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Abstract

This paper studies the spurious regressions among stationary Gegenbauer pro-
cesses, stationary harmonic processes and deterministic trigonometric series. We find
the spurious regression can occur between two stationary Gegenbauer processes, as
long as their generalized fractional differencing parameters sum up to a value greater
than 0.5 and their spectral densities have poles at the same location. The spuri-
ous regression may also be present between a stationary Gegenbauer process and a
stationary harmonic process, or between a stationary Gegenbauer process and a de-
terministic trigonometric series, as long as the poles of the discrete Fourier transforms
or the spectral densities of underlying processes are located at the same frequency.
Our findings suggest that it is the strong persistence and cyclical comovement that

cause the spurious effect. Our theoretical results are supported by simulations.
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1 Introduction

Since the first Monte Carlo study by Granger and Newbold (1974), much effort has
been taken to understand the nature of spurious regressions. Phillips (1986) devel-
oped an asymptotic theory for a regression between (1) processes showing that the
asymptotic distributions of the conventional statistics are quite different from those
derived under the assumption of stationarity. He proved that the usual ¢ statistic does
not have a limiting distribution but diverges as the sample size increases, and that
the R? has a non-degenerate limiting distribution while the DW statistic converges
to zero. Extending Phillips’ (1986) approach, Durlauf and Phillips (1988) studied the
spurious regression between an I(1) process and a linear trend, while Marmol (1995,
1998) examined the spurious regression between two nonstationary I(d) processes
with d > 1/2. It has long been believed that it is the deterministic or stochastic
trending behavior that causes spurious effects. However, Tsay and Chung (2000)
found that a spurious effect can arise in a regression between two stationary I(d)
processes, as long as their orders of integration sum up to a value greater than 0.5.
Based on this, they suggested that it is long memory or strong dependence, rather
than deterministic or stochastic trending, that causes the spurious effects.

This paper explores the possible existence of a spurious relationship between two
stationary Gegenbauer processes. This class of process generalizes the popular frac-
tionally integrated processes and is capable of capturing long-range dependence, as
well as the periodic cyclical pattern. It has been shown that the autocovariances of
a Gegenbauer process decay hyperbolically and sinusoidally, a feature that is man-
ifested in a number of financial and economic time series. One of the purposes of
this paper is to extend the theoretical analysis of the spurious regression from I(d)
processes to the class of Gegenbauer process. We find that the spurious regression
can occur between two stationary Gegenbauer processes. This provides further evi-
dence that the spurious effect is not unique to nonstationary processes, as suggested
by Tsay and Chung (2000). We show that strong dependence is not enough to give
rise to the spurious effect. Another indispensable condition is that the two processes
have spectral densities with poles at the same location. In other words, the two
processes are required to have common cyclical movements. The cyclical comove-
ment of economic variables is the rule rather than exception. As suggested by Lucas
(1977), the main regularities observed in cyclical fluctuations of economic time series
are in their comovement. The strong persistence and cyclical comovement in many
economic time series suggest that the spurious effect may be present more often than

we previously believed.



This paper also investigates the possible existence of a spurious relationship be-
tween a stationary Gegenbauer process and a stationary harmonic process. A har-
monic process is defined to be a stochastic trigonometric series with a superimposed
white noise. A salient feature of this type of process is that the spectral density func-
tion contains a spike at the jump point, or at the location of the pole. Our findings
show that the spurious effect can occur between a stationary Gegenbauer process
and a harmonic process, as long as the poles of their spectral densities are located
at the same frequency. As a corollary, the spurious relationship may be present be-
tween a Gegenbauer process and a deterministic sine or cosine wave. This result is
comparable to the spurious regression between a stationary fractional process and a
polynomial trend. Instead of using a polynomial trend, we use a trigonometric series
to reflect the cyclical behavior in the dependent variable.

Our theoretical results are supported by Monte Carlo simulations. The rejection
probability for testing the null of zero slope coefficient based on the usual t-test in-
creases with the sample size and the persistence of the dependent and/or independent
variables.

The remainder of the paper is organized as follows. Section 2 briefly describes the
harmonic process and the Gegenbauer process. Section 3 investigates the spurious
regression between two Gegenbauer processes. Section 4 develops a theory for the
spurious regression between a Gegenbauer process and a harmonic process, and that
between a Gegenbauer process and a deterministic trigonometric series. A simulation
study is presented in Section 5. Section 6 concludes. All proofs are given in the

appendix.

