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Abstract

The paper investigates the optimal kernel choice in heteroskedasticity and autocorrelation

robust tests based on the fixed-b asymptotics. In parallel with the optimality of the quadratic

spectral kernel under the asymptotic mean squared error criterion of the point estimator of

the long run variance as considered in Andrews (1991), we show that the optimality of the

quadratic spectral kernel continues to hold under the testing-oriented criterion of Sun et al.

(2008) which takes a weighted average of the probabilities of type I and type II errors of the

fixed-b asymptotic test.
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1 Introduction

There is much progress in the last two decades on heteroskedasticity and autocorrelation robust

(HAR) inference1. Besides the development of the fixed-smoothing asymptotic theory, which
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1The term “HAR” was first introduced by Phillips (2005)



includes as a special case the fixed-b asymptotic theory pioneered by Kiefer and Vogelsang

(2002a,b, 2005), there is also some progress in developing testing-optimal rules for selecting the

smoothing parameter b for the fixed-b test2. In particular, Sun et al. (2008) suggest that one

should choose the smoothing parameter to minimize a loss function that is a weighted average

of the probabilities of type I and type II errors3. This testing-optimal choice of b is, in general,

larger than the conventional MSE-optimal b of Andrews (1991). Under the asymptotic MSE

of the point estimator of the long run variance (LRV), it is well known that the quadratic

spectral (QS) kernel is optimal among the class of positive-definite second-order kernels. An

open question is whether the optimality of the QS kernel remains valid under the testing-oriented

loss function proposed by Sun et al. (2008).

The answer to this question is not obvious, as the MSE criterion and the testing-oriented

criterion are fundamentally different. While the MSE criterion balances the asymptotic variance

and the squared asymptotic bias of the LRV estimator, the testing-oriented criterion of Sun

et al. (2008) balances the asymptotic variance with the asymptotic bias itself. The ways that

the asymptotic variance and bias enter the criterion functions are also different. For more

discussion on the difference, see Sun (2018). Nevertheless, we show that the QS kernel is still

optimal under the testing-oriented criterion.

Recently Lazarus et al. (2018) (hereafter LLSW) have also established the testing-optimality

of the QS kernel, but they consider a different loss function. Their loss function is a weighted

average of the squared size distortion and the squared size-adjusted power loss. Such a loss

function is closer to the mean-squared loss than the loss function we consider here. For example,

like the MSE criterion, LLSW’s loss function does not respect the direction of the asymptotic

bias. In contrast, the loss function we consider here respects the direction — positive and

negative biases of the same magnitude have different effects on our loss function. Indeed, we

have to show the optimality of the QS kernel for the case with a positive bias and the case with

a negative bias separately.

The testing-optimality of the QS kernel is established via high-order expansions of type I

and type II errors. Both types of errors are defined pointwisely under a given data-generating

2For a sample size T, bbT c is the maximum order of autocovariances included in the kernel long run variance

estimator for a kernel function with support on [−1, 1].
3We often just say “type I and type II errors” instead of “the probabilities of type I and type II errors.”
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process (DGP). The (pointwise) type I error is not equal to the (uniform) size of the test, which,

by definition, is the supremum of the type I error over a family of DGP’s that satisfies the null

hypothesis. The testing-optimality of the QS kernel is, therefore, established only in a pointwise

sense. In a sequence of papers, Preinerstorfer and Pötscher (2016), Pötscher and Preinerstorfer

(2018), and Pötscher and Preinerstorfer (2019) establish the necessary and sufficient conditions

under which the size of the commonly used HAR tests can be controlled. Unfortunately, con-

ventional heteroskedasticity and autocorrelation consistent (HAC) tests4 (e.g., Newey and West

(1987) and Andrews (1991)), the fixed-b HAR tests (e.g., Kiefer and Vogelsang (2005) and Sun

et al. (2008)), and the related fixed-smoothing HAR tests (e.g., Sun (2011) and Ibragimov and

Müller (2010)) can all suffer from extreme size distortion, that is, their size can equal one. The

test considered here is a fixed-b HAR test and hence can potentially have the same problem.

Whether the size can be controlled or not is problem-specific. Subject to a size control, it is

an open question whether the QS kernel is still optimal for HAR testing among the class of

positive-definite second-order kernels.

The rest of the paper is organized as follows. In Section 2, we introduce the basic setting and

review the basics of the fixed-b HAR test in a simple location model. In Section 3, we construct

the loss function and establish the testing-optimality of the QS kernel. Section 4 extends the

result to the GMM setting. The next section reports simulation evidence, and the final section

concludes.

2 Preliminaries

For simplicity, we start with an m-dimensional location model

Yt = θ0 + ut ∈ Rm

for t = 1, . . . ., T where the error process {ut ∈ Rm} is covariance stationary with mean zero.

We do not impose a parametric autocorrelation structure on {ut} so that the error process

can exhibit autocorrelation of unknown forms. This simple model abstracts away non-essential

nuisance but retains the essence of HAR inference. We will consider an extension to the GMM

4We use “HAC” to refer to a test that uses critical values from a normal or chi-square distribution. We use

“HAR” to refer to a test that uses critical values from a fixed-b asymptotic distribution or standard F distribution.
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setting in Section 4.

We are interested in testing H0 : θ0 = 0 against H1 : θ0 6= 0. We can estimate θ0 by the

simple average θ̂ = Ȳ := T−1
∑T

t=1 Yt. Then, under some moment and mixing conditions on

{ut} , we have

√
T (θ̂ − θ0) =

1√
T

T∑
t=1

ut →d N(0,Ω),

where Ω :=
∑∞

j=−∞Eutu
′
t−j is the long run variance of the error process {ut} . To make statis-

tical inferences on θ0, we follow the large literature on HAC/HAR inference (e.g., Newey and

West (1987) and Andrews (1991)) and estimate Ω by

Ω̂b =
1

T

T∑
t=1

T∑
s=1

k

(
t− s
bT

)
ûtû
′
s,

where ût = ut− ū, ū = T−1
∑T

s=1 us, k (·) is a kernel function, and b is the smoothing parameter.

We focus on positive-definite kernels in this paper. The positive-definiteness ensures that Ω̂b is

positive definite almost surely. The Wald statistic for testing H0 against H1 is

FT ≡
(√

T θ̂
)′

Ω̂−1
b

(√
T θ̂
)
.

