j = 1, 2, ..., k, (3.12)

where d̂LW, 0(m) is a
√
m-consistent estimator of d. For example, we can define

d̂LW, 0(r,m) := d̂WLP (r,m).
Let d̂LW,k be the K-vector with i-th element d̂LW,k(mi). The weighted LW esti-

mator d̂WLW is obtained by replacing d̂e in equation (3.7) by d̂LW,k, i.e.

(d̂WLW , β̂)′ :=
(
Z ′Ω−1Z

)−1
Z ′Ω−1d̂LW,k. (3.13)
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Note that in the notation we suppressed the dependence on r,m, l, and δ. Using
Lemma A.2 in the Appendix, the following theorem can be proved:

Theorem 3.4 Let r and l be fixed constants and δ := τ/(τ∗r
∑K

i=1 l
2+2r
i ) for some

τ 6= 0. Then under Assumptions AS1-AS4, we have

√
m(d̂WLW − d− (τ/τ∗r )Drm

2+2rn−(2+2r)) →d N(0,
1
4
c∗r)

for Dr = Dr(b) ∈ R defined in (A.21) in the proof of the theorem, e.g. D0 = τ∗0 b2
and D1 = τ∗1

(
b4 + (2/9)b22

)
.

Remarks (a) The asymptotic bias of d̂WLW (r) equals (τ/τ∗r )Drm
2+2rn−(2+2r) and

is thus of order m2+2rn−(2+2r). Therefore, for r > 1, the asymptotic bias is smaller
than that of d̂LW (0) by an order of magnitude; recall that for d̂LW (0) the asymptotic
bias is of order m2/n2. Furthermore, using the weighted version d̂WLW (r) of the
local Whittle estimator d̂LW (0) changes the asymptotic variance by the multiplicative
constant c∗r . If c∗r is smaller than 1, then the asymptotic variance of the weighted
estimator is smaller than that of d̂LW (0).

(b) The estimator d̂WLW (r) can be modified to have the same dominant asymp-
totic bias term as d̂LW (r). More specifically, define

d̃WLW (r) := d̂WLW (r)−
(
τ/τ∗r D̂r − τr b̂2+2r

)
m2+2rn−(2+2r) (3.14)

for consistent estimators b̂2+2r of b2+2r and D̂r of Dr. Guggenberger and Sun (2003,
Proposition 11) give examples of such estimators. Then, under the assumptions of
Theorem 3.4 we have

√
m
[
d̃WLW (r)− d− τrb2+2rm

2+2rn−(2+2r)
]
→d N(0,

1
4
c∗r).

Therefore, the estimator d̃WLW (r) has the same dominant asymptotic bias term
τrb2+2rm

2+2rn−(2+2r) as d̂LW (r) but asymptotic variance depending on c∗r rather
than cr. If l is chosen appropriately, we can have c∗r < cr (see Table I) implying that
d̃WLW (r) has better asymptotic variance properties than d̂LW (r). In consequence,
d̃WLW (r) has the same asymptotic advantage over d̂LW (r), i.e. same asymptotic bias
but smaller asymptotic variance, as d̂WLP (r) has over d̂LP (r). Note that there is
no clear advantage of d̃WLW over d̂WLW . The adjustment in (3.14) may increase or
decrease the asymptotic bias of d̂WLW , depending on the values of D̂r and b̂2+2r.

(c) It follows from Table I that we can choose l such that c∗0 < 1. Therefore, the
weighted estimator d̃WLW (0) has the same asymptotic bias as the Gaussian semipara-
metric estimator d̂LW (0) but smaller asymptotic variance. An unproven conjecture
states that the Gaussian semiparametric estimator attains the semiparametric effi-
ciency bound (Robinson (1995a), p.1640). Our result does not constitute a contradic-
tion to this belief, because the efficiency of the Gaussian semiparametric estimator is

[14]



conjectured for a fixed sequence of bandwidths while d̃WLW (0) is based on an average
over a number of different bandwidths.

(d) Results in AG and AS show that d̂LP (r,m) and d̂LW (r,m) have the same
dominant bias term τrb2+2r(m/n)(2+2r). In contrast, Theorems 3.2 and 3.4 imply
that the dominant bias terms τb2+2r(m/n)(2+2r) and (τ/τ∗r )Dr(m/n)(2+2r) of the
weighted estimators d̂WLP (r) and d̂WLW (r) are different for r ≥ 1 with the difference
depending on b.

(e) Assume lim(m/nκ) ∈ (0,∞) for some 0 < κ < 1. It follows that under the
assumptions of Theorem 3.4 the asymptotic mean-squared error of d̂WLW is given by

AMSE(d̂WLW ) =
D2

rτ
2

τ∗2r

(
m

n
)4+4r(1 + o(1)) +

c∗r
4m

(1 + o(1)).

The AMSE-optimal choice of m is thus given by

mopt =

[(
c∗rτ

∗2
r

(4 + 4r)4D2
rτ

2

)1/(5+4r)

n(4+4r)/(5+4r)

]
. (3.15)

A plug-in method to estimate mopt has been proposed in Guggenberger and Sun
(2003).

4 Adaptive Estimation

The estimator d̂We(r,m, l) depends on the choice of r and m, the number of dominant
bias terms to be eliminated and the bandwidth, respectively.

Using the plug-in method suggested in Hurvich and Deo (1999) and also used in
AG, one can choose m to minimize the asymptotic MSE of the estimator of d for
given r and s large enough. The formulae for the optimal m in (3.10) and (3.15)
depend on the unknown parameter b2+2r or Dr The plug-in method replaces the
unknown parameter by a consistent estimate and can be adapted to our situation,
see Guggenberger and Sun (2003). However, this method has several drawbacks.
First, it is not fully automatic because it depends on a first stage regression where
one has to make an initial choice of the bandwidth. Second, because r is assumed
fixed, the method does not adapt to the local smoothness of the spectrum at zero
and therefore, in general, the MSE convergence of the estimator to zero is not rate
optimal.

In this section, we therefore choose a different route that adapts the choice of r
and m to the smoothness of the spectrum at 0. The basic method for this approach
comes from Lepskii (1990) and has been used in the context of estimation of the
long-memory parameter by Giraitis et al. (2000), Iouditsky et al. (2001), Hurvich et
al. (2002), and AS.

According to our above definition of “smooth of order s at zero”, a function that
is smooth of order s1 is also smooth of order s2 whenever s1 > s2. The rate optimal
choice of r is an increasing function of the smoothness of the spectrum at zero and we
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are therefore interested in determining the “maximal degree s0 of smoothness at 0”. In
the following we first precisely define the quantity s0 and then describe a procedure to
consistently estimate it. More precisely, we use the weighted local Whittle estimator
to design a consistent estimator ŝ of s0. As described in the following this estimator
can then be used to construct an adaptive weighted estimator. A similar analysis
could be done for the weighted log-periodogram estimator. However, such an analysis
would make the proof section much longer and we therefore focus on the weighted
local Whittle estimator only.

We now define the “maximal degree of smoothness s0 at 0” of an even function
h. This definition is then applied to ln g. In the following, denote by U a generic
neighborhood of zero that may be different across different occurrences.

Definition 4.1 Let h ∈ C1(U) be even and let
T := sup{t ∈ N0 : ∃e2i ∈ R for i = 1, ..., t s.t.

Rt(λ) := h(λ)− (h(0) +
t∑

k=1

e2kλ
2k)

satisfies Rt(λ) = o(|λ|2t) as λ→ 0}.
If T = ∞, then define the “maximal degree of smoothness of h at 0” as s0 := ∞.

Otherwise, assume that for some positive, finite constants τ > 2T,Cmin, and Cmax

Cmin|λ|τ ≤ |RT (λ)| ≤ Cmax|λ|τ (4.1)

for λ ∈ U. Then define s0 := τ.10

Note that if g is smooth of order s at zero (as used in Assumptions AG2 and
AS2), then AG (p. 682) shows that h = ln g has an [s]-order Taylor expansion with
coefficients ek := 1/(k!) (dk/dλk) ln g(λ)

∣∣
λ=0

and remainder term in o(|λ|[s]), and,
because ln g is an even function, only even monomials λ2k appear in the expansion.
Therefore, in the above definition 2T ≥ [s] holds for h = ln g, but possibly the
inequality is strict. For the rate optimal choice of r we need to know the “maximal”
s for which g is smooth of order s at zero. However, seemingly easy definitions for
maximal degree of smoothness at 0 for h ∈ C1(U) such as s0 := sup{s ≥ 1; h is
smooth of order s at zero} cause technical problems. For example, it is unclear
whether a function that has s0 = 2 according to this definition necessarily allows for
a Taylor expansion up to order 2 and therefore in general, it is unclear how many
bias terms can be eliminated. We therefore choose the above definition that avoids
such technical problems. This definition is closely related to the definition of the sets
F(s, a, δ,K) in AG (p. 688) and AS (p. 584) and reflects the fact that, all that is
needed in Theorems 3.2 and 3.4 to achieve the faster rate of bias convergence, is a
Taylor expansion with appropriately bounded remainder term.

We now propose an estimator for the maximal degree of smoothness s0 of ln g at
0. Assume we have fixed l with l1 = 1. Let 1 ≤ s∗ < s∗ < ∞ be constants such that
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s∗ ≤ s0. As in AS, for a positive constant ψ1, define

ms:= ψ1n
2s

2s+1 ,
r(s):= w for s ∈ (2w, 2w + 2] for w = 0, 1, ..., (4.2)

ζ(n):= (lnn)(ln ln(n))1/2, and
h:= 1/ lnn.

By Sh we denote the h-net of the interval [s∗, s∗], that is

Sh := {τ : τ = s∗ + kh, τ ≤ s∗ for k = 0, 1, 2, ...}.

Our proposed estimator for s0 is given by

ŝ:= max
{
τ2 ∈ Sh :

∣∣∣d̂WLW (τ1)− d̂WLW (τ2)
∣∣∣ ≤ (4.3)

(mτ1)
−1/2 ψ2(c∗r(τ1)/4)1/2ζ(n) for all τ1 ≤ τ2, τ1 ∈ Sh

}
,

where ψ2 is a positive constant and for notational simplicity we write d̂We(τ) for
d̂We(r(τ),mτ , l) for e = LP and LW. Define mi,τ := limτ . We use d̂LW,0(mi,τ ) :=
d̂WLP (τ) for all i as the zero-step estimator in the definition of the k-step LW estima-
tor d̂WLW (τ). Graphically, one can view the bound in the definition of ŝ as a function
of τ1. Then, ŝ is the largest value of τ2 ∈ Sh such that |d̂WLW (τ1) − d̂WLW (τ2)| lies
below the bound for all τ1 ≤ τ2, τ1 ∈ Sh. Calculation of ŝ is carried out by consider-
ing successively larger τ2 values s∗, s∗ + h, s∗ + 2h, ... until for some τ2 the deviation
|d̂WLW (τ1)− d̂WLW (τ2)| exceeds the bound for some τ1 ≤ τ2, τ1 ∈ Sh.

Definition 4.2 The adaptive weighted local Whittle (AWLW) estimator is defined by

d̂AWLW := d̂WLW (r(ŝ),mbs, l)
for ŝ defined in (4.3) and l being user-chosen constants.

Through ŝ, AWLW depends on several user-chosen constants, namely ψ1, ψ2, s∗,
and s∗. Other adaptive estimators, for example, Giraitis et al. (2000), Hurvich (2001),
and Iouditsky et al. (2001) all also depend on user-chosen constants, see AS (p. 587,
Comment 5) or the Monte Carlo Section 5 below for further discussion. In Section 5
we make suggestions for the choice of ψ1 and ψ2. For the bounds s∗ and s∗ we suggest
using 1 and ∞, respectively.

The following theorem establishes important asymptotic properties of ŝ and d̂AWLW .
The symbol U denotes a neighborhood of zero.

Theorem 4.3 Let Assumptions AS1, AS2(ii), and AS3 hold and suppose ln g has
maximal degree of smoothness s0 ≥ s∗ ≥ 1 at 0. If T <∞ in Definition 4.1, assume
in addition that

(Cmax − Cmin)e−s0−1 < Cmins0 (4.4)
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and RT (λ) > 0 for all λ ∈ U or RT (λ) < 0 for all λ ∈ U . Then

(a) ŝ = min(s0, s∗) +Op

(
ln ln n
ln n

)
as n→∞ and

(b) limC→∞ limsupn→∞ sups0∈[s∗,s∗] P
(
n

s0
2s0+1 ζ−1(n)

∣∣∣d̂AWLW − d
∣∣∣ > C

)
= 0.

