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Abstract
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bivariate kernel covariance estimator that nests existing estimators as special cases. Our esti-
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For distributional approximations, we considered two types of asymptotics: the increasing-
smoothing asymptotics and the fixed-smoothing asymptotics. Under the former asymptotics,
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1 Introduction

This paper studies robust inference for linear panel models with fixed effects in the presence of
heteroskedasticity and spatiotemporal dependence of unknown forms. As economic data is poten-
tially heterogeneous and correlated in unknown ways across individuals and time, robust inference
in the panel setting is an important issue. See, for example, Betrand, Duflo and Mullainathan
(2004) and Petersen (2009). The main interest in this problem lies in (i) how to construct co-
variance estimators that take the correlation structure into account; (ii) how to approximate the
sampling distribution of the associated test statistic; and (iii) how to select smoothing parameters
in finite samples.

Regarding covariance estimation, we propose a bivariate kernel estimator. In order to utilize
the kernel in the spatial dimension, we need a priori knowledge about the dependence structure.
It is often assumed that the covariance of two random variables at locations ¢ and j is a decreasing
function of an observable distance measure d;; between them. The idea of using a distance
measure to characterize spatial dependence is common in the spatial econometrics literature. See,
for example, Conley (1999), Kelejian and Prucha (2007), Bester, Conley, Hansen and Vogelsang
(2011, BCHV hereafter) and Kim and Sun (2011).

There are several robust covariance estimators with correlated panel data. Arellano (1987)
proposes the clustered covariance estimator (CCE) by extending the White standard error (White,
1980) to account for serial correlation. Wooldridge (2003) provides a concise review on the CCE.
Driscoll and Kraay (1998, DK hereafter) suggest a different approach that uses a time series HAC
estimator (e.g. Newey and West, 1987) applied to cross sectional averages of moment conditions.
Gongalves (2011) examines the properties of this estimator in linear panel models with fixed
effects. Another approach considered in this paper is an extension of the spatial HAC estimator
applied to time series averages of moment conditions, which we name the DK* estimator. This is
symmetric to the original DK estimator. Conley (1999) is among the first to propose the spatial
HAC estimator. Kelejian and Prucha (2007) argue that it can be extended to the panel setting
with fixed T'.

Our estimator includes these existing estimators as special cases, reducing to each of them
with certain bandwidth choice. We refer to this as flexibility. If the sequence of the bandwidth
in the spatial dimension, d,,, increases at a fast enough rate with the cross sectional sample
size n, then our estimator with the rectangular kernel is asymptotically equivalent to the DK
estimator. Similarly, if the sequence of the bandwidth in the time dimension, dr, increases fast
enough relative to the time series sample size T, then our estimator with the rectangular kernel is
asymptotically equivalent to the DK* estimator. On the other hand, if d,, is assumed to approach
zero, our estimator reduces to a generalized CCE defined later in the paper.

For distributional approximations, we consider two types of asymptotics: the increasing-
smoothing asymptotics and the fixed-smoothing asymptotics. The difference lies in whether the
level of smoothing increases or stays fixed as the sample size increases. Let /;,, denote the number
of individuals whose distance from individual ¢ is less than or equal to d,, and £,, be the average of
i n across i. We also define ¢; 7 and {7 in the same way along the time dimension. If d,,,dr — oo
as (n,T") — oo but slowly so that nT/ (¢{,fr) — oo, then the level of smoothing increases with the
sample size. Under this increasing-smoothing asymptotics, our covariance estimator is consistent
and the limiting distribution of the associated Wald statistic is a x? distribution.

The alternative estimators are also consistent under the increasing-smoothing asymptotics,
but each estimator has an important limitation in practice. The performance of the CCE heavily
depends on spatial correlation. While this estimator is quite efficient in the presence of spatial



independence, even moderate spatial correlation may lead to substantial bias and hence size dis-
tortion in statistical testing. Though spatial independence is sometimes assumed for convenience,
it may not hold due to, for example, spill-over effects, competition and so on.! Collapsing spatial
dependence by the cross sectional averaging, the DK estimator is robust to arbitrary forms of
spatial dependence when the time series dimension is large. However, when spatial dependence
decreases with some distance measure, this estimator is not efficient because it does not down-
weigh or truncate the covariance between spatially remote units. Similarly, the DK* estimator is
not efficient, as it does not employ downweighing or truncation in the time domain.

The proposed estimator improves upon the above estimators by employing a bivariate kernel.
It does not require zero spatial correlation for consistency in contrast to the CCE and more
efficient than the DK and DK* estimators in general. More specifically, if individuals are located
on a 2-dimensional lattice and the Bartlett kernel is used, our estimator is more efficient than the
DK estimator if T' = o(n®/?) and than the DK* estimator if n = o(T*). For second-order kernels,
the conditions become much weaker, i.e. T = 0(n°/2) and n = o(T°), respectively.

If we embed the bandwidth parameters d,, and dr in a sequence such that nT/ (¢,¢r) holds
fixed as n and T increase, then the level of smoothing is fixed with the sample size. Under this
fixed-smoothing asymptotics, the Wald statistic is asymptotically equivalent to a nonstandard
but pivotal distribution. The fixed-smoothing asymptotic approximation is first suggested by
Kiefer, Vogelsang and Bunzel (2000) and Kiefer and Vogelsang (2002a, 2002b, 2005) in the time
series context. This is usually referred to as the ‘fixed-b’ asymptotics where b denotes the ratio
of the bandwidth parameter dp to the sample size T. They show by simulation that the fixed-b
asymptotic approximation is more accurate than the x? approximation. Jansson (2004), Sun,
Phillips and Jin (2008), and Sun and Phillips (2009) provide theoretical explanations in different
time series settings.

We adopt the fixed-smoothing asymptotics in the panel setting with our covariance estimator.
Based on a CLT, we first show that, under the fixed smoothing asymptotics, the Wald statistic
is asymptotically equivalent in distribution to a quadratic form of a standard normal vector with
an independent and random weighting matrix. Using a CLT is an important departure from the
previous literature in which the fixed-smoothing asymptotics relies on an FCLT. The CLT holds
under mild conditions, so our asymptotic results are applicable to a wide range of panel data
processes. This is one of the theoretical contributions of our paper.

Using asymptotic expansions, we show that the deviation of the asymptotically equivalent
distribution from the x? distribution depends on the smoothing parameters, the kernel function,
and the number of restrictions being tested. We can account for the estimation uncertainty
of the parameter estimation and the randomness of the covariance estimator under the fixed-
smoothing asymptotics. To conduct hypothesis testing and construct confidence intervals, we can
simulate the asymptotically equivalent distribution. The asymptotically equivalent distribution
is nonstandard but a function of nT ¢.;.d. standard normal vectors, so it is easy to simulate.
We also extend Sun (2010) to establish the validity of an F-approximation to the distribution.
We show that the asymptotically equivalent distribution of the scaled Wald statistic with some
correction factor becomes approximately F' distributed. This F-approximation greatly facilitates

'Recently, Bester, Conley and Hansen (2011) present consistency results for the CCE with spatially dependent
data by constructing clusters to be asymptotically independent. In this paper, we consider a rather traditional
panel CCE for which the cluster is defined based on each individual so that the asymptotic independence condition
is not valid. Cameron, Gelbach, and Miller (2011) address this problem by clustering on the time and spatial
dimensions simultaneously. While this allows for both the serial and spatial correlations, observations on different
individuals in different time are assumed to be uncorrelated.



the testing procedure and yields accurate critical values when the bandwidths are small.

Several testing methods using the fixed-smoothing asymptotics are recently proposed in the
spatial or panel setting. BCHYV extend the fixed-b asymptotics to the spatial context where
dependence is indexed in more than one dimension, and propose an ¢.t.d. bootstrap method to
obtain the critical values. Vogelsang (2012) develops a fixed-b asymptotic theory for statistics
based on the generalized CCE and the DK estimator. Besides the kernel methods, Hansen (2007)
and Bester, Conley and Hansen (2011) apply the fixed-smoothing asymptotics to the testing
procedure with the CCE. They assume the number of clusters to be fixed and the number of
observations per cluster to increase with the sample size. Ibragimov and Miiller (2010) consider
the fixed-smoothing asymptotics for the Fama and MacBeth (1973) type procedure by fixing
the number of groups. Sun and Kim (2013) consider a testing procedure using a series-type
covariance estimator in the spatial setting. They show that, when the number of basis functions
is held fixed, the scaled Wald statistic with the series covariance estimator is asymptotically
equivalent in distribution to an F' distribution. Our F-approximation is motivated from the
series method of Sun and Kim (2012). While for the other ‘non-kernel’ methods critical values
are readily available from the standard ¢ or F' distribution, critical values for the kernel methods
by BCHV and Vogelsang (2012) have to be simulated. From this point of view, this paper fills the
gap in the literature, providing an F-approximation for the kernel method in the panel setting.

In this paper, we select the bandwidth parameters to minimize an upper bound of an approxi-
mate mean square error (called AMSE*) of the covariance estimator. The AMSE* criterion has a
minimax flavor. It is simple to implement and makes the bias and variance tradeoff transparent.
It is interesting to note that the level of persistence in each dimension affects both d7 and d}, the
optimal bandwidth parameters in the time and spatial dimensions respectively, but in opposite
directions. We suggest a parametric plug-in procedure for practical implementation using the
spatiotemporal models in Anselin (2001).

Our bandwidth selection procedure does not apply directly to the rectangular kernel estimator
and, more broadly, flat-top kernel estimators. However, it is interesting to consider flat-top kernel
estimators because they are higher-order accurate (Politis, 2011). This is particularly important
in our setting because the rectangular-kernel-based covariance estimator is more flexible in that it
can approach each of the existing estimators with appropriate bandwidth choice. We modify our
bandwidth selection procedure to be applicable to flat-top kernels which include the rectangular
kernel as a special case. The rectangular kernel, combined with our modified bandwidth selection
procedure, delivers a covariance estimator with better asymptotic properties than the covariance
estimators based on second-order kernels.

The flexibility of our covariance estimator and the data-driven bandwidth selection procedure
make our estimator adaptive to the dependence structure in the data. That is, in large samples,
our estimator reduces to the estimator that is designed to cope with a particular dependence
structure. This adaptiveness is the salient feature of our method. As it practically automates the
selection of covariance estimators, our estimation procedure can be safely used in the presence
of very general forms of spatiotemporal dependence. This is confirmed by our Monte Carlo
simulation study.

The remainder of the paper is as follows. Section 2 introduces the panel model, the covariance
estimator and hypothesis testing we consider. In Section 3, we examine the properties of our
estimator and the associated test statistic under the increasing-smoothing asymptotics. Section
4 develops an optimal bandwidth selection procedure. Section 5 examines the properties of the
existing estimators. The flexibility and adaptiveness of our estimator are illustrated in Section 6.



In Section 7, we develop the asymptotic theory for our covariance estimator and the associated test
statistic under the fixed-smoothing asymptotics. We also prove the validity of an F-approximation
to the Wald statistic. Section 8 reports simulation evidence. The last section concludes. Proofs
are given in the appendix at the end of the paper or in a supplementary appendix. All limits for
(n,T) — oo in the paper are taken as joint limits.

2 Panel model, covariance estimator and hypothesis testing
In this paper, we consider a linear panel regression model with fixed effects given by
Yie = X80 + o + fr + uit (1)

where «; and f; denote individual and time effects respectively. Either «; or f; has a nonzero
mean so there is no constant regressor in X;;. We allow the p covariates in X;; to be correlated
with «;, {fi} and {u;;} . We assume that there are d, > p instrumental variables Z;; which satisfy
the conditions in Assumption 1 below.

When Z;; is correlated with a; and f;, we may use the fixed effects 2SLS estimator. Let Z; =
TN Ziy, Zy =0 Zyand Z = (nT) ' S00 SO Ziy. Define Zy = Ziy — Zi — Zy+ Z
and apply the same definition to X;; and other variables. Then, the fixed effects 2SLS estimator
B of 3 is given by

-1

b= (Z 3 XitZ;t> <Z 5 ztzft) R Sy 2%

i=1 t=1
n T o n T o -1 n T }
x (Z XitZ;t) (ZZZ%Z;J Zzzz’tyét- (2)

When the underlying probability limits are well defined, we have, under some mild conditions:

1
R 1 n T o B 1 n T L
vnT <5 - 50) = (nT ; tZIXitZithleZX> ToT ; ; Qx2Q 7,y Ziwuir + op (1),

where Qzx = plim, 7). (nT) ™ >t Zit Xy Qzz = plim(, 1y 00 (nT)~* >t ZitZiyand Qx z =
Q' - So it does not matter in the first order asymptotics whether we use Z;; as the instruments
or their linear combinations Qx ZQEIZZit as the instruments. While the number of the original
instruments Z;; may be larger than the number of endogenous covariates X;;, the numbers of the
transformed instruments @ x ZQ;ZZit and X;; are exactly the same by construction. For the sake
of notational simplicity and clarity, we will assume from now on that the number of instruments
is the same as the number of endogenous covariates, i.e. p = d,. For the asymptotic properties
we are interested in here, we do so without loss of generality.? With this assumption, we have

n T
VnT (/5 — 50) = Q_l\/;—T Z > Zigui + 0 (1)

i=1 t=1

where we have written Q := Qzx.

?We do not consider the weak TV or many (weak) IV asymptotics here.



Define Ziy = Zit — ftzi — pat + ftz Where fiz;, fizy and g, satisfy plimg o T, Ziy — pas =
0,plim,,_,,on ™'Y, Zit — poe = 0, and Plm(, 7)o (nT)_1 Zi,t Zit — 1. = 0. While Z;; is the
sample demeaned version of Zj, Zi can be regarded as its population demeaned analogue. If
Zi = Z, + oz + fu for some stationary and weakly dependent spatiotemporal process Z7,
spatial process a,; and time series f,; such that plimy_ 77! > Z5 = plim,_ nt Y25 =
plim,, 700 (nT)~* > it Zf = EZf and plim,,_, n~t3" as; and plimg_, o Tt Zthl far ex-
ist, then Z;; = Z% — EZf, a weakly dependent spatiotemporal process with mean zero.

Let .
Jnr = var <(TLT)_1/2 Z Z Zituit> .

i=1 t=1
We make some assumptions on the instruments.

Assumption 1 (i) There is a nonsingular matriz Q such that Q = plim,, y_, (nT)~* Dot Zu X!,
.. T 5 T
(ii) \/% D lim 2= Ziuit = \/% 2lim1 21 ittt + 0p (1)
o —1/2 T 5
(iii) Ty ® A S0 S0 Ziguwie =T N(O, ).

Assumption 1(i) and (iii) hold by LLN and CLT respectively. Assumption 1(iii) implicitly
assumes that for each individual there is no contemporaneous correlation between Z;; and w;.
This is a minimal condition that valid instruments have to satisfy.