To develop an asymptotic approximation of FT , we can write it as

FT =

(
1√
T

T∑
t=1

ut

)′ [
1

T

T∑
t=1

T∑
s=1

k

(
t− s
bT

)
ûtû
′
s

]−1(
1√
T

T∑
t=1

ut

)
.

Under the increasing-smoothing asymptotics where b → 0, T → ∞ and bT → ∞, we can show

by a standard argument that FT →d χ2
m, the chi-square distribution with m degrees of freedom.

It is now well known that the chi-square approximation is not accurate in finite samples,

especially when b is relatively large. See, for example, Hansen et al. (1996), Kiefer and Vogelsang

(2005), and Sun (2014a). To cope with this problem, the literature has developed the fixed-b

asymptotics under which b is fixed as T → ∞. The following assumptions are standard in this

strand of literature; see, for example, Assumptions 4 and 5 in Sun (2014a).

Assumption 1 Define St =
∑t

τ=1 uτ . S[Tr] satisfies the functional CLT

T−1/2S[Tr] →d Ω1/2Wm(r), r ∈ [0, 1] (1)

where Ω is a positive-definite matrix and Wm(r) is the standard m-dimensional Brownian mo-

tion.
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Assumption 2 (i) k(x) : R → [0, 1] is symmetric, piecewise smooth with k(0) = 1, and∫∞
0 k(x)xdx <∞. (ii) The Parzen characteristic exponent defined by

q = max{q0 : q0 ∈ Z+, k(q0) = lim
x→0

1− k(x)

|x|q0
<∞} (2)

is greater than or equal to 1.

Assumption 1 holds for serially correlated data that satisfy certain moment and mixing

conditions. The conditions can be found, for example, in Corollary 2.2 of Phillips and Durlauf

(1986) and Theorem 3.15 in Phillips and Solo (1992). In particular, Corollary 2.2 of Phillips and

Durlauf (1986) shows that Assumption 1 holds for a mean zero and weakly stationary sequence

{ut} if

(i) E(‖ut‖β) >∞ for some β ≥ 2;

(ii) ut is ϕ-mixing with mixing coefficients satisfying
∑∞

`=1 ϕ
1−1/β
` <∞;

(iii) Ω =
∑∞

j=−∞E(utu
′
t−j) is positive definite.

Assumption 2 is a mild assumption on the kernel function. It is satisfied for commonly used

kernel functions in spectrum estimation and HAR inference such as the Bartlett, Parzen, and

QS kernels. For the Bartlett kernel, the Parzen characteristic exponent q is 1, and we refer to

it as a first-order kernel. For the Parzen and QS kernels, the Parzen characteristic exponent q

is 2, and we refer to them as second-order kernels.

Under Assumptions 1 and 2, we have

FT →d F∞(m, b) := Wm(1)′
[∫ 1

0

∫ 1

0
k∗
(
r − s
b

)
dWm(r)dWm (s)

]−1

Wm(1),

where k∗ ((r − s)/b) is the demeaned kernel given by

k∗
(
r − s
b

)
= k

(
r − s
b

)
−
∫ 1

0
k

(
r − s
b

)
dr −

∫ 1

0
k

(
r − s
b

)
ds+

∫ 1

0

∫ 1

0
k

(
r − s
b

)
drds.

See equation (5) in Sun (2014a). The fixed-b critical values, i.e., the quantiles of F∞(m, b),

have been recommended for practical use. There is ample simulation evidence that the fixed-b

Wald test is more accurate than the conventional chi-squared test. See, for example, Kiefer and

Vogelsang (2005) and Sun (2014a).

The performance of the fixed-b Wald test depends on the choice of b and the kernel function

k (·). In this paper, we consider choosing b to optimize a loss function that is oriented towards
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the testing problem at hand. Given the optimal b, we show that the QS kernel is optimal among

the class of the positive-definite second-order kernels. That is, the optimality of the QS kernel,

which has been established under the mean square error of the point estimator of the long run

variance, is still valid.

3 Testing-optimal Kernel

For any testing problem, our goal is to minimize the chances of making mistakes, whether they

might be type I or type II errors. The ultimate objects of interest are the probabilities of type I

and type II errors. It is, therefore, reasonable to select b to minimize the combined probabilities

of making type I or type II errors or minimize a weighted average of these two probabilities. We

can choose the weights to reflect the relative economic loss under each of the two types of errors

and the prior probabilities of the null and alternative hypotheses. In this case, the loss-based

objective function has an economic interpretation: it is the expected economic loss from making

wrong decisions.

The two types of errors can be approximated by using high-order expansions. To facilitate the

high-order Edgeworth expansions, we make the assumption below, which combines Assumption

6 (i&ii) and the additional assumption given in the statement of Theorem 2 in Sun (2014a).

Assumption 3 (i) ut is a stationary Gaussian process. (ii) For any c ∈ Rm, the spectral

density of c′ut is bounded above and away from zero in a neighborhood around the origin. (iii)∑∞
h=−∞ |h|

q
∥∥E(utu

′
t−h)

∥∥ <∞ where q is the Parzen characteristic exponent of the kernel func-

tion used in Ω̂b and defined in Assumption 2.

Assumption 3(i) is made to simplify the presentation. When ut is not a Gaussian process, we

have to follow the most general approach to develop Edgeworth expansions for time series data.

This often requires highly technical assumptions that are difficult to verify. See, for example,

Sun and Phillips (2009) for the technical assumptions and a full-fledged Edgeworth expansion.

There are additional terms in the full-fledged expansion. However, these terms do not depend on

the kernel functions, and as a result, the testing-optimality of the QS kernel still holds without

the Gaussian assumption.

6



Assumption 3(ii) ensures that the OLS estimator θ̂OLS and the GLS estimator θ̂GLS are

asymptotically equivalent, namely, E[
√
T (θ̂GLS − θ̂OLS)]2 = O (1/T ). This result is used to

facilitate the development of high-order expansions. While this paper focuses on the pointwise

result only, the upper bound imposed in Assumption 3(ii) also prevents the variance matrix

of (u1, ..., uT ) from becoming singular, and as a result, the size of our test (uniformly over all

stationary AR(1) processes) will be less than one. See example 6.2 of Pötscher and Preinerstorfer

(2018) for details.

Assumption 3(iii) is a technical assumption used to characterize the asymptotic bias. It is

typically assumed in the literature on spectrum estimation and HAR testing.

