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Summary The standard Tobit maximum likelihood estimator under zero censoring threshold
produces inconsistent parameter estimates, when the constant censoring threshold γ is non-zero
and unknown. Unfortunately, the recording of a zero rather than the actual censoring threshold
value is typical of economic data. Non-trivial minimum purchase prices for most goods, fixed cost
for doing business or trading, social customs such as those involving charitable donations, and infor-
mal administrative recording practices represent common examples of non-zero constant censoring
threshold where the constant threshold is not readily available to the econometrician. Monte Carlo
results show that this bias can be extremely large in practice. A new estimator is proposed to esti-
mate the unknown censoring threshold. It is shown that the estimator is superconsistent and follows
an exponential distribution in large samples. Due to the superconsistency, the asymptotic distrib-
ution of the maximum likelihood estimator of other parameters is not affected by the estimation
uncertainty of the censoring threshold.

Keywords: Exponential distribution, maximum likelihood, order statistic, threshold determination.

1. INTRODUCTION

In this paper we consider the standard Tobit model (Tobin 1958):

y∗

i = α + Xiβ + εi, i = 1, 2, ..., n (1.1)

where y∗

i is a latent response variable, Xi is an observed 1 × k vector of explanatory variables, and
εi ∼ iid N(0, σ2) and is independent of Xi. Instead of observing y∗

i , we observe yi:

yi =

{

y∗

i , if y∗

i > γ
0, if y∗

i ≤ γ
(1.2)

where γ is a nonstochastic constant. In other words, the value of y∗

i is missing when it is less than
or equal to γ.

The problem with the standard Tobit model is that γ is often not observed in economic data and
is often assumed to be zero in empirical applications. A classic example is willingness to pay for an
automobile where yi is the observed expenditure on an automobile, which is typically recorded as
zero if no automobile is purchased. The unknown censoring threshold, γ, is, in fact, not zero but the
lowest available price for a car. Another example is the dollar value of trade between two countries. It
makes little sense to assume that the censoring threshold is zero as it seems highly unlikely that the
trade is of a minuscule amount, say 100 or 200 dollars. In this case, the true censoring point depends
on the fixed cost of the trade among other factors and may be well above $0. In both examples,
the censoring threshold is not zero. In fact, censoring at a non-zero point is hardly far-fetched, for
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there is nothing inevitable or magical about zero. It will turn out that the censoring threshold γ is
a valuable piece of information.

It is easy to show that the standard maximum likelihood Tobit estimator is inconsistent if the
censoring threshold, γ, is not zero but is coded as zero. See, for example, Carson (1988, 1989) and
Zuehlke (2003). To consistently estimate the model parameters, we first write yi − γ = max(0, α −
γ +Xiβ + εi), a Tobit model with zero censoring point. We then run a standard Tobit on yi − γ and
adjust the estimated intercept by γ to get an estimate of α. This solution is simple but not useful
in empirical work when γ is not known.

In this paper, we consider estimating the unknown censoring threshold by the minimum of the
uncensored yi’s. We show that the estimator γ̂ of γ is superconsistent and asymptotically expo-
nentially distributed. A statistical test is introduced to test whether the threshold is significantly
different from a certain value. In addition, it is shown that the maximum likelihood estimator for
α, β and σ based γ̂ is as efficient as the maximum likelihood estimator when the true value of γ is
known. Simulation results suggest that the effects of a non-zero γ may be more serious in practice
than other previously identified problems with the Tobit model.

The papers that are most closely related to this paper are Carson (1988, 1989) and Zuehlke
(2003). Carson (1988, 1989) shows the inconsistency of the maximum likelihood estimator when the
censoring point is incorrectly coded and points out that the two-step estimator of Heckman (1976)
is consistent. Carson (1988, 1989) also suggests estimating the unknown censoring threshold by the
minimum of the uncensored yi’s. In a recent paper, Zuehlke (2003) rediscovers these unpublished
results and demonstrates via simulations that the asymptotic distribution of the maximum likelihood
estimator does not seem to be affected by the estimation of the censoring threshold. One of the main
contributions of this paper is to provide a rigorous proof of the latter result.

The rest of the paper is organized as follows. Section 2 describes the estimation procedure and
establishes the asymptotic results. The next section provides some simulation evidence. Section 4
contains an empirical application and the final section concludes.

2. CONSISTENT AND ASYMPTOTICALLY EFFICIENT ESTIMATOR

To simplify the exposition, we assume that the observations are sorted so that the first n0 are
censored and the last n1 = n − n0 are not censored. The likelihood function for the model implied
by equations (1.1) and (1.2) is usually written (e.g. Cameron and Trivedi (2005)) as:

L(α, β, σ) =

n0
∏

i=1

Φ

(

γ − α − Xiβ

σ

) n
∏

i=n0+1

1

σ
φ

(

yi − α − Xiβ

σ

)

(2.3)

where Φ(·) and φ (·) are the standard normal cumulative distribution function and probability density
function, respectively.