Assumption 1(ii) requires that finite sample demeaning does not affect the first order asymp-
totic distribution. Since

Zy = Zy - (Zi - Mzi) - (Zt - ,Lth) + (Z - uz) ,

Assumption 1(ii) is equivalent to

n T
1T SOS T (Zi - pai) wie = 0p (1) (3)
Loy =1
n T
11_, Z (Zt - /~th) Uit = Op (1) ) (4)
Lo =1
n T
1T Z (Z — p2) uge = 0p (1) (5)
Lot =1

A sufficient condition for the above to hold is that each left hand side (lhs) has mean and variance
approaching zero. We focus on the mean here. For the lhs of (3), we have

1 n T - 1 n 1
E\/ﬁ;;(zl_,um)uzt: nT; ;;E ’Lt_ﬂzz Ujs
:\/> Z;ZZE it — ,U/zz uzs:—\/ﬁ Z

=1 t=1 s=1 =1

where n~! o IL; is the cross sectional average of the time series long run covariance? be-
tween Z; — p; and wg. Sufficient conditions for the mean to diminish are (i) n/7T — 0 and

3Strictly speaking, for each individual 4, the long run covariance between Z;; — g, and u; is limg o0 IT; so TI;
should be viewed as a finite sample version of the long run covariance.



Hn_l S HZH < O < oo some constant Cpp and all n or (i) n/T < C < oo for some constant
C and all (n,T) and |[n=! 31, II;|| — 0. For the lhs of (4), we have

T1
\/ﬁ Z Z — at) Uit = \/> ZHt, (6)

i=1 t=1

where II; = n~! Yoy 2?21 E[(Zit — pzt) uje) can be regarded as the cross sectional ‘long run’
covariance between Z;; — p,; and uj. For the mean in (6) to diminish, we require (i) 7'/n — 0
and T—1 Zthl ITI; < Cpp < oo for some finite constant Cry and all T or (ii) T/n < C < oo for
some constant C' and all (n, T) and T~' S.7_ TI; — 0. Finally, for the Ihs of (5), we have

ZZZ s u_} ( Zzztun)

zltl zltl

This indeed approaches zero under some moment and mixing conditions.
To sum up, a set of sufficient conditions for Assumption 1(ii) is:

(a) the cross sectional average of the time series long run covariance between Z;; — u,; and
vanishes;

(b) the time series average of the cross sectional ‘long run’ covariance between Z;; — . and
vanishes;

(c) there are enough moment and mixing conditions.

When Z;; is strongly exogenous so that cov (Zi,u;s) = 0 for all ,t, j, s, conditions (a) and
(b) are satisfied automatically. When Z;; is sequentially exogenous in the time dimension and
strictly exogenous in the cross sectional dimension so that cov (Z, ujs) = 0 for all ¢, j and ¢t < s,
condition (b) holds but condition (a) does not. In this case, if n/T" — 0, then Assumption 1(ii)
still holds. So our assumption can accommodate some dynamic models.

When Assumption 1(ii) does not hold, there will be a first order bias in 3, arising from the
incidental parameters problem first considered by Neyman and Scott (1948). That is, vnT' (B —50)
will not be centered at zero even in large samples. In this case, a bias correction procedure will
be needed for confidence interval construction and hypothesis testing. In the panel setting with
large n and T, there are bias correction procedures that do not change the asymptotic variance
of B under some conditions. See for example, Arellano and Hahn (2006) and references therein.
For this reason, we will not pursue bias correction here and focus only on variance estimation.

Under Assumption 1, the asymptotic distribution of B is

(Q ' Jur@ ™)Vl (B~ 60) 4 N(0,1,) as (n,T) — oo

To make inference on 3y, we have to estimate unknown quantities in the asymptotic variance of
(5. Since @ can be consistently estimated by its sample analog Q.7 := (nT)_1 Zi’t Zy X!, our

central interest is on J,7. Let V(i,t) = Zituit, then J,r can be rewritten as

ZZ [V(mV ]

i,j=1t,s=1

7



We propose a bivariate kernel covariance estimator given by

n T
. 1 dij dis \
T

i,j=11t,s=1

where YA/(i’t) = Zit(f’it — X{t/ﬁ’), K (-) and Kj (-) are real-valued kernel functions, and d;;, d;s and
dpn,dr denote the corresponding distance measures and bandwidth parameters. For simplicity,
we have used the product kernel K (-) Ka(-) in the above covariance estimator. Whereas it is
natural to define dys = |t — s|, what is used to measure d;; differs with applications. Geographic
distance is one of the most common measures, but other measures can also be considered, e.g.
transportation cost (Conley and Ligon, 2000) and similarity of input and output structure (Chen
and Conley, 2001; and Conley and Dupor, 2003).

Consider the null hypothesis Hy : R = rg and alternative hypothesis Hy : RS # 1o where R
is a g X p matrix and rg is a g-vector. For hypothesis testing, we use the Wald statistic

M@T::¢RF(RB—4ny(RQ;;QTQ;;RQ_1¢RT(RB—r@

and its F-test version F,,p = W,r/g. With some obvious modification, a ¢ test can also be
performed. Our results remain valid for nonlinear restrictions after linearization.

3 Increasing-smoothing asymptotics

3.1 Basic setting

There are nT'p variables in {V(i’t),i =1,.,nandt=1,..., T} . Inspired by KP, we consider the
following linear array process to represent V(; ;). We assume that each element of V(; ;) responds

linearly to nT’p common innovations {&:E?f,)’i =1,.,nt=1,...T, c=1,..,p}

Viig) = R, (8)

where

(1) (1) (1)
( r(it,Ll)’ r(’it,Q,l)’ ce 7T(it,n7T) ) e 0
R(i,t) = : .
~(p) ~(p) ~(p)
0 ... ( T(ft,l,l)’ T(ZQJ), ... ’T(ft,n,T) )

is a p x nTp block diagonal matrix with unknown elements, and & = (6’ .. &®))" in which
~(c) _ (200 NONINE! ~(c) (c)
gl = (6(171), €y €2y Er (it.j:s)?

allowed to depend on n and 7. We also define REZC)t) = (f((fal’l),f((;)’Zl), . ,fgz.cg’mT)). As in Kim

))’. The block diagonal elements, 7 are implicitly

and Sun (2011), we assume

Var(é(c)) = OeelpnT, cov(é(c),é(d)) = oealnT

4For notational economy, here we have abused the notation by using the same d to denote the distances along
the time and spatial dimensions. This should not cause any confusion.



and
var (&:) =Y ® I,7r with X = (Ucd) ,

where ¢,d = 1,...,p and ® denotes the Kronecker product. This type of linear array processes
allows for nonstationarity and unconditional heteroskedasticity of V{; ;) and includes many spa-
tiotemporal parametric models such as spatial dynamic models (Anselin, 2001) as special cases.
It also treats the temporal and spatial dependence in a symmetric way.

Let R(i,t) = R(i,t) (21/2 & InT) and € := (€1,...,¢,... 7€’nTp), = (2_1/2 & InT) €. Then,

Vi) = R(ipe and var (€) = Inrp. 9)

The matrix R(;; can be written more explicitly as

(riha - Ty )
Ry = :
(rlha e riar )
011(7:82,1,1) fgilt),n,T)> Ulp(f&),l,l) fgz‘lt),n,T))
apl(fgi)m) fgg’t{n,T)) app(féft)’l’l) fgzn’T))

where 0@ denotes the (c,d)-th element of X1/2. We also define the c-th row vector of Ry as

RE;)t) = (rgi)t)’l, e ,réz)t)’nT» . We make the following assumption on &;.
Assumption I1 For alll =1,...,nTp, g g (0,1) with E [E?] < cg for some constant cg <
00.

For simplicity, we assume that ¢; is independent of ey, for [ # k. We can relax the independence
assumption to zero correlation which holds by construction but with more tedious calculations.
Under Assumption I1, the covariance matrix of V; ;) and V/; ,) is given by

S () _
Tiegn = (Widsy) = B ViV = Ron Rl (10)
where the (c, d)-th element of I'(it,js) is denoted by ’y((ictd;.s). Accordingly, J,r can be rewritten as
1 n T )
Jir =~ > Y BB,
ij=1t,5=1

and the (c, d)-th element of Jy,r is

n

1 d /
JnT(C7 d) = n7 'Zl tzl REZ)t) (RE;{)S)) ’
1,)=11,8=

)

Assumption 12 For alll = 1,....,nTp, ¢ = 1,...,p, and all (n,T), 31", Zthl rgi 0 l‘ < ¢cg for

some constant cr, 0 < cp < 0.




Assumption 13 There exist finite positive constants qs, qr, cs and cr such that

n T
1
) T Yo > Tt lldly < cs and (id) Z Z T tgs)l| diT < er,

i,j=1t,s=1 i,j=1t,s=1
for all (n,T), where ||A|| denotes the Euclidean norm of matriz A.
Assumptions 12 and I3 impose the conditions on the persistence of the process If for all ¢

and d, |0°¢| < ¢, for a constant ¢, > 0, then Assumption 12 holds if 37 27 ] ltj S)\ < Cr/Co

for all n and 7. Since ]r | can be regarded as the (absolute) change of V(( )) in response to

one unit change in one element of &9 the summability condition requires that the aggregate
response to an innovation be finite. Assumption I3 implies that I'(;; ;) decays to zero fast enough
as d;j and dy, increase so that the two summability conditions hold. These conditions hold if

lim sup — Z Z IR, ( m) d% (11)

(n,T)—00 T zy 1t,s=1

d)
linsup Z Z IR, (R( ) |deT (12)
(n,1)— ij=1t,5—1

for all ¢ and d. (11) and (12) imply that as d;; or dys increases, the corresponding two row

vectors RE ©) ) and R\ )) become nearly orthogonal. As the row vector represents the aggregate
response of a unit to all the innovations, this assumption implies that the responses of two units
become independent as they become spatially or temporally distant. Assumption I3 enables us
to truncate the sum of I'¢; ;) and downweigh the summand without incurring much bias.

As Assumption I3 implies, the key property of d;; is to characterize the decaying pattern of the
spatial dependence. In addition, we assume that d;; satisfies the properties of a distance measure
in a metric space: (i) d;; > 0, (ii) di; = 0, (iii) di; = dj;, and (iv) di; < dit, + di;. In practice,
nonetheless, the symmetry condition (iii) may not hold for some candidates of economic distance.
Conley and Ligon (2000), for example, notice that transportation costs among countries violate
this condition if tariff barriers are asymmetric. In such a case adjustment should be made.? This
adjustment does not affect the asymptotic properties of our estimator from the perspective of
the measurement error problem as we now explain.

Distance measures observable to empirical researchers usually contain measurement errors,
and the results in this paper can be generalized to the case when d;; is error contaminated.
Following Kim and Sun (2011), we can show that our asymptotic results are still valid under the
following conditions: (i) the measurement error is independent of ¢; for all [; (ii) it is of order
o(d,) as d, increases; and (iii) the summability condition in Assumption I3(i) holds with the
error-contaminated distance measure. In this paper, however, we do not consider measurement
errors for simplicity.

Let

n

Ei,n = Z 1{dij S dn} and fn = n_l zn:&,n

j=1 i=1

In Conley and Ligon (2000), an asymmetric transportation cost is replaced by the minimum cost between two
countries.
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{; n is the number of pseudo-neighbors that unit ¢ has and ¢, is the average number of pseudo-
neighbors. Here we use the terminology “pseudo-neighbor” in order to differentiate it from the
common usage of “neighbor” in spatial modeling. We maintain the following assumption on the
number of pseudo-neighbors.

Assumption I4 For alli=1,...,n, {;, < cl, for some constant c.

Assumption I4 allows the units to be irregularly located but rules out the case that they are
concentrated only in some limited areas. To be symmetric, we also define

T

T
b= Wlt—s| <dr}and br =T lyp=2dr +1—
s=1 t=1

dT(dT + 1)
T )

where —dp(dr +1)/T is an adjustment coming from the points near the boundary.

In order to obtain the properties of the estimator in Theorem 1 below, it is important to
control for the boundary effects. It is especially critical in the panel setting, because it faces
a larger boundary than the time series and spatial settings. The effects of the units near the
boundary should become negligible as the sample size increases so that the asymptotic properties
depend only on the behavior of the units in the interior. We define

n

En = {ZEZJL:ETL_'—O(E’R)}? ni :Zl{ZGEn}a Nz =n—mny
=1

ET = {t : Et,T = ET —I—O(éT)}, T1 = Zl{t S ET} and T2 =T — Tl.
t=1

FE,, and E7 represent the nonboundary sets in the spatial and time dimensions. n; and 77 denote
the sizes of E,, and Er and noe and T3 denote the sizes of the boundary sets. These definitions
imply that the size of a boundary set depends on choice of the bandwidth parameters. We can
mitigate the boundary effects by raising d,, and dp slowly as n and T increase to make the interior
large enough. Provided that ng/n and T5/T are o(1), the boundary effects are asymptotically
negligible. When units are regularly spaced on a lattice in R2, ng/n = o(1) if £,/n = o(1).
T5/T = o(1) holds if ¢7/T = o(1).

3.2 Increasing-smoothing asymptotics

In this subsection, we investigate the asymptotic properties of Jor and the limiting distribution
of the Wald statistic W,,r under the increasing-smoothing asymptotics.
Following the standard practice, we could define the (normalized) MSE of J, 1 as

nl - nT
MSE (W,JnT,S> — KnET

E |:V€C(jnT — JnT)’Svec(jnT — Jur) |

where S is some p? x p? positive definite weighting matrix® and vec(-) is the column by column
vectorization function. However, the mean and variance of J,r may not exist. For example,
when the model is exactly identified, 5 has no moment (Mariano, 1972). A direct implication

8The weighting matrix may depend on (n,T) in which case we assume that S,r — S as (n,T) — oo and our
asymptotic results remain valid.

11



is that the above MSE is not well defined for an exactly identified model or an over-identified
model with only one over-identifying condition.
To overcome this technical difficulty, we introduce the pseudo-estimator:

. dys
Int Z Z K < > <dtT> V(i,t)v(/j,s)a

zg 1t,s=1

which is identical to J,7 but with sample statistics replaced by their population analogue. If
Jur = Jur = 0p(\/nlr/ (nT)), then we can use MSE(nT/ (blr), Jur,S) as an approximate
MSE for J,r. This is a Nagar type of approximation (Nagar, 1959). The approximation can be
justified to some extent using the truncation argument of Andrews (1991). For any h > 0, let

nT
EnET

MSE), ( jnT, S> = E [min (vec(.fnT — JnT)’Svec(jnT — Jnr), h)}

nT
bply’
be the truncated MSE, which exists for any h by construction. Then under some conditions, it
can be shown that

T . T .
lim lim MSE, ( E”E JnT,S> — lim lim MSE, < E”E JnT,S>.

h—o0 (n,T)—o00 h—o0 (n,T)—o00

Andrews (1991) and Kim and Sun (2011) provide the conditions for the above to hold in the
time series and spatial settings, respectively. In this paper, we make the following high level
assumption, whose sufficient conditions are given in the supplementary appendix.

Assumption I5 J,; — J,r = op(\/Unlr/ (nT)).

Under this assumption, we employ MSE(nT/ ((,l1), Jur, S) directly as the Nagar-type ap-
proximate MSE (AMSE) of J,7. We define

nT
o lr’

nT

AMSE
S< by’

I, 5> MSE ( I, S> .