2 Harmonic Processes and Gegenbauer Processes

Many economic time series exhibit the periodic cyclical behavior. The search for
cyclical components, their estimation and testing, is of undoubted interest. A well-
known model capable of generating such a periodic behavior is the harmonic process
defined by

xp = peos(Pt + 6) + &4, (1)

where p and 1) are constants, 6 is a uniform random variable on [, 7], & is 7id(0, 02)
and is independent of #. This definition is the same as that in Priestley (1981, p. 147)
and Fuller (1996, p. 145) except that we consider only one cosine term for simplicity
and we add a white noise sequence to the cosine wave, as in Brockwell and Davis
(1991, p. 334). The harmonic process as so defined is generated by a stochastic

trigonometric series with a superimposed white noise. From the historical point of



view, harmonic processes were probably the first to be considered in time series
analysis. Early studies attempt to describe a time series as the sums of sine and
cosine waves whose amplitudes and frequencies are chosen so as to give the best fit to
the data. More recently, harmonic processes have been used extensively in detecting
hidden frequencies in a time series. Different techniques have been proposed for this
purpose. See, for example, Hannan (1973), Chen (1988), Quinn (1989) and Kavalieris
and Hannan (1994).
The harmonic process in (1) can be written as

xy = Acosyt + Bsint + ¢ (2)

with A = pcosf and B = —psinf. It is easy to see that A and B are uncorrelated
random variables with mean zero and variance 02 = p?/2. With this, x; can be shown

to be covariance stationary with mean zero and covariance
V() = Brewyyj = 1/2" cospj + 021{j = 0}, (3)

where 1{-} is the indicator function. The essential feature to be noted is that the
autocovariance function is a cosine wave and never dies out. This is a very important
feature that is responsible for the spurious regression between a stationary Gegen-
bauer process and a harmonic process. Given the form of the autocovariance function,

it is readily seen that the spectral density of x; has a spike at A = . Specifically,

|
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where 6 (-) is the Dirac é-function satisfying 6 (x) = 0 for 2 # O and [*_6 (z) g(x)dx =
9(0) for any well-behaved function g (). To be consistent with the terminology used
hereafter, we also say that the spectral density has a pole at A = 1.

A second process capable of generating the cyclical pattern, as well as long range
dependence, is the Gegenbauer process (Gray, Zhang and Woodward 1989, 1994;
Chung 1996a, 1996b) defined as

(1 —2cos(p)L + L?)%x; = ¢, (5)

where d is the generalized fractional differencing parameter and e; = 4id(0, 02). The
moving average representation of the above Gegenbauer process involves the Gegen-

bauer polynomial:

(1 —2cos(p)L + L?)™ % = i e L7, (6)
=0



where co = 1,¢1 = 2d cos ¢ and

¢j(d, ) =2cosp((d—1)/j+1)¢cj1(d,0) = (2(d = 1)/j + 1) cjald, ). (7)

Using the Gegenbauer representation, the process x; can then be formally written as
o0

we =Y ci(d,)erj. (8)
j=0

The Gegenbauer process is stationary if 0 < ¢ < 7 and d < 1/2 and is invertible if
0 <y <mandd > —1/2. When ¢ = 0, 7, the Gegenbauer process is stationary if d <
1/4 and is invertible if d > —1/4. Note that when cos ¢ = 1, the Gegenbauer process
reduces to a fractionally integrated process I(2d). In this paper, we focus on the
case that 0 < ¢ < 7 so that the Gegenbauer process exhibits some periodic cyclical
behavior. In this case, the autocovariance function for a stationary Gegenbauer

process can be approximated by

v(j) ~ Kj** ! cos (¢]) (9)

for some constant K (Chung, 1996a), where the symbol ~ means that the ratio of
the two sides tends to 1, as j — oo. The autocovariance function thus resembles a
hyperbolically damped cosine wave. In view of (3), the autocovariance functions for
the harmonic process and the Gegenbauer process share a similar cyclical pattern.

It is easy to show that the spectral density of a Gegenbauer process is

o’ ATl A=y
FN) = 5-dsin(——) sin(—5=)| 7 (10)
Therefore, when 0 < d < 1/2, we have
F) ~ O = as A — ¢, (11)

for some positive constant C. The spectral density function has a pole at A = ¢.
Therefore, both the harmonic process and the Gegenbauer process have poles in
their spectral densities. We will show that the pole properties lead to the spurious

effect between a Gegenbauer process and a harmonic process in Section 4.

3 Spurious Regression Between Stationary Gegenbauer

Processes

In this section, we consider the spurious regression between two stationary Gegen-

bauer processes. Suppose that x; and y; follow independent Gegenbauer processes
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such that

(1 —2cosp,L + L?) %z, = &g, (12)
(1 —2cos goyL + LZ)dyyt = &y, (13)

where 0 < @, ¢, <, |dg| < 1/2,|dy| < 1/2 and eg¢, ey are i4d(0, 02,) and #d(0, 02,),
respectively.

