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1 Introduction

In this paper, we consider spatial data models in a GMM framework. Like time series data, a

salient feature of spatial data is that the observations are statistically dependent. To capture

general and unspeci�ed dependence structure, we often use heteroskedasticity and autocorre-

lation robust (HAR) variance estimators. For recent contributions, see, for example, Kelejian

and Prucha (2007) and Kim and Sun (2011). Most commonly used HAR variance estimators

are formulated using conventional kernel smoothing techniques. Under some rate conditions,

the HAR variance estimator is consistent, and we obtain asymptotic normal and chi-square

tests. While convenient in empirical implementations, consistent HAR procedures do not cap-

ture the randomness of the HAR variance estimator, and the associated test often has large

size distortion, especially when the spatial dependence is high.

To address the size distortion problem, Bester, Conley, Hansen and Vogelsang (2011,

BCHV hereafter) extend the �xed-b asymptotics in the time series setting to the spatial setting.

Under this type of asymptotics, the truncated lag in the kernel HAR variance estimator is set

equal to a �xed fraction b of the sample size N . See for example Kiefer and Vogelsang (2005)

and Sun, Phillips and Jin (2008). The �xed-b asymptotics is in contrast with the conventional

asymptotics where b ! 0 as the sample size N increases. Like the conventional asymptotic

distribution, the �xed-b asymptotic distributions of the Wald statistic and t statistic are as-

ymptotically nuisance parameter free, albeit nonstandard. BCHV show by simulation that the

nonstandard test has better size properties than the conventional normal or chi-square test.

While BCHV make an important contribution in extending the �xed-b asymptotics to

spatial settings, several challenging issues remain to be addressed. From a theoretical point of

view, the �xed-b asymptotics in BCHV is obtained under a set of assumptions that are very

restrictive in the spatial setting. As BCHV use a functional central limit theorem (FCLT)

for a scaled moment process, they impose strong assumptions that may not hold if spatial

processes are heteroskedastic or have spatially heterogeneous dependence. BCHV also require

a �quadrant-wise monotone boundaries�condition on the shape of the sampling region. This

condition may be hard to verify in empirical situations. From a practical point of view,

implementation of their �xed-b asymptotic test can be computationally intensive. As the

�xed-b asymptotic distribution is nonstandard and depends on the sampling region, critical

values have to be obtained via simulation or bootstrap.

We confront these challenges by considering the class of series HAR variance estimators, a

class of HAR variance estimators that is di¤erent from but closely related to the class of kernel

HAR variance estimators. Both classes of estimators belong to the larger class of quadratic

estimators. From a broad perspective, these two classes are analogous to the respective kernel

estimators and series/sieve estimators in nonparametric regressions. In the present setting,

the series HAR variance estimator we recommend for practical use is a kernel HAR variance

estimator with a special kernel function. In general, there is no clear �nite sample advantage of
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one estimator over the other one. However, it is advantageous to use the series HAR variance

estimator in developing a new and more accurate approximation.

The smoothing parameter underlying the series HAR variance estimator is the number of

terms K in the series expansion. Depending on whether K is �xed or grows with the sample

size, we obtain the �xed-K asymptotics or the more conventional large-K asymptotics. We

establish the �xed-K asymptotic theory without using an FCLT or maintaining restrictive

assumptions on the sampling region. Our basic insight is that an FCLT is not necessary for

establishing the �xed-K asymptotics. It is su¢ cient to invoke a CLT which can hold under

much weaker conditions and therefore can accommodate a wide range of spatial processes.

For example, we can use the CLT developed by Jenish and Prucha (2009, JP hereafter) which

allows the spatial process to be nonstationary and even to have asymptotically unbounded

moments. In addition, a CLT is much less demanding than an FCLT on the shape of the

sampling region. We impose only a mild boundary condition.

In the time series setting and the spatial setting of BCHV, the �xed-b asymptotic distrib-

ution is often represented by a functional of Brownian motion or Brownian sheet. We will not

use this type of representation. Instead, we introduce the notion of asymptotically equivalent

distributions. We show that, under the �xed-K asymptotics, the Wald statistic is asymptot-

ically equivalent to a quadratic form in a standard normal vector with an independent and

random weighting matrix. The random weighting matrix captures the estimation uncertainty

of the series HAR variance estimator. The asymptotically equivalent distribution is nuisance

parameter free. Compared to the representation that involves a Brownian sheet, the asymp-

totically equivalent distribution has a simpler representation. It is also easier to simulate, as

it is a function of only N iid standard normal vectors.

A further innovation of the paper is that we design a sequence of basis functions so that the

asymptotically equivalent distribution becomes a standard distribution. For any given basis

functions, we �rst center them and then orthonormalize the centered basis functions via the

Gram-Schmidt procedure. We use the transformed basis functions in our series HAR variance

estimation. By construction, the transformed basis functions are orthonormal and integrate

to zero. These two properties ensure that the random weighting matrix follows a Wishart

distribution and is independent of the standard normal vector. So the quadratic form in this

standard normal vector follows exactly an F distribution. The transformed basis functions,

coupled with the �xed-K asymptotics, give rise to our asymptotic F test. The F test is very

convenient to use in practice, as critical values from the F distribution can be obtained from

statistical tables or software packages. No computationally intensive simulation or bootstrap

is needed.

The next step in using the series HAR variance estimator is to select the number of termsK.

We consider the asymptotic mean squared error (AMSE) criterion. The proposed smoothing

parameter depends on unknown parameters, which can be estimated by a parametric plug-
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in procedure. We employ the Matérn model as the approximating parametric model. As a

widely-used model in spatial analysis, the Matérn model is very �exible in capturing various

decaying patterns of spatial dependence. Simulation studies show that the �xed-K asymptotic

tests, which include the F test, are more accurate in size than the conventional chi-square test.

They are also as accurate in size as the BCHV test with similar power properties.

The �xed-K asymptotics and �xed-b asymptotics may be collectively referred to as the

�xed-smoothing asymptotics as they e¤ectively involve smoothing over a �xed number of quan-

tities of interest. On the other hand, the conventional large-K asymptotics where K !1 or

the small-b asymptotics where b! 0may be referred to as the increasing-smoothing asymptot-

ics, as they involves smoothing over an increasing number of quantities. The two speci�cations

can be viewed as di¤erent asymptotic devices to obtain approximations to the �nite sample

distribution. While we recommend using the �xed-smoothing asymptotic approximation, this

does not mean that we advocate the use of an inconsistent HAR variance estimator. Instead,

we follow conventional practices in constructing the HAR variance estimator and the associ-

ated test statistic. Only in the last stage of inference that requires a reference distribution

do we use the �xed-smoothing asymptotic approximation. When K ! 1 or b ! 0; it can

be shown that the �xed-smoothing asymptotic approximation reduces to the conventional

chi-square approximation. So critical values from the �xed-smoothing asymptotics are asymp-

totically valid regardless of whether the amount of smoothing is held �xed or grows with the

sample size or not. We can regard the �xed-smoothing asymptotic approximation as a robust

approximation.

The rest of the paper is organized as follows. Section 2 describes the problem at hand and

introduces the series HAR variance estimator. Section 3 establishes the �xed-K asymptotic

theory and F approximation under transformed basis functions. Section 4 develops a band-

width selection procedure. Section 5 discusses practical issues in implementing our proposed

tests. Section 6 presents simulation evidence. The next section applies the proposed testing

procedures to Conley and Udry (2010) and reexamines their main results. The last section

provides some concluding discussion. Proofs are given in the Appendix.

2 GMM Estimation and HAR Inference

We are interested in a d � 1 vector of parameters � 2 � � Rd. Let �0 be the true value and
assume that �0 is an interior point of the compact parameter space �: The moment conditions

Efj (�) = 0

hold if and only if � = �0, where fj (�) = f (Yj ; �) is a df�1 vector of continuously di¤erentiable
functions with df � d; rank E [@fj (�) =@�0j�=�0 ] = d; and Yj 2 RdY is a vector of observations
at location j. The number of observed locations or the sample size is N:
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We allow the moments to exhibit general forms of spatial correlation where the strength

of the correlation depends on some observable distance measure between two locations. For

simplicity, we follow Conley (1999) and assume that it is possible to map the data onto a

�nite-dimensional integer lattice so that the distance can be expressed in terms of lattice

indices. To simplify the presentation further, we consider the two dimensional case so that

j = (j1; j2) 2 Z2: Extending our results to higher dimensions is straightforward.
We assume that the sampling region can be represented by Bn = nB \ Z2 where n =

(n1; n2), nB = f(n1b1; n2b2) : (b1; b2) 2 Bg ; and B is a compact set with positive Lebesgue

measure. As n1 and n2 increase, the sampling region Bn gets �in�ated�in each direction and

more observations become available. We allow the possibility of nonnested sampling regions,

i.e. Bn may not be a subset of Bn0 for n < n0 and the data generating process is understood to

be a triangular array data generating process. We consider the increasing-domain asymptotics

where n1 !1 and n2 !1 and there is a minimum positive distance between the locations

where the observations are taken.

