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Abstract
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1 Introduction

This paper studies robust inference for linear panel models with �xed e¤ects in the presence of
heteroskedasticity and spatiotemporal dependence of unknown forms. As economic data is poten-
tially heterogeneous and correlated in unknown ways across individuals and time, robust inference
in the panel setting is an important issue. See, for example, Betrand, Du�o and Mullainathan
(2004) and Petersen (2009). The main interest in this problem lies in (i) how to construct co-
variance estimators that take the correlation structure into account; (ii) how to approximate the
sampling distribution of the associated test statistic; and (iii) how to select smoothing parameters
in �nite samples.

Regarding covariance estimation, we propose a bivariate kernel estimator. In order to utilize
the kernel in the spatial dimension, we need a priori knowledge about the dependence structure.
It is often assumed that the covariance of two random variables at locations i and j is a decreasing
function of an observable distance measure dij between them. The idea of using a distance
measure to characterize spatial dependence is common in the spatial econometrics literature. See,
for example, Conley (1999), Kelejian and Prucha (2007), Bester, Conley, Hansen and Vogelsang
(2011, BCHV hereafter) and Kim and Sun (2011).

There are several robust covariance estimators with correlated panel data. Arellano (1987)
proposes the clustered covariance estimator (CCE) by extending the White standard error (White,
1980) to account for serial correlation. Wooldridge (2003) provides a concise review on the CCE.
Driscoll and Kraay (1998, DK hereafter) suggest a di¤erent approach that uses a time series HAC
estimator (e.g. Newey and West, 1987) applied to cross sectional averages of moment conditions.
Gonçalves (2011) examines the properties of this estimator in linear panel models with �xed
e¤ects. Another approach considered in this paper is an extension of the spatial HAC estimator
applied to time series averages of moment conditions, which we name the DK� estimator. This is
symmetric to the original DK estimator. Conley (1999) is among the �rst to propose the spatial
HAC estimator. Kelejian and Prucha (2007) argue that it can be extended to the panel setting
with �xed T .

Our estimator includes these existing estimators as special cases, reducing to each of them
with certain bandwidth choice. We refer to this as �exibility. If the sequence of the bandwidth
in the spatial dimension, dn; increases at a fast enough rate with the cross sectional sample
size n, then our estimator with the rectangular kernel is asymptotically equivalent to the DK
estimator. Similarly, if the sequence of the bandwidth in the time dimension, dT ; increases fast
enough relative to the time series sample size T , then our estimator with the rectangular kernel is
asymptotically equivalent to the DK� estimator. On the other hand, if dn is assumed to approach
zero, our estimator reduces to a generalized CCE de�ned later in the paper.

For distributional approximations, we consider two types of asymptotics: the increasing-
smoothing asymptotics and the �xed-smoothing asymptotics. The di¤erence lies in whether the
level of smoothing increases or stays �xed as the sample size increases. Let `i;n denote the number
of individuals whose distance from individual i is less than or equal to dn and `n be the average of
`i;n across i. We also de�ne `t;T and `T in the same way along the time dimension. If dn; dT !1
as (n; T )!1 but slowly so that nT= (`n`T )!1, then the level of smoothing increases with the
sample size. Under this increasing-smoothing asymptotics, our covariance estimator is consistent
and the limiting distribution of the associated Wald statistic is a �2 distribution.

The alternative estimators are also consistent under the increasing-smoothing asymptotics,
but each estimator has an important limitation in practice. The performance of the CCE heavily
depends on spatial correlation. While this estimator is quite e¢ cient in the presence of spatial
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independence, even moderate spatial correlation may lead to substantial bias and hence size dis-
tortion in statistical testing. Though spatial independence is sometimes assumed for convenience,
it may not hold due to, for example, spill-over e¤ects, competition and so on.1 Collapsing spatial
dependence by the cross sectional averaging, the DK estimator is robust to arbitrary forms of
spatial dependence when the time series dimension is large. However, when spatial dependence
decreases with some distance measure, this estimator is not e¢ cient because it does not down-
weigh or truncate the covariance between spatially remote units. Similarly, the DK� estimator is
not e¢ cient, as it does not employ downweighing or truncation in the time domain.

The proposed estimator improves upon the above estimators by employing a bivariate kernel.
It does not require zero spatial correlation for consistency in contrast to the CCE and more
e¢ cient than the DK and DK� estimators in general. More speci�cally, if individuals are located
on a 2-dimensional lattice and the Bartlett kernel is used, our estimator is more e¢ cient than the
DK estimator if T = o(n3=2) and than the DK� estimator if n = o(T 4). For second-order kernels,
the conditions become much weaker, i.e. T = o(n5=2) and n = o(T 6), respectively.

If we embed the bandwidth parameters dn and dT in a sequence such that nT= (`n`T ) holds
�xed as n and T increase, then the level of smoothing is �xed with the sample size. Under this
�xed-smoothing asymptotics, the Wald statistic is asymptotically equivalent to a nonstandard
but pivotal distribution. The �xed-smoothing asymptotic approximation is �rst suggested by
Kiefer, Vogelsang and Bunzel (2000) and Kiefer and Vogelsang (2002a, 2002b, 2005) in the time
series context. This is usually referred to as the ��xed-b�asymptotics where b denotes the ratio
of the bandwidth parameter dT to the sample size T . They show by simulation that the �xed-b
asymptotic approximation is more accurate than the �2 approximation. Jansson (2004), Sun,
Phillips and Jin (2008), and Sun and Phillips (2009) provide theoretical explanations in di¤erent
time series settings.