(4.5)

Remarks (a) The theorem shows that ŝ consistently estimates the maximal degree
of smoothness s0 when it is finite and s∗ and s∗ are appropriately chosen. The
additional assumptions made under finite T are weak technicalities that are needed
in the proof of the theorem.

(b) Theorem 3 in AG shows that the optimal rate of convergence for estimation
of d for spectral densities in their set F(s0, a, δ,K) is given by ns0/(2s0+1) when s0
is finite and known. Theorem 4.3(b) shows that AWLW achieves this rate up to a
logarithmic factor ζ−1(n) when s0 is finite and not known . When s0 is not known,
this extra logarithmic factor is an unavoidable price for adaptation and the adaptive
estimator of AS shares this property.

(c) Like the adaptive estimator in AS, the adaptive estimator d̂AWLW is not nec-
essarily asymptotically normal. However, at the cost of a slower rate of convergence,
an adaptive estimator can be constructed that is asymptotically normal with zero
asymptotic bias by altering the definition of ms so that ms diverges to infinity at
a slower rate than n2s/(2s+1). More specifically, after obtaining ŝ using the above
adaptive procedure, we define

d̂∗AWLW := d̂WLW (r(ŝ),m∗bs, l), where m∗
s = ψ1n

4r(s)/(4r(s)+1).

If s0 <∞ and s0 is not an even integer, Part (a) of Theorem 4.3 implies that r(ŝ) =
r(s0) with probability approaching one. Thus, both r(ŝ) and m∗bs are essentially non-
random for large n. In consequence, the adaptive estimator d̂∗AWLW is asymptotically
normal: √

m∗bs
(
d̂∗AWLW − d

)
→d N(0,

1
4
c∗r(s0)).

Of course, one would expect that a given level of accuracy of approximation by the
normal distribution would require a larger sample size when r and m are adaptively
selected than otherwise.

5 Monte Carlo Experiment

5.1 Experimental Design

In this section, we present some simulation results that compare the RMSE perfor-
mance of the AWLW estimator with several adaptive estimators in the literature. The
simulation design is taken from AS. Additional simulation results for non-adaptive
plug-in weighted estimators are given in Guggenberger and Sun (2003). The Monte
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Carlo evidence there for low order ARFIMA(p,d,q) processes suggests that – consis-
tent with our theory– the plug-in weighted estimators d̂We generally have similar or
slightly bigger biases but smaller standard deviations than the plug-in estimators d̂e

that are based on the same choice of r. It depends on the autoregressive and moving
average parameters of the process if d̂We dominates d̂e in terms of MSE. For exam-
ple, for an AR(1) process, d̂We dominates d̂e in terms of MSE, if the autoregressive
parameter does not exceed .6.

5.1.1 Models

As in AS, we consider three models and several parameter combinations for each
model.

The first model we consider for the time series {Yt : t ≥ 1} is a first-order autore-
gressive fractionally integrated (ARFIMA (1, d, 0)) model with autoregressive (AR)
parameter φ and long-memory parameter d0:

(1− φL)(1− L)d0Yt = ut, (5.1)

where the innovations {ut : t = ..., 0, 1, ...} are iid random variables and L denotes
the lag operator. We consider three distributions for ut: standard normal, t5, and
χ2

2. The t5 and χ2
2 distributions are considered because they exhibit thick tails and

asymmetry, respectively. All of the estimators of d0 that we consider are invariant
with respect to the mean and variance of the time series. In consequence, the choice
of location and scale of the innovations is irrelevant. Note that the spectral density
of an ARFIMA(1, d, 0) process is in C∞((0, π]).

The second model is a stationary ARFIMA(1, d, 0)-like model that has a discon-
tinuity in its spectral density at frequency λ = λ0. We call this model a DARFIMA(1,
d, 0) model. Its spectral density is that of an ARFIMA(1, d, 0) process for λ ∈ (0, λ0],
but is zero for λ ∈ (λ0, π]. A DARFIMA(1, d, 0) process {Yt : t ≥ 1} is defined as
in (5.1), but with innovations {ut : t = ..., 0, 1, ...} that are an iid Gaussian process
filtered by a low pass filter. Specifically,

ut =
∞∑

j=−∞
cjεt−j for t = ..., 0, 1, ..., where cj =

{
λ0
π , for j = 0
sin(λ0j)

jπ , for j 6= 0
(5.2)

and {εt : t = ..., 0, 1, ...} are iid random variables with standard normal, t5, or χ2
2

distribution. The spectral density fu(λ) of {ut : t ≥ 1} equals σ2
u/(2π) for 0 < λ ≤ λ0

and equals 0 for λ0 < λ ≤ π, where σ2
u denotes the variance of ut, see Brillinger (1975,

equation (3.3.25)). The spectral density of {Yt : t ≥ 1} is fu(λ) times the spectral
density of the ARFIMA(1, d, 0) process that has the same AR parameter. Thus, the
spectral density of a DARFIMA process is a truncated discontinuous version of that
of the corresponding ARFIMA process.

The third model is called a long-memory components (LMC) model. It is designed
to have a finite degree of smoothness s0 at frequency zero in the short-run part, g(λ),
of its spectral density. The process {Yt : t ≥ 1} is defined by

(1− L)d0Yt = ut + k(1− L)s0/2vt, (5.3)
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where {ut : t ≥ 1} and {vt : t ≥ 1} are independent iid processes both with normal,
t5, or χ2

2 distribution. The spectral density function of {ut +k(1−L)s0/2vt : t ≥ 1} is

gs0,k(λ) =
σ2

2π
+
k2σ2

2π
|1− eiλ|s0 , (5.4)

where σ2 denotes the variance of ut and vt. Because |1 − eiλ| ∼ λ as λ → 0, the
smoothness of gs0,k(λ) at λ = 0 is s0.

For the ARFIMA and DARFIMA models, we consider seven values of φ, viz., 0,
.3, .6, .9, −.3, −.6, and −.9. For the DARFIMA model, we take λ0 to equal π/2. For
the LMC model, we take s0 = 1.5 and consider five values of k, viz., 1/3, 1/2, 1, 2,
and 3. For all three models, we consider three values of d0, viz., d0 = −.4, 0, and .4.
For each model, we consider two sample sizes n = 512 and n = 4, 096. In all cases,
1000 simulation repetitions are used. This produces simulation standard errors that
are roughly 3% of the magnitudes of the reported RMSEs.

5.1.2 Estimators

We consider the AWLW estimator defined in the previous section, the adaptive local
polynomial Whittle estimator (ALPW) of AS, the adaptive log-periodogram regres-
sion estimator of Giraitis et al. (2000), the adaptive FEXP estimator of Iouditsky et
al. (2001), and the FEXP estimator of Hurvich (2001) with the number of terms in
the expansion chosen by his local CL method. Each of these estimators requires the
specification of certain constants in the adaptive or local CL procedure. In addition,
the AWLW estimator requires choosing the l sequence, the estimator analyzed by
Giraitis et al. (2000) requires trimming of frequencies near zero and tapering of the
periodogram, and the estimator analyzed by Iouditsky et al. (2001) requires tapering
of the periodogram and allows for pooling of the periodogram.

The constants in the adaptive procedures are tuned to the Gaussian ARFIMA
model with φ = .6 with n = 512. That is, they are determined by simulation to be the
values (from a grid) that yield the smallest RMSE for the Gaussian ARFIMA model
with φ = .6 and n = 512. These values are then used for all of the processes considered
in the experiment. For AWLW and ALPW procedures, the grids for ψ1 and ψ2 are
{.1, .15, .2, ..., .5} and {.05, .10, ..., .70}, respectively. For the AWLW procedure, we
consider three equally-spaced l sequences with increments lj+1 − lj of .05, l1 = 1,
and lK = 1.5, 2, and 3. For the procedure in Giraitis et al. (2000), we set their
constant β∗ equal to 2 (as suggested on their p. 192). In addition, we introduce two
constants ψ1 and ψ2 that are analogous to the constants that appear in the definition
of AWLW. The grid for ψ1 is {.1, .2, ..., 1.0} and the grid for ψ2 is {.05, .10, ..., .70}.
The constants ψ1 and ψ2 are introduced in order to give the adaptive procedure in
Giraitis et al. (2000) a degree of flexibility that is comparable to that of the AWLW
procedure. For the procedure in Iouditsky et al. (2001), their constant κ is analogous
to the constant ψ2 of the AWLW estimator and is chosen from the same grid as ψ2

and the pooling size (denoted pool below and m in the notation of Iouditsky et al.
(2001)) is determined simultaneously with the constant κ from the grid {1, 2, ..., 6}.
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We analyze several groups of adaptive estimators. The first group contains those
adaptive estimators that are closest to being covered by the theoretical results in the
literature. We refer to these as being the “theoretically-justified” estimators and they
are denoted AWLW, ALPW, GRS1, and IMS1. (The AWLW estimator is covered
by the results of this paper and the ALPW estimator is covered in AS. The GRS1
estimator uses constants ψ1 and ψ2 that are not covered by the results of Giraitis
et al. (2000) and the IMS1 estimator uses a constant κ and an upper bound on
the number p of Fourier terms that are not covered by the results of Iouditsky et
al. (2001), see footnote 4 in AS.) The GRS1 estimator uses the cosine-bell taper
with two out of every three frequencies dropped (as in Giraitis et al. (2000)) and
three frequencies near the origin are trimmed (trim = 3) when n = 512 and six are
trimmed (trim = 6) when n = 4, 096. The IMS1 estimator uses the Hurvich taper (of
order one) with one frequency dropped between each pool group of frequencies, as in
Section 2.2 of Hurvich et al. (2002). (Note that for the case where no differencing is
carried out to eliminate potential trends, the adaptive estimators in Iouditsky et al.
(2001) and Hurvich et al. (2002) are essentially the same except that the latter uses
a scheme that deletes fewer frequencies, which we employ here.)

The second group of adaptive estimators that we consider does not have known
theoretical properties. The estimator GRS2 differs from GRS1 in that it does not
trim any frequencies near zero. The estimator GRS3 differs from GRS1 in that it
does not trim frequencies near zero, use a taper, or drop two out of every three
frequencies. The estimator IMS2 differs from IMS1 in that it does not use a taper
or drop any frequencies. Although no asymptotic theory has been established for
these estimators, it is expected that these estimators have better performance than
the respective first version as both trimming and tapering reduce the efficiency of the
estimators.

The constants determined by simulation are: AWLW: (ψ1, ψ2) = (.25, .05) and
l = (1.0, 1.05, ..., 2); ALPW: (ψ1, ψ2) = (.3, .2); GRS1: (ψ1, ψ2) = (.6, .5); GRS2:
(ψ1, ψ2) = (.3, .6); GRS3: (ψ1, ψ2) = (.2, .25); IMS1: (pool, κ) = (2, .65); and IMS2:
(pool, κ) = (2, .45).

Hurvich’s (2001) procedure requires the specification of a constant α. We consider
the two values α = .5 and α = .8 that are considered in Hurvich (2001). The
corresponding estimators are denoted H1 and H2. (The value α = .8 turns out to
minimize the RMSE of the FEXP estimator for the ARFIMA process with φ = .6
and n = 512 over α values in {.1, .2, ..., .8}.) The theoretical properties of Hurvich’s
(2001) procedure, such as its rate of convergence, are not given in Hurvich (2001).
For this reason, we do not put the H1 and H2 estimators in with the first group of
“theoretically-justified” estimators.

The final estimator that we consider is the parametric Whittle quasi-maximum
likelihood (QML) estimator for a Gaussian ARFIMA(1, d, 0) model. This estimator
is misspecified when the model under consideration is the DARFIMA(1, d, 0) model
or the LMC model and is included in the simulations for comparative purposes.
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5.2 Monte Carlo Results

Tables II-IV contain the Monte Carlo RMSE results for the three models and
the various estimators. Each table has a separate panel of results for n = 512 and
n = 4, 096. The first four rows of each panel give results for the “theoretically-
justified” adaptive estimators. The next rows give results for the adaptive estimators
that do not (currently) have theoretical justification and for the parametric Whittle
QML estimator.