Based on the moment conditions Efj (�0) = 0; the GMM estimator (Hansen, 1982) of �0
is given by

�̂N = argmin
�2�

24 1
N

X
j2Bn

fj(�)

350WN

24 1
N

X
j2Bn

fj(�)

35 ;
where WN is a df � df positive de�nite and symmetric weighting matrix. Let

gN (�) =
1

N

X
j2Bn

fj (�) ; GN (�) =
1

N

X
j2Bn

@fj(�)

@�0
:

If plimN!1GN (�̂N ) = G and plimN!1WN = W for some G and W with full column rank,

then under some regularity conditions, �̂N satis�es

p
N
�
�̂N � �0

�
= �

p
N
�
G0WG

��1
G0WgN (�0) + op (1)

= �
p
NH�1SN (�0) + op (1)

where

H = G0WG; SN (�) =
1

N

X
j2Bn

sj (�)

and sj (�) = G0Wfj(�), a linear transformation of the original moment functions. To simplify

the notation, we write SN = SN (�0) and sj = sj (�0) : If
p
NSN ) N(0;
); where


 = lim
n!1

1

N
E

0@X
j2Bn

sj

1A0@X
j2Bn

sj

1A0 ;
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then p
N
�
�̂N � �0

�
) N(0;H�1
H�1): (1)

In the time series literature, 
 is called the long-run variance. We may refer to 
 as the global

variance in the spatial setting, as it is not a variance associated with a single location but

rather a variance contributed by all locations.

Since H can be consistently estimated by its sample analog Ĥ = G0N (�̂N )WNGN (�̂N ), it

su¢ ces to estimate 
 in order to conduct inference about �0: In this paper, we employ the

series type estimator for 
: Let

ŝj = sj

�
�̂N

�
= G0N (�̂N )WNfj(�̂N ):

For each k = (k1; k2) 2 (Z+ [ f0g)
 (Z+ [ f0g), de�ne

Ak = Ak(�̂N ) =
1p
N

X
(j1;j2)2Bn

�k1;k2(
j1
n1
;
j2
n2
)ŝj1;j2

for some basis function �k1;k2(�; �) = �k(�; �) that may be complex and �(0;0)(�; �) � 1: The

basis functions are used to directly capture the global variation of the spatial process. For

notational simplicity, we denote j=n = (j1=n1; j2=n2) from now on so that we can write

�k1;k2(j1=n1; j2=n2) = �k(j=n): Construct the direct estimator:


̂k = Re (AkA�k) ;

where A�k is the conjugate transpose of Ak: Taking a simple average of the direct estimators
yields a new estimator:


̂ =
1

K

X
k2K


̂k

where

K = K0n f(0; 0)g , K0 = (0; 1; :::;K1)
 (0; 1; :::;K2);

K1 and K2 are smoothing parameters, and K = K1K2+K1+K2. The larger K is, the larger

the amount of smoothing is.

In the de�nition of 
̂; we have explicitly excluded the case k1 = k2 = 0: We do so because

when �(0;0)(r; s) = 1; we have A(0;0) = 0 and hence 
̂(0;0) � 0, using the de�nition of the

estimator �̂N :

As an example, consider using the complex exponential:

�k(r; s) = exp [�i (2�k1r + 2�k2s)] ; k1; k2 2 K; (2)
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as the basis functions. In this case, Ak becomes

Ak =
1p
N

X
(j1;j2)2Bn

exp

�
�i
�
2�k1
n1

j1 +
2�k2
n2

j2

��
sj1;j2

�
�̂N

�
;

which is the �nite Fourier transform of the spatial process sj1;j2(�̂N ). Furthermore, some

elementary manipulations show that


̂ =
1

N

X
(j1;j2)2Bn

X
(~j1;~j2)2Bn

sj1;j2

�
�̂N

�
W

�
j1 � ~j1
n1

;
j2 � ~j2
n2

�
s0~j1;~j2

�
�̂N

�

where

W (x1; x2) =
1

K

K1X
k1=0

K2X
k2=0

cos [2� (k1x1 + k2x2)]

=
1

K
cos� [K1x1 +K2x2]

sin�x1 (K1 + 1)

sin�x1

sin�x2 (K2 + 1)

sin�x2
:

So the series HAR variance estimator is a kernel estimator with a special kernel weighting

function given above. The above formula also shows that 
̂ depends on n only through K1=n1

and K2=n2; which will be speci�ed in Section 4. See Sun (2011a,b) and references therein for

more discussions on the series long-run variance estimation in the time series setting.

Suppose that the null hypothesis of interest is H0 : R� = r and the alternative is H1 :

R� 6= r; where R is a q � d matrix. The F test version of the Wald statistic for testing H0
against H1 is given by

FN =
hp

N
�
R�̂N � r

�i0 �
RĤ�1
̂Ĥ�1R0

��1p
N
�
R�̂N � r

�
=q: (3)

When q = 1, we can construct the usual t statistic

tN =

p
N(R�̂N � r)�

RĤ�1
̂Ĥ�1R0
�1=2 : (4)

We can also consider nonlinear restrictions; our results remain valid after simple linearization.

3 Asymptotic Properties of Test Statistics

In this section, we establish the asymptotic distribution of the Wald and t statistics under the

speci�cation that K1 and K2 are �xed. We maintain the following assumptions.

Assumption 1. K1 and K2 are �xed as (n1; n2)! (1;1).
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Assumption 2. �̂N !p �0:

Assumption 3. (i) For any open set A � int(B), let jAL = min
�
j1 : (j1; j2) 2 nA \ Z2

	
, jAU =

max
�
j1 : (j1; j2) 2 nA \ Z2

	
and de�ne An(j1) =

�
j2 : (j1; j2) 2 nA \ Z2

	
for jAL � j1 � jAU :

The uniform law of large numbers

sup
�2N (�0)

sup
A�int(B)

sup
j12[jAL ;jAU ]

 1

jAn (j1)j
X

j22An(j1)

@sj (�)

@�0
�H(�)

!p 0

holds, where N (�0) is an open neighborhood of �0, k�k is the Euclidean norm, and jAn (j1)j
is the number of elements in An (j1) ; (ii) H(�) is continuous at � = �0; and H = H(�0) is a

nonsingular matrix.

Assumption 4. For ej s iidN(0; Id) over j 2 Bn, we have

P

 "
1p
N

P
j2Bn Re�k(

j
n)sj

1p
N

P
j2Bn Im�k(

j
n)sj

#
< xk for all k 2 K0

!

= P

 "
� 1p

N

P
j2Bn Re�k(

j
n)ej

� 1p
N

P
j2Bn Im�k(

j
n)ej

#
< xk for all k 2 K0

!
+ o (1)

uniformly over xk 2 R2d where � is the matrix square root of 
; i.e. ��0 = 
, and 
 is

positive de�nite.

Assumption 1 makes it explicit that our asymptotics is taken under �xed K1 and K2

and that the sampling region expands in each direction but with possibly di¤erent speeds.

Assumption 2 is made for convenience. It can be proved under more primitive assumptions and

using standard arguments. The ULLN in Assumption 3 is similar to Assumption 6 in BCHV.

Similar assumptions are made in the time series setting. For a given set A;
�
jAL ; j

A
U

�
is the range

of the �rst index in the set nA\Z2: The set
�
(j1; j2) : j1 2

�
jAL ; j

A
U

�
; j2 2 An(j1)

	
is the same

as nA \ Z2: Assumption 4 is satis�ed if a CLT holds jointly for N�1=2P
j2Bn Re�k(j=n)sj

and N�1=2P
j2Bn Im�k(j=n)sj . Some primitive su¢ cient conditions for Assumption 4 are

provided in the Appendix. When Assumption 4 holds, we write

1p
N

X
j2Bn

�k(
j

n
)sj

as �
1p
N

X
j2Bn

�k(
j

n
)ej

where as signi�es that the two sides are asymptotically equivalent in distribution.

Theorem 1 Let Assumptions 1-4 hold. If �k (�; �) is continuously di¤erentiable, then

FN
as F aN ; tN

as taN
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where

F aN =
1

q
�0

 
1

K

X
k2K

Re (�k�
�
k)

!�1
�; taN =

��
K�1P

k2KRe
�
�k�

�
k

��1=2 ;
� =

1p
N

X
j2Bn

"j ; �k =
1p
N

X
j2Bn

24�k( j
n
)� 1

N

X
j2Bn

�k(
j

n
)

35 "j ;
and "j s iidN(0; Iq):

We prove Theorem 1 under much weaker assumptions than BCHV. As in JP, we allow for

very general sampling regions. In contrast, BCHV maintain the very restrictive assumption

that the sampling region has a quadrant-wise monotone boundary. In addition, our result is

established under the CLT for spatial processes while BCHV require an FCLT indexed by sets.