Consider regressing y; on a constant and x,
y=a+Br +i,t=1,..,T. (14)

The ordinary least squares estimate of § is given by

where T = 2:{21 x¢/T and g = Zle y:/T. The t-statistic is %\B,OLS = B/EB,OLS where
T 1/2
55005 = (Z(:zt - w>2> , (16)
t=1
62 =T @2/)T and Uy = (s —7) — B(x; —Z). The R2 and the DW (Durbin-Waston)

statistic are defined in the usual way, i.e.

22 T a2 T (~ o~ N2
R2 _ ﬂ Z;t:l(‘rt 7'2) 7 and DW — Zt:2 (I;E Athl) ' (17)
Y1y — 1) D i1 U

The next theorem presents the asymptotic behaviors of B, tA@o s, R? and the DW

statistic.

Theorem 1 Let x; and y; be the time series defined by (12) and (13), respectively.
If dy,dy € (0,1/2) such that dy +dy > 1/2 and ¢, = ¢, = ¢ € (0,7), then

(a) B = Op(T%+41),

(b) tsoLs = Op(T%H41/2),

(C) R2 = Op(T2d2+2dyf2)7

(d) RW =2 —2p,(1) + op(1),

where p, (1) is the lag-1 autocorrelation of y;.

The most significant result in the above theorem is that the t-statistic diverges at
the rate of Td=+dy=1/2 The larger the sum of d, and dy is, the faster the ¢-statistic
diverges. The divergence of the t-statistic implies that the rejection probability for



testing the null of 3 = 0 based on the usual t-test approaches 1 as the sample size in-
creases. This result reflects the spurious effect in the t-test. Since both the dependent
and independent variables are stationary and ergodic, the spurious effect is not ex-
pected. This finding suggests that it is strong dependence, instead of nonstationarity,
that is potentially responsible for the spurious effect.

Although the t-statistic diverges as in the spurious regression studied before, the
behaviors of other statistics resemble those derived in the conventional case of no
spurious effect. For example, the OLS estimator B of the slope coefficient and the
R? converge to zero in probability. The DW statistic converges to 2 — 2p,(1), a limit
that is obtained in the case of AR(1) errors. However, the convergence rate of [ is
much slower than the usual 7-1/2 rate. The speed of convergence depends on the
order of magnitude of Zle(mt —)(yt — ), which in turn depends on the persistence
of x; and y¢. The more persistent x; and y; are, the more slowly ﬁ converges to zero,
and the faster the t-statistic diverges.

It should be noted that no matter how persistent the underlying time series are,
the divergence rate of the t-statistic is slower than /T, which is the corresponding
divergence rate for spurious regressions between I(1) processes or nonstationary I(d)
processes. See Phillips (1986), Marmol (1995, 1998), and Tsay and Chung (2000).
When the underlying time series are not very persistent, the divergence rate can be
very slow. In particular, when d, + d, = 0.5, we get ty = Op(logl/ 2T) as shown in
the following theorem. The proof is similar to that of Theorem 1 and is omitted.

Theorem 2 Let x; and y: be the time series defined by (12) and (13), respectively.
If dy,dy € (0,1/2) such that dy +dy = 1/2 and ¢, = ¢, = ¢ € (0,7), then

(a) B = Op(T210g"2 T),

(b) tg.oLs = Op(log'/? T),

(¢c) R? = Op(T 11ogT),

(d) RW =2 —2p,(1) + 0p(1).

An important condition in Theorems 1 and 2 is that ¢, = ¢,. If ¢, # ¢,, then
there is no spurious effect even if both processes are persistent enough such that
dy +dy > 1/2. In fact, the proofs of Theorems 1 and 2 rely crucially on the fact that
ST (e~ )i — §) = Op(T%+ ) when dy +dy > 1/2 and YL (e — 2) (3 — §) =
O, (T%+ 10g' /2 T) when d, + d, = 1/2. Thus, the order of S>7_ (x; — Z)(ys — ) is
quite different from the case when both x; and y; are weakly dependent processes.

However, when ¢, # ¢, ZL(% — Z)(yr — §) = Op(T/?), which can be proved as



follows:

T T T t—1
var (Z :L‘tyt) = Z E:L‘?yf +2 Z Z Exrire syiyi—s
t=1 t=1

t=1 s=1
T t—1
~ Taiaf, + 2K, Ky Z Z 5232124y =2 co5 5 5 cos PyS
t=1 s=1
T t-1
~ Tolol+ K. K, Z Z 20202 (cos((p, + ¢@,)s) + cos((p, — ©,)5))
t=1 s=1
= O(D), (18)

where the last line follows from Y 52, s*cos 3s < oo for any o € (—00,0) and 5 €
(0,27). Using this result and following the argument similar to the proof of Theorem

1, we can establish the following theorem. Details are omitted.