Let X = (X ′

(0), X
′

(1))
′, y = (y′

(0), y
′

(1))
′ where the subscripts on X and y indicate whether they are

from the censored, n0, or uncensored, n1, portion of the sample. To obtain the maximum likelihood
estimators of α, β and σ, we follow Carson (1988, 1989) and Zuehlke (2003) and first estimate γ by
γ̂ :

γ̂ = min{y(1)}. (2.4)

We claim that γ̂ is superconsistent, converging to the true value of γ at the rate of 1/n. To see this,
note that conditioning on X(1), the elements of y(1) follow truncated distributions with

P (y(1),i < u|X(1),i) =
Φ
[(

u − α − X(1),iβ
)

/σ
]

− Φ
[(

γ − α − X(1),iβ
)

/σ
]

1 − Φ
[(

γ − α − X(1),iβ
)

/σ
] . (2.5)
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Conditioning on n1 and X, we have, for any δ > 0,

P (min{y(1)} > γ + δ/n|X, n1)

= P (y(1),1 > γ + δ/n, y(1),2 > γ + δ/n, ..., y(1),n1
> γ + δ/n|X, n1)

=

n1
∏

i=1

{(

1 − Φ
[(

γ + δ/n − α − X(1),iβ
)

/σ
]

− Φ
[(

γ − α − X(1),iβ
)

/σ
]

1 − Φ
[(

γ − α − X(1),iβ
)

/σ
]

)}

=

n1
∏

i=1

{

1 − δ

nσ

φ
[(

γ − α − X(1),iβ
)

/σ
]

+ op(1)

1 − Φ
[(

γ − α − X(1),iβ
)

/σ
]

}

(2.6)

as n → ∞, where the op(1) term holds uniformly over the support of Xi as φ(·) is bounded.
Let

µi =
1/σφ

[(

γ − α − X(1),iβ
)

/σ
]

(

1 − Φ
[(

γ − α − X(1),iβ
)

/σ
]) and µ = Eµi, (2.7)

where the expectation is taken with respect to X(1),i. If E
∥

∥X(1),i

∥

∥

2+∆
< ∞ for some small ∆ > 0,

then E ‖µi‖2+∆
< ∞. This is because for any z ∈ R, there exists a constant C > 0 independent of z

such that |φ (z) /(1 − Φ(z))| ≤ C |z| . The moment condition on µi helps us to bound max |µi| : for
any M > 0,

P (max |µi| > n1/(2+∆)M) ≤ nP (|µi| > n1/(2+∆)M) =
(

E ‖µi‖2+∆
)

M−2−∆. (2.8)

Hence max |µi| = Op

(

n1/(2+∆)
)

1. Now

1

n1
log P (min{y(1)} > γ + δ/n|X, n1)

=
1

n1

n1
∑

i=1

log

[

1 − δ

n
µi + op

(

1

n

)]

=
1

n1

n1
∑

i=1

δ

n
µi + op

(

1

n

)

+ O

(

max |µi|
n2

2
)

=
1

n1

n1
∑

i=1

δ

n
µi + op

(

1

n

)

=
µδ

n
(1 + op (1)). (2.9)

where the last equality holds by a law of large numbers. Then conditioning only on n1,

P (min{y(1)} > γ + δ/n|n1) = exp
[n1

n
µδ(1 + op (1))

]

, (2.10)

as n → ∞. Note that as n → ∞,

n1

n
=

∑n
i=1 {y∗

i > γ}
n

→ E {1 − Φ [(γ − α − Xiβ) /σ]} (2.11)

by a law of large numbers. As a consequence,

P
(

min{y(1)} > γ + δ/n|n1

)

→ exp (−ηδ) , (2.12)

1We derive this result using a crude maximal inequality under the assumption that E
‚

‚X(1),i

‚

‚

2+∆
< ∞. The moment

condition may be relaxed if we use a refined maximal inequality.
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where

η = E {1 − Φ [(γ − α − Xiβ) /σ]}E
1/σφ

[(

γ − α − X(1),iβ
)

/σ
]

1 − Φ
[(

γ − α − X(1),iβ
)

/σ
] . (2.13)

Since the right hand side of (2.12) does not depend on n1, it is also the limit of the unconditional
probability. Therefore, we have shown that

lim
n→∞

P
(

n
(

min{y(1)} − γ
)

< δ
)

= 1 − exp (−ηδ) for δ > 0, (2.14)

an exponential distribution with parameter η.
The mean of this distribution is 1/η and the variance is 1/η2. As η increases, the limiting distrib-

ution becomes more concentrated around the origin. Heuristically, the first factor in η measures the
probability of not censoring while the second factor measures how likely an observation is close to
γ given that it is not censored. Combining these two factors, we can regard η as a measure of the
likelihood of getting an observation that is close to γ. Therefore, the larger η is, the closer min{y(1)}
is to γ and the more concentrated the limiting distribution is.