A CLT can hold under very mild conditions to accommodate a wide range of spatial processes.

The spatial processes can be nonstationary and can even have asymptotic unbounded moments,

see JP. In addition to the conditions given in JP, we need a mild homogeneity condition for

Assumption 4 to hold; see Lemma 1 in the Appendix. This condition is weaker than covariance

stationarity. In contrast, an FCLT usually requires much stronger assumptions so that the

tightness condition can be veri�ed. Furthermore, the asymptotically equivalent distribution in

Theorem 1 has a simple representation. When sj is iid normal, it is exactly equal to the �nite

sample distribution. This is in contrast to the limiting distribution in BCHV, which is a sum

of complicated functionals of set-indexed Brownian sheet processes. In general, the limiting

distribution in BCHV is always an approximation to the �nite sample distribution.

Since � and �k are normal and cov(�; �k) = N�1P
j2Bn

h
�k(j=n)�N�1P

j2Bn �k(j=n)
i
Iq =

0q�q for any k 2 K, � and �k are independent. So FN is asymptotically equivalent in distri-

bution to a quadratic form in a standard normal vector with an independent and random

weighting matrix. The random weighting matrix captures the estimation uncertainty of the

series HAR variance estimator. Like the �nite sample distribution, the asymptotically equiv-

alent distribution depends on K; the basis functions, and the sampling region.

When �k(�; �) is real, �k is normal with mean zero and variance

var (�k) =
1

N

X
j2Bn

24�k( j
n
)� 1

N

X
j2Bn

�k(
j

n
)

352 Iq:
The covariance between �k1 and �k2 is

cov (�k1 ; �k2) =
1

N

X
j2Bn

24�k1( jn)� 1

N

X
j2Bn

�k1(
j

n
)

3524�k2( jn)� 1

N

X
j2Bn

�k2(
j

n
)

35 Iq:
So the representation of F aN enables us to see that the asymptotic distribution of FN depends

8



on the sampling region and basis functions via N�1P
j2Bn �k(j=n); N

�1P
j2Bn �

2
k(j=n); and

N�1P
j2Bn �k1(j=n)�k2(j=n) or their limiting forms.

The following corollary gives the asymptotically equivalent distribution in a special case.

Corollary 2 Let the Assumptions in Theorem 1 hold. If (i) N�1P
j2Bn �k(j=n) = o(1) and

(ii) N�1P
j2Bn �k1 (j=n) �k2 (j=n) = 1 fk1 = k2g (1 + o (1)), then

(K � q + 1)
K

FN
as Fq;K�q+1 and tN

as tK�q+1:

Corollary 2 shows that the �nite sample distribution of qFN can be approximated by

K

K � q + 1
1

�2K�q+1= (K � q + 1)�
2
q :

As K ! 1; both �2K�q+1= (K � q + 1) and K=(K � q + 1) converge to one. As a result,

the above limiting distribution reduces to �2q , the conventional asymptotic approximation. A

direct implication is that critical values obtained from the F approximation are asymptotically

valid under the conventional asymptotics when K !1 with the sample size. However, when

K is not very large or the number of the restrictions q is large, the F approximation can

be very di¤erent from the chi-square approximation. Since both the random denominator

�2K�q+1= (K � q + 1) and the proportional factor K=(K � q + 1) shift the probability mass

to the right, critical values based on the F approximation are larger than those based on the

chi-square approximation.

An example of Corollary 2 is when B is a rectangle and �k (r; s) =
p
2 cos (2�k1r + 2�k2s)

or �k (r; s) =
p
2 sin (2�k1r + 2�k2s). It is not hard to show that the assumptions in Corollary

2 hold in this case. So when the sampling region has a square lattice structure, we can use

critical values from the F or t distribution to perform the Wald test or the t test.

When �k (r; s) is complex, we may write

1

K

X
k2K

Re (�k�
�
k) =

1

2K

X
k2K

�
�R;k�

0
R;k + �I;k�

0
I;k

�
where �R;k = 1p

N

P
j2Bn

~�Rk (j=n) "j ; �I;k =
1p
N

P
j2Bn

~�Ik (j=n) "j and

~�Rk (
j

n
) = Re

p
2~�k(

j

n
); ~�Ik(

j

n
) = Im

p
2~�k(

j

n
)

~�k(
j

n
) = �k(

j

n
)� 1

N

X
j2Bn

�k(
j

n
):

So the complex case is the same as the real case using
�p
2Re�k(r; s);

p
2 Im�k(r; s); k 2 K

	
as the basis functions. The number of basis functions is 2K: If these basis functions satisfy
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the assumptions in Corollary 2, then we immediately have:

(2K � q + 1)
2K

FN
as Fq;2K�q+1 and tN

as t2K�q+1: (5)

When B is a rectangle, a natural choice for complex valued �k (�; �) is the complex ex-
ponential given in (2). It is easy to check that all assumptions in Corollary 2 hold for�p
2Re�k(r; s);

p
2 Im�k(r; s); k 2 K

	
:

For a general sampling region Bn and basis functions, the asymptotically equivalent dis-

tribution cannot be simpli�ed in general. However, it can be simulated easily. To obtain a

draw from this distribution, we only need to generate N iid standard normal vectors. So it

is computationally less intensive than simulating the asymptotic distribution represented by

functionals of Brownian sheets.

A more interesting and convenient method to deal with a general sampling region is to

construct orthonormal basis functions on the region so that Corollary 2 applies. Given the basis

function �k (�; �), we can center it �rst and then orthonormalize the centered basis functions
via the Gram-Schmidt procedure. More speci�cally, we can follow the three steps below:

(i) Center the basis functions to obtain

~�k(
j

n
) := ~�k(

j1
n1
;
j2
n2
) = exp

�
�2�i

�
k1j1
n1

+
k2j2
n2

��
� 1

N

X
b2Bn

exp

�
�2�i

�
k1b1
n1

+
k2b2
n2

��

for all j 2 Bn:
(ii) For each k; let ~�Rk be the N�1 column vector collecting

n
Re
h
~�k (j=n)

i
; j 2 Bn

o
and

~�Ik be the corresponding column vector collecting
n
Im
h
~�k (j=n)

i
; j 2 Bn

o
: Concatenate ~�Rk

and ~�Ik to form the N � 2K matrix �:

(iii) Let � = �QR be the QR decomposition of �; where �Q = (�Qm`) is the N � 2K
orthonormal matrix. We use the columns of �Q as the basis vectors and estimate 
 by


̂Q =
1

2K

2KX
`=1

"
NX
m=1

�Qm`ŝ
Q
m

#"
NX
m=1

�Qm`ŝ
Q
m

#0
(6)

where ŝQm is the m-th transformed moment vector with ordering conformable with the columns

of �:

Since the columns of �Q are just linear combinations of the centered basis functions,

they satisfy the conditions in Corollary 2. Therefore, we can use the F distribution or the t

distribution as the reference distribution in statistical inference. We call the resulting test the

asymptotic F test or the asymptotic t test.
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4 Smoothing Parameter Choice

In this section, we select the smoothing parameter based on the mean square error criterion.

We focus on the case that �k(r; s) = exp [�i (2�k1r + 2�k2s)] as it provides a complete ortho-
normal system on L2([0; 1]2): In addition, for this choice of �k(r; s); the series HAR variance

estimator reduces to a kernel HAR estimator, so we can use the results in Kim and Sun (2011)

to facilitate the mean square error calculation.

We consider the case K1=n1 = K2=n2 = � and select only one smoothing parameter �. We

can allow K1=n1 and K2=n2 to take di¤erent values, but it is often di¢ cult to estimate more

than one theoretically-optimal smoothing parameter in �nite samples.