Theorem 3 Let xy and y; be the time series defined by (12) and (13), respectively.
If dy,dy € (0,1/2) such that d +dy > 1/2 and ¢,, @, € (0,7) with @, # ¢,, then
(a) B =0p(T~1/?),
(b) tsoLs = Op(1),
(c) R* = Op(T_l)v
(d) RW =2 —2p,(1) + 0p(1).

Theorem 3 shows all the statistics behave as if x; and y; are weakly dependent
processes. Therefore, regressions between two stationary Gegenbauer processes with
different pole locations do not suffer from the spurious effect. This suggests that
the strong persistence is not sufficient for the existence of a spurious relationship.
Both the strong dependence and cyclical co-movement are required to generate a
spurious regression. From a broad perspective, these requirements are consistent
with the spurious regression between two independent I(d) processes, because I(d)
processes are persistent and their spectral densities, or generalized spectral densities
(Solo 1992), have poles at the same location A = 0. In fact, Theorems 1, 2, and
3 can be easily extended to the case ¢ = 0 so that they incorporate the spurious
regressions between stationary fractional processes as special cases. We do not pursue
this extension here as we choose to sacrifice generality for clarity.

The requirement that the spectral densities have poles at the same location seems
to suggest that the spurious regression may not occur very often. However, this is
not the case. First, many economic time series, after removal of the trend in the
mean and seasonal components, have spectral densities which have peaks at the

origin (Granger, 1966). Therefore, the adjusted time series may have poles at the



origin. Second, cyclical co-movements are not uncommon. In fact, they have been so
prevalent that they have acquired the status of “stylized facts.” See, for example,
Lucas (1977). Therefore, economic time series may have spectral densities with poles
at the frequencies corresponding to the seasonal effect or the business cycle effect.
It is thus quite plausible that the spurious effect occurs more often than previously
thought.

4 Spurious Regression Between Stationary Gegenbauer

Process and Harmonic Process

In this section, we investigate the possible spurious relationship between a stationary
Gegenbauer process and a harmonic process and that between a stationary Gegen-
bauer process and a deterministic trigonometric series.

Suppose that x; follows a harmonic process and y; follows a Gegenbauer process
such that

xy = Acosp,t+ Bsing,t+ g, (19)
w = (1—2cosg,L+L*) Wey, (20)
where A = pcos6, B = —psin®, 0 ~ uniform|[—m, 7], 0 < @,, ¢, < T, xt,Eyt are

iid(0,02,) and 7id(0, agy) respectively, and €4, €, and 6 are mutually independent.

As in Section 3, we consider regressing y; on a constant and xy,
wo=a+ Bz +au,t=1,.,T. (21)

The next theorem presents the asymptotic behaviors of B, tAg,o s, R? and the DW

statistic.

Theorem 4 Let x; and y; be the time series generated by (19) and (20), respectively.
Ifdy S /(\07 1/2)7 Pg =Py =€ (077‘—)7 then

(a) B = Op(TH1/?),

(b) tﬁ,OLS = Op(Tdy)v

(¢) R? = O, (T*%71),

(d) DW =2 —2p,(1) + op(1).

The most important result in the above Theorem is that the t-statistic diverges at
the rate of T%. Therefore, the usual t-statistic goes to infinity as long as dy > 0. In
comparison with Theorem 1, there is no requirement on the degree of persistence in ;.

The divergence rate is also larger than that obtained for two stationary Gegenbauer



processes. This is a little surprising because one would expect that the spurious effect
may occur more easily between two similar processes. The theorem shows that this
is not the case.

We should point out again that the poles must be at the same location to produce
spurious effects. The following theorem establishes results similar to Theorem 3.

Theorem 5 Let x; and y; be the time series generated by (19) and (20), respectively.
Ifdy € (0,1/2), g,y € (0,m) and oy # @y, then

(a) B =O0y,(T71/?),

(b) tZ%,OLS = Op(l)v

(C) R2 = Op (Tﬁl) )

(d) DW =2 — pr(l) +op(1).

We now investigate the possible existence of a spurious relationship between a sta-
tionary Gegenbauer process and a deterministic sine and cosine wave. More specifi-
cally, we use the same setup, except that the data generating process for x; is replaced
by

xy = Acosp,t+ Bsinp,t, (22)

where A and B are deterministic constants. It turns out that the results in Theorem

4 remain valid.