To compute MSE(nT/ (€nlr) , Jur, S), we introduce the assumption below.

Assumption 16 (i) (,,/n =0(1),47r/T =0(1),d, — o0 and dy — o0 as (n,T) — oo, (ii) for
1€ B, andt € Er,

lim \/m o) Ve | = ol Jur = J.

T) T
(n,T)—00 jedij<dp s:dis<dr (n,T)—00

Assumption 16 states that the covariance matrix defined locally for each nonboundary unit
converges to the same limiting value of J,r. This assumption is related to covariance stationarity
but weaker. It is implied by covariance stationarity but it can hold even though covariance
stationarity is violated. Kim and Sun (2011) give an example of a nonstationary spatial process
that satisfies the above assumption. Stationarity seems to be a very strong assumption especially
in the spatial dimension because a spatial process can be nonstationary simply because each unit
has different numbers of neighbors. Assumption I6 is similar to the homogeneity assumption
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in Bester, Conley and Hansen (2011). They assume that the covariance matrix in each cluster
converges to the same limit.

The asymptotic bias of J,7 is determined by the smoothness of the kernels at zero and the
decaying rates of the spatial and temporal dependence in terms of d;; and d;s. Define

K(a) — Tim i‘l(@

I = for a =1,2 and ¢ € [0, 00).

and let ¢, = max{q : Kéa) < oo} be the Parzen characteristic exponent of K, (z) and K, = Kég).

The magnitude of g, reflects the smoothness of K,(z) at x = 0.

Assumption I7 (i) The kernel functions K, (-) with a = 1,2 satisfy K,(0) = 1, | K, (z)] < 1,
Kq(z) = Ko(—2), Ko(x) =0 for |z| > 1, and ¢1 < qs and g2 < qr. (i) For all z1,z2 € R there
s a constant, cy, < 0, such that

|Ko(x1) — Ko(2z2)| < ep|z1 — x2| fora=1,2.
(iii) 6} 0 K2 (%) — K1 for alli € B,

Examples of kernels which satisfy Assumptions I7(i) and (ii) are the Bartlett, Tukey-Hanning
and Parzen kernels. The quadratic spectral (QS) kernel does not satisfy Assumption I7(i) because
it does not truncate. We may generalize our results to include the QS kernel but this requires
much longer proofs. Assumption I7(iii) is more of an assumption on the distribution of the units.
When the observations are located on a 2-dimensional integer lattice and d;; is the Euclidian

distance, we have
1
/ / 2 +y ) dydr = 2/ rK2(r)dr.
0

In finite samples, we may use

1w dij
pE)
ij=1 n

for /C;. Similarly we define, for ¢t € Er,

E;TZKz (dt) /K2 = K.

Under Assumptions I7(i), we can define

bg‘h) — lim b(ql)7 where b(ql = Z Z I zt,jS)dzj’
(n,T)—o0 i,j=1t,s=1

bg@) :( %n b( ), where b(q2 = Z Z e JS)dts
n — 00 z J 1t ,8§= 1

Let tr denote the trace function and K, denote the p? x p? commutation matrix. Under the
assumptions above, we have the following theorem.
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Theorem 1 Suppose that Assumptions 1 and I1-17 hold, d,,dr — oo, no = o(n), To = o(T),
Ly, =o(n) and tp = o(T).

(a) lim, 7)o %var(vec(iﬁ)) = K1K2(Ipp + Kpp) (J @ J).
(b) If dlt /A% — cq as (n,T) — oo, then lim, 1) oo A5 (EJur — Jur) = —Kgu b — c4K b5

(c) If d¥ /% — ¢4 and dalnlr) (nT) — 7 € (0,00), then

lim AMSE( nl jnT,S>
(n,T)—o0 Lol

. T N / i
T (né'l'?l,oo ‘0 TE [UeC(JnT — Jnr) Svec(Jnr — JnT)]

1 /
~ e ( Ky b 4 oK, ng2>) Svec (qubg‘”) + cgKy, bgm)

T

+ K1Katr (S(Ipp + Kpp) (J ® J)) .

Theorem 1(a) and (b) show that the asymptotic variance and bias of J,7 depend on the
choice of d,, and dy. When we increase d,, and/or dr, the asymptotic bias decreases while the

asymptotic variance increases. The convergence rate of J,r is obtained by balancing the variance
and the squared bias of J,7. Accordingly, the rate of convergence of J,p is \/lnlr / (nT"). Under
Assumption I5, the rate of convergence of Jyr is also \/Cplr/ (nT). If we set £, = O(dj") and
lp = O(d}") for some 1, > 0 and np = 1, then the rate of convergence under the rate condition

d>ay gT/ (nT) — 7 € (0,00) is (nT)~ q1q2/(q1nT+2q1qz+qznn)
As Jor is consistent, the limiting dlstrlbutlon of the Wald statistic is the Xg distribution.

This is a standard result. Under Hg, Wyt LN Xg and Fy,r <, Xg/g.

4 Optimal bandwidth selection procedure

This section presents optimal bandwidth choice that minimizes an upper bound of AMSE of Jor
and proposes a parametric plug-in procedure for practical implementation.
Let

By = vec(bgql))’Svec(bgql)), Byy = Vec(bng))’Svec(bqu)), Byg = vec(bgql))’Svec(bqu)).
Then up to smaller order terms the approximate MSE is

AMSE := AMSE (1, Jors S)

B Bia Bas l ET
Kti 2q1 + 2Ky, Ko, iz pr dqz K2 242 [S (Lpp + Kpp) (J @ J)]
dn dT

Baso Cnlr
(Kq21 d2q1 + ng d§q2> IClK?tr (S (1, pp + Kpp) (J® J)]
= AMSE*.
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AMSE* can be regarded as AMSE in the worst case:

AMSE* = max AMSE,
O 5578

where

B = {<bgq1>, 552 vec(6\™)Y Svec(b)) = By, vec(bi®)Y Svec(bi®)) = 322} .

Assuming By; > 0 and B > 0, we select (dj, d7) to minimize the dominating terms in AMSE*:

. B Baa Cly - =
(dy, df) = argmin 2 | K3 —— + K, == | + — - KiK20v, (13)
dn,dr n dT nT’

where Cy = tr [S (I, + Kpp)(J ® J)].

Here we use the AMSE* instead of the AMSE as the criterion, as the latter is intractable.
The source of the problem is that Bys can be negative. In theory, we may choose d, and dr to
zero out the bias terms under some conditions. For example, consider the case Bis = —v/B11 Bos.
This may occur when we are interested in a single component of §. In this case, bandwidth
parameters satisfying dj! /d% = (K4, /Ky,) \/Bi1/Ba2 make the first order bias terms cancel out
with each other. Therefore, in theory, we need to select d,, or dr to tradeoff the second-order
bias with the variance. However, this choice is infeasible in practice. As Bjj/Bag is unknown, we
have to estimate this ratio and the estimation error is of the same order as the first order bias.
So the first order bias cannot be reduced by an order of magnitude in practice. Our minimax
criterion avoids this problem. It is also simple to implement, as d;; and d7 depend only on two
bias terms but not on their interaction Bys. It also effectively controls for the AMSE in terms of
an upper bound, which is achievable under some data generating processes.

Under the boundary condition in the time dimension, we have ¢7/T — 0, {p = 2dp + o(dr).
In some cases, it is also possible to approximate ¢,, as a function of d,,. For example, if individuals
are located on a 2-dimensional lattice and the Euclidean distance is used, ¢, = 7d2 would be
a reasonable approximation. With the specification of ¢, = apdi* and ¢y = apd?’, we obtain
explicit formulae of dy and d7. as follows:

a2 nr
I - 4(]1K'§71 B}l o a1n7+2a192+92nn qlKgl nrBi1 2(q1n7+29192+a27m) 7 (14)
" UmanarKiKaCy @2 K3, nnB2
q n
o _ 4q2K3_2 B_22 T 417IT+2<111!12+¢12777L qu(i N Bas 2(q17]T+2L;1q2+q2'qn) (15)
" \nromarKiKaoCy @ K2 nrBn

The optimal bandwidth formulae in (14) and (15) show that the degree of persistence in one
dimension affects both d}, and d% but in opposite directions. For example, if a process becomes
spatially persistent, d;, is increased to address the increasing bias, which comes from the usage
of kernel truncation in the spatial domain. But, the increase of d}, at the same time, magnifies
the variance term. Therefore, in order to minimize the AMSE*, d7, is decreased to moderate the
inflation of the asymptotic variance. Figure 1 illustrates this relation of d}, and d}. with different
dependence structure. The two graphs are the level curves of d; and d} as functions of A and p,
which determine the temporal and spatial persistence respectively in the following DGP:

Vi = AVt + ug, up = pWhuy + €4 and e, ~ (0, 1),
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Figure 1: Level curves of dj, and d} as functions of spatial and temporal dependence

where V;, u; and €; are n-vectors such as V; = (V(Lt), Vioys s V(n’t))/ and W, is a spatial weight
matrix. These two graphs indicate that d; increases as spatial dependence increases or temporal
dependence decreases and that d7} increases as temporal dependence grows or spatial dependence
is reduced.

The corollary below gives a precise sense that (d},d}) is optimal.

Corollary 1 Suppose Assumptions 1 and I1-I7 hold. Assume that £, = andi® and b = aTd?pT

for some np,mr > 0, a, = a1 +0o(1), ar = ag + o(1), B11 > 0 and By > 0. Then, for any

sequence of bandwidth parameters {d,, dr} such that dj' /d%: — ¢4 € (0, 00) and A2 0,00/ (nT) —
€ (0,00), {dy,d5} is preferred in the sense that

lim max AMSE <(nT)2<11QQ/(Q177T+2!]1Q2+Q27771) 7 jnT(dm dr), S)
(n,T)—o00 (bgﬂ)’bgm))e%

—  max AMSE ((nT)Q‘“qZ/ (@nr+2aaxtaan) o (d d5, S)
(b(ql) b(q2))€%
1 "2

> 0.

The inequality is strict unless dp, = d} (1 +0(1)) and dr = d5 (1 +0(1)).

Theorem 1 and Corollary 1 are applicable only to finite order kernels. This rules out the
flat-top kernels which are infinite order kernels from a frequency domain perspective. In their
general form, the class of flat top kernels is given by

Ap = (ﬁ(') R () = { é(x) gt}L:glvfisZF )

where ¢cp < 1 and G : |z| € (cp,1] — [0,1]. A typical flat-top kernel in Rp is the trapezoidal
kernel in which G(z) = max{(|z|—1)/(cr—1),0}. The rectangular kernel is an extreme case with
crp = 1. For a flat-top kernel covariance estimator, the asymptotic bias is of smaller order than

(16)
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that in Theorem 1(b). As a result, our bandwidth selection procedure does not apply directly
to flat-top kernel estimators. However, it is interesting to consider flat-top kernel estimators
because they are higher-order accurate. This is particularly important in our setting because
flat-top kernels are completely compatible with the adaptiveness of our estimator as explained
below while finite-order kernels yield some discrepancy. In time series HAC estimation, Andrews
(1991, footnote on p.834) and Lin and Sakata (2012) suggest a practical bandwidth rule for the
rectangular kernel estimator, a special flat-top kernel estimator, based on the MSE criterion. Sun
and Kaplan (2011) explore this problem rigorously and provide a bandwidth selection procedure
that is testing optimal. We extend these methods to the present setting. For any finite-order
kernel estimator set as the target, we can select the bandwidth parameters for the flat-top kernel
(d} s Ao ) such that the flat-top-kernel-based covariance estimator has a smaller AMSE™.
Let Kyar1(-) and Kyqr2(-) be the target kernels in the spatial and time domains and (dj,. ,, far’T)

be the respective optimal bandwidth parameters. Let K ;(-) and Kp2(-) be the flat-top kernels
used in the two domains. Given ¢, = o, d" and {7 = aTd%T, if we set

* % K:ta'r,l l/nn % % IE:tG,T‘,2 l/nT
Fn = Qarn - and dF,T = Gtar,T - ’ (17)
Kr1 Kr2

then the asymptotic variance of the flat-top-kernel estimator is the same as that of the estimator
based on the target kernel. However, under some smoothness conditions, the asymptotic bias of
the flat-top kernel estimator is of smaller order. As a result, the flat-top kernel estimator has
smaller AMSE* than that based on the target kernel.

The unknown values such as Byy, B2e and Cy in the optimal bandwidth formula (13) can be
estimated using a parametric plug-in method (e.g. Andrews, 1991; and Kim and Sun, 2011). We
consider the following four different spatiotemporal parametric models, which are introduced in
Anselin (2001):

() _ )y (o) =(c)
Vi) = Pe [Wr(z )VQ,IL €y

© _\ y© ] + &l
Viery = AVt T pe [Wé )V}_lL TG0

© _ 3 O @] L 0

Viig) = AeVii-1) + e [W}ﬂvt L“(m) 20)
© _y e 9y @] . =0

VEL = AV + e [Wg W L + pe [Wg )‘/t—lL +&9, 21)

c) tid
7

where ég H o~ (0,0c) and [quc)Vt(c)]i is the i'" element of vector WT(LC)Vt(C). The spatial weight

matrix W}LC) is determined a priori and by convention it is row-standardized and its diagonal

elements are zeros.”
For an illustrative purpose, consider the model in (18). It can be rewritten recursively as

"The way to construct a spatial weight matrix is well explained in the spatial econometrics literature (e.g.
LeSage and Pace, 2009).
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follows:
VYI(C) _ pCWTS,C)‘/E)(C) +1, 5(6)

‘/2(5) _ pg (W,,(LC)) V( c) + pe W(c) (C) +1, E(C)

Vi = o (W) Ve gt (W) 89 4 g2 (W) A 4y 1,

Imposing the initial condition of V = 0, we can estimator p. by OLS with Vt(c) = (‘A/((lcl) V((nc)t)) .
We define

I,, ift—s=0

(c) . (C) t—s . B
R, PWh ,ift—s5>0
0, otherwise,

and

A

R, = (R R R

where R( ©) denotes the i-th row of R,Es) Consequently, we approximate .J, b((h) and b(qQ) by

ts,i

J (e.) = 28 Z Z (B(0) (56 >), (22)

ij=1ts=1

B (¢, d) = Ocd Z Z ( - t)) (é )>,d§;, (23)
ij=1ts=1

I () = 220 3 S (#),) (2, . (24)
i,j=1t,s=1

where 1 )
Oed = T 1) 1 (é(c)) <é(d)> ’

gle) = ((égc))', - (égﬁ)) ), & A( ) = V1( ) and éf’ = Vt(c) - [)CWT(LC)XA/;(_C)l for t > 2. Substituting these
estimates into the optimal bandw1dth formulae, we obtain the data-driven bandwidth parameters
(dn, dr) as follows:

492 nr
CZ o 4Q1K B].]_ T 4177T+2q12Q2+4277n qqu21 nT-éll 2(q17]T+2q1q2+q27m) (25)
" nnanoleClngCv QQKq22 77n322 !
~ I s S n
A 4q2K32 322 nT q1n7+29192+4927n q2K§2 nnBQZ 2((1177T+221QQ+Q2777L) (26)
T = —— = _— — .
TITOZnOZT/CﬂQCV qlKgl nTBll

where

By = vec <I;§q1)>/ Svec (qul)) , Bay = vec <3§QQ)>/ Svec <I;gq2)> , Cy =tr [S(Ipp +Kpp)(J @ J)] .
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Since the models in (19), (20) and (21) can be rewritten as

it
Ve = e (1 —aw) ™ vf_ﬂ + [(I ~ o) gﬂ .
= (o) (ut ) ]« [ eower) ]

we can derive the data-driven bandwidth parameters with these models using the same procedures

s (18). While the OLS estimator is consistent for (19), it is not for (20) and (21) due to the
endogeneity of [Wéc) Vt(c)]i. For these models, we can obtain consistent estimators using QMLE
as follows:

Vi =[Ot o) v | +27)

A A 1 1
()\c, De, P, UCC) = argmin —Ino,. — —1In
Ac,Pc,Pes0ce n

|+ i 2 () (4).