We de�ne ~
 as the pseudo-estimator that is identical to 
̂ but is based on the true para-

meter �0 instead of �̂N . That is,

~
 =
1

K

X
k2K

Re [Ak (�0)A�k (�0)] :

Given a d2 � d2 weighting matrix V; we de�ne the MSE criterion as

MSE(~
; V ) = E
nh
vec(~
� 
)0V vec(~
� 
)

io
;

where vec(�) is the column-by-column vectorization function. If necessary, we employ the
asymptotic truncated MSE function in Andrews (1991). Under the assumptions in Kim and

Sun (2011) and following the same arguments, we can show that

MSE(~
; V ) =

�
�4 [vec (B)]0 V vec(B) + 1

2N�2
tr [V (

 
) (Id2 +Kdd)]

�
(1 + o(1)) ;

where B = 
(11) +
(22) +
(12),


(11) = �2
3
�2
1

N

X
j2Bn

X
~j2Bn

Esj (�0) s
0
~j
(�0)

�
j1 � ~j1

�2

(22) = �2

3
�2
1

N

X
j2Bn

X
~j2Bn

Esj (�0) s
0
~j
(�0)

�
j2 � ~j2

�2

(12) = ��2 1

N

X
j2Bn

X
~j2Bn

Esj (�0) s
0
~j
(�0)

�
j1 � ~j1

� �
j2 � ~j2

�
(7)

and Kdd is the d2 � d2 commutation matrix.
According to the MSE criterion, the MSE-optimal � is

�opt =

�
tr [V (

 
) (Id2 +Kdd)]
4 [vec (B)]0 V vec(B)

�1=6� 1
N

�1=6
:
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When V assigns equal weights only to the diagonal elements of ~
, the above formula simpli�es

to

�opt =

 
kdiag (
)k2

2 kdiag(B)k2

!1=6�
1

N

�1=6
:

When the spatial process has positive dependence such that diag(Esj (�0) s0~j (�0)) � 0 for
all
�
j; ~j
�
; we can show that

kdiag(B)k2 =
diag h
(11) +
(22) +
(12)i2

� 3
�diag h
(11)i2 + diag h
(22)i2 + diag h
(12)i2�

� 3
�diag h
(11)i2 + diag h
(22)i2 + 3

4

diag h
(11)i2 + 3
4

diag h
(22)i2�
=
21

4

�diag h
(11)i2 + diag h
(22)i2� :
In this case, �opt � �� where

�� =

0@ 2 kdiag (
)k2

21
�diag �
(11)�2 + diag �
(22)�2�

1A1=6� 1
N

�1=6
:

To control the asymptotic bias more e¤ectively, we suggest employing the lower bound ��

to choose K1 and K2: That is, we take K�
1 = bn1��c and K�

2 = bn2��c where bxc is the
integer part of x: This suggestion is line with Sun, Phillips and Jin (2008) who show that

the asymptotic bias under some testing-oriented criterion should be of smaller order than

the asymptotic bias under the MSE criterion. In addition, using �� instead of �opt avoids

estimating 
(12); which is often a di¢ cult task.

To implement the data-driven K�
1 and K

�
2 ; we use an approximating parametric model to

capture the spatial dependence. There are two classes of parametric models that are commonly

used in the literature. The �rst is to model the process itself. This approach is based on the

work of Cli¤ and Ord (1981) and requires the use of a weight matrix. Kim and Sun (2011)

use this approach. The second approach is to model the covariance structure directly. In

this approach, rather than starting with the process and deriving the covariance matrix, a

functional form for the covariance structure is assumed. The parameters of this function are

then estimated. Here we use the second approach as it does not require specifying a weight

matrix.

We employ the �exible class of Matérn models as the approximating covariance model.
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For each component s(p)j (�0) of sj (�0) ; the covariance function is

Cp(h) = Es
(p)
j (�0)

h
s
(p)
~j
(�0)

i0
=

�2p
2�p�1� (�p)

�
khk
�p

��p
K�p

�
khk
�p

�
where �p > 0; �p > 0; h =

�
j1 � ~j1; j2 � ~j2

�
, and K�p is the modi�ed Bessel function of the sec-

ond kind (Abramowitz and Stegun, 1965, pp. 374-379). This function has been implemented

in standard programming packages. For example, in Matlab R the function besselk(nu,z)

computes K�(z): The corresponding variogram is given by

p (h) = Cp(0)� Cp(h) = �2p

�
1� 1

2�p�1� (�p)

�
khk
�p

��p
K�p

�
khk
�p

��
:

The variogram expression is the same as equation (5.32) in Webster and Oliver (2001, p. 94).

For the Matérn class of models, the spectral density for s(p)`;m (�0) has the form:

f(!1; !2) =
�2p�

�2�p
p

�
�
��2p + !21 + !

2
2

��p+1 ;
which can be obtained by setting �p = 1=�, �2p = 2

�p�1�� (�p + 1), and d = 2 in equation (32)

of Stein (1999, pp. 48-49). Under the above speci�cation, we have

kdiag (
)k2 =
dX
p=1

�
4��2p�

2
p

�2
;

diag h
(11)i2 + diag h
(22)i2 = 2 dX
p=1

�
4

3
�2 � 4� (�p + 1)�2p�4p

�2
;

and so

��N = 0:25501

 Pd
p=1 �

4
p�
4
pPd

p=1 (�p + 1)
2 �4p�

8
p

!1=6
N�1=6: (8)

In our simulation study below, we set �p = � for all p and consider two di¤erent values of � :

� = 1=2; 1; which correspond to the exponential model and the Whittle model. In the former

case (h) = �2 f1� exp (�khk =�)g while in the latter case (h) = �2 [1� (khk =�)K1 (khk =�)] :
We estimate the rest of parameters �2p and �p by �tting the theoretical variogram p (h) to the

empirical estimates ̂p(h) based on nonlinear least squares (NLS):

�
�̂2p; �̂p

�
= arg min

�2p;�p

X
h

�
�2p

�
1� 1

2��1� (�)

�
khk
�p

��
K�

�
khk
�p

��
� ̂p (h)

�2
:

In principle, we can estimate �2p and �p using more e¢ cient estimators such as the MLE or

weighted NLS estimator. Here we are content with the above ordinary NLS estimator as the
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approximating model we speci�ed is not necessarily correct. Plugging �̂2p and �̂p into (8) yields

the data-driven choices �̂�N , K
�
1 = bn1�̂�Nc, and K�

2 = bn2�̂�Nc :

5 Empirical Implementation

In practical situations, observations may not be located on a regular integer lattice. More often

than not, the observation locations are characterized by two covariates, say Lm = (L1m; L2m)

for m = 1; :::; N: To map the observation locations to an integer lattice, we can follow the

steps below:

(i) Normalize Lm = (L1m; L2m) to obtain ~Lm = (~L1m; ~L2m) where

~L1m =
L1m �minm (L1m)

medianm(min �m;L1m 6=L1 �m jL1m � L1 �mj)
;

~L2m =
L2m �minm (L2m)

medianm(min �m;L2m 6=L2 �m jL2m � L2 �mj)
:

We employ the normalization to ensure that ~Lm is invariant to the units of measurement in

each coordinate. Other normalizations are possible.

(ii) On the basis of
n
~Lm;m = 1; :::; N

o
; compute

�0 = min
m6=`

n
max

�
j~L1m � ~L1`j; j~L2m � ~L2`j

�o
;

which is the minimum of pairwise distances.

(iii) Compute jm = (j1m; j2m)

j1m =

&
~L1m
�0

'
; j2m =

&
~L2m
�0

'

where d�e is the ceiling function.
These steps map each location (L1m; L2m) in the original space into a unique point

(j1m; j2m) in the integer lattice Bn � Z+ 
 Z+. The mapping is similar to the one that
is used in Conley (1999). Here we have implicitly assumed that �0 > 0, a necessary condition

for the increasing domain asymptotics.

With the lattice mapping, we can follow the steps below to compute the test statistic:

(i) Set n1 = max fj1m;m = 1; :::; Ng and n2 = max fj2m;m = 1; :::; Ng
(ii) For k1 = 0; :::;K1 and k2 = 0; :::;K2; compute

Ak1;k2
�
�̂N

�
=

1p
N

X
(j1;j2)2Bn

exp

�
�2�i

�
k1j1
n1

+
k2j2
n2

��
sj1;j2

�
�̂N

�
;
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and 
̂ = K�1PK1
k1=0

PK2
k2=0

Re
h
Ak1;k2

�
�̂N

�
A�k1;k2

�
�̂N

�i
:

(iii) Plugging 
̂ into (3) or (4), we obtain the test statistic FN or tN :

We can follow a similar procedure to compute 
̂Q and the associated F statistic or t

statistic.

6 Simulation Study

This section provides some simulation evidence on the �nite sample performance of our pro-

posed nonstandard test and the F test.

The model we consider is a linear regression model:

yj = �+ x0j� + "j (9)

where xj and � = (�1; �2)
0 are 2 � 1 vectors and fj = (j1; j2)g indicates the lattice points

where the observations are located. Without loss of generality, we set � = 0. We generate xj
and "j according to

xj =
X
jaj�2

jajuxj+a; "j =
X
jaj�2

jaju"j+a; (10)

where jaj = max (ja1j ; ja2j) ; uxj s iidN(0; Idx), u"j s iidN(0; 1), and fuxj g is independent of
fu"jg: We consider four di¤erent values of  = 0; 0:3; 0:6; 0:9. We also consider two di¤erent

sampling regions. The �rst is a circular lattice given in Figure 1. The sample size is N = 529.