Theorem 6 Let x; and y; be the time series generated by (22) and (20), respectively.
Ifd, € (0,1/2) and p, = ¢, = ¢ € (0,7), then
(a) B = Op(Tdy*I/Q)
(b) tﬁ,OLS ( )
(C) R2 = (T2d —1)
(d) DW =2 —2p,(1) + 0p(1).
If ouy 0y € (0,7), 9 # 0y, then
(e) B=0,(T7/?),
(f) tB,OLS = Op(l)a
(9) R? = Op (Tﬁl) )
(h) DW =2 —2p,(1) + 0p(1).

Theorem 6 shows that the spurious effect can happen between a stationary Gegen-
bauer process and a deterministic sine or cosine wave. With the deterministic regres-
sor, our results resemble those of Tsay and Chung (2000), who studied the spurious
regression between a stationary long memory process and a linear deterministic trend.

The linear trend and the sine or cosine wave share one thing in common. It is well



known that the discrete Fourier transform (DFT) of a polynomial trend exhibits
unboundedness at the zero frequency (Corbae, Ouliaris and Phillips, 2002). In con-
trast, the DFT of a sine or cosine wave exhibits unboundedness at a given nonzero
frequency, say ¢y. On the other hand, an I(d) process for any d has an unbounded
spectral density or generalized spectral density at A = 0 (the generalized spectral
density is defined as the limit of the expectation of the periodogram (Solo, 1992)).
In contrast, a Gegenbauer process has an unbounded spectral density at a nonzero
frequency, say ¢qagain. These facts suggest that it is the unboundedness at the
same location in the DFT (for a deterministic sequence) or the (generalized) spectral

density that leads to the spurious regression.

5 A Simulation Study

In this section, we examine the validity of our theoretical results by simulations. We
consider three types of regression: the regression between two stationary Gegenbauer
processes, the regression between a stationary Gegenbauer process and a stationary
harmonic process, and the regression between a stationary Gegenbauer process and
a deterministic trigonometric series.

To simulate a Gegenbauer process z;, we use the moving average representation
and truncate the infinite sum after M iterations. More specifically, we generate z
according to z; = Z?io cj(d, p)er—j, where ¢; is iid N(0,1). We take M to be 2T,
where T is the sample size. To reduce the initialization effect, we generate a time
series of length 27" and trim the first T observations to get the simulated time series.
For the harmonic process defined in (19), we take p = 1 and 02, = 1. For the
trigonometric series defined in (22), we take A =1 and B = 1.

We consider sample sizes T' = 100, 500, 1000, 2000, 5000. For each simulated sam-
ple, we calculate the OLS estimate ﬁ and construct the usual t-statistic. We report
the percentage of rejections in 1000 replications, i.e. the percentage of ¢ such that
|t| > 1.96. Since x:u; is autocorrelated, we also construct the heteoscedasiticity and

autocorrelation consistent (HAC) variance estimator for 3, ie.

T -1 T -1
0% A = (Z(fﬂt - l‘)2) 14 (Z(xt - l‘)2) : (23)

t=1 t=1
where
T St . T
V= ;(xt —7)%2 42 ;(1 - STJ+ 1)t:jz+1($t — B)utl (i — 7). (24)

10



The corresponding t-statistic is then given by tAB, HAC = B/ 03,HAC- In the simulation
study, we take St to be [T1/3], the largest integer that is smaller than 7/3.

Table 1 presents the results when z; and y; are independent stationary Gegenbauer
processes with parameters satisfying d, = d, = d and ¢, = ¢, = ¢ = 7/4. It is
apparent that for both tA@o Ls and tA@ HAc statistics, the rejection rate increases with
the sample size and the sum of d, and d,. The table also shows that the increase is not
very fast, which is attributable to the slow divergence of the t-statistic. Therefore, the
asymptotic results are reflected in this finite sample scenario. It should be emphasized
that the spurious effect is obvious even for a small sample size, such as 100. The HAC
estimate reduces the rejection rate, but the spurious effect is still apparent.

We also consider the cases that ¢ takes other values and d, and d, take different
values. To save space, we do not present those results because the qualitative obser-
vations for the case d, = dy = d, ¢ = m/4 apply. Simulation results not reported also
support the absence of the spurious effect when ¢, is not equal to ¢,.

Table 2 presents the results when y; is a stationary Gegenbauer process while x;
is either a stationary harmonic process or a deterministic trigonometric series. These
results are obtained for ¢, = ¢, = 7/4. A general feature of these results is that the
rejection rate increases with the sample size and the persistence of ¥, regardless of the
t-statistic employed and the process that x; follows. Another notable feature is that
the rejection rate is higher when xz; is a deterministic trigonometric series than when
x¢ is a harmonic process. This may be attributable to the extra noise in the harmonic
process. Comparing Table 2 with Table 1, we find the spurious effect is more obvious
between a Gegenbauer process and a harmonic process or between a Gegenbauer
process and a trigonometric series than between two Gegenbauer processes. Again,
the HAC based t-statistic helps reduce the spurious effect but by no means eliminates
it.