See Yu, de Jong and Lee (2008) for details. However, we argue that the simple OLS can still be
used for (20) and (21). Since the parametric models are likely to be mis-specified, the QML esti-
mator is not necessarily preferred. In addition, as argued by Andrews (1991), good performance
of the estimator only requires (cfn, CZT) to be near the optimal bandwidth values and not to be
precisely equal to them. Furthermore, OLS estimation is computationally much less demanding.

5 Comparison with CCE, DK and DK* estimators

For comparison, we examine the asymptotic properties of the CCE, DK and DK* estimators
based on our data representation in (8) and (9) under the increasing-smoothing asymptotics. We
also derive the optimal bandwidth parameters for the DK and DK* estimators using the AMSE
criterion.

5.1 CCE
The CCE is defined as

B 5t

Define jfqu in the same way but with V(i,t) replaced by V(;;). The crucial condition for j;l‘lT
to be consistent is that variables for two different individuals (or clusters) are uncorrelated,
Le. EV t)V(j 5 = = 0 if 4 # j. Under this condition, Ja <7 is robust to heteroskedasticity and
arbitrary forms of time series correlation. Our spatiotemporal representation accommodates
spatial independence by imposing the following restriction.

Assumption I8 7 ; o) = 0 if i # j.

Under Assumption I8, we have



Assumption 19 For alli € E,,

hm var (\/>szs> =J.

Assumption I9 implies the homogeneity of var(T~1/2 Zzzl Vii,s)) for i € E,, under which we
can derive the asymptotic variance of jfT = (nT)! Yoy ZZS:I V(”)V(’Z s) in Theorem 2 below.

Theorem 2 Suppose that Assumptions 1, 11, 12, 18 and 19 hold. Then lim, 1y, nvar(vec(jfT)) =
(Lpp + Kpp) (J @ J).

The proof is analogous to the proof of Theorem 1(a) and is omitted here for brevity.® Theorem
2 and the fact that £ j;f‘T = J,r imply they/n-convergence of j,f‘T. Under the sufficient conditions
for Assumption I5 given in the supplementary appendix, we have j A j;;‘T = op (1/y/n) . Hence
JA /' also converges to J at the rate of 1/y/n, which is consistent Wlth Hansen (2007).

5.2 DK estimator

The DK estimator is based on the time series HAC estimation method with cross sectional
averages. The estimator is defined as

DK 1 . a ds A
Jor =0T Z Z <> Zt)V(JS)

Similarly, we define jT?TK as above but with ‘A/'(i’t) replaced by V(; 4.
For the asymptotic properties, we introduce the following assumptions in place of Assumption
16.

Assumption 110 As dp — oo with (n,T) — oo, given by = o(T),

: 1 ¢ _
o atr 2 2o, Yoo | =

J=1 sid¢s<dp

forallt € Erp.

Theorem 3 below gives the asymptotic properties of J; D K and Jr JPK  Tts proof is omitted here
as it is similar to the proof of Theorem 1.

Theorem 3 Suppose that Assumptions 1, 11, 12, 13(ii), 15, I7(i)(ii), and 110 hold, and dr — oo,
éT = O(T).

(a) lim, 7)o %Uar (vec(jT?TK)) = Ka(Ipp + Kpp) (J @ J).

(b) lim, 7)—c0 2 (BIDE — Jur) = — Ky, b5™).

8Detailed proofs for Theorems 2-4 are available from the authors upon request.
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(c) If d%qZZT/T — 7 € (0,00), then

Jim AMSE< ,jDr ,S)
by

(n,T)—00

1
- K2 (vee bgq2>) S (vee 5 + Katr [Ty + Kpp)(J @ J)]

Theorem 3(a) and (b) imply that J2X is consistent if dp — oo and £7 = o(T). The rate
of convergence obtained by balancing the variance and the squared bias is T92/(2¢2+17)  Thig
is also the rate of convergence for J,?TK under the sufficient conditions for Assumption I5 given

in the supplementary appendix. Therefore, the rate of convergence of Jor is faster than that of
JDE i T = o(n (2a2tnr)/(a2mm),

The optimal bandwidth parameter of jETK based on the AMSE criterion is

1/(2q2+n7)
le7K - @T ) (27)
nroarkKoCy

We can obtain the data-driven bandwidth parameter following Andrews (1991).

5.3 DK* estimator

Analogous to the DK estimator, we can consider the usage of spatial HAC estimation applied
to time series averages, especially when n is relatively large and T is relatively small. The DK*
estimator based on the time series averages is

Let jnDTK " denote the infeasible version of jETK " with 17(i7t) replaced by V(; ).

Assumption I11 As d,, — oo with (n,T) — oo, given £, = o(n),

lim wvar Z ZVJS =J,

T
(TZ, )_)OO l’)"L _]d”<dn3 1

for alli € E,.

Theorem 4 below gives the asymptotic properties of jT{?TK " and jT?TK ", The proof is similar to
the proof of Theorem 1 and is omitted to save space.

Theorem 4 Suppose that Assumptions 1, 11, 12, 13(i), 14, 15, 17, and I11 hold, na = o(n),
ly,dy — 00 and £y, = o(n).

(2) T 1) 00 fvar (vee(TEE)) = RalLp + Kpp) (J © 7).

(b) hm(mT)_,oo d%l (EjnDTK* - JnT) = _K(hbgql)'
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(c) If &2 4, /n — 7 € (0,00), then

lim AMSE (., jPK* g
(n,T)—o00 Ly

]' 1 ! 1 -
= K3 vec (bgq >) Svec (bgq >) + Ratr [S(Lp + Kpp) (J @ J)] -

If we can characterize £, = a,d;", jnT achieves the faster convergence rate than jnDTK " and
JDE™ if n = o(T%2Raitm)/(@nr)) The optimal bandwidth based on the AMSE criterion is

1/(2q1+nn
Dk 2q1K31B11 i /(2q1+1n) -
" B nnanﬁlc‘/ ‘

We can obtain the data-driven bandwidth parameter following Kim and Sun (2011).

6 Adaptiveness of -

6.1 Flexibility

Jnr is flexible in the sense that it includes the estimators in the previous section as special cases,
reducing to each of them in large samples with certain choice of the bandwidths and kernel
function.

In order to illustrate the flexibility, we introduce the generalized CCE estimator:

n T
A 1 d N A
GA __ K. ts !
ot = nT Z Z 2 <dT> V(ivt)v(iys)

i=1t,s=1

with j%f‘ as its infeasible version. jff‘ includes j;?T as a special case with Kr (-) € Rp with
cr=1land dr=1T.

The following proposition shows the asymptotic equivalence of Jor to the existing estimators
with certain sequences of d,, and drp.

Proposition 1 Let Assumptions I1 and 12 hold. Assume that Jor = Jup + op (1), j%f‘ =
T+ 0p (1), T = T + 0p (1) and JE" = T + 0, (1).

(a) If min; j (d;j) > € for alli # j and some € > 0 and d,, — 0 as n — oo, then o — jnGTA =
op(1).

(b) If Ky (") is the rectangular kernel, Assumption I3(i) holds, and £,/n — 1 as n — oo, then
Int — Ja?TK = op(1).

(c) If K2 (-) is the rectangular kernel, Assumption 13(ii) holds, and ¢r/T — 1 as T'— oo, then
Jor — J2ET = 0,(1).

The flexibility of our estimator relies on the property that the rectangular kernel does not
downweigh the covariances between spatially or temporally remote units. In contrast, J,r with
finite-order kernels does not completely reduce to JT?TK and Jé)TK " with large d,, and dr, getting

close to them though.
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Figure 2: Adaptiveness of J,7

6.2 Adaptiveness

While J,,7 has advantages in terms of robustness over jfT and in terms of efficiency over jfL)TK i
and jETK , for certain dependence structure, one of the existing estimators is expected to out-
perform the other estimators. If a process is spatially highly persistent, jfZ)TK is expected to
out-perform the other estimators in that it is robust to arbitrary forms of spatial correlation. For
the same reason, jfTK " tends to perform better than the others, if a process is temporally highly
persistent. j;?T is more efficient than the other estimators in the absence of spatial correlation.

The attractiveness of our estimator jnT is that, with the data-driven bandwidth choice, it
becomes close to the estimator that is expected to perform the best. This adaptiveness is the
novel feature of our estimation method. It practically automates the selection of covariance
estimators. As illustrated in Figure 2, adaptiveness arises from the flexibility and data-driven
bandwidth selection procedure. In case that a process is spatially highly persistent, the data-
driven bandwidth selection procedure yields large d, so that Jyr gets close to jT?TK . Analogously,
Jnr becomes close to j,?TK " if a process is very persistent in the time dimension. In the absence
of spatial dependence, jnT becomes close to jﬁ,‘f‘ with small d,,.

It should be pointed out that finite-order kernels do not achieve complete adaptiveness be-
cause downweighing restricts its flexibility in bridging the existing estimators. We can fix this
by employing a rectangular kernel. In this case, with appropriate bandwidth choices, Jor is
asymptotically equivalent to the best estimator. The bandwidth selection rule in (17) meets the
requirement, as the selected bandwidths from (17) are proportional to those from (13).

? Another issue with flat-top kernel estimators is that they are not positive semi-definite. Politis (2011) and Lin
and Sakata (2009) propose simple modifications to the estimator to enforce the positive (semi) definiteness without
sacrificing asymptotic efficiency. In our simulation, we use the method suggested by Politis (2011).
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7 Fixed-smoothing asymptotics

7.1 Limiting theory for J.r under fixed-smoothing asymptotics

Following Conley (1999) and Sun and Kim (2013), we assume that, given a distance measure, it is
possible to map the individuals onto a 2-dimensional integer lattice so that d;; can be expressed
in terms of the lattice indices. Let the locations be indexed by i = (i1,i2) = [1,2,...,L,] ®
[1,2,...,M,]. We can then rewrite the sample moment conditions that define B as

ZZZLMVM, ~0,

7,1 lig=1t=1

where V(Z»l’i%t) is associated with an observation located at (i1,i2) and time ¢, and the indicator
function 1;, ;, indicates whether an observation is present at the lattice point (i1,142).
We introduce the following assumption on the distance measure in the spatial dimension.

Assumption F1 Let d
and (j1,j2). Then,

i1,i2),(j1.j2) denote the distance between the two units located at (iy,1i2)

d(il,i2),(j1,j2) —d lir — g1 |i2 — jol
dn dp ' dy

and d (-,-) is continuously differentiable.

Assumption F1 implies that d(;, ;,) (j, j») 15 @ function of [i; — j1| and [i — j2| and is homo-
geneous. This is not overly restrictive. p-norm distances that are usually employed in practice
satisfy this assumption.

Let by = d,, /Ly, by = d,,/M,, and bs = dp/T. Suppose that the level of smoothing is held
fixed such that b = (b1, by, b3) are fixed constants. Then

. o t jl j2 S ~ oy
Jnr = nT Z Z ZKI’<(L "M, T) (L "M, T)) (ir.i2.t) VG1.2:9)

11,J1=1142,j2=11¢,s=1

where V(z inyt) = Linia Viinin,r) and
Ko ((z1, 22, 23) , (y1,y2,y3)) = K ((21/b1, w2 /ba, w3/b3) , (y1/b1,y2/b2, y3/b3)) ,
K (@1,@2,3), (51,52,93) = K1 (do ) ,0) K2 (A ) )

Under Assumption F1, Ky((z1,z2,23), (y1,92,y3)) and K((x1,x2,23), (y1,y2,y3)) depend on
(w1, 22,23) and (y1,¥2,y3) only through |z1 — y1|, |z2 — yo| and |23 — y3].

Assumption F2 (i) Assumption 17(i) holds. (ii) Either Ky (-,
and continuously differentiable almost everywhere on (|0, 1]3x[0,

1 {d(l‘l,l’z),(yl,yz) < 1} X 1{d13,y3 < 1}-

1) is continuous on ([0, 1]3x [0, 1]3)
1) or K ((z1, %2, 73) , (41,42, ¥3))

Assumption F2 accommodates commonly used kernels. We have to single out the rectangular
kernel as Kp (-, -) is not continuous.
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Under Assumption F2(ii), Kj (-, -) is square integrable on ([0, 1] x [0,1]3). So K, (-,-) has a
Fourier series representation:

N

Ky (21, 22,25), (41,92, 93)) = lim_ D Meem®Pork (T1 = Y1) oot (B2 — Y2) Py (€3 — y3)
k4,m=—N
(30)
where ¢, 1, () = exp (\/jlm’k/bi) and {S\k,g,m} are the (complex) Fourier coefficients. Using the
function form in (29) and Assumption F1, we can rewrite the above complex exponential form
as a trigonometric series:

c
Ko (21,22, 23) , (1, 92, 93)) = lim > APy, (w1, 32,33)) Bo, (y1, Y2, 93) (31)
=1

where {®,, (21, 22,73) ®p, (y1,Y2,y3)} is an orthonormal basis for L2([0,1]* x [0, 1]*) under the
Lebesgue measure and by default we set @5 () to be the constant function.

When K, (+,-) is continuous and continuously differentiable almost everywhere on ([0, 1]3
[0,1]3), the convergence in (30) and (31) is absolute and uniform in (z1,z2,23) € [0,1]® and
(y1,y2,v3) € [0,1]3. When K, ((z1, 72, 23), (y1,y2,¥3)) is positive definite, continuous and sym-
metric, the uniform series representation in (31) can also be obtained using Mercer’s theorem.
When a rectangular kernel is used, the convergence is in terms of the L1 and Ls norms under the
Lebesgue measure.

Let ‘/(7, 12 t) = 7/1 12‘/(21 22 t) and 6(11’12 t)

tain the followmg high level assumption.

. d. .
= 1i1,i26(i1,i2,t) with €(i17i27t) ZZV N(O I ) We main-

Assumption F3 As (n,T) — oo, the following holds
P = oy, (L, 2 L)y =1,2,...,L
AT 2 e\ T 3y T ) Vinan | <vfore=12.

1 ioda t\
) t

for every fized £ where v € RP, b € (0,1]* and A is the matriz square root of J, i.e. AN = J.