We adopt the �xed-smoothing asymptotics in the panel setting with our covariance estimator.
Based on a CLT, we �rst show that, under the �xed smoothing asymptotics, the Wald statistic
is asymptotically equivalent in distribution to a quadratic form of a standard normal vector with
an independent and random weighting matrix. Using a CLT is an important departure from the
previous literature in which the �xed-smoothing asymptotics relies on an FCLT. The CLT holds
under mild conditions, so our asymptotic results are applicable to a wide range of panel data
processes. This is one of the theoretical contributions of our paper.

Using asymptotic expansions, we show that the deviation of the asymptotically equivalent
distribution from the �2 distribution depends on the smoothing parameters, the kernel function,
and the number of restrictions being tested. We can account for the estimation uncertainty
of the parameter estimation and the randomness of the covariance estimator under the �xed-
smoothing asymptotics. To conduct hypothesis testing and construct con�dence intervals, we can
simulate the asymptotically equivalent distribution. The asymptotically equivalent distribution
is nonstandard but a function of nT i:i:d: standard normal vectors, so it is easy to simulate.
We also extend Sun (2010) to establish the validity of an F -approximation to the distribution.
We show that the asymptotically equivalent distribution of the scaled Wald statistic with some
correction factor becomes approximately F distributed. This F -approximation greatly facilitates

1Recently, Bester, Conley and Hansen (2011) present consistency results for the CCE with spatially dependent
data by constructing clusters to be asymptotically independent. In this paper, we consider a rather traditional
panel CCE for which the cluster is de�ned based on each individual so that the asymptotic independence condition
is not valid. Cameron, Gelbach, and Miller (2011) address this problem by clustering on the time and spatial
dimensions simultaneously. While this allows for both the serial and spatial correlations, observations on di¤erent
individuals in di¤erent time are assumed to be uncorrelated.
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the testing procedure and yields accurate critical values when the bandwidths are small.
Several testing methods using the �xed-smoothing asymptotics are recently proposed in the

spatial or panel setting. BCHV extend the �xed-b asymptotics to the spatial context where
dependence is indexed in more than one dimension, and propose an i:i:d: bootstrap method to
obtain the critical values. Vogelsang (2012) develops a �xed-b asymptotic theory for statistics
based on the generalized CCE and the DK estimator. Besides the kernel methods, Hansen (2007)
and Bester, Conley and Hansen (2011) apply the �xed-smoothing asymptotics to the testing
procedure with the CCE. They assume the number of clusters to be �xed and the number of
observations per cluster to increase with the sample size. Ibragimov and Müller (2010) consider
the �xed-smoothing asymptotics for the Fama and MacBeth (1973) type procedure by �xing
the number of groups. Sun and Kim (2013) consider a testing procedure using a series-type
covariance estimator in the spatial setting. They show that, when the number of basis functions
is held �xed, the scaled Wald statistic with the series covariance estimator is asymptotically
equivalent in distribution to an F distribution. Our F -approximation is motivated from the
series method of Sun and Kim (2012). While for the other �non-kernel�methods critical values
are readily available from the standard t or F distribution, critical values for the kernel methods
by BCHV and Vogelsang (2012) have to be simulated. From this point of view, this paper �lls the
gap in the literature, providing an F -approximation for the kernel method in the panel setting.

In this paper, we select the bandwidth parameters to minimize an upper bound of an approxi-
mate mean square error (called AMSE�) of the covariance estimator. The AMSE� criterion has a
minimax �avor. It is simple to implement and makes the bias and variance tradeo¤ transparent.
It is interesting to note that the level of persistence in each dimension a¤ects both d?T and d

?
n, the

optimal bandwidth parameters in the time and spatial dimensions respectively, but in opposite
directions. We suggest a parametric plug-in procedure for practical implementation using the
spatiotemporal models in Anselin (2001).

Our bandwidth selection procedure does not apply directly to the rectangular kernel estimator
and, more broadly, �at-top kernel estimators. However, it is interesting to consider �at-top kernel
estimators because they are higher-order accurate (Politis, 2011). This is particularly important
in our setting because the rectangular-kernel-based covariance estimator is more �exible in that it
can approach each of the existing estimators with appropriate bandwidth choice. We modify our
bandwidth selection procedure to be applicable to �at-top kernels which include the rectangular
kernel as a special case. The rectangular kernel, combined with our modi�ed bandwidth selection
procedure, delivers a covariance estimator with better asymptotic properties than the covariance
estimators based on second-order kernels.

The �exibility of our covariance estimator and the data-driven bandwidth selection procedure
make our estimator adaptive to the dependence structure in the data. That is, in large samples,
our estimator reduces to the estimator that is designed to cope with a particular dependence
structure. This adaptiveness is the salient feature of our method. As it practically automates the
selection of covariance estimators, our estimation procedure can be safely used in the presence
of very general forms of spatiotemporal dependence. This is con�rmed by our Monte Carlo
simulation study.

The remainder of the paper is as follows. Section 2 introduces the panel model, the covariance
estimator and hypothesis testing we consider. In Section 3, we examine the properties of our
estimator and the associated test statistic under the increasing-smoothing asymptotics. Section
4 develops an optimal bandwidth selection procedure. Section 5 examines the properties of the
existing estimators. The �exibility and adaptiveness of our estimator are illustrated in Section 6.
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In Section 7, we develop the asymptotic theory for our covariance estimator and the associated test
statistic under the �xed-smoothing asymptotics. We also prove the validity of an F -approximation
to the Wald statistic. Section 8 reports simulation evidence. The last section concludes. Proofs
are given in the appendix at the end of the paper or in a supplementary appendix. All limits for
(n; T )!1 in the paper are taken as joint limits.