Note that while we have used the independence of {yi} and the differentiability of the normal CDF
to derive the limiting distribution, we have not assumed that the yi’s are identically distributed as
do most of the results on asymptotics of order statistics.

Since the first part of the likelihood function in (2.3) is increasing in γ where the second part is in-
dependent of γ, γ̂ is the maximum likelihood estimator of γ under the constraint that γ ≤ min{y(1)}.
The jointly sufficient statistics for (2.3) are γ̂, αγ̂ , βγ̂ , σγ̂ where [αγ̂ , βγ̂ , σγ̂ ] are the maximum likeli-
hood estimates assuming γ = γ̂. In view of the superconsistency of γ̂, a standard textbook argument
shows that αγ̂ , βγ̂ , σγ̂ are asymptotically normal with the asymptotic variance identical to that for
[αγ , βγ , σγ ] when γ is known. The superconsistency of γ̂ is a well-known consequence of the depen-
dence of the support of y on γ (e.g. Schervish 1995, pp. 408).

Computationally the proposed estimator is simple: retain the min{y(1)} and estimate the Tobit
model by maximum likelihood assuming γ = min{y(1)}. Report the usual asymptotic covariance
matrix for [αγ , βγ , σγ ].

What we have done is equivalent to re-specifying (2.3) to explicitly include the restriction on the
support of y so that the likelihood function becomes:

L(α, β, σ) =

n0
∏

i=1

Φ

(

γ − α − Xiβ

σ

) n
∏

i=n0+1

1

σ
φ

(

yi − α − Xiβ

σ

)

1 {yi > γ} . (2.15)

The above likelihood function is also given in Carson (1988, 1989) and Zuehlke (2003). The important
difference between this likelihood function and that given in (2.3) is that the likelihood function is
now no longer continuously differentiable in terms of γ. Now the likelihood is increasing up until the
point where γ equals min{y(1)} and then becomes zero. This effectively defines γ̂. Because of this
property of the likelihood function, the maximum likelihood estimator of γ is not the solution to
the first order conditions and, as such, many of the usual methods of showing the consistency and
asymptotic variance of the maximum likelihood estimator do not work. It is important to note that
the concentrated likelihood function obtained by plugging γ̂ into (2.15) satisfies the usual regularity
conditions. This, together with the superconsistency of γ, guarantees that the MLE of α, β and σ
are asymptotically normal with the asymptotic variance identical to that for [αγ , βγ , σγ ] when γ is
known.

Our estimator of γ turns out to be in many ways quite similar to that of the maximum likelihood
estimator for a for the uniform distribution on [a, b], which is the classic counter example to much
of what is taught about maximum likelihood techniques (Romano and Siegel 1986).

c© Royal Economic Society 2007



The Tobit Model with a Non-zero Threshold 5

With a consistent estimate ofγ, we can test the hypothesis

H0 : γ = γ0 versus H1 : γ > γ0, (2.16)

for some γ0. To this end, we construct the statistic

T = n1

(

min{y(1)} − γ0

)

µ̂ (2.17)

for some consistent estimate µ̂. It follows from the limiting distribution of γ̂ that T converges to
an exponential distribution in large samples: P (T > δ) → exp(−δ)1 {δ > 0} as n → ∞. As a
consequence, if T > − ln τ, where τ is the nominal size of the test, then we reject the null that
γ = γ0 at the level τ. In particular, when the nominal size is τ = 5%, then the critical value is
2.9957. Based on the the limiting distribution of T, a 100(1 − τ)% confidence interval for γ can be
constructed as [γ̂ + (ln τ) / (n1µ̂) , γ̂] .