Assumption F3 is satisfied if a CLT holds jointly over « = 1,2, ..., £ for

i1 dg N
WZ (L M, T) Vi

This is in contrast with the FCLT assumption often made in the fixed-smoothing asymptotic the-
ory. The above CLT assumption corresponds to the finite dimensional convergence in an FCLT.
It is weaker than an FCLT which requires an additional tightness condition. It is not trivial to
verify the tightness condition in a spatial setting, as the indexing sets are more complicated than
in a time series setting. The CLT holds under weaker conditions and therefore can accommodate
a wider range of panel data processes. Some primitive sufficient conditions for this assumption
are provided in Sun and Kim (2013).
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When Assumption F3 holds, we write

in t\ ..
(L "M, T)V(“m) \ﬁz

11,12,t

t *
(L "M, T) “(iasiat)

signifies that the two sides are asymptotically equivalent in

s

11,12,t

jointly over ¢ = 1,2,..., £ where ‘~’
distribution as (n,7T") — oo

To establish the fixed-smoothing asymptotics, we make one more high level assumption:

Assumption F4 For all (r1,7r2,7) € |0, 1]3,

[riLn] [roMy] [7T)

p
=3 DD DD DE/ AW Rt

lelgltl

where ZE“Z dnd) = 1i IQZ(ZI inyt) and X(u,zz,t) = Liy iy X(iy in, 1)

Proposition 2 Let Assumptions 1 and F1-FJ hold, then for b € (0,1]3 we have
Jor & AT N (32)

% -1 *
where for e* = (nT) Z]& 2,5 €(j1,j2,8)?

7a . 1 ihoig 1 aoJ2 S * p— * )/
iwimar, X 0o((Zapr) (235 7)) (oo =) (ann=2)'

11,J1,12,J2,t,8

In the absence of an FCLT, we can not follow the standard arguments for establishing the
fixed-smoothing asymptotics to prove Proposition 2. Instead, we rely on Lemma 2 given in the
appendix. The lemma is crucial for our proof and may be of independent interest. The demeaning
of e(l1 i) in Proposition 2 reflects the estimation uncertainty in 3.

Under Assumptions 1, F3 and F4, we have

VnT (B - 50) N QlA\/i—T Z e?il,ig,t) (33)

i1,02,0
and this holds jointly with (32). So under Hy,

!/

a 1. 2 _ -1 _ 1
For & 1A— > iy | (ROTAIENQTR) T [RQTA—= D €l | /9
7,1,7,2, nT 11,82,
. . . . -1
d ;|1 tooig t 1 J2 s « e\ [ )/
=n [nT ZKb <<Ln7 A T) 5 <I/n, M, T>) (5(1'1,1'2,7&) - ¢ ) (5(]'1,3'2,5) —& ) ] n/9g
d 1a
where
. id.d.
n= Z 6(11 ia, t and 5(21 in t) 17;1’1'260'1,1'27,5) with E(il,iz,t) ~ N (0, Ig) .
v u,u,

26



Here we have used RQ‘lAeal int) 4 Aez‘il int) for some nonsingular g x g matrix A. It is easy to
show that

-1

F%(g,b) = VnT¢ % SN K (‘CZZZ) Ko <Zt;> (it — &) (gjs —&)'|  VnT&/g,  (35)

%,J St

where g;; "% N(0,1,) and & = (nT)" ' 3, cir-
We summarize the above result in the theorem below.

Theorem 5 Let Assumptions 1 and F1 — F4 hold, then Fyr ~ Fa.(g,b). More precisely,
P(F,r <x)=P(Fyp(g,b) <z)+o0(1l) as (n,T) — oo for fized b.

Under the fixed-smoothing asymptotics, Fj,r is asymptotically equivalent in distribution to
F¢(g,b), which is a quadratic form in a normal vector V/nT& with a random and independent
weighting matrix. The random weighting matrix reflects the estimating uncertainty of the vari-
ance estimator. The distribution of F¢%.(g,b) is nonstandard but can be easily simulated. To
obtain a realization of Fy.(g,b), we only have to draw n7" i.i.d. standard normal g-vectors {e }
and plug them into the simple representation in (35). Lattice mapping, which is needed for our
theoretical development, is not necessary in empirical implementation of our test.

7.2 Expansion of F%;(g,b) and F-approximation

Under the sequential asymptotics where (n,7) — oo for fixed by,be,bs followed by letting
(b1,b2,b3) — 0, we present the asymptotic expansion of the distribution of F¢.(g,b) in (34)
and establish the validity of a standard F-approximation.

Define the centered version of the kernel function Kj (-,-) as

K} ((z1, z2,23) , (Y1, Y2, 3))

=Ky ((z1, 22, 23), (Y1, ¥2,Y3)) — [ ]SKb((l‘LSCmCC:s),(y17y2,y3))dwld$2d$3
0,1

— - Ky ((z1, 22, 23) , (Y1, Y2, y3)) dy1dy2dys

+ / Ky (1,22, 3) , (Y1, Y2, Y3)) derdzadrsdy dyadys.
[0,1)3 J[0,1]3

Then it is easy to show that
-1
: a 1 wf (1 2t Ji J2 8 . " /
T SA N Kb<<LMT><LMT izt G | A+ (36)

11,J1,82,52,t,8
Since K} (w1, 2, 73) , (y1,y2,y3)) € L*([0,1]%), it has a Fourier series representation:

KZ ((:I:la L2, 333) ) (ylu Y2, 93))
oo
= D Ntk oy k(@) by (22 i (£3) 0, 1 (Y1) 80 00 (Y2) g (y3)
k.l m,k! 0’ m'=1
o0
= Z Akemk e'm? Qb ktm (T1, T2, T3) Ob ket (Y15 Y2, Y3) 5 (37)
k.m,k' £ m'=1
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where {0p kom (21, T2, 23) 0b krerm (Y1, Y2, y3)} is an orthonormal basis for L2([0, 1]3 x [0, 1]3). The
convergence is in terms of Ly and Lo norms, which is sufficient for a distributional representation.

AS f[&HS Kz (('Ila T2, $3) ) (yla Y2, 3/3)) dl’ld.’,UQdeg =0 for any (yla Y2, y3) by deﬁnition, Qb,k‘ém(') has
the ‘zero mean’ property, i.e.

/[ o Ob kem (21, T2, x3) dr1drodrs = 0.
0,1

Using the representation in (37), we have

1 . i1 iyt Ji J2 s X o
iy K‘?((m%ﬂ)’(mﬁmzﬂ o105 012.9)
11,J1,12,J2,t,8
oo

d !
= D NetmbtmEoktmEh e (38)
kel k! ! =1

—-1/2 . ,
where fka;gm = (TLT) / Zil,ig,t Ob,ktm (Zl/Lm 22/Mn7 t/T) 5?i1,i2,t)'
We can simplify the above representation. First, using the Cantor tuple function, we can
encode (hi, ha, h3) into a single natural number h. That is,

h =73 (hy, ha, hg) := 7@ (7P (h, hy), hs),

where 1
7@ (hy, hy) = 5(hl + hy)(h1 4 hg + 1) + ho.

The map between (hi, he, hg) and h is one-to-one and onto. With this definition, we abuse the
notation a little and write

Ahyhohghy bkt = Anks and &b by hohy = &b,h-

With this result, we follow Sun and Kim (2012) to obtain

o0 o0
/! /
Z Nklmk 0 Eb,JetmEp o o1y = Z NeCnT kG ks
kel k0 m! =1 =1

where A} is related to the centered kernel function K; (+,-) and (urp —¢ ¢ By (0,1g) .

Using Lemma 2 in the appendix, we can show that for fixed by, bo, b3,

o -1
9F% (9,b) = gFs (g,b) < ¢/ [Z Azckc,g] ¢, as (n,T) — o0
k=1

where ¢ ~ N (0, I;) and ¢ is independent of (j, for all k. By definition, (;(; is a Wishart distribu-
tion Wy(Iy,1), s0 > -p2; AjCk(), is an infinite weighted sum of independent Wishart distributions.

Let -
" v v
SR
k=1

V21 V22

where v1; is a scalar. Following Sun (2010), we can show that

P{gFs (9,b) < 2} = EGy (2 (vi1 — v12055091) ) = EGg (2v11.2)
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where Gg(+) is the cdf of a central X?] variate and vi19 = v11 — U12U521U21. As (by,b2,b3) — 0,
we expect vi12 to be concentrated around 1. By taking a Taylor expansion G (zv11.2) around
Gy (2) and computing the moments of v11.2, we can prove the following theorem.

Theorem 6 Suppose Assumptions 1 and F1-F4 hold. Under the sequential asymptotics where
(n,T) — oo followed by letting (b1, b2, bs) — 0, we have

lim  P{gFr(9,b) <z} = P{gFx (9,b) < 2} = Gy (2) + A(2) b1babs + 0 (b1b2b3)

(n,T)—o0

where
A(2) =Gy (2) 2P — Gy (2) z[er + (g — 1) o] |

and
€1 = /[ | K ((z1,z2,23), (x1 + y1, T2 + Y2, 3 + y3)) dy1dy2dys,
1.1
cy = /[ o K2 (21, 22, x3) , (21 + y1, T2 + y2, 3 + y3)) dy1dyadys.
1.1

Since K ((z1,22,23), (x1 + y1,22 + y2,23 + y3)) depends only on (y1,y2,y3), ¢1 and ¢y are
constants, which can be computed either analytically or numerically.

Theorem 6 characterizes the nonstandard distribution gFy (g, b) when by, by and bs are small.
It clearly shows that the difference between gFy, (g,b) and Xz depends on the smoothing para-
meters, kernel function and the number of restrictions being tested.

It is interesting to see that this representation of gF (g,b) is the same as that obtained by
Sun (2010) for the fixed-smoothing asymptotic distribution of the Wald statistic in a time series
context.

Let
= M= oo Ky ((z1, 22, 23) , (21, 72, 23)) dz1dzods
k=1 0.1
=1- /[ . Kb ((z1,22,23) , (y1,Y2,y3)) dr1dw2dr3dyidy2dys
0,1

o
p2 = Z (A5)? / / ((z1, 9, 73) , (Y1, Y2, y3))|* deydzadasdy dyadys.
[0,1)3 J[0,1]?
Define D = [p2 /2] where [-] denotes the ceiling function. Then using the same argument as in
Sun (2010), we have the following approximation:

w(D—g+1 d
(D)Foo (9,0) = Fy p—g+1- (39)

The following theorem gives a rigorous description of the F-approximation.

Theorem 7 Suppose Assumptions 1 and F1-F/ hold. As (by,be,b3) — 0, we have

P{Ml(D9+1)

i) Fyo (g9,0) < Z} = P{F;p—g+1 < z} + 0(b1b2b3) .
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To use Theorem 7, we can estimate D by D,r = [M%nT /piont] Where
1 dz j ) <dt5> 1 9
== Ky =) Ko (== ) = > K!. ) 40
HinT (nT)2 Z 1 <dn 2 dr HonT (nT)2 Z;S( z,j,t,s) (40)

and

+

1 di; d; 1
_ K[ 22 ) K, [ 2t
nT ! (dn) 2 (dT> (nT)> 2.

it

Sa
W

d- dr-
K |2 )Ky [ -B).
() (3)
Here p1n7, ponr and K

it are the finite sample versions of i1, u2 and K, respectively.

It is easy to show that pi,r = p1 (1 +0(1)), ponr = 2 (1 4+0(1)) and D,p = D (1 +0(1)),
as (n,T) — oo. Let D}, = max(5,[D,r — g+ 1]) and F;DZT be the 1 — a quantile of the F'
distribution with the degrees of freedom g and D} .. Based on Theorem 7, for the F-test version
of Wald statistic, F,,, we can use

DnT

, 11
MlnTmaX{ly(DnT_g+1)} ( )

Fir = vprF, gof Dx.. where v, =
as the critical value for the test with nominal size a.. In (41), we employ D} and max {1, (Dpr — g + 1)}
in place of D,,;7 — g+ 1 to ensure that the variance of the F' distribution exists and that v,7 is
positive. We use the critical values in (41) in our simulation.

Unreported simulation results indicate that %, are reasonably close to the 1 — o quantile of
F{r(g,b) when by, by and b3 are small (< 0.3). Accordingly, we recommend using the adjusted F'
critical values F¢ when the data-driven bandwidths turn out to be small. As b1, b2 and b3 in-
crease, however, the discrepancy of the F-approximation from F(g,b) may become large. Thus,
if the bandwidth selection rule yields large bandwidths, we recommend using the nonstandard
critical values obtained by simulating the asymptotically equivalent distribution given in (35).

8 Monte Carlo simulation

In this section, we provide some simulation evidence on the finite sample performance of our
covariance estimator and the associated testing procedure. We choose the bandwidths based on
the AMSE* criterion and consider the rectangular kernel as well as the Parzen kernel to construct
jnT. We compare the performance of jnT with jfTK , jfT and ngK . We evaluate the covariance
estimators and the associated testing procedures using the RMSE criterion, the coverage error of
the associated confidence intervals (CIs) or regions, and the size-adjusted power. The coverage
error of the Cls is equivalent to the error of rejection probability of the underlying tests under
the null. We examine the robustness to the measurement errors in economic distance. It is also
investigated how the number of restrictions being tested affects the performance of the Wald test
under the two different limiting thought experiments.

We assume a lattice structure, in which each individual is located on a square grid of integers.
We use the Euclidean distance for d;;. The data generating processes we consider here are:
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DGP1: Yy = Bo + ui 50 = 0;
W= g1 +er, e = (I —O0W,) toy, v K N(0, 1)

DGP2:  Yir = XPB1o+ ...+ XP B0 + i + fi + ity

ﬁlU::/Bpozo’ O[,L:ft:O
X, =M\Xi_1 + 1y, —(I—GW) e me R N(0, 1)
w = Aug_1 + &, = (I — W)Yoy, v "5 N(0, 1),
where Xy is a p-vector, X; = (X1t,..., Xnt) and ug = (s, - . ., Ung) . W,, is a contiguity matrix

and individuals ¢ and j are neighbors if d;; = 1. Following the convention, it is row-standardized
and its diagonal elements are zero. The parameters A and 6 determine the strength of the
temporal and spatial correlation. We consider the following values for A and #: 0, 0.3, 0.6 and
0.9.

DGP1 is used for the RMSE criterion and DGP2 is used for the coverage accuracy of the
associated Cls. DGP2 includes the individual and time effects and Sy is estimated with the fixed-
effects OLS estimator. It is a special case of the setting of this paper in (1) in which X;; = Zj;.
In contrast, these effects are absent in DGP1 for easy calculation of the RMSE. We estimate g
in DGP1 by the sample average.