2 Panel model, covariance estimator and hypothesis testing

In this paper, we consider a linear panel regression model with �xed e¤ects given by

Yit = X 0
it�0 + �i + ft + uit (1)

where �i and ft denote individual and time e¤ects respectively. Either �i or ft has a nonzero
mean so there is no constant regressor in Xit: We allow the p covariates in Xit to be correlated
with �i; fftg and fuitg :We assume that there are dz � p instrumental variables Zit which satisfy
the conditions in Assumption 1 below.

When Zit is correlated with �i and ft; we may use the �xed e¤ects 2SLS estimator. Let �Zi =
T�1

PT
t=1 Zit, �Zt = n�1

Pn
i=1 Zit and �Z = (nT )

�1Pn
i=1

PT
t=1 Zit: De�ne ~Zit = Zit� �Zi� �Zt+ �Z

and apply the same de�nition to Xit and other variables. Then, the �xed e¤ects 2SLS estimator
�̂ of � is given by

�̂ =

0@ nX
i=1

TX
t=1

~Xit ~Z
0
it

! 
nX
i=1

TX
t=1

~Zit ~Z
0
it

!�1 nX
i=1

TX
t=1

~Zit ~X
0
it

1A�1

�
 

nX
i=1

TX
t=1

~Xit ~Z
0
it

! 
nX
i=1

TX
t=1

~Zit ~Z
0
it

!�1 nX
i=1

TX
t=1

~ZitYit: (2)

When the underlying probability limits are well de�ned, we have, under some mild conditions:

p
nT
�
�̂ � �0

�
=

 
1

nT

nX
i=1

TX
t=1

~Xit ~Z
0
itQ

�1
ZZQZX

!�1
1p
nT

nX
i=1

TX
t=1

QXZQ
�1
ZZ
~Zituit + op (1) ;

whereQZX = plim(n;T )!1 (nT )
�1P

i;t
~Zit ~X

0
it, QZZ = plim(n;T )!1 (nT )

�1P
i;t
~Zit ~Z

0
it andQXZ =

Q0ZX . So it does not matter in the �rst order asymptotics whether we use Zit as the instruments
or their linear combinations QXZQ

�1
ZZZit as the instruments. While the number of the original

instruments Zit may be larger than the number of endogenous covariates Xit, the numbers of the
transformed instruments QXZQ

�1
ZZZit and Xit are exactly the same by construction. For the sake

of notational simplicity and clarity, we will assume from now on that the number of instruments
is the same as the number of endogenous covariates, i.e. p = dz. For the asymptotic properties
we are interested in here, we do so without loss of generality.2 With this assumption, we have

p
nT
�
�̂ � �0

�
= Q�1

1p
nT

nX
i=1

TX
t=1

~Zituit + op (1)

where we have written Q := QZX :

2We do not consider the weak IV or many (weak) IV asymptotics here.
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De�ne �Zit = Zit � �zi � �zt + �z where �zi; �zt and �z satisfy plimT!1 T�1
P
t Zit � �zi =

0;plimn!1 n�1
P
i Zit � �zt = 0; and plim(n;T )!1 (nT )

�1P
i;t Zit � �z = 0. While ~Zit is the

sample demeaned version of Zit; �Zit can be regarded as its population demeaned analogue. If
Zit = Zoit + �zi + fzt for some stationary and weakly dependent spatiotemporal process Zoit;
spatial process �zi and time series fzt such that plimT!1 T�1

P
t Z

o
it = plimn!1 n�1

P
i Z

o
it =

plim(n;T )!1 (nT )
�1P

i;t Z
o
it = EZoit and plimn!1 n�1

Pn
i=1 �zi and plimT!1 T�1

PT
t=1 fzt ex-

ist, then �Zit = Zoit � EZoit, a weakly dependent spatiotemporal process with mean zero.
Let

JnT = var

 
(nT )�1=2

nX
i=1

TX
t=1

�Zituit

!
:

We make some assumptions on the instruments.

Assumption 1 (i) There is a nonsingular matrix Q such that Q = plim(n;T )!1 (nT )
�1P

i;t
~Zit ~X

0
it:

(ii) 1p
nT

Pn
i=1

PT
t=1

~Zituit =
1p
nT

Pn
i=1

PT
t=1

�Zituit + op (1) :

(iii) J�1=2nT
1p
nT

Pn
i=1

PT
t=1

�Zituit !d N(0; Ip):

Assumption 1(i) and (iii) hold by LLN and CLT respectively. Assumption 1(iii) implicitly
assumes that for each individual there is no contemporaneous correlation between Zit and uit:
This is a minimal condition that valid instruments have to satisfy.