The results for other values of ¢ are similar. To save space, we do not report
them here. We also find support that there is no spurious effect when ¢, is not equal
to ¢,. In short, all of our theoretical results are supported by simulations.

6 Conclusion

In this paper, we provide further examples that the spurious effect can occur between
two stationary processes. Our main finding is that the spurious regression can arise
between two stationary Gegenbauer processes, as long as the sum of their generalized
fractional differencing parameters is greater than 0.5 and their power spectrum have

poles at the location. Another equally important finding is that spurious regression
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may be present between a stationary Gegenbauer process and a stationary harmonic
process or between a stationary Gegenbauer process and a deterministic trigonomet-
ric series, as long as the underlying processes share the same hidden periodicity. To
the best of our knowledge, we are the first to introduce the deterministic trigono-
metric series and harmonic processes into the analysis of spurious regressions. The
trigonometric series and the harmonic process are just as important, if not more im-
portant, than the polynomial trend in modeling a number of financial and economic
time series.

This paper helps deepen the understanding of spurious regressions. From this
study, we gain some insights that are not available in the classic studies by Phillips
(1986) and Durlauf and Phillips (1988) and more recent studies by Marmol (1995,
1998) and Tsay and Chung (2000). Previous studies have led us to believe that it is the
nonstationarity or the unboundedness of the spectral density at the zero frequency
that causes the spurious effect. Our analysis shows that the unboundedness at a
nonzero frequency can also give rise to the spurious effect. In finite samples, the
unboundedness may be relaxed to the peakedness. This is supported by Granger,
Hyung and Jeon (2001) who found that the spurious regression can occur between two
stationary, yet persistent, AR(1) processes. It is well known that spectral densities of
persistent AR(1) processes have apparent peaks at the zero frequency. Their study is
likely to be extended to the case that the spectral densities of the underlying processes
have large peaks at some nonzero frequency.

This paper may be extended by including more general cases. For example, the
harmonic process and the trigonometric series may contain more than one sine or
cosine term. The innovations that drive the Gegenbauer process may follow a general
weakly dependent process, say an ARMA process. There may be more than one
regressor in the regression. We expect most, if not all, of the asymptotic results
obtained for the simple case continue to hold for more general cases. The paper
does not give an expression for the limiting distributions of ﬁ and the t-statistic.
Although lack of the limiting distributions does not prevent us from evaluating the
convergence rate of 3 and the divergence rate of the t-statistic, it is still desirable
to derive the asymptotic distributions. This paper considers only the stationary
Gegenbauer processes. It is not surprising that the spurious effects are present and
more dramatic among nonstationary Gegenbauer processes, harmonic processes and

deterministic trigonometric series.
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Table 1: Spurious Regression between Two Stationary Gegenbauer Processes: Per-
centage of [t| > 1.96

t5,0L8 tHAC
NOBS d=0.15 d=0.25 d=0.35 d=0.45 d=0.15 d=0.25 d=0.35 d=0.45
100 28.90 35.50 46.60 58.00 25.60 30.70 38.80 51.00
500 34.10 50.90 63.50 72.60 22.40 37.00 47.20 58.50
1000 37.30 53.80 65.30 79.20 22.80 35.10 47.80 65.30
2000 41.70 56.00 70.60 83.80 22.30 37.50 51.10 67.50
5000 44.30 57.90 77.00 87.40 24.10 34.40 54.60 71.20
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Table 2: Spurious Regression between a Gegenbauer Process and a Harmonic Pro-
cesses and that between a Gegenbauer Process and a Trigonometric Series: Percent-
age of [t| > 1.96

tAﬂ,OLs tAg,HAc

NOBS d,=0.15 d,=0.25 d,=0.35 d,=0.45  d,=0.15 d,=0.25 d,=0.35 d,=0.45

Harmonic Process

100 37.30 43.40 50.70 54.00 36.90 42.80 49.10 54.50
500 49.10 60.40 67.50 74.50 36.90 42.80 49.10 54.50
1000 56.40 65.60 76.80 81.50 48.20 58.40 69.80 74.60
2000 60.20 71.70 79.70 86.10 51.00 63.40 72.50 79.70
5000 70.20 76.10 84.20 89.10 56.70 65.10 76.50 83.70

Trigonometric Series

100 60.30 63.60 66.80 72.90 55.60 57.40 61.90 68.40
500 68.50 75.20 81.90 83.60 55.20 62.60 71.50 76.20
1000 73.30 79.10 84.60 88.10 60.00 66.90 73.10 79.30
2000 79.60 82.30 88.60 92.50 63.20 67.40 76.50 84.50
5000 81.80 89.40 91.70 94.30 63.90 76.10 80.10 86.00
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7 Appendix of Proofs