For brevity, we only report a subset of the parameter combinations. For example,
results for φ = −.3, −.6, and −.9 are not given because they are close to those for
φ = 0 and .3. We only give selected results for d = .4 and no results for d = −.4,
because the value of d has only a small effect on RMSE (except for the IMS1 estimator
which exhibits some sensitivity to d). Similarly, we only give selected results for
t5 innovations and we give no results for χ2

2 innovations, because the innovation
distribution turns out to have only a small effect on RMSE.

We start by noting some general features of the results presented in the tables.
First, for d = 0 the results for normal and t5 innovations are quite similar. Second,
the results with normal innovations are very similar for d = 0 and d = .4 (with the
exception of the IMS1 estimator that is noticeably worse when d = .4 in all ARFIMA
and DARFIMA models for n = 512). Thirdly and not surprisingly, the performance
of the AWLW and all other estimators improve substantially as n increases from 512
to 4,096 without generally affecting the qualitative ranking of the estimators.

Now, we compare the estimators. Among the four theoretically-justified estima-
tors, the AWLW and ALPW estimators perform the best in an overall sense across
all three models, parameter combinations, and sample sizes. Across the 48 scenarios
reported in the tables, AWLW and ALPW have lowest RMSE in 35 and 11 cases,
respectively, amongst all the theoretically-justified estimators. For ARFIMA and
DARFIMA processes with φ ≤ .6, the AWLW estimator uniformly outperforms the
other semiparametric estimators while for φ = 0.9 it is beaten by ALPW. Similar
to the explanation in Remark (d) after Theorem 3.2 regarding the negative effect of
large lK-values on the finite-sample bias properties of AWLW, this result for φ = 0.9
is caused by the poor approximation of ln(gj/g0) by its Taylor expansion in a neigh-
borhood of the origin in this case. As expected, the performance of all the estimators
deteriorates with increasing k in the LMC models. Compared to the ALPW estima-
tor, the AWLW estimator has smaller RMSE when k ≤ 2 and slightly larger RMSE
when k = 3.

Both GRS1 and IMS1 perform poorly in an absolute sense. Relative to AWLW
and ALPW, GRS1 performs poorly when φ ≥ 0.3 or k ≥ 1 while IMS1 is outper-
formed for all values of φ and k in our three models. Because of the broad-band
character of the IMS1 estimator, it is not robust against discontinuous spectral den-
sities which is reflected in its worse performance in the DARFIMA model compared
to the ARFIMA model.

Next, we consider the adaptive estimators GRS2, GRS3, and IMS2 without the-
oretical justification. GRS2 and GRS3 perform noticeably better than GRS1, espe-
cially when φ or k is large. Hence, trimming is found to have a negative impact.
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The GRS3 estimator outperforms the GRS2 estimator across all cases and all models
considered. Hence, tapering also is found to have a negative impact. In an overall
sense, the GRS3 estimator performs reasonably well relative to the other semipara-
metric estimators. However, with very few exceptions its performance is worse than
that of the AWLW estimator. The IMS2 estimator outperforms the IMS1 estimator
in all but two cases. In many cases the difference is substantial. Hence, again we find
the effect of tapering to be negative. Compared to other semiparametric estimators,
IMS2 performs best in the cases where the short-run contamination is highest, i.e.,
φ = .9 or k = 3. But in most other cases it is out-performed by the AWLW, ALPW,
and GRS3 estimators. It appears that the relative performance of the IMS2 estima-
tor compared to the narrow-band AWLW, ALPW, and GRS1-3 estimators improves
as the sample size increases from 512 to 4, 096. The H1 and H2 estimators perform
well when the sample size is 4, 096 and φ or k are large. In other cases, they do not
perform well relative to the AWLW, ALPW, or GRS3 estimators. In particular, they
perform poorly for DARFIMA processes except when φ = .9. The relative strengths
of the H1 and H2 estimators are similar to those of the IMS1 and IMS2. This is not
surprising, because all of these estimators are broadband FEXP estimators.

The parametric Whittle QML estimator performs as expected. For ARFIMA
processes it typically has smaller RMSE than the semiparametric estimators, of-
ten substantially smaller, for example when φ = .9 or n = 4, 096. For DARFIMA
processes, for which it is misspecified, it performs very poorly. It is substantially
outperformed by all semiparametric estimators. For LMC processes, for which it is
misspecified, it has lower RMSE than the semiparametric estimators for small values
of k (when the LMC process is close to ARFIMA processes). But, it is outperformed
for larger values of k. One surprising finding that is worth mentioning is that the
parametric Whittle QML is outperformed by AWLW for certain parameter combina-
tions in the ARFIMA model, for example, for n = 512 and φ = .3 and .6.

To conclude, among the four theoretically-justified estimators, the new AWLW
estimator seems to be the best. Of all the semiparametric estimators, the two best
ones in an overall sense seem to be AWLW and ALPW. When the short run con-
tamination is not too large, AWLW outperforms ALPW and the opposite is true
when the short run contamination is large. Trimming hurts the performance of the
GRS1 estimator. Tapering hurts the performance of the GRS1 and IMS1 estimators.
The narrow-band estimators AWLW and ALPW perform well over a broad range
of parameter values, but are outperformed by the broad-band estimator IMS2 when
the short run contamination is very large. The broadband estimator IMS2 performs
relatively well when the sample size is large and the short run contamination is large.
The parametric Whittle QML estimator performs very well when the model is cor-
rectly specified, moderately well when the amount of misspecification is small, and
disastrously when the amount of misspecification is large.
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TABLE II
RMSE for ARFIMA(1,d,0) Processes with AR Parameter φ

(a) n = 512

d = 0 d = 0 d = .4
Normal t5 Normal

φ φ φ
Estimator 0 .3 .6 .9 .6 .9 .6 .9

AWLW .122 .121∗ .134∗ .473 .132∗ .473 .139∗ .472
ALPW .145 .142 .145 .423 .140 .420 .151 .425
GRS1 (taper, trim = 3) .160 .197 .397 .855 .393 .864 .394 .857
IMS1 (pool = 2, taper) .234 .252 .291 .448 .311 .460 .379 .579

GRS2 (taper, no trim) .164 .172 .244 .662 .254 .657 .253 .668
GRS3 (no taper, no trim) .131 .133 .159 .502 .157 .501 .166 .499
IMS2 (pool = 2, no taper) .203 .209 .217 .315 .215 .320 .222 .301

H1 (α = 0.5) .288 .309 .321 .438 .308 .420 .310 .436
H2 (α = 0.8) .182 .206 .233 .459 .235 .457 .241 .480

Parametric Whittle QML .066∗ .128 .134∗ .112∗ .141 .107∗ .140 .156∗

(b) n = 4096

d = 0 d = 0 d = .4
Normal t5 Normal

φ φ φ
Estimator 0 .3 .6 .9 .6 .9 .6 .9

AWLW .046 .046 .050 .224 .048 .227 .054 .230
ALPW .061 .061 .060 .207 .058 .201 .062 .213
GRS1 (taper, trim = 6) .056 .081 .169 .586 .168 .581 .169 .587
IMS1 (pool = 2, taper) .045 .133 .122 .218 .120 .220 .142 .273

GRS2 (taper, no trim) .063 .066 .108 .396 .109 .388 .114 .401
GRS3 (no taper, no trim) .052 .052 .065 .222 .064 .219 .070 .228
IMS2 (pool = 2, no taper) .046 .076 .073 .155 .073 .154 .071 .145

H1 (α = 0.5) .067 .076 .083 .125 .082 .123 .084 .132
H2 (α = 0.8) .052 .062 .073 .147 .075 .144 .077 .156

Parametric Whittle QML .013∗ .028∗ .046∗ .025∗ .045∗ .025∗ .045∗ .032∗

Notes: Asterisks denote the smallest RMSE across all the estimators for each design.
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TABLE III
RMSE for DARFIMA(1,d,0) Processes with λ0 = π/2 and AR Parameter φ

(a) n = 512

d = 0 d = 0 d = .4
Normal t5 Normal

φ φ φ
Estimator 0 .3 .6 .9 .6 .9 .6 .9

AWLW .123∗ .121∗ .134∗ .474 .139∗ .472 .138∗ .472
ALPW .143 .142 .146 .423 .149 .430 .146 .425
GRS1 (taper, trim = 3) .160 .200 .390 .857 .395 .868 .394 .859
IMS1 (pool = 2, taper) .448 .448 .445 .464 .468 .490 .520 .578

GRS2 (taper, no trim) .176 .181 .243 .656 .254 .657 .253 .668
GRS3 (no taper, no trim) .131 .142 .159 .503 .157 .501 .165 .499
IMS2 (pool = 2, no taper) .268 .266 .262 .303∗ .252 .311∗ .246 .299∗

H1 (α = 0.5) .356 .348 .317 .404 .326 .401 .309 .427
H2 (α = 0.8) .396 .393 .384 .389 .403 .409 .363 .429

Parametric Whittle QML .866 .616 .949 1.202 .951 1.209 .852 .855

(b) n = 4096

d = 0 d = 0 d = .4
Normal t5 Normal

φ φ φ
Estimator 0 .3 .6 .9 .6 .9 .6 .9

AWLW .046∗ .046∗ .050∗ .224 .052∗ .227 .054∗ .230
ALPW .060 .060 .059 .207 .055 .204 .061 .213
GRS1 (taper, trim = 6) .056 .081 .169 .586 .168 .581 .169 .587
IMS1 (pool = 2, taper) .146 .146 .146 .127 .148 .130 .121 .120∗

GRS2 (taper, no trim) .063 .066 .108 .396 .109 .388 .114 .401
GRS3 (no taper, no trim) .051 .052 .066 .222 .064 .219 .070 .229
IMS2 (pool = 2, no taper) .096 .096 .096 .106∗ .093 .103∗ .100 .125

H1 (α = 0.5) .126 .125 .123 .117 .124 .119 .110 .127
H2 (α = 0.8) .120 .120 .119 .113 .122 .119 .119 .139

Parametric Whittle QML .346 .579 .930 1.256 .933 1.257 .905 1.068
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TABLE IV
RMSE for LCM Model with Smoothness Index s0 = 1.5 and Weight k

(a) n = 512

d = 0 d = 0 d = .4
Normal t5 Normal

k k k
Estimator 1/3 1/2 1 2 3 1/2 2 1/2 2

AWLW .121 .122 .128∗ .166∗ .226 .113 .156∗ .119 .161∗

ALPW .139 .139 .139 .168 .216∗ .145 .171 .138 .164
GRS1 (taper, trim = 3) .172 .190 .230 .384 .486 .172 .384 .177 .375
IMS1 (pool = 2, taper) .247 .249 .264 .298 .336 .262 .297 .307 .323

GRS2 (taper, no trim) .165 .173 .175 .262 .337 .182 .269 .181 .265
GRS3 (no taper, no trim) .131 .131 .136 .181 .245 .121 .184 .128 .176
IMS2 (pool = 2, no taper) .207 .207 .209 .209 .229 .194 .215 .215 .233

H1 (α = 0.5) .264 .265 .276 .303 .333 .259 .307 .271 .311
H2 (α = 0.8) .178 .182 .199 .241 .298 .169 .229 .182 .245

Parametric Whittle QML .064∗ .069∗ .129 .273 .368 .064∗ .269 .069∗ .274

(b) n = 4096

d = 0 d = 0 d = .4
Normal t5 Normal

k k k
Estimator 1/3 1/2 1 2 3 1/2 2 1/2 2

AWLW .045 .046 .048∗ .065∗ .095 .046 .067∗ .046 .060
ALPW .061 .060 .060 .065∗ .100 .060 .068 .061 .058∗

GRS1 (taper, trim = 6) .061 .066 .108 .213 .305 .066 .210 .066 .212
IMS1 (pool = 2, taper) .056 .075 .123 .136 .166 .075 .138 .070 .105

GRS2 (taper, no trim) .068 .068 .079 .137 .201 .067 .137 .066 .135
GRS3 (no taper, no trim) .051 .052 .056 .085 .122 .053 .087 .049 .080
IMS2 (pool = 2, no taper) .050 .058 .070 .085 .085∗ .058 .086 .062 .089

H1 (α = 0.5) .072 .073 .078 .089 .100 .078 .089 .079 .091
H2 (α = 0.8) .056 .058 .065 .087 .107 .060 .089 .061 .087

Parametric Whittle QML .023∗ .033∗ .104 .236 .320 .032∗ .235 .031∗ .232
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6 Appendix of Proofs

The next Lemma is needed for the proof of Lemma 3.1. It is a refined version of
statements in Lemma 2 of AG.