Assumption 1(ii) requires that �nite sample demeaning does not a¤ect the �rst order asymp-
totic distribution. Since

~Zit = �Zit �
�
�Zi � �zi

�
�
�
�Zt � �zt

�
+
�
�Z � �z

�
;

Assumption 1(ii) is equivalent to

1p
nT

nX
i=1

TX
t=1

�
�Zi � �zi

�
uit = op (1) ; (3)

1p
nT

nX
i=1

TX
t=1

�
�Zt � �zt

�
uit = op (1) ; (4)

1p
nT

nX
i=1

TX
t=1

�
�Z � �z

�
uit = op (1) : (5)

A su¢ cient condition for the above to hold is that each left hand side (lhs) has mean and variance
approaching zero. We focus on the mean here. For the lhs of (3), we have

E
1p
nT

nX
i=1

TX
t=1

�
�Zi � �zi

�
uit =

1p
nT

nX
i=1

1

T

TX
t=1

TX
s=1

E (Zit � �zi)uis

=

r
n

T

1

n

nX
i=1

1

T

TX
t=1

TX
s=1

E (Zit � �zi)uis :=
r
n

T

1

n

nX
i=1

�i;

where n�1
Pn
i=1�i is the cross sectional average of the time series long run covariance

3 be-
tween Zit � �zi and uit: Su¢ cient conditions for the mean to diminish are (i) n=T ! 0 and

3Strictly speaking, for each individual i; the long run covariance between Zit � �zi and uit is limT!1�i so �i
should be viewed as a �nite sample version of the long run covariance.
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n�1Pn
i=1�i

 � C� < 1 some constant C� and all n or (ii) n=T � C < 1 for some constant
C and all (n; T ) and

n�1Pn
i=1�i

! 0: For the lhs of (4), we have

E
1p
nT

nX
i=1

TX
t=1

�
�Zt � �zt

�
uit =

r
T

n

1

T

TX
t=1

�t; (6)

where �t = n�1
Pn
i=1

Pn
j=1E [(Zit � �zt)ujt] can be regarded as the cross sectional �long run�

covariance between Zit � �zt and uit: For the mean in (6) to diminish, we require (i) T=n ! 0
and T�1

PT
t=1�t � C� < 1 for some �nite constant C� and all T or (ii) T=n � C < 1 for

some constant C and all (n; T ) and T�1
PT
t=1�t ! 0: Finally, for the lhs of (5), we have

E
1p
nT

nX
i=1

TX
t=1

�
�Z � �z

�
uit =

1p
nT

var

 
1p
nT

nX
i=1

TX
t=1

Zituit

!
:

This indeed approaches zero under some moment and mixing conditions.
To sum up, a set of su¢ cient conditions for Assumption 1(ii) is:

(a) the cross sectional average of the time series long run covariance between Zit � �zi and uit
vanishes;

(b) the time series average of the cross sectional �long run�covariance between Zit � �zt and uit
vanishes;

(c) there are enough moment and mixing conditions.

When Zit is strongly exogenous so that cov (Zit; ujs) = 0 for all i; t; j; s; conditions (a) and
(b) are satis�ed automatically. When Zit is sequentially exogenous in the time dimension and
strictly exogenous in the cross sectional dimension so that cov (Zit; ujs) = 0 for all i; j and t � s;
condition (b) holds but condition (a) does not. In this case, if n=T ! 0; then Assumption 1(ii)
still holds. So our assumption can accommodate some dynamic models.

When Assumption 1(ii) does not hold, there will be a �rst order bias in �̂; arising from the
incidental parameters problem �rst considered by Neyman and Scott (1948). That is,

p
nT (�̂��0)

will not be centered at zero even in large samples. In this case, a bias correction procedure will
be needed for con�dence interval construction and hypothesis testing. In the panel setting with
large n and T; there are bias correction procedures that do not change the asymptotic variance
of �̂ under some conditions. See for example, Arellano and Hahn (2006) and references therein.
For this reason, we will not pursue bias correction here and focus only on variance estimation.

Under Assumption 1, the asymptotic distribution of �̂ is�
Q�1JnTQ

0�1��1=2pnT ��̂ � �0� d! N (0; Ip) as (n; T )!1:

To make inference on �0, we have to estimate unknown quantities in the asymptotic variance of
�̂. Since Q can be consistently estimated by its sample analog Q̂nT := (nT )�1

P
i;t
~Zit ~X

0
it; our

central interest is on JnT . Let V(i;t) = �Zituit, then JnT can be rewritten as

JnT =
1

nT

nX
i;j=1

TX
t;s=1

E
h
V(i;t)V

0
(j;s)

i
:
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We propose a bivariate kernel covariance estimator given by4

ĴnT =
1

nT

nX
i;j=1

TX
t;s=1

K1

�
dij
dn

�
K2

�
dts
dT

�
V̂(i;t)V̂

0
(j;s); (7)

where V̂(i;t) = ~Zit( ~Yit � ~X 0
it�̂), K1 (�) and K2 (�) are real-valued kernel functions, and dij ; dts and

dn; dT denote the corresponding distance measures and bandwidth parameters. For simplicity,
we have used the product kernel K1 (�)K2(�) in the above covariance estimator. Whereas it is
natural to de�ne dts = jt� sj, what is used to measure dij di¤ers with applications. Geographic
distance is one of the most common measures, but other measures can also be considered, e.g.
transportation cost (Conley and Ligon, 2000) and similarity of input and output structure (Chen
and Conley, 2001; and Conley and Dupor, 2003).

Consider the null hypothesis H0 : R� = r0 and alternative hypothesis H1 : R� 6= r0 where R
is a g � p matrix and r0 is a g-vector. For hypothesis testing, we use the Wald statistic

WnT =
p
nT
�
R�̂ � r0

�0 �
RQ̂�1nT ĴnT Q̂

0�1
nT R

0
��1p

nT
�
R�̂ � r0

�
and its F -test version FnT = WnT =g: With some obvious modi�cation, a t test can also be
performed. Our results remain valid for nonlinear restrictions after linearization.