Under Assumptions 1–3, Theorem 2 of Sun (2014a) shows that under the increasing-smoothing

asymptotics, i.e., b→ 0, bT →∞ as T →∞,

PrH0(FT > z)

= 1−Gm (z) + Am (z) b︸ ︷︷ ︸
variance and demeaning effects

+G′m (z) z · ρm · (bT )−q︸ ︷︷ ︸
bias effect

+ o(b+ (bT )−q), (3)

where Gm (·) is the CDF of χ2
m, the chi-squared distribution with m degrees of freedom,

k1 =

∫ ∞
−∞

k (x) dx, k2 =

∫ ∞
−∞

k2 (x) dx,

Am (z) = [k1 + k2(m− 1)]G′m(z)z − k2 ·G′′m(z)z2, and

ρm = k(q)ω(q) for ω(q) = tr

[
1

m

( ∞∑
h=−∞

|h|q Eutu′t−h

)
Ω−1

]
.

In the above expansion, the term Am (z) b captures three different effects. The first is

the variance effect of the LRV estimator when ut is used in constructing the LRV estimator.

More specifically, even if we use Ω̃b = T−1
∑T

t=1

∑T
s=1 k ((t− s) / (bT ))utu

′
s in place of Ω̂b in

computing FT , we will still have the term −k2 ·G′′m(z)z2b, a component of Am (z) b, in the high-

order expansion. The second is the demeaning effect, which arises from using the demeaned

error ût instead of ut in the LRV estimator Ω̂b. This is captured by the term k1G
′
m(z)zb, another

component of Am (z) b. It is not difficult to see that our argument for the optimality of the QS

kernel remains valid if we use ut, which is available under the null, in constructing the LRV

estimator. The third is the dimensionality effect captured in k2(m − 1)G′m(z)zb. This term
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disappears when m = 1. We will refer to Am (z) b as the variance and demeaning effects for

convenience. The term G′m (z) z · ρm · (bT )−q captures the bias effect from the nonparametric

kernel smoothing underlying the LRV estimator.

For a typical economic time series with positive autocorrelation, the averaged relative bias

ω(q) is positive so that the bias effect is positive and decreases with b. On the other hand, we can

show that Am (z) > 0 for all z larger than commonly-used chi-square critical values. As a result,

the variance and demeaning effects are positive but decreases with b. There is an opportunity

to select b to balance these effects. Here we go one step further by considering the fixed-b test

and minimizing its type I and type II errors.

Let cαm,b be the fixed-b critical value such that

Pr
{
F∞(m, b) > cαm,b

}
= α.

Expanding the fixed-b limiting distribution as b→ 0, Theorem 1 of Sun (2014a) shows that

Pr {F∞(m, b) > z} = 1−Gm(z)−Am(z) · b+ o(b). (4)

As a result, 1−Gm(cαm,b)−Am(cαm,b)b = α+ o (b) . Then, using (3), we have

PrH0(FT > cαm,b) = 1−Gm
(
cαm,b

)
+Am

(
cαm,b

)
· b

+G′m
(
cαm,b

)
cαm,b · ρm · (bT )−q + o (b) + o

(
(bT )−q

)
= α+G′m

(
cαm,b

)
cαm,b · ρm · (bT )−q + o (b) + o

(
(bT )−q

)
.

Therefore, using the fixed-b critical value removes the variance effect, the demeaning effect, and

the dimensionality effect in the probability of type I error. In this sense, the fixed-b critical

value is second-order correct. See Sun et al. (2008) and Sun (2014a) for more discussion on the

second-order correctness of the fixed-b critical values.

Inverting the expansion in (4), we obtain the Cornish–Fisher expansion:

cαm,b − χαm
χαm

=
[
k1 + k2

(m
2

+ χαm

)]
b+ o(b). (5)

So, cαm,b = χαm + O(b) as b → 0, and we can approximate the probability of type I error of the

fixed-b test by

emI (b) := α+G′m (χαm)χαm · ρm · (bT )−q .
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The approximation error is of order o (b) + o
(
(bT )−q

)
.

To obtain an approximate measure of the probability of the type II error of the fixed-b test,

we consider the local alternative:

H1

(
δ2
)

: θ0 =
Ω1/2λm√

T

for λm ∈ Rm that is uniformly distributed on a sphere with radius δ defined by Sm
(
δ2
)

=

{λ̃m ∈ Rm : ||λ̃m||2 = δ2}. We can choose δ to reflect a value of scientific interest or economic

significance if such a value is available. More specifically, we choose δ such that the size of θ0

under H1

(
δ2
)
, as measured by θ′0Ω−1θ0, would be considered important to detect if it exists. In

the absence of such a value, we recommend choosing a value such that, when Ω is known, the local

asymptotic power of the test achieves a specified level, say 50% or 75%. Such a recommendation

is often made in the optimal testing literature. For example, Elliott et al. (1996) employ 50%

as the power level to determine the local-to-unity parameter in their efficient unit-root test.

Under the above local alternative H1 := H1

(
δ2
)
, we can show that under Assumptions 1–3,

PrH1(FT > z) = 1−Gm,δ2 (z) +Am,δ2 (z) · b+G′m,δ2 (z) z · ρm · (bT )−q + o(b+ (bT )−q),

where

Am,δ2 (z) = [k1 + k2 (m− 1)] ·G′m,δ2(z)z − k2 ·G′′m,δ2(z)z2,

and Gm,δ2 (·) is the CDF of χ2
m

(
δ2
)
, the noncentral chi-squared distribution with the noncen-

trality parameter δ2. See Theorem 5 of Sun (2014a) for a proof. This expansion resembles the

expansion under the null but with the CDF and its derivatives for the central chi-squared distri-

bution replaced by the counterparts of the noncentral chi-squared distribution. Of course, the

two expansions coincide when δ = 0.

Plugging the fixed-b critical value cαm,b into the expansion of PrH1(FT > z) and using (5),

we obtain

PrH1(FT < cαm,b) = emII
(
δ2, b

)
+ o(b+ (bT )−q), (6)

where

emII
(
δ2, b

)
=
δ2

2
G′(m+2),δ2 (χαm)χαm · k2 · b

−G′m,δ2 (χαm)χαm · ρm · (bT )−q +Gm,δ2 (χαm)
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is an approximate measure of the probability of the type II error of the fixed-b test. The above

result is a variant of Theorem 5 of Sun (2014a), which employs an approximate fixed-b critical

value. Note that Sun (2014a) has shown that the difference between the exact fixed-b critical

value and the approximate fixed-b critical value is of order o(b). In view of this result, the

asymptotic expansion in (6) holds regardless of whether the exact fixed-b critical value or its

approximation as given in Sun (2014a) is used.