Lemma A.1 Suppose Assumption AG4 holds. Then, for Jm defined in (3.11),
(a) J−1

m = (X∗′X∗)−1 = 1
4

1
m + 1

8
ln2 m
m2 +O( ln m

m2 ) and
(b)

∑m
j=1X

∗
j λ

k
j = − (2π)k 2k

(k+1)2
mk+1

nk +O(mk

nk lnm).

Proof of Lemma A.1. For the proof we need the following approximations:
(i)
∑m

j=1 ln j = m lnm−m+ 1
2 lnm+O(1),

(ii)
∑m

j=1 ln2 j = m ln2m− 2m lnm+ 2m+ 1
2 ln2m+O(1),

(iii)
∑m

j=1 j
k ln j = 1

k+1m
k+1 lnm− 1

(k+1)2
mk+1 +O(mk lnm), and

(iv)
∑m

j=1 j
k = 1

k+1m
k+1 − 1

2m
k +O(mk−1).

These approximations follow from straightforward calculations using the following
version of Euler’s summation formula (see, e.g., Walter (1992, p. 349)). For f ∈
C3([1,m]), we have∑m

j=1f(j) =
∫m
1 f(x)dx+ 0.5(f(1) + f(m)) + err,

where err := [2−1E2(x)f ′(x)]m1 +6−1
∫m
1 f ′′′(x)E3(x)dx, Ep(x) := Bp(x−[x]), Bp(x) :=∑p

j=0

(
p
j

)
Bjx

p−j is the p-th Bernoulli polynomial, and Bj in this lemma denotes the
j-th Bernoulli number. It can be shown that E2(m) = 6−1 and for all real numbers
x, |E3(x)| < 20−1. For part (a) of Lemma A.1 then note that

X∗′X∗ = 4
∑m

j=1 ln2 j − 4m−1(
∑m

j=1 ln j)2 = 4m− 2 ln2m+O(lnm),

where the second equality follows from (i) and (ii). Part (a) then follows. For part
(b), note that using (i), (iii), and (iv), we have

m∑
j=1

X∗
j λ

k
j = −2

(
2π
n

)k
 m∑

j=1

jk ln j −
m∑

j=1

jk 1
m

m∑
i=1

ln i


= −2

(
2π
n

)k ( 1
k + 1

mk+1 − 1
(k + 1)2

mk+1 +O(mk lnm)
)

= − (2π)k 2k
(k + 1)2

mk+1

nk
+O(

mk

nk
lnm), as desired. �

Proof of Lemma 3.1. Part (a) The log-periodogram can be written as

ln Ij = (ln g0 − C)− 2d lnλj +Rj + εj for j = 1, ...,m,

where Rj := ln gj − ln g0 and εj := ln(Ij/fj) + C, see (2.2). Define the m-vectors
R(m) := (R1, ..., Rm)′ and ε(m) := (ε1, ..., εm)′. Then

d̂LP (0,m)− d = J−1
m X∗(m)′(ε(m) +R(m)). (A.1)
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By Lemma 2(a) and (f) in AG,

EJ−1
m X∗(m)′ε(m) = O

(
m−1 ln3m

)
. (A.2)

Regarding J−1
m X∗(m)′R(m), first note that under Assumption AG2, a Taylor expan-

sion of ln gj about λ = 0 as in AG (3.3) yields

Rj =
1+r∑
k=1

b2k

(2k)!
λ2k

j +Remj , (A.3)

where bk := (dk/dλk) ln g(λ)
∣∣
λ=0

, Remj , defined implicitly as the difference between
Rj and the sum on the right hand side, satisfies max1≤j≤m |Remj/λ

q
j | = O(1) for q

defined in (2.7) and max1≤j≤m |Remj/λ
q
j | = o(1) if s = 2 + 2r. Combining this with

Lemma A.1(b) and using AG (7.16) yields

X∗(m)′R(m)=−
∑1+r

k=1

[
(2π)2k4kb2k

(2k)!(2k + 1)2
m2k+1

n2k
+O(

m2k

n2k
lnm)

]
+O(

mq+1

nq
),

J−1
m X∗(m)′R(m)=

∑1+r
k=1

[
−(2π)2kkb2k

(2k)!(2k + 1)2
m2k

n2k
+O(

m2k−1

n2k
ln2m)

]
+O(

mq

nq
), (A.4)

where the second equation uses Lemma A.1(a). The O(mq/nq) term in (A.4) is
o(mq/nq) if s = 2+2r.Note thatO((m2k−1/n2k) ln2m) is dominated byO

(
m−1 ln3m

)
from (A.2). Combining (A.1), (A.2), and (A.4) yields the desired result.

Part (b) Let Cov := Cov(d̂LP (0,mi), d̂LP (0,mj)). Without loss of generality, we
assume that li ≤ lj . Because (X∗′X∗)−1 = 4−1m−1(1 + o(1)), (A.1) implies that

Cov =
1

16mimj
(1 + o(1))

∑mi
k=1

∑mj

l=1X
∗
kiX

∗
ljCov(εk, εl),

where X∗
ki := X∗

k(mi). We decompose the double sum in the formula for Cov into
(
∑mi

k,l=1 +
∑mi

k=1

∑mj

l=mi+1)(X
∗
kiX

∗
ljCov(εk, εl)).

By Lemma 2(k) in AG, max1≤k≤mv |X∗
kv| = O(lnmi) for v = i and j. Similar

calculations to the ones in Lemma A.1(a) yield
∑mi

k=1X
∗
kiX

∗
kj = 4mi(1 + o(1)). Thus,

the proof of Theorem 1 in Hurvich et al. (1998) where they calculate the variance
of the GPH-estimator (p. 25) can be modified along the same lines as done in the
proof of Theorem 1(b) in AG (p. 702) to prove that the first part of the double sum
equals (4/6)π2mi(1 + o(1)). It is easily shown that the contribution of the second
part is in o(mi) and thus negligible and thus Cov = (4π2mi/96mimj)(1 + o(1)) =
(π2/24ljm)(1 + o(1)). �

Proof of Theorem 3.3. The proof is analogous to the proof of Theorem 2 in AG.
The latter proof in turn relies on the proof of Theorem 2 in Hurvich et al. (1998)
and the proof of (5.14) in Robinson (1995b). Note that by the definition of d̂WLP

and Lemma A.1(a)

m1/2(d̂WLP − d) = m1/2∑K
i=1wiJ

−1
mi
X∗(mi)′(R(mi) + ε(mi))

= m1/2∑K
i=1wiJ

−1
mi
X∗(mi)′R(mi)

+
(∑K

i=1wi
1

4lim1/2

∑mi
j=1X

∗
jiεj

)
(1 + op(1)).
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It follows from equation (A.4), the fact that the weights satisfy (3.2)-(3.4), and the
rate condition m2.5+2r/n2+2r → χ that for the first summand we get

m1/2∑K
i=1wiJ

−1
mi
X∗(mi)′R(mi) = m2.5+2rn−(2+2r)τb2+2r(1 + o(1)).

Ignoring the op(1) term, the second summand can be written as l1/2
K m

−1/2
K

∑mK
j=1ajεj ,

where aj :=
∑K

i=1(wi/(4li))1(j ≤ mi)X∗
ji and 1(·) is the indicator function. The same

proof as in AG (see p. 705, following equation (7.24)) can be used to show that

2(c∗r)
−1/2l

1/2
K m

−1/2
K

∑mK
j=1ajεj →d N(0, π2/6).

We just have to verify conditions (i)-(iii) of the asymptotic normality result in AG
(7.28) which then yields the desired result. For (i) note that by Lemma 2(k) in AG
we have max1≤j≤mK |X∗

ji| = O(lnm) and thus max1≤j≤mK |aj | = O(lnm). For (ii),
m−1

i

∑mi
j=1X

∗
jiX

∗
jk = 4(1 + o(1)) for li < lk, implies that m−1

K

∑mK
j=1a

2
j = l−1

K 4−1c∗r(1 +
o(1)). Finally, for (iii) note that from AG (7.30) we have

∑mi

j=1+m0.5+δ
i

|X∗
ji|p = O(m)

for all p ≥ 1. This implies
∑mK

j=1+m0.5+δ |aj |p = O(m) for all p ≥ 1. �

To prove Theorem 3.4 and establish the asymptotic properties of d̂WLW , we first
investigate those of d̂LW,k(m). For some d+ between d̂LW,k−1(m) and d we have
√
m(d̂LW,k(m)− d)

=
√
m(d̂LW,k(m)− d̂LW,k−1(m)) +

√
m(d̂LW,k−1(m)− d)

= −
√
mJ−1

m Sm(d̂LW,k−1(m)) +
√
m(d̂LW,k−1(m)− d)

= −
√
mJ−1

m Sm(d)−
√
mJ−1

m [Sm(d̂LW,k−1(m))− Sm(d)] +
√
m(d̂LW,k−1(m)− d)

= −
√
mJ−1

m Sm(d)−
√
mJ−1

m Hm(d+)(d̂LW,k−1(m)− d) +
√
m(d̂LW,k−1(m)− d)

= −
√
mJ−1

m Sm(d)−
√
m(d̂LW,k−1(m)− d)(J−1

m Hm(d+)− 1). (A.5)

If
√
m(d̂LW,k−1(m)−d) = Op(1), then applying Lemma 2(b) and (d) of AS for the case

r = 0 (in which case their θ and θ0 are not present) yields J−1
m Hm(d+) − 1 = op(1).

As a consequence of (A.5),
√
m(d̂LW,k(m)− d) = −

√
mJ−1

m Sm(d) + op(1). (A.6)

To show that
√
m(d̂LW,k−1(m) − d) = Op(1), by an induction argument it suffices to

show that
√
m(d̂LW,0(m)− d) = Op(1) and that −

(
1
mJm

)−1 1√
m
Sm(d) = Op(1). The

former is assumed through d̂LW,0(m) = d̂WLP (r,m) and the latter is proved now. The
term

(
1
mJm

)−1 is Op(1) by Lemma A.1(a) and so we are left with the term 1√
m
Sm(d).

Some algebra (see AS (4.2)) gives

1√
m
Sm(d) = −GĜ−1(d)

1√
m

m∑
j=1

(
Ij
ϕj

− 1)X∗
j (m) (A.7)

= −GĜ−1(d)(T1 + T2 + T3 + T4), where
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ϕj:= Gλ−2d
j , Ĝ(d) := Ĝ0(d, b), (A.8)

T1:=
1√
m

m∑
j=1

(
Ij
ϕj

− 2πIεj − E(
Ij
ϕj

− 2πIεj)
)
X∗

j ,

T2 :=
1√
m

m∑
j=1

(
EIj
fj

− 1
)
fj

ϕj
X∗

j ,

T3:=
1√
m

m∑
j=1

(2πIεj − 1)X∗
j , T4 :=

1√
m

m∑
j=1

(
fj

ϕj
− 1
)
X∗

j for

wε(λ):= (2πn)−1/2
n∑

t=1

εte
itλ, and Iεj := |wε(λj)|2.

The second equality in (A.7) uses the fact that E2πIεj = 1. For notational conve-
nience, we write Tj = Tj(m), j = 1, ..., 4. In the proof of their Lemma 2(e), AS show
that T1 = T2 = op(1) as 1/m+m/n→ 0. The asymptotic properties of T3, T4 and Ĝ
are established in the next lemma. These properties combined with T1 = T2 = op(1)
imply that 1/

√
mSm(d) = Op(1).

Lemma A.2 Suppose Assumptions AS1-AS4 hold.
(a) Let T3i := T3(mi). Then

(T31, T32, ..., T3K)′ →d N(0, 4Σ), where (A.9)

Σ := (Σij)K×K and Σij := {min(li, lj)/max(li, lj)}1/2 .