3 Increasing-smoothing asymptotics

3.1 Basic setting

There are nTp variables in
�
V(i;t); i = 1; :::; n and t = 1; :::; T

	
: Inspired by KP, we consider the

following linear array process to represent V(i;t). We assume that each element of V(i;t) responds

linearly to nTp common innovations f~"(c)(i;t); i = 1; :::; n; t = 1; :::; T; c = 1; :::; pg:

V(i;t) = ~R(i;t)~"; (8)

where

~R(i;t) =

26664
�
~r
(1)
(it;1;1); ~r

(1)
(it;2;1); : : : ; ~r

(1)
(it;n;T )

�
: : : 0

...
. . .

...

0 : : :
�
~r
(p)
(it;1;1); ~r

(p)
(it;2;1); : : : ; ~r

(p)
(it;n;T )

�
37775

is a p � nTp block diagonal matrix with unknown elements, and ~" = (~"(1)0; : : : ; ~"(p)0)0 in which
~"(c) = (~"

(c)
(1;1); : : : ; ~"

(c)
(n;1); ~"

(c)
(1;2); : : : ; ~"

(c)
(n;T ))

0: The block diagonal elements, ~r(c)(it;j;s); are implicitly

allowed to depend on n and T: We also de�ne ~R(c)(i;t) = (~r
(c)
(it;1;1); ~r

(c)
(it;2;1); : : : ; ~r

(c)
(it;n;T )): As in Kim

and Sun (2011), we assume

var(~"(c)) = �ccInT , cov(~"(c); ~"(d)) = �cdInT

4For notational economy, here we have abused the notation by using the same d to denote the distances along
the time and spatial dimensions. This should not cause any confusion.
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and
var (~") = �
 InT with � = (�cd) ;

where c; d = 1; : : : ; p and 
 denotes the Kronecker product. This type of linear array processes
allows for nonstationarity and unconditional heteroskedasticity of V(i;t) and includes many spa-
tiotemporal parametric models such as spatial dynamic models (Anselin, 2001) as special cases.
It also treats the temporal and spatial dependence in a symmetric way.

Let R(i;t) := ~R(i;t)
�
�1=2 
 InT

�
and " := ("1; : : : ; "l; : : : ; "nTp)0 =

�
��1=2 
 InT

�
~": Then,

V(i;t) = R(i;t)" and var (") = InTp: (9)

The matrix R(i;t) can be written more explicitly as

R(i;t) :=

26664
�
r
(1)
(i;t);1 : : : r

(1)
(i;t);nTp

�
...�

r
(p)
(i;t);1 : : : r

(p)
(i;t);nTp

�
37775

=

26664
�11

�
~r
(1)
(it;1;1) : : : ~r

(1)
(it;n;T )

�
::: �1p

�
~r
(1)
(it;1;1) : : : ~r

(1)
(it;n;T )

�
...

. . .
...

�p1
�
~r
(p)
(it;1;1) : : : ~r

(p)
(it;n;T )

�
: : : �pp

�
~r
(p)
(it;1;1) : : : ~r

(p)
(it;n;T )

�
37775

where �cd denotes the (c; d)-th element of �1=2: We also de�ne the c-th row vector of R(i;t) as

R
(c)
(i;t) =

�
r
(c)
(i;t);1; : : : ; r

(c)
(i;t);nTp

�
: We make the following assumption on "l.

Assumption I1 For all l = 1; : : : ; nTp; "l
i:i:d:� (0; 1) with E

�
"4l
�
� cE for some constant cE <

1:

For simplicity, we assume that "l is independent of "k for l 6= k. We can relax the independence
assumption to zero correlation which holds by construction but with more tedious calculations.

Under Assumption I1, the covariance matrix of V(i;t) and V(j;s) is given by

�(it;js) :=
�

(cd)
(it;js)

�
= E

h
V(i;t)V

0
(j;s)

i
= R(i;t)R

0
(j;s); (10)

where the (c; d)-th element of �(it;js) is denoted by 
(cd)
(it;js). Accordingly, JnT can be rewritten as

JnT =
1

nT

nX
i;j=1

TX
t;s=1

R(i;t)R
0
(j;s);

and the (c; d)-th element of JnT is

JnT (c; d) =
1

nT

nX
i;j=1

TX
t;s=1

R
(c)
(i;t)

�
R
(d)
(j;s)

�0
:

Assumption I2 For all l = 1; :::; nTp; c = 1; :::; p; and all (n; T );
Pn
i=1

PT
t=1

���r(c)(i;t);l��� < cR for
some constant cR, 0 < cR <1.

9



Assumption I3 There exist �nite positive constants qS ; qT ; cS and cT such that

(i)
1

nT

nX
i;j=1

TX
t;s=1

�(it;js) dqSij < cS and (ii)
1

nT

nX
i;j=1

TX
t;s=1

�(it;js) dqTts < cT ;

for all (n; T ) ; where kAk denotes the Euclidean norm of matrix A.

Assumptions I2 and I3 impose the conditions on the persistence of the process. If for all c
and d, j�cdj � c� for a constant c� > 0; then Assumption I2 holds if

Pn
i=1

PT
t=1 j~r

(c)
(it;j;s)j < cR=c�

for all n and T: Since j~r(c)(it;j;s)j can be regarded as the (absolute) change of V
(c)
(i;t) in response to

one unit change in one element of ~"(c); the summability condition requires that the aggregate
response to an innovation be �nite. Assumption I3 implies that �(it;js) decays to zero fast enough
as dij and dts increase so that the two summability conditions hold. These conditions hold if

lim sup
(n;T )!1

1

nT

nX
i;j=1

TX
t;s=1

jj ~R(c)(i;t)
�
~R
(d)
(j;s)

�0
jjdqSij <1; (11)

lim sup
(n;T )!1

1

nT

nX
i;j=1

TX
t;s=1

jj ~R(c)(i;t)
�
~R
(d)
(j;s)

�0
jjdqTts <1 (12)

for all c and d. (11) and (12) imply that as dij or dts increases, the corresponding two row

vectors ~R(c)(i;t) and
~R
(d)
(j;s) become nearly orthogonal. As the row vector represents the aggregate

response of a unit to all the innovations, this assumption implies that the responses of two units
become independent as they become spatially or temporally distant. Assumption I3 enables us
to truncate the sum of �(it;js) and downweigh the summand without incurring much bias.