The other is a square lattice. For the square lattice, we introduce two di¤erent designs: one

uses a full lattice and the other uses a sparse lattice. For the full lattice case, we take a

regular 25 � 25 lattice and use the data generated at each location for a total sample size of
N = 625: For the sparse lattice case, we generate the data on the full 36� 36 lattice but then
randomly sample (without replacement) 625 of the potential 1296 locations. We condition on

the same set of 625 locations in each of the simulation replications. Our simulation results are

not sensitive to the initial sampling of the locations. The sparse square lattice together with

the circular lattice are presented in Figure 1.

To explore the size properties, we generate the data under the following null hypothesis:

H0q : Rq(�; �
0)0 = 0q�1 (11)

where Rq = (0q�(dx+1�q); Iq). Thus, for this testing problem, r = 0q�1: When q = 1; the null
is �2 = 0; when q = 2; the null is �1 = �2 = 0: We set the signi�cance level to be 5%, which is

also the nominal size. We compute the empirical size based on 5000 simulation replications.

For the circular lattice, we �rst consider the two tests proposed in this paper. The �rst

uses the complex exponentials as the basis functions and employs simulated critical values

from the nonstandard asymptotically equivalent distribution. We refer to this test as the
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Figure 1: Circular Lattice and Sparse Square Lattice

series nonstandard test (Series SIM). The other uses the transformed basis matrix via the

Gram-Schmidt procedure and employs critical values from the standard F distribution. We

refer to this test as the orthonormal series asymptotic F test (OS F). For both tests, we

consider the corresponding tests that use critical values from the �2q=q distribution, leading

to the series �2 test and the OS �2 test. For comparative purposes, we also consider two

alternative tests: the test based on the Gaussian kernel estimator and the nonstandard �xed-b

asymptotic distribution (BCHV); and the �2 test based on the Gaussian kernel estimator and

the �2q=q distribution (kernel �
2). The �xed-b critical values are simulated using the same

DGP as above but with  = 0: The Gaussian kernel we use here is:

G(j1; j2) = exp

 
�2 kj1 � j2k

2

d2

!
;

where d is the smoothing parameter. This Gaussian kernel is also considered by BCHV.

We use the data-driven smoothing parameters. For the series variance estimator, the

data-driven choice of K1 and K2 is given in (8). For the above Gaussian kernel variance

estimator, we can derive the MSE-optimal d: Following Kim and Sun (2011), we �nd that the

MSE-optimal d is

d?N =

�
16 [vec (BG)]0 V vec(BG)
�tr [V (

 
)(Id2 +Kdd)]

�1=6
N1=6 (12)

for BG = 
(11) + 
(22); where 
(11) and 
(22) are de�ned in (7). Using the same plug-in
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procedure as before, we can estimate d?N by

d̂?N = 3:0968

 
(� + 1)2

Pd
p=1 �̂

4
p �̂
8
pPd

p=1 �̂
4
p �̂
4
p

!1=6
N1=6 = 0:78971 (�̂�N )

�1 ;

which is a data-driven choice of d when V assigns equal weights only to the diagonal elements

of 
:

Table 1 reports the empirical size of the tests in the circular lattice case. As it is clear

from the table, the size distortion tends to increase with spatial dependence and the number

of restrictions being jointly tested. Compared to the tests based on the �xed-smoothing

asymptotics, the conventional series and kernel based chi-square tests tend to su¤er more

from over-rejection. For example, when  = 0:9 and q = 2; the empirical type I errors of

the series �2; OS �2 and kernel �2 tests with � = 0:5 are 0.282, 0.268 and 0.354 respectively.

In contrast, the �xed-K asymptotic tests and the BCHV test succeed in reducing the size

distortion signi�cantly. The empirical type I errors for the Series SIM, OS F, and BCHV

tests are 0.095, 0.097 and 0.101 respectively. Overall, tests based on the �xed-smoothing

asymptotics have more or less similar size distortion. Results not reported here show that the

selectedK1 andK2 values decrease with the spatial dependence. So our data-driven smoothing

parameter selection procedure e¤ectively captures the degree of spatial dependence.

For the square lattice con�guration, we consider two sets of testing procedures. The �rst

set consists of the series �2 test and the series F test, which employs an F distribution as the

reference distribution based on Corollary 2. We do not need to conduct any transformation

of basis functions because complex exponentials are orthonormal and integrated to zero on

the full square lattice. The second set consists of the BCHV and kernel �2 tests. For the

square lattice, we consider a priori �xed smoothing parameter choice as well as data-driven

smoothing parameter choice. In the former case, we set K1 = K2 = 1 or 2 for the series

estimator and d = 6 or 12 for the kernel estimator.

Table 2 gives the empirical size of the tests when the smoothing parameters are �xed

a priori. Both full lattice results and sparse lattice results are reported. We see that the

conventional chi-square tests can have large size distortion, especially when the amount of

smoothing is small (small K or large d). As expected, the series F test and the BCHV test are

more accurate in size. Comparing the full lattice results with the sparse lattice results, we �nd

that the size distortion is smaller for the sparse lattice. Having a sparse lattice is analogous

to have a weaker spatial dependence. Similar results were found by BCHV.

Table 3 presents the empirical size as in Table 2 except that the smoothing parameters are

data-driven. The qualitative observations from Tables 1 and 2 remain valid.

In Tables 1 and 3, all the �xed smoothing asymptotic tests have slightly more accurate

size when � = 1=2 as compared to � = 1: Simulation results not reported here show that the

smaller value of � delivers smaller amount of smoothing (smaller K and larger d). Table 2 also
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shows that the smaller the amount of smoothing is, the more accurate in size the series F test

and the BCHV test are. Thus, Tables 1-3 reveal that the �xed-smoothing asymptotic tests are

most accurate when the amount of smoothing is small. Finally, as before, the size distortion

for the sparse lattice case is smaller compared to the full lattice case. The selected amount

of smoothing is larger (larger K and smaller d). The larger the amount of smoothing is, the

smaller the di¤erence between the �xed-smoothing asymptotics and the increasing-smoothing

asymptotics is. So it is not surprising to see that the �xed-smoothing asymptotic tests do not

reduce the size distortion of their respective �2 tests by a large margin.

Figures 2-3 present the �nite sample power of di¤erent testing procedures with � = 0:5:

We use the circular lattice presented above and employ the DGP in (9) and (10). We consider

the following local alternative hypothesis:

H1q
�
�2
�
: Rq(�; �

0)0 = cq=
p
N (13)

where cq =
�
RqE(XjX

0
j)
�1 �N�1P

`2Bn
P
m2Bn E("`"mX`X

0
m)
�
E(XjX

0
j)
�1R0q

��1=2
~cq with

X` = (1; x0`)
0 and ~cq is uniformly distributed over a sphere with radius �; that is, ~cq =

� = k k ;  � N (0q�1; Iq) : The scaling matrix before ~cq is computed by simulation. Un-
restricted parameters are set at their default value of zero.

We compute the power using the 5% empirical critical values under the null and with

data-driven smoothing parameter choice. Thus the �nite sample power is size-adjusted and

power comparison among tests with di¤erent HAR variance estimators is meaningful. Of

course, the size adjustment is not feasible in practice. We consider the testing procedures

with three di¤erent HAR variance estimators: series estimator (Series), series estimator with

the transformed basis functions by the Gram-Schmidt procedure (OS), and Gaussian kernel

estimator (Gauss). The smoothing parameters are data-driven. As illustrated in Figures 2-3,

we do not see any signi�cant power di¤erence among the testing procedures.

7 Empirical Application

In this section, we revisit Conley and Udry (2010, CU hereafter) and apply our �xed-K

asymptotic tests to their main regression.

CU study the role of social learning in the di¤usion of a new agricultural technology in

Ghana. More speci�cally, they investigate the e¤ect of news about fertilizer productivity from

a farmer�s information neighborhood on the future innovation in his fertilizer use in pineapple

production. The base regression speci�cation in their paper is:

�xi;t = �1Mi;t + �2�i;t + z
0
i;t�3 + vi;t: (14)

�xi;t is farmer i�s change in input use (the amount of fertilizer) from his previous planting
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opportunity at period t. Mi;t is the index of input levels associated with good news from

farmer i�s information neighborhood. �i;t is de�ned as a deviation of the average fertilizer use

in plots that are proximate to plot i at time t from plot i�s previous fertilizer use. This variable

controls movements in xi;t induced by spatially and temporally correlated growing conditions.

CU also introduce a regressor that is similar to �i;t but based on �nancial neighborhoods

instead of geographic neighborhoods. zi;t includes wealth, soil characteristics, indicators for

religion, clan, village, round of the planting, and the experience of farmers (novice vs. veteran).