For the estimators j,?TK and , we employ the respective data-driven bandwidths in (27)
and (28), using the time series AR(1) or spatial AR(1) as the approximating plug-in model. For
Jur with the Parzen kernel, we employ the bandwidths given in (14) and (15), using the spa-
tiotemporal parametric model in (20) as the approximating plug-in model. W, is the contiguity
matrix in which individuals ¢ and j are neighbors if d;; = 1. We set 1, = 2 and ¢, = 7d?2.
Note that the appr0x1mat1ng parametric models for J; D K" and J,r are mis- specified whereas the

TDK*
JnT

AR(1) model for Jn is correctly specified. We employ the QMLE to estimate parameters in
(20) and (28). For J,p with the rectangular kernel, we use the Parzen kernel as the target kernel
to obtain the data-driven bandwidths.

To obtain a positive semi-definite covariance estimator with the rectangular kernel, we follow
Politis (2011) and modify JnT Accordlng to the spectral decomposition, JnT =U AU ' where U is

an orthogonal matrix and A= dlag()\l, e )\p) is a diagonal matrix whose diagonal elements are
the eigenvalues of J,r. Let AT = diag(A{, ..., Al) where Af = max(),,0). Then, we define our

modified estimator as j;rT — UATU’. As each eigenvalue of j:T is nonnegative, j:er is positive
semi-definite.

The number of simulation replications is 5000, and three different sample sizes are considered;
(i) small T'and n; T'= 15,n =49 (7x 7), (ii) large T and small n; T'= 50,n = 49, and (iii) small
T and large n; T'= 15,n = 196 (14 x 14). The following values are used for each kernel.

Ky Ko c1 C2 K,
Parzen 0.2889 0.2697 0.4123 0.1558 -6
Rectangular 1 1 6.2926 6.2926

We allow for the case with measurement errors in the distance measure. The error contami-
nated distance, d;-kj is generated as follows. If d;; < 2, then d;; is observed without a measurement
error. If d;; > 2, then we observe d;"j :

%
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where e;; = —1,0, 1 with equal probabilities. PHAC, CCE, DK and DK* denote the test statistics
based on jnT, j;?T, j,?TK , and jTI?TK " respectively. We use the F-approximation based on (41) to
obtain critical values under the fixed-smoothing asymptotics.

Table 1 presents the ratios of the RMSE to J,,1 for J,r and jfTK evaluated at the data depen-
dent bandwidth parameters (dn, d}) and CZIQK and at infeasible optimal bandwidth parameters
(dy,d}y) and d%,zK . The infeasible bandwidth parameters are obtained by plugging the true data
generating process into the AMSE* and AMSE formulae. Several patterns emerge. First, Jor
outperforms jETK in almost all the cases. When spatial dependence is absent or weak, jnT has a
substantially smaller RMSE than jfTK . Even when 6 = 0.9, these two estimators are not much
different. In particular, when the rectangular kernel is used, Jur is as accurate as and sometimes
more accurate than jnDTK . This implies that adaptiveness works well in this setting. Second,
increasing n reduces only the RMSE of J,7 while increasing T’ reduces the RMSEs of both esti-
mators. This is expected, as the rate of convergence of jETK depends only on T while that of .J,,r
depends on both n and 7. Finally, the results under both feasible and infeasible AMSE*-optimal
bandwidths show that the AMSE* criterion is effective in controlling the RMSE of Jpr.10

Table 2 reports the empirical coverage probabilities (ECPs) of 95% CIs associated with the
different covariance estimators: jnT, jT?TK , j;?T, and jfTK*. DGP2 is used with a univariate
regressor (p = 1). We use both the fixed-smoothing asymptotics and the increasing-smoothing
asymptotics for critical values based on PHAC. We use the fixed-smoothing asymptotics for DK
and DK*, and the increasing-smoothing asymptotics for CCE. From this table, we can first com-
pare the size properties of PHAC using the rectangular kernel with those of the alternative test
statistics. When 6 = 0 with high temporal autocorrelation, CCE performs better than PHAC.
However, as 0 increases, the performance of PHAC becomes better than that of CCE. Compared
with DK*, the Cls associated with PHAC have more accurate coverage probability if the process
is spatially persistent. When the process is temporally persistent, DK* yields more accurate
coverage probability. Both PHAC and DK* become more accurate with large n, but only the
performance of PHAC improves when T increases. In comparison with DK, we see that PHAC is
more accurate when the process is temporally persistent or n is large. When a process is spatially
persistent and temporal dependence is weak, DK tends to show better performance in testing,
but PHAC also performs almost as good as DK. Second, Table 2 compares the performances of
PHAC under two different asymptotics. The results indicate that the fixed-smoothing asymptotic
approximation is substantially more accurate than the increasing-smoothing asymptotic approx-
imation. The difference increases as the process becomes more persistent. When 6 = A = 0.9 and
T = 15,n = 49, the ECP of the PHAC with the rectangular kernel under the fixed-smoothing
asymptotics is 80.0% but it is only 63.0% under the increasing-smoothing asymptotics. Third,
Table 2 provides strong evidence that the rectangular kernel performs better than the finite-order
kernel under the fixed-smoothing asymptotics. The performance of PHAC with the rectangular
kernel is very robust to spatial dependence so that the size distortion does not increase much
with spatial dependence. This size advantage of the rectangular kernel arises from its bias reduc-
ing property and the adaptiveness of the bandwidth choice rule. Finally, Table 2 shows that our
testing procedure based on the fixed-smoothing asymptotics is reasonably robust to measurement
errors. Comparing PHAC with PHAC,, we see that the performance of PHAC, is quite close to
that of PHAC in most cases.

Table 3 compares the performances of the two different asymptotics when more than one

10The RMSE of j,?TKj has also been compared in the simulation. Unreported results show that Jur tends to have
a smaller RMSE than J2X in most cases and especially with large T and/or under weak temporal autocorrelation.
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parameters or restrictions are considered. DGP2 is used with p = 3. The confidence regions are
obtained by inverting the Wald test of Hy : f1 = 0 with g = 1 and Hy : 1 = B2 = 83 =0
with ¢ = 3, respectively. The table evidently indicates that under the increasing-smoothing
asymptotics the error in coverage probability increases with the number of parameters being
considered. The coverage error becomes especially severe when the process is highly persistent.
When g = 3 and § = X\ = 0.9, the ECP of PHAC with the Parzen kernel is only 28.5% under
the increasing-smoothing asymptotics. The coverage error of PHAC also increases under the
fixed-smoothing asymptotics with the number of parameters or restrictions being tested but
much lesser. This is consistent with our asymptotic expansion in Theorem 6. The theorem shows
that the fixed-smoothing asymptotics and F-approximation correct for the number of restrictions
being jointly tested.

Figure 3 presents size-adjusted power of the PHAC and DK with the sample size of T' =
15,n = 49. We use the DGP2 with p = 1, but consider the following local alternative hypothesis

H, ((52) : 81 = Bio +C/\/ﬁ

_ N —1/2
where ¢ = <E (thX{t> ' {(nT)_1 Zi,t Ej,sE (uitujsffit)z]’-s)} E ()N(th({t) 1> ¢ with ¢ =
o/ vl , v o N (0,1). The scaling matrix ¢ is computed by simulation. We compute the
power using the 5% empirical critical values under the null and with data-driven bandwidth
parameters. Figure 3 show that the proposed procedure has better power in most of dependence
structures we consider. Even under strong spatial dependence (6 = 0.9), it has almost the same
power as the DK except one extreme case (6 = 0.9, \ = 0.9).

9 Conclusion

In this paper we study robust inference for linear panel models with fixed effects in the presence
of heteroskedasticity and spatiotemporal dependence of unknown forms. We consider a bivariate
kernel covariance matrix estimator and examine the properties of the covariance estimator and
the associated test statistic under both the increasing-smoothing asymptotics and the fixed-
smoothing asymptotics. We also derive the optimal bandwidth selection procedure based on an
upper bound of the AMSE. For the fixed-smoothing asymptotic distribution, we establish the
validity of an F-approximation. The adaptiveness of our estimator ensures that it can be safely
used without the knowledge of the dependence structure.

Instead of using the upper bound of the AMSE as the criterion, we can study the optimal
bandwidth selection based on a criterion that is most suitable for hypothesis testing and CI
construction. It is interesting to extend the bandwidth selection methods in time series HAC
estimation by Sun (2010) and Sun and Kaplan (2011) to the panel setting.
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APPENDIX

Proof of Theorem 1

For notational simplicity, we re-order the individuals and time and make new indices. For 4
1, "'7€j,n7 di(j)j < d,, and for 7,(]) = gj-l—l,n; ce, Ny di(].)
and for t(s) = £S+1,T7 LT dt(s)s > dp.

7=
j > dn. For t(s) = 17"'7€S,T7 dt(s)s < dr,

(a) Asymptotic Variance

We have
nT - -
anT cov (J’HT (Clv dl) » JnT (027 dQ)) = m (ClnT + CQnT + C3nT) s
where
nT n
C _ < Bt 3 d K dts K dab K Ay (e1) (d1) (c2)
it =) (Bel = 3) > K ar ) KU J B2 G ) T Gl )
=1 i, ‘,a,b—l t,s,uv=1 n T

nTp n
=S Y 3 K () ke (%) oy (92 sy () ) ) e
2nT 1 dn 1 dn 2 dT (@,8),1" (4,8),k" (a,u),l (bv)

l,k=114,j,a,b=1t,s,u,v=1

o dis dab duv\ (e1) (d1) () (da)
C3nr = Z Z Z K df K a K dr ") 1" Gs) k" (au)k (bw),l

l,k=114,j,a,b=1t,s,u,v=1

For Cy, 7, under Assumptions I1 and 12

nTp

cRcEp
|Cnr| < g g Z\Eel g = o). (A.1)

1
nTZ b7

In order to consider boundary effects, we can decompose Co,7 as follows

Cont := Dint + Dont + D3n7 + Dant + Dspr
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where

D l i 6‘1 i Et El u 1 K lj( ) K d(lb(a) K dtS(t) K duv(u)
e T E S 5 () () s () s (T
1,a€EEn j1y=1bq)=1t,u€ET s(t)=1v(y)=1

(c1c2) _(didz)
’7(11‘, au)’y(j(l)s () 0(@)V(u))

T b1 Llur : dab dts duv
£ E T REE B (n (e ()5
i,a=1j(1y=1 bay=1 t& By u=1 s(5)=1 v(,,)=1 dn, dr dr

(cre2)  (drda)
(it,au) '(Jiys () d(a)V(u))

Ln ea n etT uT
dap dy d
U( ) ab(q) S(t) UV ()
Pr=3 Y LY S Y Y m (M) (e e () s ()
1,a= 1]() 1b(a) lteETu¢ETS(t) 1U(u) 1

(c1e2) _(drd2)
(it au) (J‘(i)S(t) b<a>”<u>)

b Ly
Dypr = Z Z Z Z Z Z Z K ( 0 >K (d“b@)) Koy <dt5(t)> Ko <d“”<“>>
i¢ By a=1j;)=1bq)=1tu€ET S1)=1v(y)=1 dn dT dT

(c1c2) _(did2)
V(itau) (J()S b(a)V(uw))

LIL an ZtT uT
dap dt d
7’.7( ) ab(q) S(t) UV (q)
D=L X X Y X S S k() (e ) s () e ()
ZEEnagEnj() 1b(a) ltuEETS(t) 1U(u) 1 n

(c1c2) _(did2)
(it,au) " (JiyS(),0(a)V(u))

X
D1, is based on nonboundary units whereas Do, 1, D3n1, Danr and D5, are based on boundary

ones.
First, applying the proof of Theorem 1 in Kim and Sun (2011), we can show that

by lur dys e
(n, lT)—>o<> an nfT 2 Z Z INPIPIL ( dn, >K2< d;)>7((“1’“2))Véifi)t):b(a)v(u))

laEEnj(Z) 1b() 1tueEr S(t)y= 11}() 1
= ICI’CQJ (Cl, 02) J (dl, dg) N (A2)

and

i
(n, ’11?—{00 nTl,br T

La,n Lo Ly
(n%“)—wonTé fT Z Z Z Z Z Z Kl(

% aGEn j(z) 1 b(u.) 1t ’MEET S(f) 1 U(u) 1

dt%) (c1e2)  (d1da)
dn >K2 ( dr )7(”7““)7(3’@)%)vb<a>v<u>)'
(A.3)

It is straightforward to show that (A.2) and (A.3) imply

1 o
li ——D = .
(na%ioo W0 iy DT K1 KaJ (€1, ¢2) J (di,d2)
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For Dy, r, we have

_
nTl, b1

EDIDY Z) (e

za 1t¢ Epr u=1

D2nT

t

S

IIM

bin Lao w, T
1 - (d1d2) o
O Z Z Z ‘ Uwswb@vw)| | o(l), (A4
](z): : :
as To/T — 0. Using the similar procedure to (A.4), we can show Ds,r = o(nTlyl1), Dynr =
o(nT¥l,lr) and Dg,r = o(nTl,lr) given To/T — 0 and ng/n — 0.
Thus,

li _ =K1K .
win Ty Cont = K1KaJ (1, c2) J (d1, d2)

By symmetry,

(né%fioo mc?mT = I€1K2J (Cla d2) J (02; dl) .

Therefore,
T ~ ~ .
lim Ccov (JnT (Cl, dl) y JnT (62, d2)> = IC]_ICQ(J (Cl, 02) J (dl, dg) + J (Cl, dg) J (CQ, dl))
(n,T)—o0 Ll

In terms of matrix form,

(m%ﬁm Enj;“ var (Vec (jnT)) = K1Ka(Ipp + Kpp) (J @ J).

(b) Asymptotic Bias

Let ¢ == di' /d% and c,r = ¢q + o(1) where ¢4 > 0. We have

@ (B —J ) _ Z Z e | (i)™ % T <dts>q2 %

dig \
i,j=1t,s=1 dr

PNPNCCRICCR

dr

= —K 0\ — cgK b + o(1).
Therefore, lim,, 7)o d%l(jnT —Jur) = — Ky, bgql) - Cquzbg%)’

(c) AMSE

Since ) )
nT anI an1

bl 2100 /0T T+ o(1)

36



we have

nT

lim MSE <€n£T,

(n,T)—o0

jnTaS>

T - / . T )
= (n,%i?l»oo E: . vec (EJnT — JnT) S vec <EJnT - JnT) + (n%ﬂm EZTTICHC?H (Svar(vec JnT))

1 / -
=~ veo (qu B\t cuKy, b@) S vec (qu B\ 4 gk, bgq2>) + RaRoatr [S(Lp + Kpp) (J @ J)] |

where the last equality holds by Theorem 1(a) and (b).

Proof of Corollary 1

For any sequence of (d,,,dr), let 7,7 := 7r(dy, dr) = d%qlénET/ (nT) and cp7 := cpr (dn, dr) ==
di! /d%. The mapping between (dy,dr) and (7,7, c,r) is one-to-one and invertible. We can
express (d,,dr) in terms of (7,7, ¢,r) as follows:

a2
d, = (TnT) a1 +2q192+427mn (CnT) a1 +2q192+a2mn

bl

a2
nr nT a7 +2q193Fa2mn
anQar

a1 - mToEl
dr = (TnT) a1 +24192+427n (ch) a117+24192+427n

91
n+291 nT \ awnr+2aia2+aznm
apQr

Now

29149 N
(o X AMSE ((nT) R e s Jnr (dn, dr), S)
(b1t ,b5°")EB

P PRIy T B Bao bnly .
= (nT) q1n7+2a1a2+a27n [2 (Kgldiql + K‘??d%%) + ;:T K1 Cy

(1+0(1))

24919

2 1
= (nT) anr+2a192+a2in [2 (Kg1 B + K(?QC%TBZQ) 20 + 20
mn mn

TnT -

IClICQCV:| (1 “+o0 (1))

29142 —24192 —2q1T
- 24140+ 427 24149+ F2q140+
= (anaT)ﬂnT a192+4a2mn (TnT> a1nr+24192+a2nn (ch)qu a192+a2mn

X [2 (K;BH + K(?zC%TBQQ) + TnTlalk:QC\/] (1 + o0 (1)) .