To estimate µ, we plug the parameter estimates into the definition of µ, which gives

µ̂ =
1

n1

n1
∑

i=1

1/σγ̂φ
[(

γ̂ − αγ̂ − X(1),iβγ̂

)

/σγ̂

]

1 − Φ
[(

γ̂ − αγ̂ − X(1),iβγ̂

)

/σγ̂

] . (2.18)

If we can show that

E sup
φ ((γ − α − Xiβ) /σ)

1 − Φ [(γ − α − Xiβ) /σ]
< ∞, (2.19)

where the sup is taken over (γ, α, β, σ) ∈ Θ, a compact parameter space, then a uniform law of large
number holds for

1

n1

n1
∑

i=1

φ
((

γ − α − X(1),iβ
)

/σ
)

1 − Φ
[(

γ − α − X(1),iβ
)

/σ
] . (2.20)

See, for example, Lemma 2.4 of Newey and McFadden (1994). As a consequence, µ̂ is consistent for
µ. To show inequality (2.19), we note that when ‖Xi‖ → ∞,

sup φ ((γ − α − Xiβ) /σ) {1 − Φ [(γ − α − Xiβ) /σ]}−1 → ∞
at the rate of ‖Xi‖ . Therefore, if E ‖Xi‖ < ∞, inequality (2.19) holds.

3. MONTE CARLO EXPERIMENTS

In this section, we first investigate the magnitude of the finite sample bias of the maximum likelihood
estimator under the standard Tobit specification when γ 6= 0, and then we investigate the accuracy
of the asymptotically exponential approximation for the distribution of γ̂. Finally, we examine the
size and power properties of the T test.

Inspired by the automobile purchase problem, we let

y∗

i = α + β1x1i + β2x2i + εi, (3.21)

where α = 6000, β1 = β2 = 1, x1i and x2i are normal random variables each with a mean 5000
and a standard deviation of 500. The correlation between x1i and x2i is set at 0.2. The error terms,
εi’s, are generated to be normally distributed with mean 0 and standard deviation 1000. Thus the
expected value of y∗

i is 16000. The observations are censored at γ = 15000 which produces samples
with roughly 20% of the 500 observations being censored.

Table 1 presents the average value and standard error of each estimator over 5000 replications.
OLS estimates are given for the actual y∗, only the uncensored observations y(1), and the incorrectly
coded yo which has zero recorded for the censored values. Tobit estimates are given using γ’s of 0,
2500, 5000, 7500, 10000, 12500, and 15000, the true value. Estimates are also given for two consistent
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6 Richard T. Carson and Yixiao Sun

techniques, the Tobit using γ = min
{

y(1)

}

and Heckman’s two-step procedure (Heckman 1976). The
bias in the constant term estimated using the standard Tobit model (i.e., γ = 0) is over 550%; and
the bias in the estimates of the slope coefficients is over 400%. For the design matrix and parameter
values used, the bias in each of the Tobit coefficients declines at very close to a linear rate until the γ
assumed takes on its true value of 15000 at which point the bias is essentially zero. A linear regression
of the bias in α̂ on 15000 minus the assumed γ yields −3.0904× (15000 − γ) with R2 = 0.999. For
the biases in β1 and β2 the regression equation is 0.000283 × (15000 − γ) with R2 = 0.999. It is
important to note that the large bias in the parameters exhibited by this Monte Carlo simulation
is not strictly due to γ = 15000. Since the bias is directly related to |γ/σ|, the identical percentage
bias could have been generated using say γ = 0.15, σ = .01 and an appropriate rescaling of the X
matrix.

The OLS estimates using yo, in which the censored values are coded zero, are severely biased
although less so than the standard Tobit model with γ set equal to 0, and appear similar to a Tobit
model with an assumed γ between 2500 and 5000. The OLS estimates using only y(1), the uncensored
observations, are even less biased but the pattern of parameter estimates is very different with the
intercept biased upward and the slope coefficients biased downward.

The Tobit model using γ = min
{

y(1)

}

produces consistent parameter estimates which for all
practical purposes are indistinguishable from the Tobit model using γ = 15000, the true value. The
Heckman estimator is also consistent. For the two slope coefficients its loss in efficiency is large,
being more than 100% for both coefficients. The Heckman estimator’s loss in efficiency is even larger
for the estimates of α and σ, being 208% and more than 1000% respectively.

Next, we investigate the accuracy of the asymptotically exponential approximation. Using the
same data generating process as before, we simulate the statistic T defined in (2.17). We employ the
kernel smoothing method to estimate the probability density of T. The underlying bandwidths are
based on the plug-in rule proposed by Sheather and Jones (1991). For values of T at the boundary of
its support, we use the data reflection method of Hall and Wehrly (1991) to correct for the boundary
bias. Figure 1 presents the kernel density estimate (KDE) based on 5000 replications with sample
size 500. In the same figure, we also graph the probability density function (pdf) of the standard
exponential distribution. It is clear that the empirical KDE is close to the theoretical pdf, suggesting
that the asymptotic distribution provides a good approximation to the finite sample distribution.
Figure 2 is the same as Figure 1 except that the same size is 100. Again the approximation is accurate
even for this smaller sample size. It should be pointed out that in both figures the empirical KDE
is smaller than the theoretical pdf near the boundary of the support. This is partly due to the
remaining boundary bias of the kernel density estimator.