(b) For s = 1, ..., r + 1 let

A2s :=
(2π)2s s

(2s+ 1)2
s∑

k=1

1
k!

∑
i1+...+ik=s

(
b2i1

(2i1)!
...

b2ik

(2ik)!
), (A.10)

where the ij (j = 1, ..., k) are positive integers. Then

T4(m) = −4
1+r∑
k=1

A2k
m0.5+2k

n2k
(1 +O(

lnm
m

)) +O(
m0.5+q

nq
),

where q is defined in (2.7) and O(m0.5+q

nq ) can be replaced by o(m0.5+q

nq ) if s = 2 + 2r.
(c) For real numbers B2j (j = 1, ..., r) defined in (A.15) below, we have

GĜ−1(d) = 1 +
r∑

k=1

B2k
m2k

n2k
+ op(

m2r

n2r
). (A.11)

Note that Ĝ depends on m.
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Proof of Lemma A.2. Part (a) Using the Cramer-Wold device, we need to show
that for ρ = (ρ1, ..., ρK)′ we have

∑K
i=1 ρiT3i →d N(0, 4ρΣρ′). Note that

K∑
i=1

ρiT3i = −
K∑

i=1

ρi√
mi

mi∑
p=1

(2πIεp − 1)

(
2 ln p−m−1

i

mi∑
k=1

2 ln k

)

= −
mK∑
p=1

(2πIεp − 1)
K∑

i=1

ρi√
mi

(
2 ln p−m−1

i

mi∑
k=1

2 ln k

)
1 (p ≤ mi)

= − 1
√
mK

mK∑
p=1

(2πIεp − 1)ν∗p , where

ν∗p:=
√
mK

K∑
i=1

ρi√
mi

(
2 ln p−m−1

i

mi∑
k=1

2 ln k

)
1 (p ≤ mi) .

Robinson (1995a, p. 1644 lines 11-13 – p. 1647 line 6↑) proves that

− 1
√
mK

mK∑
p=1

(2πIεp − 1)νp →d N(0, lim
mK→∞

4
mK

mK∑
p=1

ν2
p), (A.12)

where νp := 2 ln p − m−1
K

∑mK
k=1 2 ln k. Inspection of his proof reveals that (A.12)

continues to hold with νp replaced by ν∗p if the following properties of the ν∗p sequence
hold: (i) ν∗p = O(logmK) and (ii)

∑mK
p=1

∣∣ν∗p+1 − ν∗p
∣∣ = O (logmK) . Property (i) holds

trivially and (ii) holds because

ν∗p+1 − ν∗p =
√
mK

∑
i:mi≥p+1

ρi√
mi

(
2 ln (p+ 1)−m−1

i

mi∑
k=1

2 ln k

)

−
√
mK

∑
i:mi≥p

ρi√
mi

(
2 ln p−m−1

i

mi∑
k=1

2 ln k

)

=
√
mK

∑
i:mi≥p+1

ρi√
mi

(
2 ln

(
1 +

1
p

))

−
√
mK

K∑
i=1

ρi√
mi

(
2 lnmi −

1
mi

mi∑
k=1

2 ln k

)
1 (p = mi) .

So

mK∑
p=1

∣∣ν∗p+1 − ν∗p
∣∣ = O

mK∑
p=1

2 ln
(

1 +
1
p

)+O

(
K∑

i=1

∣∣∣∣∣2 lnmi −
1
mi

mi∑
k=1

2 ln k

∣∣∣∣∣
)

= O (logmK) .
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Therefore Part (a) follows upon showing that limmK→∞
1

mK

∑mK
p=1

(
ν∗p
)2 = 4ρΣρ′.

But m−1
K

∑mK
p=1

(
ν∗p
)2 equals

∑K
i,j=1 ν

∗
i,j for

ν∗i,j :=
1
mK

mK∑
p=1

{
√
mK

ρi√
mi

(
2 ln p−m−1

i

mi∑
k=1

2 ln k

)
1 (p ≤ mi)

×
√
mK

ρj√
mj

(
2 ln p−m−1

j

mj∑
k=1

2 ln k

)
1 (p ≤ mj)

}

=
min(mi,mj)∑

p=1

ρi√
mi

ρj√
mj

(
2 ln p−m−1

i

mi∑
k=1

2 ln k

)(
2 ln p−m−1

j

mj∑
k=1

2 ln k

)

=
min(mi,mj)∑

p=1

ρi√
mi

ρj√
mj

2 ln p− 1
min (mi,mj)

min(mi,mj)∑
k=1

2 ln k

2

= 4ρiρj
min (mi,mj)√

mimj
(1 + o(1)) = 4ρiρjΣij(1 + o(1)),

where the second to last equality follows from Lemma 2(a) in AG. Thus, (A.9) follows.
Part (b) Using (A.3), ln(fj/ϕj) = Rj , and applying “ exp ” on both sides implies

that for A2k defined in (A.10), we have

fj/ϕj=1 +
1+r∑
k=1

(2k + 1)2

(2π)2k k
A2kλ

2k
j +Rem∗

j , (A.13)

max
1≤j≤m

|Rem∗
j/λ

q
j |=O(1) and = o(1) if s = 2 + 2r.

Therefore,

T4 =
1√
m

m∑
j=1

(
1+r∑
k=1

(2k + 1)2

(2π)2k k
A2kλ

2k
j +Rem∗

j

)
X∗

j

=
1√
m

m∑
j=1

(
1+r∑
k=1

(2k + 1)2

(2π)2k k
A2kλ

2k
j

)
X∗

j +O(m0.5+q/nq),

where for the second equation we used equation (7.16) in AG and the O can be
replaced by o if s = 2 + 2r. Using Lemma A.1(b), we thus get the desired result:

T4 =
1√
m

1+r∑
k=1

(2k + 1)2

(2π)2k k
A2k

m∑
j=1

X∗
j λ

2k
j +O(m0.5+q/nq)

=
−4√
m

1+r∑
k=1

[
A2k

m2k+1

n2k
(1 +O(

lnm
m

))
]

+O(m0.5+q/nq).

Part (c) We show that for certain constants C2k ∈ R (k = 1, ..., r) defined in (A.17),
we have

G−1Ĝ(d) = 1 +
r∑

k=1

C2k
m2k

n2k
+ op(

m2r

n2r
). (A.14)
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It is tedious but straightforward to show that this implies the desired result (A.11)
for

(B2, ..., B2r)′ := −M−1(C2, ..., C2r)′, (A.15)

where M = (Mi,j) is a lower triangular r × r-matrix with the number 1 on the main
diagonal and Mi,j := C2(i−j) for i > j. To prove (A.14), write

G−1Ĝ(d)− 1 = m−1
m∑

j=1

(
Ij
ϕj

− 1
)

= T1 + T2 + T3 + T4, (A.16)

where

T1:=
1
m

m∑
j=1

(
Ij
ϕj

− 2πIεj − E(
Ij
ϕj

− 2πIεj)
)
, T2 :=

1
m

m∑
j=1

(
EIj
fj

− 1
)
fj

ϕj
,

T3:=
1
m

m∑
j=1

(2πIεj − 1) and T4 :=
1
m

m∑
j=1

(
fj

ϕj
− 1
)
.

We claim that Ti = op(m2rn−2r) for i = 1, 2, and 3. In fact, equation (A.21) of
AS (with their gj playing the role of our ϕj , their φ = 2, and k = m) states T1 =
Op(m−2/3 ln2/3m+m3/2n−2+m−1/2n−1/4) = op(m2rn−2r), where for the last equality
we use Assumption AS4. Equation (A.23) of AS states E(Ij/fj) = 1 + O(j−1 ln j)
uniformly over j = 1, ...,m. Therefore T2 = O(m−1

∑m
j=1 j

−1 ln j) = O(m−1 ln2m) =
o(m2rn−2r). Equation (A.13) of AS states T3 = Op(m−1/2) = op(m2rn−2r). Finally
(A.13) implies that

T4 =
1
m

m∑
j=1

(
1+r∑
k=1

(2k + 1)2

(2π)2k k
A2kλ

2k
j +Rem∗

j

)
=

r∑
k=1

2k + 1
k

A2k
m2k

n2k
+ o(

m2r

n2r
),

where the second equality uses (iv) in the proof of Lemma A.1. This proves (A.14)
with

C2k :=
2k + 1
k

A2k for k = 1, ..., r. � (A.17)

Proof of Theorem 3.4. It follows from equation (A.6),
∑K

i=1wi = 1 and Lemma
A.1(a) that

√
m
(
d̂WLW − d

)
=

K∑
i=1

wi√
li

√
mi

(
d̂LW,k(mi)− d

)
= −

K∑
i=1

wi

4
√
li

(1 +O(
ln2mi

mi
))
Smi(d)√
mi

+ op(1). (A.18)

Using (A.7), T1 = T2 = op(1), and Lemma A.2(b) and (c), it follows that the
O((ln2mi)/mi) term in (A.18) can be ignored11 and thus

√
m
(
d̂WLW − d

)
=

K∑
i=1

wi

4
√
li
GĜ−1(d) (T3(mi) + T4(mi)) + op(1). (A.19)
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Lemma A.2(a) implies that
∑K

i=1wi/(4
√
li)T3(mi) →d N(0, c∗r/4). Using Lemma

A.2(b), (c), (3.3), (3.4), and AS4, we have, up to op(1) terms, for B0 := 1

K∑
i=1

wi

4
√
li
GĜ−1(d)T4(mi) = −

K∑
i=1

wi√
li

(1 +
r∑

k=1

B2k
m2k

i

n2k
)(

1+r∑
k=1

A2k
m0.5+2k

i

n2k
) (A.20)

= −
K∑

i=1

wi√
li

(
1+r∑
k=1

B2(k−1)A2+2r−2(k−1))
m2.5+2r

i

n2r+2
→ −(

1+r∑
k=1

B2(k−1)A2+2r−2(k−1))χτ/τ
∗
r .

Setting

Dr := −
1+r∑
k=1

B2(k−1)A2+2r−2(k−1) (A.21)

and combining the above statements gives

√
m(d̂WLW − d) →d N(χ(τ/τ∗r )Dr,

1
4
c∗r),

i.e. √
m(d̂WLW − d− (τ/τ∗r )Drm

2+2rn−(2+2r)) →d N(0,
1
4
c∗r). �

To prove Theorem 4.3 we need the following lemma to be proved below. Unless
otherwise stated, from now on C is a generic constant, that may be different across
different lines.

Lemma A.3 Suppose the assumptions of Theorem 4.3 hold.
(a) For any constant C > 0, we have

sup
τ∈[s∗,min(s0,s∗)]

P
(
m1/2

τ |d̂WLW (τ)− d| > Cζ(n)
)

= O
(
ζ−2(n)

)
.

(b) If s0 < ∞, then for any constant C > 0,

P
(
m1/2

s0
|d̂WLW (s0 + 8s0h ln lnn)− d| ≤ Cζ(n)

)
= O

(
ζ−2(n)

)
.

Proof of Theorem 4.3. Part (a) Set s := min(s0, s∗) and recall that h = 1/ lnn.
We first bound P (ŝ < s− h) . We have P (ŝ < s− h) =

∑
τ∈Sh:τ+h<s P (ŝ = τ). By

the definition of ŝ, if ŝ = τ, there exists τ ′ ≤ τ, τ ′ ∈ Sh such that

|d̂WLW (τ + h)− d̂WLW (τ ′)| > m
−1/2
τ ′ ψ2(c∗r(τ ′)/4)1/2ζ(n).
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In consequence, for all τ ∈ Sh with τ + h < s,

P (ŝ = τ)

≤
∑

τ ′∈Sh:τ ′≤τ

P
(
|d̂WLW (τ + h)− d̂WLW (τ ′)| > m

−1/2
τ ′ ψ2(c∗r(τ ′)/4)1/2ζ(n)

)
≤

∑
τ ′∈Sh:τ ′≤τ

P
(
m

1/2
τ+h|d̂WLW (τ + h)− d| > κζ(n)

)
+

∑
τ ′∈Sh:τ ′≤τ

P
(
m

1/2
τ ′ |d̂WLW (τ ′)− d| > κζ(n)

)
,

≤ 2(s∗ − s∗)(lnn) sup
τ ′′∈Sh:τ ′′≤s

P
(
m

1/2
τ ′′ |d̂WLW

(
τ ′′
)
− d| > κζ(n)

)
,

where κ := ψ2(c∗r(s∗)/4)1/2/2. Note that we used that c∗r is an increasing function in
r. The last inequality holds because there are at most (s∗−s∗)(lnn) elements τ ′ ∈ Sh

for which τ
′ ≤ τ . It now follows from Lemma A.3(a) that

P (ŝ < s− h) = O((s∗ − s∗)2(lnn)2ζ−2(n)) = O
(
(ln lnn)−1

)
= o(1) as n→∞.