The data set is composed of observations on 107 changes in fertilizer use by 47 farmers for a

two-year survey (1996�1998). For more details, see sections II and III in CU.

For inference, CU use the Bartlett kernel covariance estimator 
̂CU suggested by Conley

(1999). The estimator is de�ned as


̂CU =
1

N

X
i;j

sL1i;L2i

�
�̂N

�
WCU

�
L1i � L1j
L1;cut

;
L2i � L2j
L2;cut

�
s0L1j ;L2j

�
�̂N

�
;

where

WCU

�
L1i � L1j
L1;cut

;
L2i � L2j
L2;cut

�
=

�
1�

����L1i � L1jL1;cut

�����1�����L1i � L1jL1;cut

���� � 1�
�
�
1�

����L2i � L2jL2;cut

�����1�����L2i � L2jL2;cut

���� � 1�
and (L1j ; L2j) are horizontal and vertical coordinates of plot j. They choose (L1;cut; L2;cut) =

(1500m; 1500m) to be the truncation lags.

To implement our procedures, we �rst transform the observation locations into integer

lattice points, following the steps presented in Section 5. We then obtain K�
1 and K

�
2 using

our data driven selection procedure. To compare our results with those in CU, we also consider

the values for K1 and K2 that are approximately equivalent to the truncation lags used in

CU. Following the steps in Section 5, we �nd the CU�s choice of truncation lags corresponds

to (Llattice1;cut ; L
lattice
2;cut ) = (115; 150) in the transformed lattice. As the e¤ective truncation lags

for the series estimator are n1= [2 (K1 + 1)] and n2= [2 (K2 + 1)], we set

KCU
1 =

&
n1

2Llattice1;cut

'
� 1 and KCU

2 =

&
n2

2Llattice2;cut

'
� 1;

where n1 = 1870; n2 = 873. We have KCU
1 = 8 and KCU

2 = 2:

Tables 4-6 report the OLS estimates and the p-values for the null hypothesis of no social

learning. The p-values are calculated in 5 di¤erent ways. The numbers in (�) are p-values using
the testing method in CU. The p-values in {�} and {�}CU are from the series nonstandard test

with smooth parameters (K�
1 ;K

�
2 ) and

�
KCU
1 ;KCU

2

�
respectively. Those in [�] and [�]CU are

from the asymptotic F test.
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Column A in Table 4 presents the results from the base regression model (14). In this

column, we �nd that the coe¢ cient of Mit is signi�cantly positive under all the tests consid-

ered. This is strong evidence that a farmer adjusts the fertilizer use in response to the news

in fertilizer productivity of his information neighbors. Column B in Table 4 estimates the

coe¢ cients of Mit separately for novice and veteran farmers. While novice farmers�change in

fertilizer use is signi�cantly associated with the news in their information neighborhood, this

is not the case for veteran farmers.

Columns C-F in Tables 5 and 6 report estimation results from the models which divide

information neighborhoods into subgroups according to experience, wealth, farm size and

similarity of soil respectively and use them as separate regressors. In column C, we see that

while the coe¢ cient of a veteran neighbor�s input information is signi�cantly positive, the

coe¢ cient of a novice neighbor�s input information is not. Column D indicates that information

only from neighbors with the same wealth is signi�cantly associated with a farmer�s fertilizer

input change. In columns E and F, we can see that Mit is signi�cantly associated with farmer

i�s fertilizer input regardless of the neighbor�s farm size or similarity of soil. In addition, our

tests as well as CU�s imply that the spatially and temporally correlated growing conditions

are signi�cantly associated with a farmer�s input change under any model speci�cation.

Overall, the proposed tests yield very similar results to CU at the 5% level, which reinforces

their empirical �ndings that farmers tend to increase (decrease) the level of fertilizer use when

their information neighbors achieve higher than expected pro�t with more (less) fertilizer

than they previously used. However, it is clear that the p-values obtained from the �xed-K

asymptotic tests are larger than those from CU in most cases. In particular, our proposed

tests show that the coe¢ cient of �wealth� is not signi�cantly di¤erent from zero at 5% level

while the test by CU indicates its statistical signi�cance under some model speci�cations.

8 Conclusion

The paper studies series HAR variance estimation and inference that are robust to spatial

autocorrelation. The proposed tests are more accurate in size than the conventional chi-

square test because they are based on the �xed-smoothing asymptotics that captures the

randomness of the variance estimator. We establish the �xed-smoothing asymptotic theory

under very general conditions that accommodate a wide range of spatial data in practice.

Among the tests we propose, the F test is asymptotically valid regardless of the sampling

region, spatial correlation, and limiting behavior of the smoothing parameter. The F test

is especially convenient in empirical applications, as the critical values are from standard F

distributions.

In this paper, we focus on the asymptotic MSE criterion, which may not be most suitable for

hypothesis testing or CI construction. It is interesting to extend the methods by Sun, Phillips
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and Jin (2008) on time series HAR estimation to the spatial setting. The idea of using a CLT

rather than a more demanding functional CLT in establishing the �xed-smoothing asymptotics

can be used for both kernel and series HAR variance estimators in the time series setting and

for kernel HAR variance estimators in the spatial setting.

Table 1: Empirical size of di¤erent tests with data-driven smoothing parameters and di¤erent
number of restrictions in the circular lattice case

q = 1

Series SIM OS F Gaussian (�xed-b)
� = 1=2 � = 1 � = 1=2 � = 1 � = 1=2 � = 1

 = 0 0:080 0:080 0:050 0:050 0:082 0:082
 = 0:3 0:108 0:135 0:094 0:113 0:097 0:117
 = 0:6 0:070 0:104 0:085 0:101 0:082 0:098
 = 0:9 0:082 0:118 0:094 0:113 0:087 0:107

Series �2 OS �2 Gaussian (�2)
� = 1=2 � = 1 � = 1=2 � = 1 � = 1=2 � = 1

 = 0 0:052 0:053 0:052 0:052 0:052 0:052
 = 0:3 0:115 0:122 0:115 0:125 0:140 0:122
 = 0:6 0:152 0:137 0:148 0:135 0:208 0:188
 = 0:9 0:157 0:147 0:153 0:145 0:212 0:193

q = 2

Series SIM OS F Gaussian (�xed-b)
� = 1=2 � = 1 � = 1=2 � = 1 � = 1=2 � = 1

 = 0 0:051 0:050 0:053 0:055 0:051 0:050
 = 0:3 0:092 0:119 0:103 0:132 0:089 0:094
 = 0:6 0:088 0:103 0:087 0:110 0:089 0:104
 = 0:9 0:095 0:117 0:097 0:128 0:101 0:115

Series �2 OS �2 Gaussian (�2)
� = 1=2 � = 1 � = 1=2 � = 1 � = 1=2 � = 1

 = 0 0:056 0:056 0:057 0:058 0:060 0:059
 = 0:3 0:166 0:165 0:161 0:169 0:229 0:174
 = 0:6 0:275 0:235 0:258 0:228 0:346 0:314
 = 0:9 0:282 0:238 0:268 0:235 0:354 0:310

Note: �Series SIM� denotes the series nonstandard test and �OS F� denotes the orthonormal series
asymptotic F test. �Gaussian (�xed-b)�is the test developed in BCHV. �Series �2�, �OS �2 test�and
�Gaussian (�2)�are conventional �2 tests.
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Table 2: Empirical size of di¤erent tests with a priori �xed smoothing parameters in the
square lattice case

Series F Series �2 Gaussian (�xed-b) Gaussian (�2)
Ki = 1 Ki = 2 Ki = 1 Ki = 2 d = 6 d = 12 d = 6 d = 12

Regular Lattice
 = 0 0:047 0:045 0:092 0:065 0:046 0:043 0:066 0:120
 = 0:3 0:062 0:074 0:118 0:098 0:072 0:060 0:103 0:149
 = 0:6 0:071 0:095 0:135 0:122 0:098 0:074 0:129 0:170
 = 0:9 0:079 0:109 0:143 0:136 0:109 0:079 0:141 0:174

Sparse Lattice
 = 0 0:058 0:054 0:104 0:072 0:047 0:060 0:068 0:089
 = 0:3 0:056 0:063 0:110 0:085 0:060 0:066 0:086 0:103
 = 0:6 0:060 0:076 0:117 0:099 0:078 0:075 0:103 0:115
 = 0:9 0:063 0:083 0:121 0:104 0:086 0:080 0:112 0:119

Note: �Series F�is the test developed in this paper. �Gaussian (�xed-b)�is the test developed in BCHV.
�Series �2�and �Gaussian (�2)�are conventional �2 tests.