Proof of Theorem 1. (a) Since z; and y; are ergodic, we have

T T
. 1
plim Z: zy — %)% =02 and phm? ;(yt - = O'z, (25)
where 02 and 012/ are the variances of x; and y;, respectively.
To prove (a), it suffices to calculate the order of

T T
@ —) -9 =)z —TTy. (26)

t=1 t=1

Using (9), we have, for some positive constants K, and K,
T
var (Z xtyt)
T t—1
= Z Ex}y; +2 Z Z Exixi syryi—s
1

t=1 s=
t—1

T
2 2 2dy+2d,—2 .2
~ Tamay+2KmeE E §74e T T2 cos” s
1 s=1
1

t
T t—
t=1 s=1

t—1

T
~ Taiaz + K Ky (2d, 4+ 2dy — 1) -1 Zth“Hd?’ '+ KUK, Z Z §20e 24y =2 co5 205
1

t=1 t=1 s=
~ Taiai + K. K, (2d; + 2d,, — 1)’1 (2d, + Qdy)*l T2da+2d,
T t—1
TR Iy Z Z 52422y =2 005 205, (27)
t=1 s=1

Since 2d; + 2d, — 2 < 0, we have Zi;ll §2d=+2dy=2 05 25 < C for some constant C
that is independent of ¢. This is because the infinite sum > o2, s* cos fs is finite for
any a € (—00,0) and g € (0,27). See Zygmund (1959, page 70). Therefore, the last

term in (27) is O(T'). As a consequence,

var (Z :L‘tyt) K, (2d, 4 2d, — 1) (2d, + 2d,,) " T?d=H2dy, (28)
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This implies that
Z 2y = Op(T= ), (29)

Following a similar argument, we have
T = 0p(T"?) and § = 0,(T*?). (30)

Combining (29) with (30) yields

T

Y (@ = 2)(ye — §) = Op(T=F ). (31)

t=1
Hence (3 = O, (T% %=1 using (25) and (31).
(b) We calculate the order of 52

T
~ 2
52 => (=9 — Bl — ) /T
t=1
T T T
= T_lz(yt th—x Z y)(x —T))
t=1 t=1 =1
T
- 71 Z Y — + 1o} T2dx+2dy—2) _ 2O(T2d1+2dy—2)

-+
Il

1

= T7') (g —9)*(1+0p(1)). (32)

M’i

-+
Il

1
Therefore, plimy_, 52 = o2.  Combine this with (25) and (31), we have to0s =
O (Tdm+dy71/2).

(c) Using (25) and part (a), we have

2_}22 (@ =2 ) (rodsan
e e o (). (39)

(d) For the DW statistic, we have

T -~ ~ 2
DW = Zt:Z (Ut — Ut_l)

ZZ’ ﬂ
QZt 2 Zt 22@51715 1 Zt QUtUt 1
= + H=2- 27+ 1
thl 2 Op( ) Zt L Op( )
T _ 3 _ _ _
- 92_ QZtZQ <yt — - Al 7$)> (yt*l ~ - B 73:)) + op(1)

T
>t uf
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9_ 221& o (Yt — y)(yt 1—9) 2ﬂ22t 5 (T ff)(fft 1—7) (34)
Yy G Y,

+2ﬁ2t o (Ut )(xt 1= )+2,82t o (21 )(yt 1— %)
Zt 1 Zt 1

= 2-2p,()+0 (T2dz+2dr2) —2-2p,(1) + op(1),

as desired. m

Proof of Theorem 4. (a) We first compute the limit of 71 Zle(xt —z)?

phm— Z Ty — 33

T T 2
.1 . 1 .
= plim T Z; (Acos pt + Bsin gt + Swt)Q _ (T ;Acos pt 4+ Bsin pt + €xt>

T T
1 1 1
= A%lim 7 ;:1 cos® ot + B?lim T ;:1 sin? ot + 2ABlim T ;:1 cos pt sin ot + a?z
1 o i 1 & i
—A?lim (T E cos got) — B%lim (? E sin (pt)
t=1 t=1
1 o 1 o
—2AB (T E cos got) <? tE_l sin got)

1
= _A2+ 232+U€m7 (35)
where we have used the facts that
T T
HmT 1) “cos® ot = 1/2, im T~ “sin® ot = 1/2, (36)
t=1 t=1
T T
lim 7! Z cos gt sin ot = 0, lim 7~ Z cospt = 0, (37)
t=1 t=1

and lim 7! Z? , sinpt = 0.
Next, we calculate the order of Y1 (z; — Z)(y: — §) = oty 4ys — T7F. Using