(A.22)
If s0 = ∞ (and thus s0 ≥ s∗), then (A.22) clearly implies the result in Part (a).

Therefore from now on we can assume s0 < s∗. We now prove that
P (ŝ > s0 + 8s0h ln lnn) = o(1). Assume w.l.o.g. that s0 + 8s0h ln lnn ∈ Sh. By
the definition of ŝ,

P (ŝ > s0 + 8s0h ln lnn)

≤ P

(
m1/2

s0
|d̂WLW (s0 + 8s0h ln lnn)− d̂WLW (s0)| ≤ ψ2

(
c∗r(s0)/4

)1/2
ζ(n)

)
≤ P

{
m1/2

s0
|d̂WLW (s0 + 8s0h ln lnn)− d| ≤ ψ2

(
c∗r(s0)/4

)1/2
ζ(n)

+m1/2
s0
|d̂WLW (s0)− d|

}
≤ P

(
m1/2

s0
|d̂WLW (s0 + 8s0h ln lnn)− d| ≤ ψ2

(
c∗r(s0)/4

)1/2
ζ(n) + ζ(n)

)
+P

(
m

1/2
s0 |d̂WLW (s0)− d| ≥ ζ(n)

)
= O

(
ζ−2(n)

)
= o(1), (A.23)

where the last line uses both parts of Lemma A.3. In the above proof, we implicitly
assume that s0 ∈ Sh. If this is not the case, we can bound P (ŝ > s0 +8s0h ln lnn) by

P

(
m

1/2
s∗0
|d̂WLW (s0 + 8s0h ln lnn)− d̂WLW (s∗0)| ≤ ψ2

(
c∗r(s∗0)/4

)1/2
ζ(n)

)
where s∗0 := max {s : s ∈ Sh, s ≤ s0}. The rest of the proof goes through with obvious
changes.
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Combining (A.22) and (A.23), we get ŝ = s0 + Op (ln lnn/ lnn) as desired, com-
pleting the proof of Theorem 4.3(a).

Part (b) Let s̃0 := max {s ∈ Sh : s ≤ s0 − h} , then |s̃0 − s0| ≤ 2h. Using the
definition of ŝ and Lemma A.3(a), we have

P
(
n

s0
2s0+1 ζ−1(n)

∣∣∣d̂WLW (ŝ)− d
∣∣∣ > C

)
≤ P

(
n

s0
2s0+1 ζ−1(n)

∣∣∣d̂WLW (ŝ)− d
∣∣∣ > C, ŝ ≥ s0 − h

)
+ P (ŝ < s0 − h)

≤ P

(
n

s0
2s0+1 ζ−1(n)

∣∣∣d̂WLW (ŝ)− d̂WLW (s̃0)
∣∣∣ > C

2
, ŝ ≥ s̃0

)
+ P

(
n

s0
2s0+1 ζ−1(n)

∣∣∣d̂WLW (s̃0)− d
∣∣∣ > C

2
, ŝ ≥ s̃0

)
+ o(1)

≤ P

(
n

s0
2s0+1

− s̃0
2s̃0+1ψ2(c∗r(s̃0)/4)1/2 >

C

2

)
+ P

(
n

s0
2s0+1

− s̃0
2s̃0+1 ζ−1(n)m1/2(s̃0)

∣∣∣d̂WLW (s̃0)− d
∣∣∣ > C

2

)
= o(1)

uniformly as C →∞, where the last equality holds because

lim
n→∞

n
s0

2s0+1
− s̃0

2s̃0+1 ≤ lim
n→∞

n
2s0h
2s0+1 ≤ lim

n→∞
nh = e. �

To prove Lemma A.3, we introduce some notation and state one more lemma. Let
Si,τ (d), Hi,τ (d), Ji,τ , Tk,iτ , Tk,iτ , and Ĝi,τ be defined as the corresponding quantities
Sm(d), Hm(d), Jm, Tki, Tk, and Ĝ(d) (from (A.8)) with m replaced by mi,τ = limτ .
Unless otherwise stated, from now on “uniformly” stands for “uniformly over τ ∈
[s∗,min(s0, s∗)]”.

Lemma A.4 Set Dmi,τ =
{
d+ : |d+ − d| ≤ ζ−2(n) ln−5mi,τ

}
, Ci,τ =

r(τ)∑
k=1

C2km
2k
i,τ/n

2k.

Then, under Assumptions AS1, AS2(ii), AS3, and for a = 1, 2, and 3 we have uni-
formly

(a)P
(
supd+∈Dmi,τ

m−1
i,τ |Hi,τ (d+)− Ji,τ | > Cζ−1(n)

)
= O

(
ζ−2(n)

)
,

(b)P
(∣∣∣G−1Ĝi,τ (d)− 1− Ci,τ

∣∣∣ > C (mi,τ/n)2r(τ) ζ−1(n)
)

= O
(
ζ−2(n)

)
,

(c)P (|Ta,iτ | > Cζ(n)) = O(ζ−2(n)).

(A.24)

Proof of Lemma A.4. Part (a) Inspection of the proof of Lemma 7 of AS (p.
609) shows that if mi,τ = O(n∆) for some ∆ < 1, then uniformly

P

(
sup

d+∈Dmi,τ

m−1
i,τ

∣∣Hi,τ (d+)− Ji,τ

∣∣ > Cζ−1(n)

)
= O

(
ζ−2(n)

)
. (A.25)

Part (a) holds because mi,τ = O(n2τ/(2τ+1)) satisfies the required rate condition.
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Part (b) Recall from (A.16) that

G−1Ĝi,τ (d)− 1 = m−1
i,τ

mi,τ∑
j=1

(
Ij
ϕj

− 1
)

= T1,iτ + T2,iτ + T3,iτ + T4,iτ .

To prove Part (b), it suffices to prove that uniformly for a = 1, 2, 3

P
(
|Ta,iτ | > C (mi,τ/n)2r(τ) ζ−1(n)

)
= O

(
ζ−2(n)

)
and (A.26)

P
(
|T4,iτ − Ci,τ | > C (mi,τ/n)2r(τ) ζ−1(n)

)
= O

(
ζ−2(n)

)
. (A.27)

The proofs of (A.26) and (A.27) use the following result: If a sequence hj(τ) =
hj(mτ ), j = 1, ...,mτ uniformly satisfies m−1

τ

∑mτ
J=1 h

2
j (τ) = O(1) then

E

mτ∑
j=1

(2πIεj − 1)hj(τ)

2

= O(mτ ) uniformly. (A.28)

To prove (A.28), note that by Theorem 5.2.4 of Brillinger (1975, p. 125) and AS
(p. 604), Var(Iεj) = O(1) and Cov(Iεi, Iεj) = O(n−1) uniformly over i, j = 1, ..., n
with i 6= j. Thus, as desired, (A.28) equals

(2π)2
mτ∑
j=1

Var(Iεj)h2
j (τ) + 8π2

mτ∑
j,k=1,j 6=k

Cov(Iεj , Iεk)hj(τ)hk(τ) = O(mτ ).

We now proceed to establish (A.26). For a = 1, we use a proof similar to AS’
proof of their (A.21) on p. 603. Recall that

T1,iτ = m−1
i,τ

mi,τ∑
j=1

[Ij/ϕj − 2πIεj − E(Ij/ϕj − 2πIεj)].

Let ` := (mi,τ )
1/3 (lnmi,τ )

2/3 and

A10 := m−1
i,τ

∑̀
j=1

(
Ij
ϕj

− 2πIεj − E(
Ij
ϕj

− 2πIεj)
)
.

Using E
∣∣∣Ijϕ−1

j

∣∣∣ ≤ C, for j = 1, ..., `, proved in Robinson (1995a, (3.16)), we have

E |A10| = O
(
m
−2/3
i,τ (lnmi,τ )

2/3
)

uniformly. (A.29)
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We decompose the remaining summands in T1,iτ into

m−1
i,τ

mi,τ∑
j=`+1

(
Ij
ϕj

− 2πIεj − E(
Ij
ϕj

− 2πIεj)
)

= m−1
i,τ

mi,τ∑
j=`+1

(
(
Ij
fj
− 2πIεj)

fj

ϕj
− E(

Ij
fj
− 2πIεj)

fj

ϕj

)

+ 2πm−1
i,τ

mi,τ∑
j=`+1

(Iεj − EIεj)
(
fj

ϕj
− 1
)

:= A11 +A12. (A.30)

We can uniformly bound EA2
11 by

m−2
i,τE(

mi,τ∑
j=`+1

(
Ij
fj
− 2πIεj)

fj

ϕj
)2 = O(m−4/3

i,τ ln4/3mi,τ +m−1
i,τ n

−1/2), (A.31)

where the equality holds by the same proof as in Robinson (1995a, p. 1648–51) for the
quantity given in the third equation on his p. 1648. The only difference is that the
factor fj/ϕj does not appear in Robinson (1995a). It can be shown that this factor
has no impact on the proof because fj/ϕj = 1 + o(1) uniformly over j = 1, ..., .mi,τ

For A12, we have,

EA2
12 = m−2

i,τ 4π2

mi,τ∑
j=`+1

Var(Iεj)
(
fj

ϕj
− 1
)2

+m−2
i,τ 8π2

mi,τ∑
i=`+1

i−1∑
j=`+1

Cov(Iεi, Iεj)
(
fi

ϕi
− 1
)(

fj

ϕj
− 1
)

= O(1)m−2
i,τ

mi,τ∑
j=`+1

λ2φ
j +O(n−1)m−2

i,τ

mi,τ∑
i=`+1

i−1∑
j=`+1

λφ
i λ

φ
j

= O
(
m−1

i,τ (
mi,τ

n
)2φ
)

+O

(
1
n

(
mi,τ

n
)2φ

)
= O

(
m−1

i,τ (
mi,τ

n
)2φ
)
, (A.32)

uniformly, where φ = min(τ, 2) and we have used Theorem 5.2.4 of Brillinger (1975,
p. 125) again. Combining (A.29)–(A.32) and using 2r(τ) < τ gives

P

(
|T1,iτ | > C

(mi,τ

n

)2r(τ)
ζ−1(n)

)
= P

(
|A10|+ |A11|+ |A12| > C

(mi,τ

n

)2r(τ)
ζ−1(n)

)
= O

(
ζ2(n)

(mi,τ

n

)−4r(τ) [
m
−4/3
i (τ) (lnmi,τ )

4/3 +m−1
i,τ n

−1/2) +m−1
i,τ (

mi,τ

n
)2φ
])

+O

((mi,τ

n

)−2r(τ)
ζ(n)m−2/3

i (τ) (lnmi,τ )
2/3

)
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= O
{
ζ2(n)

[
n4r(τ)m

−4r(τ)−4/3
i,τ (lnmi,τ )

4/3 + n4r(τ)−0.5m
−4r(τ)−1
i,τ

]}
+O

{
ζ2(n)n4r(τ)−2φm

−4r(τ)−1+2φ
i,τ + ζ(n)m−2r(τ)−2/3

i,τ n2r(τ) (lnmi,τ )
2/3
}

= O

[
ζ2(n)

(
n

4r(τ)−8/3τ
2τ+1 (lnmi,τ )

4/3 + n
4r(τ)−3τ−0.5

(2τ+1) + n
4r(τ)−2τ−2φ

2τ+1

)]
+O

[
ζ(n)n

2r(τ)−4/3τ
(2τ+1) (lnmi,τ )

2/3

]
= O

(
ζ−2(n)

)
.

For a = 2, (A.26) holds because uniformly T2,iτ = O
(

ln2 mi,τ

mi,τ

)
= o

(mi,τ

n

)2r(τ)
ζ−1(n).