Table 3: Empirical size of di¤erent tests with data-driven smoothing parameters in the square
lattice case

Series F Series �2 Gaussian (�xed-b) Gaussian (�2)
� = 1=2 � = 1 � = 1=2 � = 1 � = 1=2 � = 1 � = 1=2 � = 1

Regular Lattice
 = 0 0:045 0:045 0:047 0:047 0:040 0:039 0:045 0:045
 = 0:3 0:076 0:092 0:097 0:107 0:067 0:070 0:121 0:106
 = 0:6 0:072 0:079 0:136 0:127 0:078 0:078 0:170 0:161
 = 0:9 0:081 0:095 0:142 0:135 0:080 0:084 0:173 0:166

Sparse Lattice
 = 0 0:053 0:052 0:054 0:053 0:050 0:051 0:055 0:054
 = 0:3 0:071 0:084 0:083 0:081 0:069 0:063 0:091 0:086
 = 0:6 0:072 0:078 0:103 0:098 0:072 0:075 0:127 0:118
 = 0:9 0:080 0:086 0:108 0:105 0:073 0:080 0:130 0:122
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Table 4: Predicting innovations in per plant fertilizer use � di¤erential e¤ects by source of
information

A B
Index of Inputs on Successful 1.05 (:000)�; f:000g�; [:000]�
Experiments (Mi;t) f:001g�CU ; [:001]

�
CU

Mi;t� novice farmer 1.07 (:000)�; f:000g�; [:000]�
f:001g�CU ; [:000]

�
CU

Mi;t� veteran farmer -0.46 (:176); f:230g; [:255]
f:182gCU ; [:195]CU

Novice farmer 3.97 (:137); f:177g; [:226]
f:267gCU ; [:237]CU

Avg. dev. of geog. neighbors 0.52 (:000)�; f:000g�; [:000]� 0.56 (:000)�; f:000g�; [:000]�
from previous use [�i;t] f:000g�CU ; [:000]

�
CU f:000g�CU ; [:000]

�
CU

Avg. dev. of �nancial 0.52 (:378); f:462g; [:492] 0.55 (:335); f:382g; [:340]
neighbors from prev. use f:496gCU ; [:357]CU f:360gCU ; [:292]CU

Village 1 -7.50 (:000)�; f:000g�; [:000]� -8.09 (:000)�; f:000g�; [:000]�
f:000g�CU ; [:000]

�
CU f:000g�CU ; [:000]

�
CU

Village 2 -0.47 (:759); f:815g; [:793] -1.91 (:356); f:376g; [:468]
f:816gCU ; [:811]CU f:474gCU ; [:482]CU

Wealth (million cedis) 0.10 (:689); f:807g; [:707] 0.41 (:016)�; f:079g; [:062]
f:770gCU ; [:691]CU f:045g�CU ; [:025]

�
CU

Clan 1 -2.36 (:094); f:131g; [:120] -2.44 (:051); f:095g; [:062]
f:076gCU ; [:121]CU f:070gCU ; [:056]

Clan 2 -0.35 (:808); f:805g; [:837] 0.00 (1:000); f:995g; [:999]
f:831gCU ; [:802]CU f:995gCU ; [:999]CU

Church 1 0.13 (:921); f:932g; [:948] 0.63 (:577); f:615g; [:701]
f:934gCU ; [:941]CU f:604gCU ; [:659]CU

Note: The numbers in (�) are p-values obtained from the test by CU. The numbers in {�} and {�}CU
are p-values obtained from the series nonstandard test. The former uses the data driven smoothing
parameters (K�

1 ;K
�
2) and the latter uses

�
KCU
1 ;KCU

2

�
which are approximately equivalent to the

smoothing parameters in CU. The numbers in [�] and [�]CU are p-values obtained from the ortho-
normal series asymptotic F test with (K�

1 ;K
�
2) and

�
KCU
1 ;KCU

2

�
respectively. * denotes statistical

signi�cance at the 5% level. For de�nitions of the variables in the regressions, see CU.
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Table 5: Predicting innovations in per plant fertilizer use � di¤erential e¤ects by source of
information

C D
Index of good news input levels -0.05 (:898); f:944g; [:954]
by novice farmer f:908gCU ; [:952]CU

Index of good news input levels 1.05 (:000)�; f:000g�; [:000]�
by veteran farmer f:000g�CU ; [:000]

�
CU

Index of good news input levels 1.06 (:000)�; f:000g�; [:000]�
by farmers with same wealth f:000g�CU ; [:001]

�
CU

Index of good news input levels -0.32 (:317); f:468g; [:447]
by farmers with di¤erent wealth f:291gCU ; [:420]CU

Novice farmer 4.03 (:133); f:162g; [:225] 4.02 (:132); f:158g; [:220]
f:263gCU ; [:236]CU f:266gCU ; [:232]CU

Avg. dev. of geog. neighbors 0.56 (:000)�; f:000g�; [:000]� 0.57 (:000)�; f:000g�; [:000]�
from previous use [�i;t] f:000g�CU ; [:000]

�
CU f:000g�CU ; [:000]

�
CU

Avg. dev. of �nancial 0.38 (:512); f:561g; [:529] 0.41 (:448); f:508g; [:438]
neighbors from prev. use f:560gCU ; [:514]CU f:489gCU ; [:426]CU

Village 1 -7.97 (:000)�; f:000g�; [:000]� -8.10 (:000)�; f:000g�; [:000]�
f:000g�CU ; [:000]

�
CU f:000g�CU ; [:000]

�
CU

Village 2 -1.94 (:330); f:354g; [:446] -1.98 (:339); f:366g; [:456]
f:462gCU ; [:460]CU f:466gCU ; [:470]CU

Wealth (million cedis) 0.36 (:046)�; f:174g; [:113] 0.40 (:026)�; f:097g; [:072]
f:084gCU ; [:048]�CU f:061gCU ; [:034]�CU

Clan 1 -2.43 (:056); f:095g; [:063] -2.32 (:059); f:103g; [:076]
f:074gCU ; [:057]CU f:077gCU ; [:070]CU

Clan 2 -0.10 (:941); f:939g; [:949] -0.13 (:923); f:924g; [:938]
f:945gCU ; [:937]CU f:935gCU ; [:926]CU

Church 1 0.48 (:660); f:687g; [:763] 0.41 (:717); f:743g; [:805]
f:700gCU ; [:724]CU f:737gCU ; [:777]CU
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Table 6: Predicting innovations in per plant fertilizer use � di¤erential e¤ects by source of
information

E F
Index of good news input levels 1.17 (:000)�; f:000g�; [:000]�
on big farms f:000g�CU ; [:000]

�
CU

Index of good news input levels 0.92 (:000)�; f:000g�; [:001]�
on small farms f:001g�CU ; [:002]

�
CU

Index of good news input levels, 1.08 (:000)�; f:000g�; [:000]�
farmers with same soil f:000g�CU ; [:001]

�
CU

Index of good news input levels, 0.93 (:000)�; f:000g�; [:001]�
farmers with di¤erent soil f:001g�CU ; [:002]

�
CU

Novice farmer 3.96 (:141); f:172g; [:237] 3.94 (:155); f:187g; [:252]
f:266gCU ; [:249]CU f:285gCU ; [:265]CU

Avg. dev. of geog. neighbors 0.56 (:000)�; f:000g�; [:000]� 0.57 (:000)�; f:000g�; [:000]�
from previous use [�i;t] f:000g�CU ; [:000]

�
CU f:000g�CU ; [:000]

�
CU

Avg. dev. of �nancial 0.23 (:711); f:739g; [:716] 0.24 (:694); f:720g; [:704]
neighbors from prev. use f:760gCU ; [:708]CU f:732gCU ; [:696]CU

Village 1 -7.68 (:000)�; f:000g�; [:000]� -7.79 (:000)�; f:000g�; [:000]�
f:000g�CU ; [:000]

�
CU f:000g�CU ; [:000]

�
CU

Village 2 -1.60 (:421); f:463g; [:554] -1.59 (:434); f:465g; [:563]
f:531gCU ; [:561]CU f:537gCU ; [:570]CU

Wealth (million cedis) 0.24 (:253); f:391g; [:309] 0.26 (:216); f:365g; [:264]
f:326gCU ; [:306]CU f:285gCU ; [:267]CU

Clan 1 -2.24 (:080); f:117g; [:091] -2.33 (:073); f:109g; [:080]
f:110gCU ; [:082]CU f:097gCU ; [:073]CU

Clan 2 -0.26 (:843); f:840g; [:876] -0.24 (:855); f:858g; [:885]
f:865gCU ; [:849]CU f:875gCU ; [:860]CU

Church 1 0.69 (:549); f:593g; [:678] 0.74 (:520); f:562g; [:659]
f:592gCU ; [:625]CU f:569gCU ; [:606]CU
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Figure 2: Size-adjusted power of di¤erent testing procedures with q = 1 and � = 1=2 in the
circular lattice case
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Figure 3: Size-adjusted power of di¤erent testing procedures with q = 2 and � = 1=2 in the
circular lattice case
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9 Appendix

Primitive Conditions for Assumption 4

In this section, we use the CLT by JP to provide primitive su¢ cient conditions for Assumption
4. We consider the case when sj is a scalar and the distribution of N�1=2P

j2Bn �k(j=n)sj
for a given k: The vector case and the joint asymptotic equivalence over k 2 K can be dealt
with using the Cramér-Wold device.