Finally, we examine the finite sample properties of the T test. The data generating process is the
same as before except that several values of the intercept are considered, i.e. α = 4000, 5000, 6000, 7000,
and 8000. All else being equal, µ decreases with α. Therefore, as α increases, it is less likely to get
many uncensored observations that are close to the censoring point. Table 2 presents the size and
power of the T test. The column with γ = 15000 contains the size of the test. The empirical size
of the T test is close to the nominal size 5%. This result confirms the above simulation evidence
that the asymptotic distribution provides a good approximation to the finite sample distribution
of the T statistic. Other columns of Table 2 contain the power of the test. The simulation results
show that the power decreases as α increases. This is not surprising because when α increases, the
censoring point moves to the lower tail of the distribution of y∗

i . As an example, when α = 8000 and

c© Royal Economic Society 2007



The Tobit Model with a Non-zero Threshold 7

Table 1. Finite Sample Performances of Different Estimators
Method α β1 β2 σ

TRUE 6000 1.0000 1.000 1000

OLS 5984.7 1.0003 1.0028 997.52
(y∗) (581.2) (0.0902) (0.0912) (32.01)

OLS 9569.8 0.6761 0.6803 820.52
(y(1)) (596.0) (0.0892) (0.0891) (29.75)

OLS −29653 4.2583 4.2593 5948.70
(yo) (3484.1) (0.5325) (0.5305) (186.38)

ML −40742 5.2859 5.2875 7420.00
(γ = 0) (5235.7) (0.7236) (0.7243) (359.86)

ML −32764 4.5539 4.5558 6280.40
(γ = 2500) (4418.6) (0.6116) (0.6123) (304.66)

ML −24797 3.8229 3.8250 5145.20
(γ = 5000) (3604.4) (0.5000) (0.5008) (249.39)

ML −16850 3.0938 3.0961 4018.5
(γ = 7500) (2795.5) (0.3892) (0.3901) (194.04)

ML −8946.1 2.3687 2.3713 2909.70
(γ = 10000) (1998.5) (0.2803) (0.2813) (138.56)

ML −1169.8 1.6554 1.6583 1850.80
(γ = 12500) (1236.4) (0.1767) (0.1777) (83.31)

ML 5975.9 1.0008 1.004 997.69
(γ = 15000) (642.1) (0.0962) (0.0968) (37.46)

ML 5996.5 0.9989 1.0021 995.72
γ = min(y(1)) (641.4) (0.0960) (0.0966) (37.35)

Heckit 6078.6 0.9908 0.9947 987.22
(1944.7) (0.1930) (0.1940) (494.06)

Note: Standard errors are given in parentheses. ML (γ = z) is the Tobit maximum likelihood
estimator obtained with γ assumed to be z. The true value for γ is 15000. Results are based on

5000 replications with a sample size of 500.

c© Royal Economic Society 2007



8 Richard T. Carson and Yixiao Sun

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n
1
(γhat  − γ)*µhat

D
en

si
ty

 

 

Empirical KDE
Theoretical pdf

Figure 1. Kernel density estimate of T = n1(γ̂ − γ)µ̂ with sample size 500
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Figure 2. Kernel density estimate of T = n1(γ̂ − γ)µ̂ with sample size 100
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Table 2. Size and Power of the T test at the 5% level with H0 : γ = 15000 and H1 : γ > 15000
γ = 15000 γ = 15025 γ = 15050 γ = 15075 γ = 15100

α = 4000 0.0510 0.8355 1.0000 1.0000 1.0000
α = 5000 0.0530 1.0000 1.0000 1.0000 1.0000
α = 6000 0.0507 0.9167 1.0000 1.0000 1.0000
α = 7000 0.0517 0.1733 0.5794 0.9985 1.0000
α = 8000 0.0794 0.1022 0.1347 0.1756 0.2338

Note: Results are based on 10000 replications with a sample size of 500.

γ = 15025, only 0.9% of the observations are censored. This being said, the T test is very powerful
when the censoring point is reasonably away from the left tail of y∗

i .

4. EMPIRICAL APPLICATION: DONATION TO CHARITY

The simulation exercise in the previous section is a stylized version of the durable goods case for
which the Tobit model was originally developed and is still in common usage. The new TSP 5.0
manual (Hall and Cummins, 2005) for instance features a simple automobile example with censoring
at zero. In that case γ and, more particularly, |γ/σ| is likely to be relatively large and hence represent
the ideal case for the method we propose to be useful. In this section, we look at an empirical example
from another common application of the Tobit model, charitable contributions (e.g., Reece, 1979).
In this case one might well expect a priori that the minimum observed positive contribution in a
data set is fairly small and that there is a fairly wide range of contributions suggesting that σ is
large. As a result, the Tobit model with a zero threshold does not seem to be seriously mis-specified.
However, we show that the Tobit model with non-zero threshold has a larger likelihood function and
better out-of-sample forecasting performance than the Tobit model with zero threshold.