Some elementary calculations show that the above dominating term is uniquely minimized over
(Tnr, cnr) € R% at (77, ¢ip) where

Top = (d3)*™ boly/ (nT) and ey = (d})™ / (d7)®,

and 77 — 7* € (0,00) and ¢y — ¢ € (0,00) . As a result

2914 “
lim max ~ AMSE ((nT)wwqiéﬂznn ot (dn, ), 5)
(n,T)—o0 (bgql),béﬁ))e%

2q19 R
> lim max AMSE ((nT) TR i y I (A, dT), S) . (A.5)
(n,T)—o0 (bg’“),b;q?))e%

The inequality holds with equality if and only if 7,7 = 77 (1 + 0 (1)) and c,r = ¢ (1 +0(1)).
In other words, the inequality is strict unless d,, = d}; (14 0(1)) and dr =d} (1 +0(1)).
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Proof of Proposition 1
(@) Jur — JG# = 0y(1) if d, — 0 as n — oo.

Under the assumptions of Proposition 1, it is enough to show that
Jur (¢,d) = J (e, d) = 0p(1), (A.6)

Recall V(C Z?Tlp T t) ,61- By Chebyshev’s inequality, for any A > 0,

P(
dap d dy

i ts (¢) y/(d) /() (d)

= A2n2T2 Z Z Z Z K < >Kl (d >K2 (dT> K (dT>E [V(zt)v( 9 Viaa Vo)

i#j t,5=1 a#b u,v=1

Jur (e, d) — JGA (e, d)] > A)

1 1 ~
= EW (ClnT + CZnT + CSnT + O4nT) ’
where

T nTp
~ dij dap dis ) © (@ () (@ 1
Cint = Z Z ZKl <dn> Ky (dn> Ky (dT> Ky <dT > r(z,t) lT(j s),l (a w),l (b v),l (EEZ - 3)
iy

t,s,u,v=1 1 i#£7J aF£b
T nTp
~ dz j dab dts duv c) (d)
CZnT: Z ZZKI <d’i> K, (dn> Ky ( >K2 (dT>th)l js)l ),k 7n(b,v),k
t,s,u,v=11k=1 i#j a#b
T nTp
~ dz dab dt du’U ) (d)
Crr= 3 S S () () w5 ) 1 (5 ) v 7
tsuw=11k=1 i#j a#b " "
T nTp
~ d;j dab ds duv\ (c) LD @ (@
Canr = Z ZZZKl(dn>Kl<dn>K2< ) <dT> TG.0)0" Gos) kT (ayu) k" (b),i°

t,s,u,v=11,k=1 i#j a#b

Using the same argument as in (A.1), we can show (nT)~2Cl,r = o(n?*T?). For Ca,r,

ts=1 ij

11 1 [ 1 « dij \ | (ed)
~ i c
A2 272 Cont < A2 | T Z ZK1 <dn) ‘V(it,js)
as dp, — 0 because K (d;j/ dn) = 0 for all i~7é j provided d,, < min;;d;;. With the similar

procedures, we can show that Cs,7 — 0 and Cy,7 — 0. Therefore, (A.6) holds.

(b) Jur — j,?TK =op(1) if £,/n — 1 as n — oo.

It suffices to show that 3 3
Jur (¢, d) — JDE (¢,d) = 0,(1). (A7)

Note that
1 Z” ZT d dis\ () 1,(d)
F i ts c
JTLT (C, d) J 7T e |:K1 <dn> — 1:| K2 (d ) ‘/(Z t)‘/( s)"
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By Chebyshev’s inequality, we have
P(
for any A, where

iy dap d d
Cn K i _1 K K ts K. UV
e A2n2T2 ]gb:ltsg 1;( 1< > >< 1<dn> ) 2<dT> 2<dT>

c) d c )
X TEz t), ZTE )),lrga)u)l Eb v)l (Bl —3)

nlp d d d
Con K ) (K (2) 1) Ky [ 2B ) Ky (2
e A2n2T2 J%b:us; ll;1< 1< ) >< l(dn> > 2<dT> 2<dT>

© @ (0
X 7“@,0,17"(]-,3), T (agu), k" (5, > k

nlp d d d,,
K “1) (K (22 )) 1) Ky (28 ) K
Conr = A2n2T2 J%b:us; ll;1< 1< ) >< l(dn> > 2<dT> 2<dT>

(e _.(d) (@) (d)
X 7"(1 ?), 17"( $).k" (au), ﬂ”(b ).k

Cur= g > > 5 (16 (%) ) (o (%) 1) s () o ()

i,7,a,b=1t,s,u,v=11 k=1

(e _.(d) (¢) ()
X TG0  Gos) kT (agu) k" (b),l°

- . 1 . . 2
Jur (e.d) = T (e,d)| > A) < 5B (ur (e,d) = JHE (e, )
= Cinr + Conr + Caur + Canr,s

We can show that C1,7 = o (1) using the same argument as in (A.1). For Ca,r, as Ki(-) is the

rectangular kernel,
dzg dap dys Ay (ed) _ (cd)
w5 ) 1) () -1 (G) e () Atidnlet

Conr = Az n2T2 Z Z

1,7,a,b=11,s,u,v=1

n T 2
(ed)
— 1:| diqu (ths) des
4,j=11,s=1
1 [ 1 & & (d :
_ i - (cd)
=3 (7 22 2 1{3 > 1}%‘“ (itgs)| T3
i,j=1t,s=1 n
1 (1 & & (d ;
i I 2y —qs | (cd) | s
- A\ nT z]zl t§11 { dn, g 1} (dn) Vit,js) dij
2
1 2s [ 1N~ NS oD |
_ c S
< g (dn)™ T Z Z ‘V(it,js) d;;
ij=1t,5=1
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as d,, — oo. For Cs,,r, we have:

Cor= g > 5 (1 () 1) (s (%) 1)

i,5,a,b=1t,s,u,v=1

dts d (cc) (dd)
e (dT> ke ( dr > Vit,au) V(js bo)

dap (cc) _(dd)
= A2 n2T2 Z Z ( < ) > < (dn> 1) Vit.au) V(js bo)

i,5,a,b=1t,s,u,v=1

dap (dd)
AQ n2T2 Z Z { } 1 {dn } zt au) (js,bv)

i,7,a,b=11,s,u,v=1

b 5, 5 (o (< b

1,7,a,b=11t,s,u,v=1

(cc) (dd)
‘ Fy(it au) W(js bv)

X

+o(1)

~mmY % ZZManTEZ S ey ke ) e,

=1 a: dza/dn<1 t=1u=1 J: dij/dn>1 {b:djb/dnglv dab/dn>1} s=1lov=1

As 4; p, < cl,, with some constant c, if ¢, /n — 1, then

RS > S b,

{j:dij/dn>1} {b:djb/dnglv dab/dn>1} s,v=1

n—4, 1
- n (’I’L — En) T Z Z Z ‘ (]8 bv)

{j:di]‘/dn>1} {bidjb/dnSL dab/dn>1} s U—

which implies Cs,r — 0 as (n,T) — oo. With the same procedure, we can show that Canr =0 (1).
Therefore, (A.7) holds.

(€) Jur — JEE" = 0,(1) if bp/T — 1 as T — oo.

The proof is analogous to the proof of (b).

The proof of Proposition 2 uses the lemma below whose proof is given in the supplementary
appendix.

Lemma 1 Let

M, T . .
1 - i1 9 N
Barm S S S (B )
nT (2 o= Ly’ My T o
Then, under Assumptions F8 — F/

10 t
%L,TLT r% ‘%?JLT = \/7 Z <L M T> (11722,25 nT Z 11722,t)

11,02,t 11,12,0

jointly over v = 1,2, ..., L for every fized L.
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Lemma 2 Suppose (o1 = Enrz + Mt Assume
(i) P (&urc < &) — P&y e < &) =0(1) for each fized L and each § € R as (n,T) — oo,
(it) P& p < &) — P (§ur < &) = o(1) uniformly in (n,T) for each £ € R as L — oo,
(i1i) The CDF of &1 is equicontinuous when n and T are sufficiently large,
() nur.c —P 0 uniformly in (n,T) as L — oco. Then

P(Cur < &) =P (&ar < &) +o0(1) for each £ € R as (n,T) — oo.

Proof of Lemma 2. Let ¢ > 0. Under condition (iii), we can find § > 0 such that for some
integer C' > 0,
P-0<&r<é+6)<ce

for all (n,T") with min(n,T") > C. Under condition (iv), we can find an N such that
P(Innr,cl > 0) <e

for all £ > N and all (n,T). From condition (ii), we can find N’ > N such that

1P (&nre <€) —Pr <§)|<e

for all £ > N’ and all n and T' It follows from condition (i) that for any fixed Lo > N, there
exists a C'(Lp) > C such that

P (bnrey <€) = P (G, <§)| < e

for (n,T) with min (n,T) >
When min (n,T) > C(Ly), we have

P (Car < &) = P (§arco + Mt < 6)
< P(fnT,Eo <&+ 5) + P(’nnT,Co‘ > 5)
<P (&rr, <E+0)+2e <P(&ur <E+6)+ 3¢
< P (& <€) + 4e.

Similarly,

P (Cur < &) = P (&nT,co + MT,co <€)
> P(fnT,Lo <&-— 5) - P(’nnT,Eo‘ > 6)
> P(&re, <€—0)—2e2> P(&ur <{—0) -3¢

Zp(fnng)_

Since the above two inequalities hold for all ¢ > 0, we must have P (¢,r < &) = P (ur < §)+o0(1).

Proof of Proposition 2

We first consider the case that K (-,-) is continuous on ([0, 1] x [0,1]3) and continuously differ-
entiable almost everywhere on ([0, 1] x [0,1]3). Let

My, T

Ly [e'e) . + . . N .
ha=m 3 Y Y S () e (5 ) Voo Vi

i1,J1=119,j2=1t,s=1 =1 n
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Since

c
K (21,22, 23) , (y1, 92, 3)) = lim D Ay, (21,72, 3)) P, (y1,92,93) (A.8)
=1

where the right hand side converges absolutely and uniformly over ([0, 1] x [0, 1]?), Jor and Jur
have the same limiting distribution.
We use Lemma 1 and Lemma 2 to complete the proof. We write

L 0o
¥ / /
JInT = ’fnT,E + T, L for gnT,C = Z )\L-’fb,nTxL,nT and NInT,. = Z )\LxL,nT%L,nT'
=1 =L+1

By Lemma 1, for each fixed L,

gnT,L nTE - Z)‘ %L nT LTLT

so condition (i) in Lemma 2 is satisfied. Let §r := 322 A X, 7 X 7, then it is easy to see that
condition (ii) in Lemma 2 holds. The uniformity in condition (ii) holds because

é- gnTE - Z A %?HT%L nT
1=L+1

and for any 71 and ro € RP
(o)
E ’7“/1 (EnT — fZT,L) 7“2} <C Z A —0 (A.9)
1=L+1
uniformly in (n,T") for some constant C' > 0. To verify condition (iii) in Lemma 2, we note that
X —* X/
jointly for « = 1,2, ..., Ly for any fixed constant Ly, where {X?,. = 1,2, ..., Lx} are jointly normal
with
1 i iyt 2
X =J 1 — ) — = S
UCLT( L) (71)H1 T-Zt|: b,L<Ln7MnaT> 11,12 bL:| ;

cov (X!

11,02,t

In the above, @y, = (nT) 'Y, ., Liy iy ®o (i1/Ln, ia /My, t/T) . Now

1 2
gnT - Z A ’%L nT LInT + Z A ’%L nT Ly nT fT(ﬂzzﬁx + 57(51)17[:35 ’
1=Lx+1

Using the joint distributional convergence of {%fnT} to {X?}, we have EnT Ly —d ijl AX0xXY
which in turn converges to o 1= 0y AXIXY as Lx — co. On the other hand,

57(12%@6 —P 0 uniformly in (n,T) as Lx — o0 (A.10)
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Using the similar argument for proving Lemma 2, we have &,7 —% €5, which has a continuous
distribution. So for any £ and §, we have

Pl—-6<&Er<é+0)=P(El—-0<&x<&+6)+0(1)

as (n,T) — oco. Given the continuity of the CDF of £, for any € > 0, we can find a § > 0 such
that P (£ — 6 < & <&+ 9) < e forall (n,T) when n and T are sufficiently large. We have thus
verified Condition (iii) in Lemma 2. Finally, for any r; and ry € RP, we have

oo o
E |7J177nT,£7“2| < Z A E (Tlle,nTxi,nTTZ) <C Z A —0 (A.11)
1=L+1 1=L+1

uniformly in (n,T") as £ — oo. Hence 7,72 —P 0 uniformly in (n,7T") as £ — oo.
It follows from the above steps that

’flT ~ Z A %(LlnTxL nT <A12)
=1

1 . ) ; . . i} » . RV
s, 2, (G ) (7)) (o =) (G =) ¥

11,J1,12,J2,t,8

and J,p ~ AJ% A as desired.
Next, we consider the case with the rectangular kernel. We follow the same arguments as
above but with some modifications. We define

n

T
B=hot QS5 Ziua,

i=1 t=1

which is asymptotically equivalent to 3 in the sense that v/nT (B — 50) =vnT (B — ﬁo> +op (1).

By construction f3 has a finite fourth moment while B may not have any moment. On the basis
of B, we introduce another pseudo estimator:

s 1 iy g it 1 J2 S o St
It = T Z Kp <<I/n’ M) T) ; <I/n7 M, T Viiviot) Vi jass)
11,J1,02,J2,t,8
and redefine J,1 to be

5 1 J1 J2 S\ ¢ 5
JnT:ﬁ Z Z/\CI)bL<L "M, T>(I) (LMT)V(“’”’)(“’J"”)

i1,J1,02,J2,t,8 t=1

where V(l i) = = 1i 4, V(Z1 int) and V(Z1 int) = th( o — Ztﬁ) It is not hard to show that J,r =
Jur + 0p(1). Tn addition,

WZZZ@Z’L<L "M, T) A(lwz,)

i1=112=1 t=1
TL MTL T

- =Y Y Y (e f) Ta + o)

i1=1142=1 t=1
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for . =1,2,...,L. So Lemma 1 holds with V(’;M.Q’t) replaced by TN/(’;I’Z.M).