De�nitions 1 and 2 below are from JP who provide motivations and detailed discussions
of these de�nitions.

De�nition 1 For U � Bn and V � Bn, let �n (U) = � (Xj : j 2 U) ; �n (U; V ) = � (�n (U) ; �n (V ))
and �n (U; V ) = � (�n (U) ; �n (V )) ; where � (�; �) and � (�; �) are �-mixing and �-mixing coef-
�cients respectively. Then, the generalized �-mixing and �-mixing coe¢ cients for the random
�eld fXj : j 2 Bng are de�ned as follows:

�l1;l2;n (r) = sup (�n (U; V ) ; jU j � l1; jV j � l2; � (U; V ) � r) ;

�l1;l2;n (r) = sup (�n (U; V ) ; jU j � l1; jV j � l2; � (U; V ) � r) ;

where
� (U; V ) = inf f� (i; j) : i 2 U and j 2 V g :

and for i = (i1; i2) and j = (j1; j2) ; �(i; j) = max fji1 � j1j ; ji2 � j2jg : We further de�ne

��l1;l2 (r) = sup
n
�l1;l2;n (r) ;

��l1;l2 (r) = sup
n
�l1;l2;n (r) ;

with l1; l2; r; n 2 Z+:

De�nition 2 (i) The �upper-tail� quantile function QX : (0; 1)! [0;1) is de�ned as

QX (u) = inf ft : P (X > t) � ug :

(ii) For the non-increasing sequence of f��1;1 (r)g1r=1, set ��1;1 (0) = 1 and de�ne its �inverse�
function �inv (u) : (0; 1)! Z+ [ f0g as

�inv (u) = max fr � 0 : ��1;1 (r) > ug :

De�nition 3 Let Bintn =
�
j 2 Bn : limn!1

P
`2Bn E (sjs

0
`) = 


	
and N int =

��Bintn �� :
Lemma 1 Assume (i) there exists an array of positive real constants fcj;ng such that

lim
C!1

sup
n
sup
j2Bn

E

"�����k( jn)sj=cj;n
����2 1������k( jn)sj=cj;n

���� > C

�#
= 0;

where 1 (�) is the indicator function, (ii) lim infn!1N�1M�1
n �2n > 0; whereMn = maxj2Bn cj;n

and �2n = var
�
N�1P

j2Bn �k(j=n)sj
�
; (iii) f�k(j=n)sj : j 2 Bng is either �-mixing satisfy-

ing
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(a) limC!1 limn!1 supj2Bn
R 1
0 �

2
inv (u)

�
Qj�k(j=n)sj j1(j�k(j=n)sj j>C)

�2
du = 0;

(b)
P1
r=1 r��l1;l2 (r) <1 for l1 + l2 � 4;

(c) ��1;1 (r) = O
�
r�2�"

�
for some " > 0;

or �-mixing satisfying

(a)
P1
r=1 r

��
1=2
1;1 (r) <1;

(b)
P1
r=1 r

��l1;l2 (r) <1 for l1 + l2 � 4;

(c) ��1;1 (r) = O
�
r�2�"

�
for some " > 0:

If �k (�; �) is continuously di¤erentiable with respect to �; N�1P
`2Bn

P
m2Bn � (`;m) kE (s`sm)k =

O(1); and N int=N ! 1; then

1p
N

X
j2Bn

�k(
j

n
)sj !d N

�
0; lim
n!1

n1n2
N




Z
x2B

�2k(x)dx

�
:

Proof of Lemma 1. Without loss of generality, we assume that �k(�) is real. As the
asymptotic normality of N�1=2P

j2Bn �k(j=n)sj holds by JP (Theorem 1), it su¢ ces to show
that

lim
n!1

var

0@ 1p
N

X
j2Bn

�k(
j

n
)sj

1A = lim
n!1

n1n2
N




Z
x2B

�2k(x)dx:

Let �`;m = E (s`sm) ; then

var

0@ 1p
N

X
j2Bn

�k(
j

n
)sj

1A
=
1

N

X
`2Bn

X
m2Bn

�k(
`

n
)�k(

m

n
)�`;m

=
1

N

X
`2Bn

X
m2Bn

�
�k(

`

n
)�k(

m

n
)� �2k(

`

n
)

�
�`;m +

1

N

X
`2Bn

X
m2Bn

�2k(
`

n
)�`;m

: = I1 + I2:

Let nmin = min (n1; n2). First, I1 = o (1) because there exists a positive constant C such that

jI1j �
1

N

X
`2Bn

X
m2Bn

�����k( `n)
���� �����k(mn )� �k( `n)

���� j�`;mj
� C

N

X
`2Bn

X
m2Bn

�

�
`

n
;
m

n

�
j�`;mj

=
C

N

X
`2Bn

X
m2Bn

max

�
j`1 �m1j

n1
;
j`2 �m2j

n2

�
j�`;mj

� C

nminN

X
`2Bn

X
m2Bn

� (`;m) j�`;mj = o (1) ;
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as n increases. Second, for I2; we have

I2 = I21 + I22

where

I21 =
1

N

X
`2Bintn

�2k(
`

n
)
X
m2Bn

�`;m

I22 =
1

N

X
`=2Bintn

X
m2Bn

�2k(
`

n
)�`;m:

Now for some constant C;

jI22j �
C

N

X
m=2Bintn

X
`2Bn

j�`;mj = o (1) :

because
�
N �N int

�
=N = o (1) : Using Fubini�s Theorem, we have

lim
n!1

I21 = lim
n!1

1

N

X
`2Bintn

�2k(
`

n
) lim
n!1

 X
m2Bn

�`;m

!
=

24 lim
n!1

1

N

X
`2Bintn

�2k(
`

n
)

35

= lim
n!1

1

N

0@X
`2Bn

�2k(
`

n
)�

X
`=2Bintn

�2k(
`

n
)

1A

= lim
n!1

n1n2
N




0@ 1

n1n2

X
`2Bn

�2k(
`

n
)

1A� lim
n!1

N �N int

N




N �N int

X
`=2Bintn

�2k(
`

n
)

= lim
n!1

n1n2
N




Z
B
�2k (x) dx:

Combining the above analyses yields the desired result.
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Proofs of Main Results

Proof of Theorem 1. Under Assumption 3, we have

1p
N

X
j2Bn

�k(
j

n
)ŝj

= (1 + op (1))
1p
N

X
j2Bn

�k(
j

n
)G0Wfj(�̂N )

= (1 + op (1))
1p
N

X
j2Bn

�k(
j

n
)G0W

(
fj(�0) +

@fj(~�N )

@�0

h
�̂N � �0

i)

= (1 + op (1))
1p
N

X
j2Bn

�k(
j

n
)G0W

�
fj(�0) +

@fj(�0)

@�0

h
�̂N � �0

i�

= (1 + op (1))

8<: 1p
N

X
j2Bn

�k(
j

n
)sj �

1

N

X
j2Bn

�k(
j

n
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Let jmin = min fj1 : (j1; j2) 2 Bng and jmax = max fj1 : (j1; j2) 2 Bng : For each j1 2 [jmin; jmax] ;
we partition f(j1; j2) : (j1; j2) 2 Bng into maximal subsets such that each set has consecutive
second coordinates j2: That is,

f(j1; j2) : (j1; j2) 2 Bng = [jmaxj1=jmin
[Lj1`=1

n
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`;j1
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`;j
min; J

`;j
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n
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`;j1
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io
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j2X
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`;j1
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�
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�
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�
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over `; j1 and j2: Using this observation, we have
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It now follows from Assumption 4 that
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The proof for tN is similar and is omitted here.
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Proof of Corollary 2. Under assumptions (i) and (ii) in the corollary, �k
as iidN(0; Iq)

and
P
k2K �k�

0
k

as W(Iq;K) a Wishart distribution. So FN is asymptotically equivalent in
distribution to Hotelling�s T-squared distribution (Hotelling, 1931):

qFN
as T 2(q;K):

Using the well-known relationship between the T-squared distribution and the F distribution,
we have

(K � q + 1)
K

FN
as Fq;K�q+1:

The proof for the t statistic is similar.
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