The dataset we used comes from Franses and Raap (2001, sec 2.2.5). It consists of observations
of 4268 individuals concerning the response to a charity direct mail appeal. The dependent variable
is the donation in response to the latest charity mailing. The dummy variable ‘Resp’ indicates
whether an individual responded to the latest charity mailing. The rest of the variables will be
used as proxies for the willingness to donate. They are a 0-1 dummy variable indicating whether
an individual responded to the previous mailing, the number of weeks since the last response, the
average number of mailings received per year, the percentage of responses in the past, the average
donation in the past and the amount donated in the last response. These variables are listed in
Table 3. Table 4 reports the minimum, average, standard deviation, maximum of all variables for
the two subsamples: the subsample who responded to the latest mailing and the subsample who did
not. The average donation for those who responded is about 18 Dutch guilders and the standard
deviation is 18.96. There are a few individuals who donated more than 200 guilders. Compared
with the individuals who responded, individuals who did not respond had lower responding rate and
longer responding time, and made a smaller amount of donation in the past.

All individuals in the sample had responded at least once to the previous mailings. This suggests
that the willingness to donate is most likely to be positive, as a negative willingness implies that an
individual wanted to take some money from the charity fund instead of making a contribution. This
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10 Richard T. Carson and Yixiao Sun

Table 3. Dependent Variable and Explanatory Variables
Variables Description
Donation Donation in Response to the Latest Mailing, Dep. Var.
Resp Response to the Latest Mailing (Dummy Variable)
Resp Previous Mail Response to the Previous Mailing (Dummy)
Weeks Last Resp Weeks Since Last Response
Percent Resp Percentage of Responded Mailings
Mails Per Year Average Number of Mailings per Year
Donation Last Resp Donation in the Last Response
Aver Past Donation Average Donation in the Past

Table 4. Characteristics of the Dependent Variable and Explanatory Variables
Variables No Responsea Responseb

Min Average S.D. Max Min Average S.D. Max
Donation 0 0 0 0 2 18.613 18.96 250
Resp 0 0.6000 0.4900 1 0 0.4000 0.4900 1
Resp Previous Mail 0 0.2073 0.4055 1 0 0.5261 0.4995 1
Weeks Last Resp 13.14 72.10 47.41 195 13.14 39.47 30.02 195
Percent Resp 9.09 39.27 21.46 100 11.11 62.19 24.49 1
Mails Per Year 0.25 1.99 0.65 3.50 0.25 2.15 0.68 3.50
Donation Last Resp 1 17.04 22.00 750 2 23.81 242.32 10000
Aver Past Donation 1 16.831 20.73 750 1.83 20.36 121.82 5005

Note: a summary statistics for those who didn’t respond to the latest charity mailing
b summary statistics for those who responded to the latest charity mailing

observation leads to the following model specification:

yi =

{

y∗

i , if y∗

i ≥ γ∗,
0, if y∗

i < γ∗,
(4.22)

where yi is the observed amount of donation and y∗ is the latent variable that measures the willing-
ness to donate. We assume that y∗ satisfies

y∗

i = exp(xiβ + εi), (4.23)

where εi is iid N(0, σ2) and independent of {xi}n
i=1 . Here xi includes all the proxy variables described

above but with the average donation in the past and the amount donated in the last response in
logarithm forms.

The model given in (4.22) and (4.23) is a log-normal variant of the standard Tobit model. It can
be rewritten as

yi =

{

y∗

i , if log y∗

i ≥ γ,
0, if log y∗

i < γ.
(4.24)

The threshold γ, defined as log(γ∗), is unknown and possible non-zero. Allowing for an unknown
and non-zero threshold makes the log-normal variant of the Tobit model a more attractive option
as zero is unlikely to be a plausible option in this case as it simply corresponds to censoring at 1 in
the latent variable’s original units.

A common practice in research on charitable donations is to model log(a + yi) using the Tobit
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with a zero threshold or a linear regression model. Here the constant a is chosen by the researchers
and is often quite ad hoc. For example, the choice of a = 10 has long been common in the literature
on charitable donations (e.g., Choe and Jeong, 1993). While the ad hoc approach works reasonably
well for our example, there is no reason to believe that adding an ad hoc correction factor to the
dependent variable will work well in general.