(3) and (9), we have, for some constant K,

T
var (Z ZBtyt)
t=1

T T t-1
Z o}y +QZZEfUtht sYtYi—s
t=1 t=1 s=1
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T t-1
~ Taiaz + K p* Z §°% =1 cos (ps) cos (vs)
t=1 s=1
~ 1/2K,0 (2d, +1)7" (2d,) "t T2 FL (38)

where the last line follows from the same argument as in (27). Combine the above
results, we get, after some simple algebraic manipulations, Zle(;vt - )y —9) =
Op(T%+1/2). As a consequence, § = O, (T% /21y = O, (T4 1/2),

(b) Following the same steps as in the proof of Theorem 1(b), we calculate the

order of 2 below:

T T T
G2 =T (e —9)° + T Zwrw O (=9 )

- T 1i(yt )2 + O(T2dy—1) _ 2O(Tdy—1/2—1+dy+1/2)
;1
= T (= 9)*(1+ 0p(1)). (39)

~
I
_

Therefore, plimy_,,02 = 2. Combine this with (35) and Zle(mt - )y —y) =
O,(T%+1/2) | we have t3.0Ls = Op(T%).
(c) Using (35), pimr oo TS0 (e — §)% = o2, and part (a), we have
R — g %f:l(xt iff)2 ~0, (T2dy—1> ' (40)
> i1 (v — )
(d) In view of (34), we have

DW = 9_ th( )(ytl y) 221:2( x)(wt 1—T)
Zt 1 Zt 1
th )(iﬁtl th )(ytl—g)
P P
e I BEEA L e~ o
— 2-2p,()+0 (T2dr ) —2—2p,(1) + 0p(1), (41)

which completes the proof of the theorem. m
Proof of Theorem 6. The proof is similar to that of Theorem 4. To save

space, we only calculate the order of vaT(Zle Tyy) when ¢, = ¢, = . First,

T
var (Z A cos(cpt)yt)

t=1
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T t-1
= ZEA2 cos? (ot) yf—FQZZA? cos (pt) cos (@ (t — 8)) Yt¥i—s

t=1 t=1 s=1
T t-1
~ 1/2A2T032/ + 2K, A? Z Z s2% =L cos (pt) cos (¢ (t — s)) cos ps
t=1 s=1
T t—1
~ 1/2A°To? + K, A? Z Z s?W =1 (cos (¢ (2t — 5)) cos ps + cos? (ps))
t=1 s=1

T t—1
9 2 9 od.—1 [(€os (2pt) +cos2p(t —s) 1+ cos(2ps)
~ 1/2A4°T02 + K,A ;1515 v ( . - 5
=] s=

~ 1/2A°To2 +1/2K,A* (2dy + 1) 7" (2d,) " T?% T + O(T)

~ 1/2K,A%(2d, + 1) " (2d,) T2 FL, (42)

Similarly,

T
var (Z Bisin (¢t) yt>

t=1

T
= ZEB2sm (pt) yt—i-QZ

1 s=
1

t—1
B%sin (pt) sin (¢ (t — 8)) Yeyi—s
t=1 s=1
T t—

~ 1/232TU§ +2K,B? Z Z s~ gin (ot) sin (o (t — 5)) cos ps

t=1 s=1

T t-1
~ 1/2B’To% + K,B>> > " ™ sin (ot) (sin g ( — 2s) + sin o)
t=1 s=1
T t-1

ZZ 2d,—1 €08 2¢s — cos2¢ (¢ — s) n 1 — cos2¢pt
2 2

t=1 s=1
~1(2d,) "t T2 (43)

s=
t—

~ 1/2B*To? + K,B?
~ 1/2K,B*(2d, +1)

Finally,

T
cov (Z A cos (¢t) yi, B sin (pt) yt)

t=1
T t-1

= AB Z cos (pt) sin (pt) By? + 2 Z Z AB cos (¢t)sin (¢ (t — s)) Eyyi—s
t=1 s=1

T t—1
= o(T)+2ABK, Z s2 =1 cos (pt) sin (o (t — s)) cos ps
t=1 s=1
T t—1
= o(T)+ ABK, Z Z 521 (sin (¢(2t — 5)) — sin (¢s)) cos @s

t=1 s=1
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T t—1
= o(T) + ABEK,» Y s*~" (1/2sin (2pt) + 1/2sin(20(t — s)) — 1/2sin (2ps))
t=1 s=1
= O(). (44)
Therefore vaT(Zle zyys) ~ CT?%+H for some constant C. Parts (a), (b), (c) and (d)
of the theorem now follow from the same arguments as in the proof of Theorem 4.

Similarly, we can prove Parts (e), (f), (g) and (h) of the theorem. m
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