Let π and (1− π) be the prior probabilities of H0 and H1, respectively. Let κI and κII be the

losses associated with type I and II errors, respectively. Then the expected loss from committing

type I and type II errors is

` = π · κI · PrH0(FT > cαm,b) + (1− π) · κII · PrH1(FT < cαm,b).

Using the high order expansions, we have

` = π · κI · emI (b) + (1− π) · κII · emII
(
δ2, b

)
+ o(b+ (bT )−q)

= [π · κI + (1− π) · κII]L
(
a, b, δ2

)
+ o(b+ (bT )−q),

where

L
(
a, b, δ2

)
= a · emI (b) + (1− a) · emII

(
δ2, b

)
is a rescaled and approximate loss function and

a =
πκI

πκI + (1− π)κII
=

(
1 +

(1− π)

π

κII

κI

)−1

reflects the relative loss weighted by the relative prior probability of the null and alternative

hypotheses. The value of a has to be chosen by the user for their specific problem at hand.

In the absence of any reliable information concerning the relative loss, namely κII/κI, and the

relative prior probability, namely (1− π) /π, it is not unreasonable to set them equal to one

and obtain a = 1/2. However, in statistical inferences, it is a convention to put more weights

on the type I error, and we can follow this convention and set a > 1/2. Note that if κII/κI or

(1− π) /π depends on δ, then a will also depend on δ.

Given the rescaled loss function L
(
a, b, δ2

)
, we choose b according to

b∗ = arg min
b
L
(
a, b, δ2

)
. (7)
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Such an approach to bandwidth choice was first proposed in Sun et al. (2008). The testing-

optimal bandwidth b∗ accounts for the relative costs of type I and type II errors. This approach

is particularly relevant to empirical applications where the costs of type I and type II errors are

different and potentially estimable.

Let

DB =

[
aG′m (χαm)χαm

1− a
−G′m,δ2 (χαm)χαm

]
ω(q) and DV =

δ2

2
G′(m+2),δ2 (χαm)χαm.

Except for the Parzen characteristic exponent q, neither DB nor DV depends on other aspects

of the kernel function. Then the rescaled loss function L
(
a, b, δ2

)
becomes

L
(
a, b, δ2

)
= DB · k(q) · (bT )−q +DV · k2 · b+ C1

(
a, α,m, δ2

)
,

where

C1

(
a, α,m, δ2

)
= a · α+ (1− a)Gm,δ2 (χαm)

and k(q) is defined in Assumption 2. Here C1

(
a, α,m, δ2

)
captures the first-order loss while

DB · k(q) · (bT )−q +DV · k2 · b captures the higher-order loss. Note that C1

(
a, α,m, δ2

)
does not

depend on b or the kernel function. The testing-optimal choice of b is given by minimizing the

higher-order loss:

b∗ = arg min
b

[
DB · k(q) · (bT )−q +DV · k2 · b

]
.

We now consider two separate cases and show that the QS kernel is optimal in each case. In

the first case with DB > 0, we find that the testing-optimal b is

bopt,I =

{
qDB · k(q)

DV · k2

}1/(q+1)

T−q/(q+1).

This choice of b is larger than the MSE-optimal b, which is of order T−2q/(2q+1). For testing

problems, we should include autocovariances of higher orders than what is deemed optimal

under the MSE criterion given in Andrews (1991).

Plugging bopt,I into the loss function, we have,

L
(
a, bopt,I, δ

2
)

= C2 (q,DB, DV )
[
(k(q))1/qk2

]q/(q+1)
T−q/(q+1) + C1

(
a, α,m, δ2

)
,

where

C2 (q,DB, DV ) =
(
q1/(q+1) + q−q/(q+1)

)(
D

1/q
B DV

)q/(q+1)
> 0
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depends on the kernel function only via its Parzen characteristic exponent q.

To minimize the above loss function for a given q, we only need to choose the kernel function

to minimize (k(q))1/qk2. Such a problem is not well defined unless we restrict the class of the

kernel functions under consideration. It is reasonable to impose the restrictions that the kernel

function is symmetric with k (0) = 1 and positive definite in that its Fourier transform is positive.

We thus consider the following class of kernels:

K =

{
k (·) : k (0) = 1, k (x) = k(−x),

∫ ∞
−∞

exp (ixτ) k(x)dx ≥ 0 for all τ ∈ R
}
.

The restricted minimization problem becomes

min
k(·)

(k(q))1/qk2 such that k (·) ∈ K. (8)

Positive definite kernels are either first-order kernels (i.e., q = 1) or second-order kernels

(i.e., q = 2). We focus on the second-order kernels so that q = 2. From a theoretical point of

view, second-order kernels dominate first-order kernels as long as the spectral density of ut is

twice continuously differentiable at the origin5. Note that a kernel function can be rescaled to

obtain another kernel function k[c] (x) := k (x/c) for some constant c > 0 without changing the

loss function L
(
a, bopt, δ

2
)
. To see this, we note that for the rescaled kernel function k[c] (x), we

have k
(q)
[c] = c−qk(q) and k[c],2 =

∫∞
−∞ k

2
[c] (x) dx = c

∫∞
−∞ k

2 (x) dx. So (k
(q)
[c] )1/qk[c],2 = (k(q))1/qk2.

In view of the relationship k
(q)
[c] = c−qk(q), we can choose the rescaling constant c appro-

priately to get any target value for k
(q)
[c] . In particular, we can choose c so that k

(q)
[c] = k

(q)
QS .

Consequently, the restricted minimization problem in (8) is equivalent to solving

min
k(·)

k2 :=

∫ ∞
−∞

k2 (x) dx such that k(q) = k
(q)
QS and k (·) ∈ K. (9)

But the above problem is exactly the same as what we obtain under the MSE of the point

estimator of the LRV. See Andrews (1991) and Priestly (1981) (pp. 569–571). Given that the

QS kernel is optimal under the MSE criterion, it is also optimal under the criterion we consider

here. That is, when DB > 0, the QS kernel is testing-optimal under the criterion that takes a

weighted average of the probabilities of type I and type II errors.

5The most popular first-order kernel for HAC/HAR inference in econometrics is the Bartlett kernel, which is

the kernel used in the Newey-West estimator (Newey and West (1987)). Recently, Kolokotrones and Stock (2019)

show that the Bartlett kernel is not optimal among the first-order kernels. They further show that there is no

optimal first-order kernel for HAR testing and for minimizing the MSE of the spectrum estimator.
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In the second case that DB ≤ 0, we have, for any b,

DB · k(q)
QS · (bT )−q +DV · k2,QS · b

≤ DB · k(q) · (bT )−q +DV · k2 · b

for any kernel function k (·) ∈ K with k(q) = k
(q)
QS . This holds because the QS kernel is the

solution to the optimality problem in (9) and DV > 0. Therefore, the QS kernel is still optimal

in this case.