We proceed to implement our proposed model. We drop log(Aver Past Donation) from the vector
xi as its correlation with log(Donation Last Resp) is extremely high (> 0.95). A simple plot of yi

suggests that the original data set has been systematically organized according to some criteria. To
make a fair comparison of the out-of-sample performance of different models, we randomly permute
the original data set so that the individuals are not ordered in any way. We use the first 4000
individuals to estimate different models and the remaining 268 individuals to evaluate their out-of-
sample forecasting performance.

The log-likelihood function for our models is

∑

yi=0

log Φ

(

γ − xiβ

σ

)

−
∑

log(yi)>γ

{

1

2
log
(

2πσ2
)

+
(log(yi) − xiβ)

2

2σ2
+ log(yi)

}

(4.25)

where γ = log(γ∗). Table 5 represents the maximum likelihood estimate results of the Tobit models
with zero and non-zero thresholds. The non-zero threshold γ is estimated using the minimum of the
non-zero log(yi)’s, i.e.

γ̂ = min
yi>0

{log yi}. (4.26)

It is clear that the Tobit model with non-zero threshold has a larger likelihood function than the
Tobit model with zero threshold. To formally test H0 : γ = 0 against H1 : γ > 0, we compute the T
statistic

T = n1µ̂ min
yi>0

{log yi} (4.27)

where µ̂ is defined in equation (2.18). We find that T = 437.56. Comparing this with the critical
value from the standard exponential distribution, we reject the null hypothesis at the 1% level.
Alternatively, we can construct the 99% confidence interval for γ, which is [0.686, 0.693]. The confi-
dence interval does not contain the origin, which is consistent with the hypothesis testing result. In
addition, the confidence interval is very narrow, suggesting little loss in not knowing the threshold.

For both models, the estimated coefficients have the expected signs. All coefficients are significant
at the 1% level except the dummy variable indicating whether an individual responded to the
previous mailing. For each of the models, we perform the likelihood ratio test for the joint significance
of all the slope coefficients. The respective LR statistics are 1024.01 and 998.05. Comparing these
with the χ2

5 critical values, we reject the null that the slope coefficients are jointly zero. The typical
summary statistics suggest that either model provides a reasonable summary of the data at hand.
However, there is a sizeable difference in the estimated coefficients across the two models. The results
of Table 5 show that the Tobit model with a zero threshold overestimates the effect of all the proxy
variables. Of particular note is that the coefficient on the key variable in the model Percent Resp,
the percent of previous mailing that the person responded to, is over 30% larger in the model
with the zero threshold. From a direct mail perspective, this would cause one to substantially over
estimate the value of being able to selectively sampling from a database based on donor propensity
to contribute in the past. Interestingly, most of the other coefficients are also overestimated by
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Table 5. Estimation and Forecasting Results for the Tobit Model with Zero and Non-Zero Censoring
Points

Non-Zero Censoring Zero Censoring
Explanatory Variables Parameter t-stat Parameter t-stat
Constant −2.4514 −10.94 −3.6831 −12.50
Resp Previous Mail 0.0950 1.00 0.1309 1.04
Weeks Last Resp −0.0100 −8.00 −0.0134 −8.06
Mails Per Year 0.1869 3.49 0.2496 3.53
Percent Resp 2.8875 15.36 3.8296 15.45
Log(Aver Donation) 0.6092 11.60 0.6345 9.14
σ 1.8704 2.4760
Log-likelihood value −8840.4 −9302.7
LR ratio 1024.01 998.05
MAFE 5.1246 5.1864
RMSFE 21.670 79.509

Note: The Sample Size is 4000 and the Number of Censored Observations is 2393

roughly 30% except for the coefficient on Log(Aver Donation), the log of the average donation in
the past, which shows little change in the magnitude of the coefficient but a substantial decline in
the corresponding t-statistic from 11.60 to 9.14.

To compare the forecasting performance of the two models, we compute the mean of y for given
x as follows:

E (y|x) = P (xβ + ε ≥ γ)E (exp (xβ + ε) |xβ + ε ≥ γ)

=

{

1 − Φ

(

γ − xβ

σ

)}

exp(xβ)E (exp (ε) |ε ≥ γ − xβ)

=

{

1 − Φ

(

γ − xβ

σ

)}

exp(xβ)

{

1 − Φ

(

γ − xβ

σ

)}

−1

×
∫

∞

γ−xβ

exp (ε)
1√

2πσ2
exp

(

− ε2

2σ2

)

dε

= exp(xβ)
1√

2πσ2

∫

∞

γ−xβ

exp

(

−
(

ε − σ2
)2

2σ2
+

σ4

2σ2

)

dε

=

{

exp(xβ +
σ2

2
)

}{

1 − Φ

(

γ − xβ − σ2

σ

)}

. (4.28)

We forecast y according to

ŷ =

{

exp(xβ̂ +
σ̂2

2
)

}

{

1 − Φ

(

γ̂ − xβ̂ − σ̂2

σ̂

)}

. (4.29)

For the 268 individuals in the hold-out sample, we obtain a Root Mean Squared Forecasting Error
(RMSFE) of 21.670 for the Tobit model with non-zero threshold and 79.509 for the Tobit model
with zero threshold. Hence, the RMSFE performance of the Tobit model with non-zero threshold is
much better than that of the Tobit model with zero threshold.