As Assumption I3 implies, the key property of dij is to characterize the decaying pattern of the
spatial dependence. In addition, we assume that dij satis�es the properties of a distance measure
in a metric space: (i) dij � 0; (ii) dii = 0, (iii) dij = dji; and (iv) dij � dik + dkj : In practice,
nonetheless, the symmetry condition (iii) may not hold for some candidates of economic distance.
Conley and Ligon (2000), for example, notice that transportation costs among countries violate
this condition if tari¤ barriers are asymmetric. In such a case adjustment should be made.5 This
adjustment does not a¤ect the asymptotic properties of our estimator from the perspective of
the measurement error problem as we now explain.

Distance measures observable to empirical researchers usually contain measurement errors,
and the results in this paper can be generalized to the case when dij is error contaminated.
Following Kim and Sun (2011), we can show that our asymptotic results are still valid under the
following conditions: (i) the measurement error is independent of "l for all l; (ii) it is of order
o(dn) as dn increases; and (iii) the summability condition in Assumption I3(i) holds with the
error-contaminated distance measure. In this paper, however, we do not consider measurement
errors for simplicity.

Let

`i;n =
nX
j=1

1fdij � dng and `n = n�1
nX
i=1

`i;n:

5 In Conley and Ligon (2000), an asymmetric transportation cost is replaced by the minimum cost between two
countries.
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`i;n is the number of pseudo-neighbors that unit i has and `n is the average number of pseudo-
neighbors. Here we use the terminology �pseudo-neighbor� in order to di¤erentiate it from the
common usage of �neighbor�in spatial modeling. We maintain the following assumption on the
number of pseudo-neighbors.

Assumption I4 For all i = 1; : : : ; n; `i;n � c`n for some constant c:

Assumption I4 allows the units to be irregularly located but rules out the case that they are
concentrated only in some limited areas. To be symmetric, we also de�ne

`t;T =
TX
s=1

1fjt� sj � dT g and `T = T�1
TX
t=1

`t;T = 2dT + 1�
dT (dT + 1)

T
;

where �dT (dT + 1)=T is an adjustment coming from the points near the boundary.
In order to obtain the properties of the estimator in Theorem 1 below, it is important to

control for the boundary e¤ects. It is especially critical in the panel setting, because it faces
a larger boundary than the time series and spatial settings. The e¤ects of the units near the
boundary should become negligible as the sample size increases so that the asymptotic properties
depend only on the behavior of the units in the interior. We de�ne

En := fi : `i;n = `n + o(`n)g; n1 =
nX
i=1

1 fi 2 Eng , n2 = n� n1

ET := ft : `t;T = `T + o(`T )g; T1 =
nX
t=1

1 ft 2 ET g and T2 = T � T1:

En and ET represent the nonboundary sets in the spatial and time dimensions. n1 and T1 denote
the sizes of En and ET and n2 and T2 denote the sizes of the boundary sets. These de�nitions
imply that the size of a boundary set depends on choice of the bandwidth parameters. We can
mitigate the boundary e¤ects by raising dn and dT slowly as n and T increase to make the interior
large enough. Provided that n2=n and T2=T are o(1), the boundary e¤ects are asymptotically
negligible. When units are regularly spaced on a lattice in R2, n2=n = o(1) if `n=n = o (1).
T2=T = o(1) holds if `T =T = o(1).

3.2 Increasing-smoothing asymptotics

In this subsection, we investigate the asymptotic properties of ĴnT and the limiting distribution
of the Wald statistic WnT under the increasing-smoothing asymptotics.

Following the standard practice, we could de�ne the (normalized) MSE of ĴnT as

MSE

�
nT

`n`T
; ĴnT ; S

�
=

nT

`n`T
E
h
vec(ĴnT � JnT )0Svec(ĴnT � JnT )

i
;

where S is some p2 � p2 positive de�nite weighting matrix6 and vec(�) is the column by column
vectorization function. However, the mean and variance of ĴnT may not exist. For example,
when the model is exactly identi�ed, �̂ has no moment (Mariano, 1972). A direct implication

6The weighting matrix may depend on (n; T ) in which case we assume that SnT ! S as (n; T ) ! 1 and our
asymptotic results remain valid.
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is that the above MSE is not well de�ned for an exactly identi�ed model or an over-identi�ed
model with only one over-identifying condition.