In the second case, an aggressive approach to the choice of b is to let DB · k(q) · (bT )−q +

DV · k2 · b = 0, yielding

bopt,II =

{
|DB| · k(q)

DV · k2

}1/(q+1)

T−q/(q+1).

Under this choice of b, the high order loss is zero and all kernels are asymptotically equivalent.

However, in finite samples and with a data-driven bandwidth, we cannot expect to set DB ·k(q) ·

(bT )−q +DV · k2 · b equal to zero exactly.

The optimal bandwidth parameter bopt,II takes the same form as bopt,I, but there is a differ-

ence of factor q1/(q+1). When q = 1, this factor takes the value of 1. When q = 2, this factor takes

the value of 21/3 = 1.2599, which is not too different from 1. Therefore, it is not unreasonable

to use

bopt = bopt,I =

{
q |DB| · k(q)

DV · k2

}1/(q+1)

T−q/(q+1) (10)

in both cases. With the above choice, the rescaled loss function in the second case (i.e., when

DB ≤ 0) becomes

L
(
a, bopt, δ

2
)

= C̃2 (q,DB, DV )
[
(k(q))1/qk2

]q/(q+1)
T−q/(q+1) + C1

(
a, α,m, δ2

)
,

where

C̃2 (q,DB, DV ) =
(
q1/(q+1) − q−q/(q+1)

)
|DB|1/(q+1)D

q/(q+1)
V > 0.

As in the first case with DB > 0, this loss function is an increasing function of (k(q))1/qk2. For

the same reason presented before, among the kernels in K, the loss function is still minimized at

the QS kernel. This is consistent with the argument above that the QS kernel dominates other

kernels in K in the case that DB ≤ 0 regardless of the choice of b.
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We can provide an alternative proof of the testing-optimality of the QS kernel under bopt

given in (10). With this choice of b, the rescaled loss function L
(
a, b, δ2

)
can be represented in

a unified way:

L
(
a, bopt, δ

2
)

=
[
q1/(q+1) + sgn(DB)q−q/(q+1)

] [
|DB|1/qDV

]q/(q+1) [
(k(q))1/qk2

]q/(q+1)
T−q/(q+1)

+ C1

(
a, α,m, δ2

)
.

It is easy to see that
(
q1/(q+1) + sgn(DB)q−q/(q+1)

)
≥ 0 regardless of whether sgn(DB) = −1, 0, 1.

The optimal kernel in K is thus the kernel that minimizes (k(q))1/qk2 for all k ∈ K. But the

solution to this minimization problem is the QS kernel. That is, when b = bopt, the optimal

kernel in K is the QS kernel.

4 Extension to the General GMM Setting

To extend the optimality of the QS kernel to the GMM setting, we assume that the moment

condition

Ef (vt, θ) = 0, t = 1, 2, . . . , T

holds if and only if θ = θ0 ∈ Rd where f (·) is an m×1 vector of twice continuously differentiable

functions with m ≥ d and rank E [∂f (vt, θ0) /∂θ′] = d. We are interested in testing the null

hypothesis H0 : τ(θ0) = 0 against the alternative hypothesis H1 : τ (θ0) 6= 0, where τ (θ) is

a p × 1 vector of twice continuously differentiable functions with first-order derivative matrix

Γ(θ) = ∂τ(θ)/∂θ′.

The GMM estimator of θ0 is given by

θ̂T = arg min
θ∈Θ

[
T−1

T∑
s=1

f(vs, θ)

]′
WTT

−1
T∑
s=1

f(vs, θ),

whereWT is an m×m positive semidefinite weighting matrixWT and Θ is a compact parameter

space.

Let

gt (θ) = T−1
t∑

s=1

f(vs, θ), Gt(θ) =
∂gt (θ)

∂θ′
=

1

T

t∑
j=1

∂f(vj , θ)

∂θ′
and G0 = E

∂f(vj , θ0)

∂θ′
.

As in Sun (2014a), we maintain the following standard assumptions in the literature on fixed-

smoothing asymptotics.
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Assumption 4 plimT→∞θ̂T = θ0, θ0 is an interior point of the compact set Θ, and Γ0 = Γ (θ0)

has a full row-rank p.

Assumption 5 plimT→∞G[rT ](θ̃T ) = rG0 uniformly in r for any θ̃T whose elements are be-

tween the corresponding elements of θ̂T and θ0.

Assumption 6 WT is positive semidefinite, plimT→∞WT = W∞, and G′0W∞G0 is positive

definite.

These assumptions ensure that

√
T
[
τ(θ̂T )− τ (θ0)

]
=

1√
T

T∑
t=1

ut + op (1) ,

where

ut := φ(vt, θ0) = −Γ0

(
G′0W∞G0

)−1
G′0W∞f(vt, θ0).

On the basis of the GMM estimator θ̂T , the Wald statistic for testing H0 against H1 is

FT =
[√

Tτ(θ̂T )
]′

Ω̂−1
T

[√
Tτ(θ̂T )

]
, (11)

where, as in the location case, Ω̂b takes the form

Ω̂b =
1

T

T∑
t=1

T∑
τ=1

k

(
t− τ
bT

)
ûtû
′
τ

and

ût := −Γ(θ̂T )
[
GT (θ̂T )′WTGT (θ̂T )

]−1
GT (θ̂T )′WT f(vt, θ0)

is the plug-in estimator of ut. Ω̂b is an estimator of the LRV Ω of {ut} .

Following Sun (2014a), we can establish the stochastic expansion under H0 :

FT = FT,L + ψT + ψ∗T

where

FT,L =

[
1√
T

T∑
t=1

ut

]′
Ω̃−1
b

[
1√
T

T∑
t=1

ut

]
is the dominated linear term in the approximation and

Ω̃b =
1

T

T∑
t=1

T∑
τ=1

k

(
t− τ
bT

)[
ut −

1

T

T∑
s=1

us

][
uτ −

1

T

T∑
s=1

us

]′
.
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In this stochastic approximation, ψT = Op(1/
√
T ) does not depend on b and ψ∗T = Op([

√
b +

(bT )−q]/
√
T + 1/T ).