For a = 3, by Markov’s inequality

P

(
|T3,iτ | > C

(mi,τ

n

)2r(τ)
ζ−1(n)

)

= P

|m−1
i,τ

mi,τ∑
j=1

(2πIεj − 1) | > C
(mi,τ

n

)2r(τ)
ζ−1(n)


≤ C−2ζ2(n)

(mi,τ

n

)−4r(τ)
E

m−1
i,τ

mi,τ∑
j=1

(2πIεj − 1)

2

≤ C−2ζ2(n)n4r(τ)/ (mi,τ )
4r(τ)+1 = O

(
ζ2(n)n4r(τ)−2τ

)
= O

(
ζ−2(n)

)
,

uniformly, where the second inequality follows from (A.28) by setting hj(τ) = 1 and
the last equality holds because 4r(τ)− 2τ < 0. This proves (A.26). To prove (A.27),
we only need to show that |T4,iτ − Ci,τ | = o((mi,τ/n)2r(τ) ζ−1(n)), because T4,iτ is
nonrandom. In the proof of Part (c) of Lemma A.2, we have shown that T4,iτ =

Ci,τ +o
(
m

2r(τ)
i,τ /n2r(τ)

)
and it is easy to see that the o

(
m

2r(τ)
i,τ /n2r(τ)

)
term is actually

O((mi,τ )
τ /nτ ). In view of 2r(τ) < τ, we get |T4,iτ − Ci,τ | = o

(
(mi,τ/n)2r(τ) ζ−1(n)

)
as required.

Part (c) The result holds for a = 2 because

T2,iτ:= m
−1/2
i,τ

mi,τ∑
j=1

(
EIj
fj

− 1
)
fj

ϕj
X∗

j = m
−1/2
i,τ

mi,τ∑
j=1

O(
ln j
j

)O(1)O(X∗
j )

= O

m−1/2
i,τ lnmi,τ

mi,τ∑
j=1

ln j
j

 = O
(
m
−1/2
i,τ ln3mi,τ

)
= o(ζ(n))

uniformly, where we have used EIj/fj − 1 = O(j−1 ln j) and X∗
j = O(lnmi,τ ) uni-

formly over j = 1, ...,mi,τ .
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Part (c) holds for a = 3 because ET 2
3,iτ = O(1) uniformly, using (A.28) with

hj = X∗
j and then

P (|T3,iτ | > Cζ(n)) = C−2ζ−2(n)ET 2
3,iτ = O(ζ−2(n)).

Finally, for a = 1, we can prove Part (c) using the proof similar to that of (A.26) for
a = 1. Details are omitted. �

Proof of Lemma A.3. We prove only the case for the 1-step estimator. The
extension to the general k-step estimator is straightforward. Recall mi,τ = limτ .

Part (a) In the proof of Theorem 3.4, we have shown that, for some d+
i,τ between

d̂WLP (τ) and d,

m1/2
τ

(
d̂WLW (τ)− d

)
=

K∑
i=1

wi,τ l
−1/2
i m

1/2
i,τ (d̂LW,1(mi,τ )− d)

= −
K∑

i=1

wi,τ l
−1/2
i m

1/2
i,τ J

−1
i,τ Si,τ (d) + em,τ , (A.33)

where {wi,τ}K
i=1 are the weights when r = r(τ),

em,τ = −
(
m1/2

τ (d̂WLP (τ)− d)
)( K∑

i=1

wi,τ (J−1
i,τ Hi,τ (d+

i,τ )− 1)

)
, (A.34)

and m1/2
i,τ (d+

i,τ − d) = Op(1).
We now consider each of the two terms in (A.33). It follows from Lemma A.1(a)

and Lemma A.4(a) that uniformly

P
(∣∣∣J−1

i,τ Hi,τ (d+
i,τ )− 1

∣∣∣ > Cζ−1(n)
)

= O
(
ζ−2(n)

)
and thus

P

(
K∑

i=1

|wi,τ |
∣∣∣J−1

i,τ Hi,τ (d+
i,τ )− 1

∣∣∣ > Cζ−1(n)

)
= O

(
ζ−2(n)

)
uniformly. Using the preceding inequality, we have uniformly

P (|em,τ | > Cζ(n))

≤ P
(
m1/2

τ

∣∣∣d̂WLP (τ)− d
∣∣∣ > Cζ2(n)

)
+O

(
ζ−2(n)

)
≤ P

(
m1/2

τ

∣∣∣d̂WLP (τ)− d
∣∣∣ > Cζ2(n)

)
+O

(
ζ−2(n)

)
≤
mτE

(
d̂WLP (τ)− d

)2

C2ζ4(n)
+O

(
ζ−2(n)

)
= O

(
ζ−2(n)

)
, (A.35)
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where the last equality follows from Theorem 3.2. The uniformity holds because the
MSE mτE(d̂WLP (τ)− d)2 is uniformly bounded for τ in a finite interval.

Next, we show that for some C > 0,

P

(∣∣∣∣∣
K∑

i=1

wi,τ l
−1/2
i m

1/2
i,τ J

−1
i,τ Si,τ (d)

∣∣∣∣∣ > Cζ(n)

)
= O

(
ζ−2(n)

)
uniformly. (A.36)

As in the proof of Lemma A.2, we write

K∑
i=1

wi,τ l
−1/2
i m

1/2
i,τ J

−1
i,τ Si,τ (d) = −

K∑
i=1

wi,τ l
−1/2
i GĜ−1

i,τ (d)
(
m−1

i,τ Ji,τ

)−1
4∑

a=1

Ta,iτ .

(A.37)
Let Ei denote the event {|G−1Ĝi,τ (d)−1−Ci,τ | < C

(mi,τ

n

)2r(τ)
ζ−1(n) and |mi,τJ

−1
i,τ −

1/4| < Cm−1
i,τ ln2mi,τ}. It follows from Lemma A.1(a) and Lemma A.4(b) that

P
((
∩K

i=1Ei

)c) = O
(
ζ−2(n)

)
uniformly if C is large enough, where

(
∩K

i=1Ei

)c is the
complement of ∩K

i=1Ei. We can therefore focus on the event ∩K
i=1Ei.

P

(∣∣∣∣∣
K∑

i=1

wi,τ l
−1/2
i m

1/2
i,τ J

−1
i,τ Si,τ (d)

∣∣∣∣∣ > Cζ(n),∩K
i=1Ei

)

≤ P

(∣∣∣∣∣
K∑

i=1

wi,τ l
−1/2
i GĜ−1

i,τ (d)
(
m−1

i,τ Ji,τ

)−1
T4,iτ

∣∣∣∣∣ > Cζ(n)/4,∩K
i=1Ei

)

+
3∑

a=1

P

(
K∑

i=1

|wi,τ l
−1/2
i GĜ−1

i,τ (d)
(
m−1

i,τ Ji,τ

)−1
| |Ta,iτ | > Cζ(n)/4,∩K

i=1Ei

)

≤ P

(∣∣∣∣∣
K∑

i=1

wi,τ l
−1/2
i GĜ−1

i,τ (d)
(
m−1

i,τ Ji,τ

)−1
T4,iτ

∣∣∣∣∣ > Cζ(n)/4,∩K
i=1Ei

)
(A.38)

+
3∑

a=1

P (|Ta,iτ | > Cζ(n))

and the last summand is uniformly O
(
ζ−2(n)

)
by Lemma A.4(c). To bound the

probability in (A.38), note that when Ei is true

G−1Ĝi,τ (d) = 1 + Ci,τ + o (mi,τ/n)2r(τ) , (A.39)

where the small order term is o (mi,τ/n)2r(τ) instead of op (mi,τ/n)2r(τ) and

T4,iτ = −4Ai,τ +O

(
lnmi,τ

mi,τ

mφ+0.5
i,τ

nφ

)
+O

(
mτ+0.5

i,τ

nτ

)
= −4Ai,τ +O(1), (A.40)

where φ = min(τ, 2) and

Ai,τ =
r(τ)∑
k=1

A2k

m2k+0.5
i,τ

n2k
, Ai,τ = 0 if r(τ) = 0.
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Using (A.39) and (A.40) and letting Bi,τ =
∑r(τ)

k=1B2km
2k
i,τ/n

2k, we have

K∑
i=1

wi,τ l
−1/2
i GĜ−1

i,τ (d)
(
m−1

i,τ Ji,τ

)−1
T4,iτ

=
K∑

i=1

wi,τ l
−1/2
i

(
1 + Ci,τ + o

(mi,τ

n

)2r(τ)
)−1(1

4
+O

(
ln2mi,τ

mi,τ

))
(−4Ai,τ +O(1))

=
K∑

i=1

wi,τ l
−1/2
i

(
1 + Bi,τ + o

(mi,τ

n

)2r(τ)
)(

1
4

+O

(
ln2mi,τ

mi,τ

))
(−4Ai,τ +O(1))

= −
K∑

i=1

wi,τ (1 + Bi,τ )Ai,τ + o

((mi,τ

n

)2r(τ) mφ+0.5
i,τ

nφ

)
+O

(
ln2mi,τ

mi,τ

mφ+0.5
i,τ

nφ

)
+O (1)

= O

(
m

2r(τ)+φ+0.5
i,τ

n2r(τ)+φ

)
+O(1) = O(1)

uniformly, which implies that the probability in (A.38) is O
(
ζ−2(n)

)
. Combining

this with (A.33) and (A.35) gives the desired result.

Part (b) For notational simplicity, set τ0 := s0 + 8s0h ln lnn so that

P
(
m1/2

s0
|d̂WLW (s0 + 8s0h ln lnn)− d| ≤ Cζ(n)

)
= P

(
m1/2

τ0 |d̂WLW (τ0)− d| ≤ m−1/2
s0

m1/2
τ0 Cζ(n)

)
= P

(
m1/2

τ0 |d̂WLW (τ0)− d| ≤ ψ
1/2
1 n

− s0
2s0+1

+
τ0

2τ0+1Cζ(n)
)

= P
(
m1/2

τ0 |d̂WLW (τ0)− d| ≤ C (lnn)8s0/(2s0+1)(2τ0+1) ζ(n)
)
. (A.41)

The last equality holds because

n
− s0

2s0+1
+

τ0
2τ0+1 = n

8s0h ln ln n
(2s0+1)(2τ0+1) = (lnn)8s0/(2s0+1)(2τ0+1) .

As in the proof of Part (a), we write

m1/2
τ0

(
d̂WLW (τ0)− d

)
= −

K∑
i=1

wi,τ0 l
−1/2
i m

1/2
i,τ0
J−1

i,τ0
Si,τ0(d) + em,τ0 , (A.42)

where for some d+
i,τ0

between d̂WLP (τ0) and d,

em,τ0 := −
(
m1/2

τ0 (d̂WLP (τ0)− d)
)( K∑

i=1

wi,τ0(J
−1
i,τ0
Hi,τ0(d

+
i,τ0

)− 1)

)
.

We now consider em,τ0 , the second term in (A.42). Set

V (τ0) :=
(
mτ0E

(
d̂WLP (τ0)− d

)2
)1/2

.
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It follows from Theorem 3.2 that

V (τ0) = O
(
m0.5

τ0

(mτ0

n

)s0
)

= O

(
m0.5

τ0

(
n

2τ0
2τ0+1

−1
)s0
)

= O

(
n

τ0
2τ0+1n

−s0
2τ0+1

)
= O

(
n

τ0−s0
2τ0+1

)
= O

(
(lnn)8s0/(2τ0+1)

)
. (A.43)

Hence

P
(
d+

i,τ0
/∈ Dmi,τ0

)
≤ P

(∣∣∣d̂WLP (τ0)− d
∣∣∣ > ζ−2(n) ln−5mi,τ0

)
= O

(
m−1

i,τ0
ζ4(n)(lnmi,τ0)

10(lnn)16s0/(2τ0+1)
)

= O
(
ζ−2(n)

)
.