It remains to show that jnT = Jur +o0p (1) and Jr is asymptotically equivalent in distribution
to AJ2,A’. For the first result, we can use the L; and Ly convergence of the Fourier series

expansion and show via some tedious calculations that F [Vec(jnT — jnT)’Svec(jnT — jnT)} =

o(1) as (n,T) — oo. For the second result, we use the similar argument for proving (A.12). We
only have to modify (A.9), (A.10) and (A.11). Instead of using the absolute moment as in (A.9)
and (A.11) to obtain the convergence in probability, we compute the mean and variance and use
Chebyshev’s inequality to obtain the same result. The modifications are needed because when
the kernel functions are continuous and piecewise smooth, we have ) °, |\,| < co. In contrast,
for the rectangular kernel, we have only 3%, A, < 0o and Y%, A? < 0.

Lemma 3 As (b1, ba,b3) — 0, we have
(a) M1 = 1-— b1b2b361 “+ o0 (blbgbg) y (b) Ho = b1b2b362 +o0 (blbgbg) .
Proofs are given in the supplementary appendix.

Lemma 4 As (b1,b2,b3) — 0, we have
(a) E (vi1 — vi2033 v21) = 1 — bibabger — (g — 1) bibabsea + 0 (bibobs)
(b) E (v11 — 012055 021) " = 1 = 2b1bobs (c1 + (9 — 2) ¢2) + 0 (bibabs) ,
(C) E [(1)11 — 1)121)2_21’1)21) — 1]2 = 2()1[)21)302 +o (b1b2b3) .

Proof of Lemma 4

This is a direct application of Lemma 3 in Sun (2010).

Proof of Theorem 6

Taking a Taylor expansion, we have
P{gFw (9,b) < 2}
= EGg (Z (Ull - Ulgvilvgl))
1
= Gg (Z) + G; (Z) zFE [(UH — 1)121)2_211)21) - 1] + §Gg (z) 2’2E [(1)11 — 1)121)2_211)21) — 1]2
1
+3E[G7(2) = G5 (2)] 22 [(vn1 — vizvgg'vm) — 1]

where Z is between z and z (011 — 111215211)21) . Using Lemma 4, we have

P{gFw(g,b) < 2}

=Gy(2)— Gy (2) 2 [b1b2b3c1 + (g — 1) bibabsca] + G (2) 2°brbabsca + o (b1babs)
=Gy (2)+ [G’( 22cy — Gy (2) z(c1+ (9 — 1) c2)] bibabs + o (b1babs)
=Gy (2) + A(2) bibabz + 0 (b1b2bs) .
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Proof of Theorem 7

Using Lemma 3, we have

1

= e (1+o0(1)), (A.13)
p(D—g+1) 1

— bibybs) . Al4

D 1—|—b1b2b3[c1—|—(g—1)c2]+0(123) (A-14)

It now follows from (A.14) and Theorem 6 that

P{M(DZ)MFOO (9,b) §z}

= P{gFx(9,b) < gz [1 4 bibabs (c1 + (g — 1) c2)]} + 0 (b1b2bs)

= Gyg (g2 [1 + bibobs (c1 + (9 — 1) e2)])

+ A(gz [1 4 bibabs (c1 + (g — 1) ¢2)]) bibabs + o (bibabs)

=Gy (92) + G} (92) gz[c1 + (g — 1) co] bibabs + A (gz) bibabs + o (b1b2b3)
= Gy (92) + Gy (92) 922 cabibabs + o (brbabs) .

By definition,

2 2

XD—g+1 XD—g+1
P{F, p 1 <z2Y=P{2<gs—""9" \ _ FG g
{Fy.p-g+1 <2} {Xg—gzD—ngl} I\PD g1

2
_ / XD—g—l—l .
=Gy (92) + G (92)9zE <D—g—|—1 1)

L ., gz 2 2 2 1
h 9\ g —(D—g+1 L
+2G9(92)<D—g+1> (Xb-ge1 = (D =g +1))"+0 D—g+1

1 1
=Gy (g92) + BG;’(gz)g222 +o0 <D>

= Gy (92) + Gy (92) 9%2%cabibabs + o (bybabs)

where we have used (A.13). Hence

P{Ml(D—g+1)

o) Fy (9,0) < Z} = P{F;p—g+1 < z} + 0(b1b2b3) .
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Table 1: RMSE/Estimand with J,7 and J2X — DGP1

A 6

00 03 06 09 00 03 06 0.9

T=15, n=49
0.0 0.10 020 0.28 0.46 042 021 0.25 0.43
0.3 Jur 0.17 0.34 046 0.67 Jnr 0.14 0.33 0.43 0.60
0.6 | (dn,dr)pa | 0.23 043 0.56 0.72 (df,d5)p, | 017 041 0.53 0.71
0.9 0.36 055 0.67 0.84 0.31 053 0.65 0.83
0.0 0.15 0.25 0.32 0.40 1.00 0.36 0.36 0.36
0.3 Jnr 024 040 052 0.71 Jnr 0.20 0.31 041 0.53
0.6 | (dn,dr)re | 0.32 051 0.65 0.69 (dh, d%)re | 020 042  0.52 0.64
0.9 041 0.60 0.72 0.84 0.20 0.57 0.63 0.81
0.0 0.47 047 048 047 0.36 0.36 0.36 0.36
0.3 JPK 0.55 0.55 0.54 0.55 JPK 0.56 0.56 0.55 0.56
0.6 (dR2¥) 0.69 0.69 0.69 0.69 (d2%) 0.71 071 0.71 0.71
0.9 0.88 0.88 0.88 0.88 0.88 0.89 0.89 0.89

T=50, n=49
0.0 0.06 0.13 0.19 0.40 042 0.12 0.18 0.39
0.3 Jur 0.11 025 0.34 0.57 Jnr 0.13 024 0.32 0.51
0.6 | (dn,dr)pa | 015 0.35 0.50 0.63 (df,d5)pa | 0.14  0.31  0.40 0.58
0.9 0.27 049 059 0.81 021 044 057 0.75
0.0 0.08 0.16 0.19 021 1.00 020 0.20 0.20
0.3 Jnt 0.15 0.28 0.41 0.58 Jur 0.20 0.26 0.31 0.33
0.6 | (dn,dr)re | 021 044 0.70 0.57 (df,d5)re | 020 0.32  0.39 0.47
0.9 0.37 0.61 0.69 0.79 0.20 048 0.57 0.69
0.0 028 028 028 0.28 020 020 0.20 0.20
0.3 JbK 0.40 0.40 0.40 0.40 JPK 0.38  0.37 0.37 0.38
0.6 (dR¥) 0.53 0.54 0.53 0.54 (dP%) 0.51 052 0.51 0.52
0.9 0.77 0.77 077 0.77 0.77 0.77  0.77 0.77

T=15, n=196
0.0 0.05 0.13 0.19 0.30 043 020 0.21 0.27
0.3 Jnr 0.09 025 035 0.55 Jnr 0.07 024 0.32 0.46
0.6 | (dn,dr)pa | 0.14 032 043 0.57 (df,d5)pa | 012 0.30 0.39 0.56
0.9 0.30 043 053 0.71 0.28 042 051 0.69
0.0 0.08 0.17 0.23 0.34 1.00 0.36 0.36 0.36
0.3 Jnr 0.14 0.28 0.44 0.69 Jnr 0.10 0.26 0.31 0.44
0.6 | (dn,dr)re | 019 041 057 0.65 (df,d5)re | 010 0.31  0.39 0.54
0.9 024 045 0.58 0.75 0.10 0.36  0.50 0.67
0.0 0.46 047 046 047 0.36 0.36 0.36 0.36
0.3 JbK 0.54 0.57 0.55 0.55 JbK 0.55 0.56 0.56 0.56
0.6 (dR™) 0.69 0.69 0.69 0.69 (dR5) 0.71  0.71 0.71 0.71
0.9 0.88 0.88 0.88 0.88 0.89 0.89 0.89 0.89

The subscripts ‘PA’ and ‘RE’ denote the Parzen and rectangular kernels, respectively. Left
and right panels are based on data-driven bandwidths and infeasible bandwidths, respectively.
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Table 2: Empirical Coverage Probabilities of Nominal 95% CIs Constructed
Using Alternative Covariance Estimators - DGP2
A
0.0 0.3 0.6 0.9 0.0 0.3 0.6 0.9 0.0 0.3 0.6 0.9
T=15, n=49
0.0 94.4 93,5 91.7 86.8 95.3 95.2 95.0 93.8 94.2 94.1 92.6 91.7
0.3 | PHAC | 92.7 915 90.1 85.1 DK 93.5 93.3 935 923 | PHAC | 92.7 922 91.3 90.1
06 | (PAJF) | 89.1 888 855 798 | (PAJF) | 885 879 888 88.0| (REJF) | 8.8 89.8 88.7 87.6
0.9 86.5 85.4 82.1 76.1 80.2 81.2 81.0 79.9 86.0 85.1 85.4 80.0
0.0 94.4 935 91.1 86.3 94.1 924 84.5 54.0 94.2 93.8 92,5 88.7
0.3 | PHAC,. | 925 91.2 89.3 84.3 CCE | 940 918 849 535 | PHAC. | 92.1 91.5 90.5 86.7
0.6 | (PAJF) | 88.6 88.0 84.7 81.0 ) 93.5 91.8 839 539 | (RE,/F) | 88.6 89.1 87.4 84.2
0.9 85.5 84.1 81.1 81.0 93.3 90.8 839 543 85.0 84.5 83.3 80.4
0.0 94.1 93.3 90.7 84.6 95.0 94.0 91.8 86.1 93.9 93,5 91.1 88.2
0.3 | PHAC | 92.3 912 89.2 822 DK™ 94.7 939 916 85.0 | PHAC | 92.1 91.2 89.8 859
06 | (PAJI) | 834 879 833 728 | (PAF) | 94.6 938 91.7 849 | (REJI) | 88.2 882 84.2 749
0.9 85.2 83.7 779 644 94.7 932 91.2 85.1 82.6 81.9 75.0 63.0
T=50, n=49
0.0 94.7 94.0 92.8 88.2 95.2 952 949 943 94.6 94.5 93.7 939
0.3 | PHAC | 93.6 93.1 919 879 DK 94.0 94.1 944 93.7 | PHAC | 940 93.8 93.3 93.5
06 | (PAJF) | 924 915 89.6 849 | (PAF) | 91.3 91.7 91.2 91.1 | (RE,F) | 924 924 91.6 92.2
0.9 88.9 88.6 859 76.0 84.9 85.2 85.1 84.7 88.6 88.8 89.0 85.1
0.0 94.7 93.8 92.1 87.1 94.2 92.0 84.7 543 94.5 943 932 91.2
0.3 | PHAC. | 93.3 92.6 90.8 86.3 CCE | 939 923 84.6 54.6 | PHAC. | 934 93.0 91.2 89.1
0.6 | (PAJF) | 919 912 885 864 94.1 924 844 542 | (REJF) | 924 92.0 90.3 89.3
0.9 88.1 87.6 859 799 93.2 924 84.8 533 88.1 88.2 87.5 81.7
0.0 94.6 939 925 874 95.5 94.1 924 84.8 94.5 94.3 93.2 93.0
0.3 | PHAC | 93.5 929 914 86.7 DK~ 95.0 94.2 922 86.6 | PHAC | 93.7 93.3 919 914
06 | (PAI) | 921 912 879 80.7 | (PAF) | 950 94.1 921 86.5| (REJI) | 91.9 91.7 88.7 83.5
0.9 87.9 87.2 80.5 68.9 93.8 93.6 92.1 85.2 86.4 859 772 T1.8
T=15, n=196
0.0 93.9 93,5 933 909 94.5 942 95.0 94.8 93.7 93.7 94.0 928
0.3 | PHAC | 925 93.1 91.7 883 DK 929 939 939 926 | PHAC | 925 93.6 924 913
0.6 | (PAJF) | 91.0 90.2 88.7 86.2 | (PAF) | 8.7 89.0 885 88.6 | (REJF) | 90.6 90.6 90.3 91.0
0.9 88.3 89.3 87.3 819 80.0 81.4 80.4 79.3 87.8 883 87.9 83.8
0.0 94.0 93.1 929 90.1 944 93.0 86.9 51.0 93.9 93.6 93.8 091.8
0.3 | PHAC. | 924 925 910 87.0| CCE | 946 929 864 50.6 | PHAC. | 920 928 91.9 89.2
0.6 | (PAJF) | 90.2 89.0 874 86.2 94.3 932 86.0 51.4 | (RE,F) | 90.1 90.0 89.7 88.7
0.9 87.9 882 85.8 87.2 94.5 93.2 86.0 50.6 87.0 87.8 87.2 85.6
0.0 93.9 93.3 929 89.4 94.2 93.0 94.0 91.2 93.6 93.5 934 90.5
0.3 | PHAC | 924 93.0 91.2 86.2 DK~ 94.6 94.0 939 91.2 | PHAC | 92.3 933 915 87.1
06 | (PAI) | 90.8 89.8 873 79.7 | (PAF) | 945 944 933 90.7 | (REJI) | 90.0 89.9 &87.6 78.6
0.9 88.1 88.6 84.8 71.6 94.7 943 93.7 91.3 87.0 86.8 81.9 66.7

‘PA” and ‘RE’ denote the Parzen and rectangular kernels respectively.

‘F” and ‘I’ denote fixed-smoothing and increasing-smoothing respectively.

The superscript ‘e’ denotes measurement errors.
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Table 3: Empirical Coverage Probabilities of Nominal 95% Confidence
Regions Constructed with Different Number of Restrictions - DGP2

g=1 g=3

A 0 0
00 03 06 09 00 03 06 09
0.0 [93.6 927 909 86.5 928 912 87.8 781
PHAC | 0.3 | 91.8 91.1 88.9 84.0 90.4 88.0 84.4 74.0
(PAJF) | 0.6 | 89.2 883 853 79.0 85.4 825 T7.5 66.6
09 | 87.3 864 822 744 80.2 77.1 714 586
0.0 [ 933 923 90.1 &84.1 923 902 849 70.3
PHAC | 0.3 | 91.5 90.7 88.0 81.0 89.7 86.7 81.1 63.0
(PAJI) | 0.6 | 88.4 87.6 83.0 719 83.4 79.7 70.0 44.5
09 | 8.1 84.7 774 632 764 715 57.3 285
0.0 935 932 92.0 90.5 92.7 920 90.2 86.8
PHAC | 0.3 | 91.8 91.1 89.8 89.2 90.2 88.8 86.8 83.5
(RE,F) | 0.6 | 89.5 89.4 88.6 86.6 86.2 85.0 854 87.8
0.9 | 86.7 86.1 85.7 80.6 79.3 78.0 81.7 84.1
0.0 | 93.1 927 909 86.6 91.7 902 859 743
PHAC | 0.3 | 91.2 905 88.3 84.0 88.4 86.5 81.5 66.3
(REJI) | 0.6 | 88.0 87.9 84.6 73.0 81.0 785 69.4 51.2
09| 8.5 821 751 625 68.0 64.3 51.6 534

See notes to Table 2.
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Figure 3: Size-adjusted power of the PHAC and DK with n =49,T = 15.
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