Using this expansion and maintaining the same additional technical conditions in Theorem

3 of Sun (2014a), we obtain

PrH0 (FT > z) = 1−Gp (z) +Ap(z)b+G′p (z) z · ρGMM · (bT )−q

+O(T−1/2 log T ) + o (b) + o
(
(bT )−q

)
(12)

where the O
(
T−1/2 log T

)
term does not depend on b,

ρGMM = k(q)ω(q) for ω(q) = tr

[
1

p

( ∞∑
h=−∞

|h|q Eutu′t−h

)
Ω−1

]

and k(q) is defined in Assumption 2. This expansion is the same as that in (3) except the

difference in the number of restrictions tested. Using the same argument as before, we have

PrH0(FT > cαp,b) = epI (b) +O(T−1/2 log T ) + o (b) + o
(
(bT )−q

)
,

where

epI (b) := α+G′p
(
χαp
)
χαp · ρGMM · (bT )−q .

Consider the local alternative hypothesis H1

(
δ2
)

: τ (θ0) = Ω1/2λp/
√
T where λp is uniformly

distributed on Sp
(
δ2
)

= {λ̃p ∈ Rp : ||λ̃p||2 = δ2}. Under some technical conditions, Theorem 5

of Sun (2014a) has shown that

PrH1(FT ≤ cαp,b) = epII
(
δ2, b

)
+O(log T/

√
T ) + o(b) + o

(
(bT )−q

)
where the O(log T/

√
T ) term does not depend on b and

epII
(
δ2, b

)
=
δ2

2
G′(p+2),δ2

(
χαp
)
χαp · k2 · b

−G′p,δ2
(
χαp
)
χαp · ρGMM · (bT )−q +Gp,δ2

(
χαp
)
.

Given that the approximate type I and type II errors take the same form as in the case with

a location model, the testing-optimality of the QS kernel remains valid in the GMM setting.

5 Simulation Evidence

To evaluate the testing-optimality of the QS kernel in finite samples, we consider two different

data generating processes: a location model and a regression model.
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5.1 Location Model

We consider a univariate location model with AR(1) errors:

Yt = θ0 + ut where ut = φut−1 + εt with εt ∼ i.i.d.N(0, 1),

for t = 1, 2, . . . , T. We set φ equal to 0, 0.5, 0.7, 0.9,−0.5,−0.7,−0.9 and let u0 = 0.

We first consider the finite-sample optimal choice of b. We use the above location model to

simulate the exact type I and type II errors for each of the sample sizes T = 50, 100, 200 and for

a grid of b values ranging from 0.02 to 0.5 with an increment of 0.02. To simulate the type II

error, we set δ to a value such that the asymptotic local power of the asymptotic chi-squared test

is 75%. That is, δ2 solves Pr
(
χ2

1

(
δ2
)
> 1.962

)
= 0.75. The number of simulation replications

is 10, 000. We set a = 0.8 so that we assign more weights toward the type I error. The finite-

sample optimal b value is the value of b’s on the grid 0.02:0.02:0.5 that achieves the smallest

loss function. We consider the fixed-b tests based on the Bartlett, Parzen, and QS kernels. The

nominal level of each test is 5%.

Table 1 reports the ratio of the loss function associated with the Bartlett and Parzen kernels

to the loss function associated with the QS kernel. Table 2 reports the corresponding finite-

sample optimal b’s used in Table 1. We can clearly see that the QS kernel dominates the Bartlett

and Parzen kernels in terms of having a smaller loss function. This result is consistent with

what Andrews (1991) obtains under the MSE criterion.

For completeness, we report in Table 4 the empirical null rejection probabilities underlying

Table 1. We note that the empirical null rejection probabilities can be quite different from the

nominal level of 5% when the error process is strongly autocorrelated. The difference will be

even larger if we use the standard normal or chi-squared critical value. Such a phenomenon has

been widely observed in the literature on fixed-b HAR inference. See, for example, Kiefer and

Vogelsang (2005) and Sun (2014a). The difference will become larger when φ increases to 1.

For example, Pötscher and Preinerstorfer (2018) (Appendix J) demonstrates that the empirical

null rejection probability can be as large as 60% when φ approaches 1. To fix the size distortion

problem in the AR(1) design, we can use the fixed-b critical values from Sun (2014b), which

develops the fixed-b asymptotics under the local-to-unity specification. We will not pursue this

here, as our goal is to examine the testing-optimality of the QS kernel when we are away from
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the local-to-unity region.

We next consider the choice of b based on the asymptotic result, that is, we employ the

formula given in (10), but we plug in the true values of DB and DV based on the model. Such a

plug-in implementation is not feasible in practice, but it provides a way to examine the accuracy

of the asymptotic measurements and the optimality of the QS kernel in finite samples.

Table 4 provides the ratio of the loss functions and Table 5 provides the corresponding bopt

obtained. The results using bopt are similar to those using the finite-sample optimal b. So, with

an asymptotically justified bandwidth choice, the superior performance of the QS kernel is still

reflected in our finite sample simulations.

5.2 Regression Model

For the regression model, we consider the data generating process:

yt = γ0 + x′tβ0 + εt

where xt is a 4× 1 vector process and xt and εt follow AR(1) processes

xt,j = φxxt−1,j + et,j , εt = φεεt−1 + et,0

where et,j ∼ i.i.d N(0, 1) across t and j and x0 = 0 and ε0 = 0. We consider the case with the

same AR parameter: φx = φε = φ and

φ = 0,
√

0.5,
√

0.7,
√

0.9,−
√

0.5,−
√

0.7,−
√

0.9.

In this case, xt,jεt follows AR(1) with AR parameter φ2: xt,jεt = φ2 [xt−1,jεt−1] + ẽt,j where

ẽt,j = φxxt−1,jet,0 + φεet,jεt−1 + et,jet,0 is a martingale difference sequence. The design here is

similar to that in Kiefer and Vogelsang (2005) except that Kiefer and Vogelsang (2005) fix φx

at 0.5. Given that {xt} and {εt} are normal and independent, we refer to this design as the

independent normal design.

We also consider two variants of the above design: independent chi-squared design and de-

pendent normal design. In the independent chi-squared design, we let et,j ∼ i.i.d.
(
χ2

1 − 1
)
/
√

2.