To overcome this technical di¢ culty, we introduce the pseudo-estimator:

~JnT =
1

nT

nX
i;j=1

TX
t;s=1

K1

�
dij
dn

�
K2

�
dts
dT

�
V(i;t)V

0
(j;s);

which is identical to ĴnT but with sample statistics replaced by their population analogue. If
ĴnT � ~JnT = op(

p
`n`T = (nT )), then we can use MSE(nT= (`n`T ) ; ~JnT ; S) as an approximate

MSE for ĴnT : This is a Nagar type of approximation (Nagar, 1959). The approximation can be
justi�ed to some extent using the truncation argument of Andrews (1991). For any h > 0; let

MSEh

�
nT

`n`T
; ĴnT ; S

�
=

nT

`n`T
E
h
min

�
vec(ĴnT � JnT )0Svec(ĴnT � JnT ); h

�i
be the truncated MSE, which exists for any h by construction. Then under some conditions, it
can be shown that

lim
h!1

lim
(n;T )!1

MSEh

�
nT

`n`T
; ĴnT ; S

�
= lim
h!1

lim
(n;T )!1

MSEh

�
nT

`n`T
; ~JnT ; S

�
:

Andrews (1991) and Kim and Sun (2011) provide the conditions for the above to hold in the
time series and spatial settings, respectively. In this paper, we make the following high level
assumption, whose su¢ cient conditions are given in the supplementary appendix.

Assumption I5 ĴnT � ~JnT = op(
p
`n`T = (nT )):

Under this assumption, we employ MSE(nT= (`n`T ) ; ~JnT ; S) directly as the Nagar-type ap-
proximate MSE (AMSE) of ĴnT : We de�ne

AMSE

�
nT

`n`T
; ĴnT ; S

�
:=MSE

�
nT

`n`T
; ~JnT ; S

�
:

To compute MSE(nT= (`n`T ) ; ~JnT ; S), we introduce the assumption below.

Assumption I6 (i) `n=n = o (1) ; `T =T = o (1) ; dn ! 1 and dT ! 1 as (n; T ) ! 1; (ii) for
i 2 En and t 2 ET ;

lim
(n;T )!1

var

0@ 1p
`i;n`t;T

X
j:dij�dn

X
s:dts�dT

V(j;s)

1A = lim
(n;T )!1

JnT := J:

Assumption I6 states that the covariance matrix de�ned locally for each nonboundary unit
converges to the same limiting value of JnT . This assumption is related to covariance stationarity
but weaker. It is implied by covariance stationarity but it can hold even though covariance
stationarity is violated. Kim and Sun (2011) give an example of a nonstationary spatial process
that satis�es the above assumption. Stationarity seems to be a very strong assumption especially
in the spatial dimension because a spatial process can be nonstationary simply because each unit
has di¤erent numbers of neighbors. Assumption I6 is similar to the homogeneity assumption
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in Bester, Conley and Hansen (2011). They assume that the covariance matrix in each cluster
converges to the same limit.

The asymptotic bias of ~JnT is determined by the smoothness of the kernels at zero and the
decaying rates of the spatial and temporal dependence in terms of dij and dts. De�ne

K(a)
q = lim

x!0

1�Ka(x)

jxjq ; for a = 1; 2 and q 2 [0;1):

and let qa = maxfq : K(a)
q <1g be the Parzen characteristic exponent of Ka(x) and Kqa = K

(a)
qa .

The magnitude of qa re�ects the smoothness of Ka(x) at x = 0.

Assumption I7 (i) The kernel functions Ka (�) with a = 1; 2 satisfy Ka(0) = 1; jKa (x)j � 1;
Ka(x) = Ka(�x);Ka(x) = 0 for jxj � 1; and q1 � qS and q2 � qT . (ii) For all x1; x2 2 R there
is a constant, cL < 0, such that

jKa(x1)�Ka(x2)j � cL jx1 � x2j for a = 1; 2:

(iii) `�1i;n
Pn
j=1K

2
1

�
dij
dn

�
! �K1 for all i 2 En.

Examples of kernels which satisfy Assumptions I7(i) and (ii) are the Bartlett, Tukey-Hanning
and Parzen kernels. The quadratic spectral (QS) kernel does not satisfy Assumption I7(i) because
it does not truncate. We may generalize our results to include the QS kernel but this requires
much longer proofs. Assumption I7(iii) is more of an assumption on the distribution of the units.
When the observations are located on a 2-dimensional integer lattice and dij is the Euclidian
distance, we have

�K1 =
1

�

Z 1

�1

Z p
1�x2

�
p
1�x2

K2
1

�p
x2 + y2

�
dydx = 2

Z 1

0
rK2

1 (r)dr:

In �nite samples, we may use

�Kn = (n`n)�1
nX

i;j=1

K2
1

�
dij
dn

�
for �K1: Similarly we de�ne, for t 2 ET ;

`�1t;T

TX
s=1

K2
2

�
dts
dT

�
!
Z 1

0
K2
2 (r)dr := �K2:

Under Assumptions I7(i), we can de�ne

b
(q1)
1 = lim

(n;T )!1
b(q1)n ; where b(q1)n =

1

nT

nX
i;j=1

TX
t;s=1

�(it;js)d
q1
ij ;

b
(q2)
2 = lim

(n;T )!1
b
(q2)
T ; where b(q2)T =

1

nT

nX
i;j=1

TX
t;s=1

�(it;js)d
q2
ts :

Let tr denote the trace function and Kpp denote the p2 � p2 commutation matrix. Under the
assumptions above, we have the following theorem.
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Theorem 1 Suppose that Assumptions 1 and I1-I7 hold, dn; dT ! 1, n2 = o(n), T2 = o(T ),
`n = o(n) and `T = o(T ).

(a) lim(n;T )!1 nT
`n`T

var(vec( ~JnT )) = �K1 �K2(Ipp +Kpp) (J 
 J).