As a consequence, we can now focus on the case d+
i,τ0

∈ Dmi,τ0
. To obtain a bound

for P
(
|em,τ0 | > Cζ−1(n)V (τ0)

)
, we use the following result

P

 sup
d+∈Dmi,τ0

m−1
i (τ0)

∣∣Hi,τ0(d
+)− Ji,τ0

∣∣ > Cζ−2(n)

 = O
(
ζ−2(n)

)
, (A.44)

which is slightly stronger than (A.25) with τ = τ0. Inspection of the proof of Lemma
7 of AS (p. 609) shows that the above result holds. Using (A.44), we have,

P
(
|em,τ0 | > Cζ−1(n)V (τ0)

)
≤ P

(
m1/2

τ0

∣∣∣d̂WLP (τ0)− d
∣∣∣ > CV (τ0)ζ(n)

)
+ Cζ−2(n)

≤ C−2ζ−2(n) + Cζ−2(n) = O
(
ζ−2(n)

)
. (A.45)

Next, we consider the first term in (A.42). Using a proof similar to (A.36), we get
for a = 1, 2, 3

P

(∣∣∣∣∣
K∑

i=1

wi,τ0 l
−1/2
i GĜ−1

i,τ0
(d)
(
mi,τ0J

−1
i,τ0

)
Ta,iτ0

∣∣∣∣∣ > Cζ(n)

)
= O

(
ζ−2(n)

)
. (A.46)

Let
ξ(n, τ0) := C (lnn)8s0/(2s0+1)(2τ0+1) ζ(n) + Cζ−1(n)V (τ0) + Cζ(n),

then it follows from (A.41), (A.42), (A.45), and (A.46) that

P
(
m1/2

s0
|d̂WLW (s0 + 8s0h ln lnn)− d| ≤ Cζ(n)

)
(A.47)

≤ P

(
|

K∑
i=1

wi,τ0 l
−1/2
i GĜ−1

i,τ0
(d)
(
mi,τ0J

−1
i,τ0

)
T4,iτ0 | < ξ(n, τ0)

)
+O

(
ζ−2(n)

)
.

Let E ′i denote the event {|G−1Ĝi,τ0(d) − 1| < Cζ−1(n) and |mi,τ0J
−1
i,τ0

− 1/4| <
Cm−1

i,τ0
ln2mi,τ0}. A proof similar to the one for Lemma A.4(b) shows that

P
(∣∣∣G−1Ĝi,τ0(d)− 1

∣∣∣ > Cζ−1(n)
)

= O
(
ζ−2(n)

)
.
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It follows from the preceding equation and Lemma A.1(a) that P (
(
∩K

i=1E ′i
)c) =

O
(
ζ−2(n)

)
. As before, we now focus on the event ∩K

i=1E ′i, in which case,

G−1Ĝi,τ0(d) = 1 +O
(
ζ−1(n)

)
and

T4,iτ0 = −4Ai,τ0 +m
−1/2
i,τ0

mi,τ0∑
j=1

RT (λj)X∗
j + o(1),

implying that the dominating term in
∑K

i=1wi,τ0 l
−1/2
i GĜ−1

i,τ0
(d)
(
mi,τ0J

−1
i,τ0

)
T4,iτ0 is

at least Cm−1/2
τ0

∑mτ0
j=1 RT (λj)X∗

j for some nonzero constant C.

We now prove that |m−1/2
τ0

∑mτ0
j=1 RT (λj)X∗

j | can be bounded from below by C ln2 n

for some constant C > 0. We know that m−1
τ0

∑mτ0
k=1 ln k = lnmτ0 −1+O(lnmτ0/mτ0)

and therefore by the definition of X∗
j it is enough to bound |B| from below by C ln2 n,

where B = m
−1/2
τ0

∑mτ0
j=1 RT (λj)(− ln j + lnmτ0 − 1). Set m̄0 := mτ0/e. Then − ln j +

lnmτ0 − 1 ≤ 0 iff j ≥ m̄τ0 . So when RT (λ) > 0 for all λ ∈ U

B = m−1/2
τ0 {

m̄0∑
j=1

RT (λj)(− ln j + lnmτ0 − 1) +
mτ0∑

j=m̄0+1

RT (λj)(− ln j + lnmτ0 − 1)}

≤ Cm
−1/2
τ0

ns0
{

m̄0∑
j=1

Cmaxj
s0(− ln j + lnmτ0 − 1) +

mτ0∑
j=m̄0+1

Cminj
s0(− ln j + lnmτ0 − 1)}

≤ Cm
s0+1/2
τ0

ns0
{(Cmax − Cmin)e−s0−1 − Cmins0}(s0 + 1)−2 < 0

using (4.4) where C > 0 is a constant. Similarly, when RT (λ) < 0 for all λ ∈ U,

B ≥ −Cm
−1/2
τ0

ns0
{

m̄0∑
j=1

Cmaxj
s0(− ln j + lnmτ0 − 1) +

mτ0∑
j=m̄0+1

Cminj
s0(− ln j + lnmτ0 − 1)}

≥ −Cm
s0+1/2
τ0

ns0
{(Cmax − Cmin)e−s0−1 − Cmins0}(s0 + 1)−2 > 0

Therefore, under (4.4)

|B| ≥ C∗
m

s0+1/2
τ0

ns0
= n

τ0−s0
2τ0+1 (C∗ + o(1) = (lnn)8s0/(2τ0+1)(C∗ + o(1)),

= (lnn)8s0/(2s0+1)(C∗ + o(1)) ≥ (lnn)8/3(C∗ + o(1)),

where C∗ is a positive constant. As a result, up to lower order terms∣∣∣∣∣∣Cm−1/2
τ0

mτ0∑
j=1

RT (λj)X∗
j

∣∣∣∣∣∣ ≥ C∗(lnn)8/3.
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However, since

(lnn)8s0/(2s0+1)(2τ0+1) = C (lnn)8s0/(2s0+1)2 (1 + o(1))

≤ C (lnn)8/9 (1 + o(1))

as 8s0/ (2s0 + 1)2 is a decreasing function of s0 when s0 ≥ 1, we have

ξ(n, τ0) = O
(
(lnn)8/9 ζ(n)

)
+ o

(
(lnn)8s0/(2τ0+1)

)
+ o

(
ln2 n

)
and thus

P

(
|

K∑
i=1

wi,τ0 l
−1/2
i GĜ−1

i,τ0
(d)
(
mi,τ0J

−1
i,τ0

)
T4,iτ0 | < ξ(n, τ0)

)
= 0,

when n is large enough. Combining this with (A.47) leads to the stated result. �
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Notes

1More precisely, instead of −2 log λj , the original GPH estimator was defined using
log |1− exp(−iλ)| as the regressor for d. For the asymptotic statements given in our
theorems, this difference is of no importance.

2Note that we do not include Assumption 3(b) in AS into our AS3. It is used
in Robinson (1995a) to obtain a law of large number for ε2t without fourth moment
assumptions. But AS3(a) yields this law of large number, since it implies that ε2t − 1
is a bounded variance martingale difference sequence.

In AS4 note the following. If s > 2 + 2r is assumed as in AG2 above, As-
sumption 4 in AS boils down to m0.5+2r/n2r → ∞ and m2.5+2r/n2+2r = O(1) as
n→∞. If we want to be certain that in (2.10) τrb2+2rm

2+2r/n2+2r is the dominant
higher order bias expression, we have to sharpen assumption m2.5+2r/n2+2r = O(1)
to m2.5+2r/n2+2r → χ ∈ (0,∞) in AS4. The reason is that m2.5+2r/n2+2r =
O(1) is compatible with m2.5+2r/n2+2r = o(1) in which case it is not clear that
τrb2+2rm

2+2r/n2+2r is the dominant higher order bias expression: there could be
other op(1) terms that converge to zero slower than τrb2+2rm

2+2r/n2+2r.

3In the discussion of the local Whittle estimator, we mean by “asymptotic bias”
the difference of the mean of the asymptotic distribution of the estimator and the
true value of d. In contrast, for the log-periodogram estimator, “asymptotic bias”
refers to the asymptotic behavior of Ed̂LP − d. For technical reasons, we can not
use this definition for the Whittle case. The same comment applies to “asymptotic
variance”. For further discussion of the difference of these two concepts we refer to
Davidson and MacKinnon (1993, p.124).

4If m2.5+2r/n2+2r = o(1) then
√
m(d̂LP (r,m) − d) →d N(0, π2

24 cr) and similar
modifications hold for the other asymptotic normality results below. We focus on
the case m2.5+2r/n2+2r → χ ∈ (0,∞) in our discussion here because this is the
MSE-optimal growth rate for m.

5W.l.o.g. we impose lj > lj−1 and for convenience, we always pick l such that
the increments lj+1 − lj are equal, for j = 1, ...,K − 1. Furthermore, m and lK are
picked such that [lKm] ≤ n/2. Assuming that l is a vector with rational compo-
nents li = pi/qi (for relatively prime integers pi and qi and i = 1, ...,K) and that
m contains all the qi as factors, it follows that mi = lim. To simplify the exposi-
tion, we make this assumption from now on. Of course, all the results below go
through without this assumption. For example, take the bias formula in Theorem
3.2: because m2k

i /m
2k = l2k

i + O(1/m), condition (3.3) implies that for k = 1, ..., r
we have

∑K
i=1wim

2k
i /n

2k = O(m2k−1/n2k) which is dominated by O((ln3m)/m).

6To simplify notation, we do not explicitly list K and w among the parame-
ters that the weighted estimator depends on. The dependence on K is implicit
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through l and below we describe a procedure of how to pick w given r,m, l, and δ.

7We would like to thank a referee for pointing out this alternative approach to
showing the AMSE superiority of the weighted estimator.

8More precisely, m∗ = [ c
∗
r

cr
m], but this difference does not matter for what follows.

9We could also define a k-step (Newton-Raphson-type) local Whittle estimator
by the recursion d̂LW,j := d̂LW,j−1 − Hm(d̂LW,j−1)−1Sm(d̂LW,j−1), for j = 1, 2, ..., k,
where we used the same notation as in (3.12). We use Jm instead of Hm(d̂) be-
cause it is technically more convenient and computationally simpler as Jm does
not depend on any estimated parameter. We have not formally established the
equivalence of the NR and GN procedures in terms of the results of the paper.

10Note that there are functions h ∈ C1(U) for which Definition 4.1 does not apply.
Assume h is such that its T is finite with RT (λ) = |λ|2T / log |1/λ| for λ 6= 0 and
RT (0) = 0. Then, there is no τ > 2T and positive Cmin such that (4.1) holds.

11Assumption AS4 implies that O((ln2m/m)(m2.5/n2)) = o(1) and thus the state-
ment follows by noting thatm2.5/n2 is the highest order term of T4 that hitsO(ln2m/m).
For similar reasons we can ignore the O(lnm/m) terms in T4 in equation (A.20).
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Härdle, W. (1990). Applied Nonparametric Regression. Cambridge University Press,
Cambridge, UK.

Hidalgo, J. (2005). Semiparametric estimation for stationary processes whose spec-
tra have an unknown pole. Annals of Statistics 33, 1843-1889.

Hurvich, C.M. (2001). Model Selection for Broadband Semiparametric Estimation
of Long Memory in Time Series. Journal of Time Series Analysis 22, 679–709.

Hurvich, C.M. & J. Brodsky (2001). Broadband Semiparametric Estimation of the
Memory Parameter of a Long-Memory Time Series Using Fractional Exponen-
tial Models. Journal of Time Series Analysis 22, 221-249.

Hurvich, C.M. & R.S. Deo (1999). Plug-in Selection of the Number of Frequencies
in Regression Estimates of the Memory Parameter of a Long-memory Time
Series. Journal of Time Series Analysis 20, 331–341.

Hurvich, C.M., R.S. Deo & J. Brodsky (1998). The Mean Squared Error of Geweke
and Porter-Hudak’s Estimator of the Memory Parameter of a Long-memory
Time Series. Journal of Time Series Analysis 19, 19–46.

[48]



Hurvich, C.M, E. Moulines & P. Soulier (2002). The FEXP estimator for potentially
non-stationary linear time series. Stochastic Processes and Their Applications
97, 307-340.

Iouditsky, A., E. Moulines & P. Soulier (2001). Adaptive Estimation of the Frac-
tional Differencing Coefficient. Bernoulli 7, 699-731.

Kim, C.S. & P.C.B. Phillips (1999a). Log Periodogram Regression: The Nonsta-
tionary Case. Working paper, Cowles Foundation, Yale University.

———(1999b). Modified Log Periodogram Regression. Working paper, Cowles
Foundation, Yale University.
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