This design is used to examine whether the finite sample results are sensitive to the asymmetry

of the data distribution. In the dependent normal design, we let

xt,j = φxxt−1,j + (et,j + et+1,0) /
√

2 and εt = φεεt−1 + et,0
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where et,j is still i.i.d N(0, 1) across t and j. The only difference from the independent design

is that xt,j is now partially determined by the future value of the error innovation {et,0}. As

a result, the two time series {xt} and {εt} are not independent any more. In this case, it is

not possible to invoke a conditioning argument to treat the whole sequence {xt} as fixed, and

we need to employ a general HAR variance estimator as considered in this paper. Also, the

theoretical results of Pötscher and Preinerstorfer (2018) do not cover this case. The dependent

design can be justified if the population consists of forward-looking individuals. Pötscher and

Preinerstorfer (2018) (Appendix K) consider a similar design.

We are interested in testing the slope parameter β0 = (β10, β20, β30, β40)′. We set the inter-

cept γ0 = 0 without the loss of generality. The null hypotheses of interest are

H0p : β10 = . . . = βp0 = 0

for p = 1, 2, 3, 4. Denote θ0 = (γ0, β
′
0)′ and R0p = I5(2 : p + 1, :), i.e., row 2 to row p + 1 of the

identity matrix I5. The above null hypotheses can be written as H0p : R0pθ0 = 0. Let x̃t = [1, x′t]
′

and G0 = −E (x̃tx̃
′
t). We consider the local alternative hypotheses

H1p

(
δ2
)

: (β1, . . . , βp) = Ω1/2λp/
√
T ,

where Ω1/2 is the matrix square root of the LRV of R0pG
−1
0 x̃tεt and λp is uniformly distributed

over the sphere Sp
(
δ2
)
. For the parameters not specified under the null, we set βp+1 = . . . =

β4 = 0 under both the null and alternative hypotheses.

As in the case with a location model, for each value of b from 0.02 to 0.5 with increment 0.02,

and for each of the three kernels, we simulate the finite-sample type I and type II errors of the

5% fixed-b test. For the type II error, we employ δ2 that solves Pr
(
χ2
p

(
δ2
)
> χ2

p(0.95)
)

= 0.75

where χ2
p(0.95) is the 95% quantile of χ2

p. We then select the value of b to minimize the finite-

sample loss function with a = 0.8. We consider three different sample sizes T = 100, 200, 500.

The number of simulation replications is 10000.

Tables 6 and 7 report the results under the independent normal design. Table 6 provides

the relative optimal finite sample loss function when T = 100, and Table 7 provides the corre-

sponding finite sample optimal bandwidths. These two tables are representative of the tables

for other sample sizes. The basic qualitative message is the same as that in the location model:

the QS kernel delivers a smaller loss function than the Bartlett and Parzen kernels. We have
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also simulated the finite sample loss when b is set according to (10), but the qualitative message

is the same.

Tables 8 and 9 report the relative optimal finite sample loss function under the independent

chi-squared design and the dependent normal design, respectively. To save space, we do not

report the corresponding bandwidths. These two tables lend further support to the testing-

optimality of the QS kernel: the QS kernel dominates the other two kernels when the data

distribution is neither normal nor symmetric and when the regressor process and the error

process are not independent.

6 Conclusion

We show that the QS kernel is optimal under the testing-oriented loss function that takes a

weighted average of type I and type II errors of the fixed-b HAR test. In view of the duality,

the QS kernel is still optimal if the bandwidth parameter is chosen to minimize the type II error

subject to the constraint that the type I error is less than some pre-specified threshold. Lazarus

et al. (2018) show that the QS kernel is optimal under a different testing-oriented criterion. The

optimality of the QS kernel appears to be robust to different criterion functions.
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Table 1: Ratio of the finite-sample loss function of the Bartlett and Parzen fixed-b tests to that
of the QS fixed-b test using the finite-sample optimal b in the location model

φ
Kernel T 0 0.5 0.7 0.9 -0.5 -0.7 -0.9

Bartlett 50 1.05 1.20 1.03 1.03 1.04 1.10 1.17
Parzen 50 1.02 1.01 1.01 1.02 1.02 1.01 1.01

QS 50 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Bartlett 100 1.03 1.08 1.06 1.04 1.03 1.04 1.08
Parzen 100 1.00 1.01 1.01 1.02 1.00 1.00 1.00

QS 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Bartlett 200 1.01 1.03 1.05 1.05 1.04 1.02 1.02
Parzen 200 1.01 1.00 1.00 1.01 1.00 1.00 1.00

QS 200 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 2: The finite-sample optimal b used in Table 1

φ
Kernel T 0 0.5 0.7 0.9 -0.5 -0.7 -0.9

Bartlett 50 0.02 0.12 0.15 0.21 0.11 0.10 0.11
Parzen 50 0.02 0.14 0.17 0.17 0.08 0.08 0.08

QS 50 0.02 0.18 0.18 0.30 0.06 0.06 0.06

Bartlett 100 0.02 0.17 0.17 0.21 0.07 0.09 0.09
Parzen 100 0.02 0.16 0.17 0.17 0.05 0.06 0.06

QS 100 0.02 0.18 0.18 0.22 0.04 0.04 0.06

Bartlett 200 0.02 0.13 0.16 0.16 0.06 0.08 0.09
Parzen 200 0.02 0.12 0.17 0.17 0.05 0.06 0.06

QS 200 0.02 0.12 0.18 0.18 0.04 0.06 0.06
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Table 3: The empirical null rejection probability underlying Table 1

φ
Kernel T 0 0.5 0.7 0.9 -0.5 -0.7 -0.9

Bartlett 50 0.050 0.078 0.098 0.174 0.032 0.017 0.008
Parzen 50 0.050 0.074 0.100 0.211 0.037 0.034 0.032

QS 50 0.048 0.055 0.069 0.106 0.046 0.045 0.043

Bartlett 100 0.052 0.063 0.075 0.123 0.035 0.029 0.016
Parzen 100 0.050 0.059 0.072 0.146 0.039 0.040 0.030

QS 100 0.049 0.050 0.055 0.084 0.047 0.047 0.051

Bartlett 200 0.048 0.056 0.060 0.093 0.039 0.035 0.022
Parzen 200 0.049 0.053 0.055 0.093 0.045 0.046 0.045

QS 200 0.047 0.050 0.049 0.065 0.046 0.048 0.047
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Table 4: Ratio of the finite-sample loss function of the Bartlett and Parzen fixed-b tests to that
of the QS fixed-b test using bopt in the location model