We have also used the Mean Absolute Forecasting Error (MAFE) to evaluate the forecasting
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performance. For this criterion we assume the conditional median of ε given x to be zero and use
the conditional median of y as our forecast. Since y = exp(xβ + ε)1 {exp(xβ + ε) ≥ γ∗} is a non-
decreasing function of (xβ + ε) ,

median(y|x) = exp(xβ)1 {xβ ≥ γ} =

{

exp(xβ), if xβ ≥ γ,
0, if xβ < γ.

(4.30)

We forecast y according to ŷ = exp(xβ̂)1
{

xβ̂ ≥ γ̂
}

.

The MAFE does not show as large as advantage for the non-zero threshold model although it
still dominates the zero threshold model. This is not surprising given that much of the improvement
in predictive power is concentrated in the tails of the distribution. To check the robustness of our
result, we model yi itself rather than its logarithm using the Tobit model. Our qualitative results
for the zero threshold and non-zero threshold models given above remain valid.

5. DISCUSSION AND CONCLUDING REMARKS

The censoring threshold plays a non-trivial role in the Tobit model. While this has long been recog-
nized if the censoring threshold differs for each agent or is stochastic (Nelson 1977), it has not been
recognized in the typical case where the censoring threshold is assumed to be constant and non-
stochastic. The special case where γ = 0 results in important simplifications in the algebra of the
Tobit problem.

In most of the situations where Tobit models have been used in practice it is unlikely that γ is
actually equal to zero. Examples include purchases of a wide variety of goods ranging from cigarettes
to automobiles, trade flows, charitable giving, and administrative records involve wages and health
expenditures. Economics is unique among disciplines using censored and truncated distributions
in that little attention has been paid to the threshold point. The extent to which existing Tobit
estimates from empirical studies are biased is a function of the extent to which |γ/σ| is different
from zero. How important this is in practice is, of course, an open question and empirical studies
do not typically report the statistics which would be necessary to calculate this term. Our empirical
application suggests that the effects of estimating the censoring threshold are more subtle in the case
where |γ/σ| is small but still potentially important from both an inference and predictive perspective.

Our Monte Carlo results suggest that non-zero censoring thresholds may be a more important
source of bias than non-normality or heteroscedasticity (e.g., Wooldridge 2002, pp. 533). If one is
not prepared to give up the assumption that the censoring threshold is a constant and explicitly
model it in the manner of Nelson (1977), then there is a simple recommendation for applied work:
set γ equal to the minimum of the uncensored dependent variable. In large samples there is no
efficiency loss relative to knowing and using the correct γ. In order to ensure the observations
that achieve min

{

y(1)

}

are treated as uncensored observations, we may actually need to set γ

slightly less than min
{

y(1)

}

when using a canned statistical package. In other words, we set γ =

min
{

y(1)

}

− eps where eps is the distance between two closest floating point numbers or a number

that is much smaller than min
{

y(1)

}

. Some statistical package such as STATA uses the minimum
as the left censoring point when the censoring threshold is not specified. However, the minimum
is taken over all the observations. Hence, if censored observations are coded as zeros as in typical
economic datasets, the default tobit command in STATA will set γ = 0 and may produce incorrect
results. Our recommendation is to always specify the censoring point when using a canned statistical
package.

It is straightforward to see that our simple approach also applies to truncation regression with
an unknown truncating point. Our results can be easily extended to the right censoring or trunca-
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14 Richard T. Carson and Yixiao Sun

tion cases. In addition, our simple approach can be used to analyze datasets in which the unknown
censoring/truncating points differ according to some exogenously specified variable such as state of
residence. In this case, we can estimate the censoring/truncating point for each state by the mini-
mum of the uncensored/untruncated dependent variable within each state. As long as the number
of observations for each state approaches infinity as the sample size increases, our proof for the as-
ymptotic exponential distribution goes through without modification. Under the assumption of cross
sectional independence, the estimators of the censoring/truncating points are iid exponential in large
samples, which gives us a convenient way to test whether differences in the censoring/truncating
points across states are significantly different.
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