φ
Kernel T 0 0.5 0.7 0.9 -0.5 -0.7 -0.9

Bartlett 50 1.04 1.07 1.03 1.03 1.03 1.08 1.12
Parzen 50 1.01 1.01 1.01 1.02 1.02 1.01 1.01

QS 50 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Bartlett 100 1.03 1.07 1.06 1.04 1.04 1.05 1.06
Parzen 100 1.01 1.01 1.01 1.02 1.01 1.00 1.00

QS 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Bartlett 200 1.02 1.04 1.05 1.05 1.04 1.04 1.03
Parzen 200 1.00 1.00 1.00 1.01 1.00 1.00 1.00

QS 200 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 5: The values of bopt used in Table 4

φ
Kernel T 0 0.5 0.7 0.9 -0.5 -0.7 -0.9

Bartlett 50 0.02 0.16 0.19 0.20 0.08 0.10 0.10
Parzen 50 0.02 0.16 0.20 0.21 0.09 0.08 0.08

QS 50 0.02 0.17 0.21 0.22 0.09 0.06 0.06

Bartlett 100 0.02 0.15 0.18 0.20 0.05 0.08 0.08
Parzen 100 0.02 0.15 0.19 0.21 0.05 0.06 0.06

QS 100 0.02 0.16 0.19 0.22 0.05 0.05 0.06

Bartlett 200 0.02 0.11 0.14 0.18 0.04 0.08 0.08
Parzen 200 0.02 0.11 0.15 0.18 0.04 0.04 0.06

QS 200 0.02 0.12 0.15 0.19 0.04 0.04 0.06
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Table 6: Ratio of the finite-sample loss function of the Bartlett and Parzen fixed-b tests to
that of the QS fixed-b test using the finite-sample optimal b in the regression model under the
independent normal design

φx = φu = φ

Kernel T 0
√

0.5
√

0.7
√

0.9 −
√

0.5 −
√

0.7 −
√

0.9

p = 1 Bartlett 100 1.00 1.03 1.03 1.04 1.04 1.03 1.01
p = 1 Parzen 100 1.00 1.01 1.01 1.01 1.01 1.01 1.01
p = 1 QS 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00

p = 2 Bartlett 100 1.00 1.03 1.04 1.05 1.04 1.05 1.04
p = 2 Parzen 100 1.00 1.01 1.01 1.01 1.01 1.02 1.00
p = 2 QS 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00

p = 3 Bartlett 100 1.00 1.05 1.06 1.06 1.07 1.05 1.03
p = 3 Parzen 100 1.00 1.01 1.01 1.01 1.02 1.00 1.00
p = 3 QS 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00

p = 4 Bartlett 100 1.00 1.07 1.08 1.09 1.10 1.08 1.08
p = 4 Parzen 100 1.00 1.01 1.01 1.01 1.01 1.02 1.01
p = 4 QS 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 7: The finite-sample optimal b used in Table 6

φx = φu = φ

Kernel T 0
√

0.5
√

0.7
√

0.9 −
√

0.5 −
√

0.7 −
√

0.9

p = 1 Bartlett 100 0.02 0.10 0.14 0.18 0.10 0.10 0.12
p = 1 Parzen 100 0.02 0.10 0.12 0.18 0.10 0.10 0.12
p = 1 QS 100 0.02 0.06 0.06 0.10 0.06 0.06 0.06

p = 2 Bartlett 100 0.02 0.10 0.20 0.22 0.08 0.12 0.14
p = 2 Parzen 100 0.02 0.10 0.16 0.22 0.10 0.14 0.20
p = 2 QS 100 0.02 0.06 0.10 0.12 0.06 0.06 0.10

p = 3 Bartlett 100 0.02 0.10 0.22 0.26 0.08 0.10 0.18
p = 3 Parzen 100 0.02 0.12 0.22 0.24 0.10 0.12 0.20
p = 3 QS 100 0.02 0.06 0.12 0.14 0.06 0.06 0.12

p = 4 Bartlett 100 0.02 0.14 0.18 0.26 0.12 0.14 0.26
p = 4 Parzen 100 0.02 0.12 0.20 0.22 0.12 0.14 0.22
p = 4 QS 100 0.02 0.08 0.08 0.12 0.06 0.08 0.12
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Table 8: Ratio of the finite-sample loss function of the Bartlett and Parzen fixed-b tests to
that of the QS fixed-b test using the finite-sample optimal b in the regression model under the
independent chi-squared design

φx = φu = φ

Kernel T 0
√

0.5
√

0.7
√

0.9 −
√

0.5 −
√

0.7 −
√

0.9

p = 1 Bartlett 100 1.00 1.01 1.03 1.02 1.07 1.02 1.02
p = 1 Parzen 100 1.00 1.00 1.00 1.01 1.01 1.01 1.01
p = 1 QS 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00

p = 2 Bartlett 100 1.00 1.05 1.04 1.02 1.06 1.03 1.02
p = 2 Parzen 100 1.00 1.00 1.00 1.01 1.01 1.01 1.01
p = 2 QS 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00

p = 3 Bartlett 100 1.00 1.10 1.12 1.08 1.07 1.10 1.04
p = 3 Parzen 100 1.00 1.01 1.01 1.01 1.01 1.01 1.01
p = 3 QS 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00

p = 4 Bartlett 100 1.00 1.11 1.12 1.07 1.11 1.11 1.06
p = 4 Parzen 100 1.00 1.00 1.01 1.01 1.01 1.00 1.00
p = 4 QS 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 9: Ratio of the finite-sample loss function of the Bartlett and Parzen fixed-b tests to
that of the QS fixed-b test using the finite-sample optimal b in the regression model under the
dependent normal design

φx = φu = φ

Kernel T 0
√

0.5
√

0.7
√

0.9 −
√

0.5 −
√

0.7 −
√

0.9

p = 1 Bartlett 100 1.01 1.02 1.03 1.18 1.01 1.00 1.05
p = 1 Parzen 100 1.00 1.01 1.00 1.15 1.01 1.00 1.05
p = 1 QS 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00

p = 2 Bartlett 100 1.00 1.01 1.02 1.09 1.00 1.01 1.03
p = 2 Parzen 100 1.00 1.00 1.00 1.05 1.00 1.00 1.00
p = 2 QS 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00

p = 3 Bartlett 100 1.00 1.02 1.01 1.07 1.02 1.02 1.02
p = 3 Parzen 100 1.00 1.00 1.01 1.00 1.00 1.00 1.02
p = 3 QS 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00

p = 4 Bartlett 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00
p = 4 Parzen 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00
p = 4 QS 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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