(b) If dq1n =d
q2
T ! cd as (n; T )!1, then lim(n;T )!1 dq1n (E ~JnT � JnT ) = �Kq1b

(q1)
1 � cdKq2b

(q2)
2 :

(c) If dq1n =d
q2
T ! cd and d

2q1
n `n`T = (nT )! � 2 (0;1), then

lim
(n;T )!1

AMSE

�
nT

`n`T
; ĴnT ; S

�
:= lim

(n;T )!1

nT

`n`T
E
h
vec( ~JnT � JnT )0Svec( ~JnT � JnT )

i
=
1

�
vec

�
Kq1b

(q1)
1 + cdKq2b

(q2)
2

�0
Svec

�
Kq1b

(q1)
1 + cdKq2b

(q2)
2

�
+ �K1 �K2tr (S(Ipp +Kpp)(J 
 J)) :

Theorem 1(a) and (b) show that the asymptotic variance and bias of ~JnT depend on the
choice of dn and dT . When we increase dn and/or dT ; the asymptotic bias decreases while the
asymptotic variance increases. The convergence rate of ~JnT is obtained by balancing the variance
and the squared bias of ~JnT . Accordingly, the rate of convergence of ~JnT is

p
`n`T = (nT ). Under

Assumption I5, the rate of convergence of ĴnT is also
p
`n`T = (nT ): If we set `n = O(d�nn ) and

`T = O(d�TT ) for some �n > 0 and �T = 1, then the rate of convergence under the rate condition
d2q1n `n`T = (nT )! � 2 (0;1) is (nT )�q1q2=(q1�T+2q1q2+q2�n).

As ĴnT is consistent, the limiting distribution of the Wald statistic is the �2g distribution.

This is a standard result. Under H0; WnT
d! �2g and FnT

d! �2g=g:

4 Optimal bandwidth selection procedure

This section presents optimal bandwidth choice that minimizes an upper bound of AMSE of ĴnT
and proposes a parametric plug-in procedure for practical implementation.

Let

B11 = vec(b
(q1)
1 )0Svec(b(q1)1 ); B22 = vec(b

(q2)
2 )0Svec(b(q2)2 ); B12 = vec(b

(q1)
1 )0Svec(b(q2)2 ):

Then up to smaller order terms the approximate MSE is

AMSE := AMSE
�
1; ĴnT ; S

�
=

 
K2
q1

B11

d2q1n
+ 2Kq1Kq2

B12
dq1n d

q2
T

+K2
q2

B22

d2q2T

!
+
`n`T
nT

�K1 �K2tr [S (Ipp +Kpp) (J 
 J)]

� 2
 
K2
q1

B11

d2q1n
+K2

q2

B22

d2q2T

!
+
`n`T
nT

�K1 �K2tr [S (Ipp +Kpp) (J 
 J)]

:= AMSE�:
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AMSE� can be regarded as AMSE in the worst case:

AMSE� = max
(b
(q1)
1 ;b

(q)
2 )2B

AMSE;

where

B =
n
(b
(q1)
1 ; b

(q2)
2 ) : vec(b(q1)1 )0Svec(b(q1)1 ) = B11; vec(b

(q2)
2 )0Svec(b(q2)2 ) = B22

o
:

Assuming B11 > 0 and B22 > 0; we select (d?n; d
?
T ) to minimize the dominating terms in AMSE

�:

(d?n; d
?
T ) = argmin

dn;dT

2

 
K2
q1

B11

d2q1n
+K2

q2

B22

d2q2T

!
+
`n`T
nT

�K1 �K2CV ; (13)

where CV = tr [S(Ipp +Kpp)(J 
 J)] :
Here we use the AMSE� instead of the AMSE as the criterion, as the latter is intractable.

The source of the problem is that B12 can be negative. In theory, we may choose dn and dT to
zero out the bias terms under some conditions. For example, consider the case B12 = �

p
B11B22.

This may occur when we are interested in a single component of �. In this case, bandwidth
parameters satisfying dq1n =d

q2
T = (Kq1=Kq2)

p
B11=B22 make the �rst order bias terms cancel out

with each other. Therefore, in theory, we need to select dn or dT to tradeo¤ the second-order
bias with the variance. However, this choice is infeasible in practice. As B11=B22 is unknown, we
have to estimate this ratio and the estimation error is of the same order as the �rst order bias.
So the �rst order bias cannot be reduced by an order of magnitude in practice. Our minimax
criterion avoids this problem. It is also simple to implement, as d?n and d

?
T depend only on two

bias terms but not on their interaction B12. It also e¤ectively controls for the AMSE in terms of
an upper bound, which is achievable under some data generating processes.

Under the boundary condition in the time dimension, we have `T =T ! 0, `T = 2dT + o(dT ).
In some cases, it is also possible to approximate `n as a function of dn. For example, if individuals
are located on a 2-dimensional lattice and the Euclidean distance is used, `n = �d2n would be
a reasonable approximation. With the speci�cation of `n = �nd

�n
n and `T = �Td

�T
T , we obtain

explicit formulae of d?n and d
?
T as follows:

d?n =

 
4q1K

2
q1B11

�n�n�T �K1 �K2CV
nT

! q2
q1�T+2q1q2+q2�n

 
q1K

2
q1

q2K2
q2

�TB11
�nB22

! �T
2(q1�T+2q1q2+q2�n)

; (14)

d?T =

 
4q2K

2
q2B22

�T�n�T �K1 �K2CV
nT

! q1
q1�T+2q1q2+q2�n

 
q2K

2
q2

q1K2
q1

�nB22
�TB11

! �n
2(q1�T+2q1q2+q2�n)

: (15)

The optimal bandwidth formulae in (14) and (15) show that the degree of persistence in one
dimension a¤ects both d?n and d

?
T but in opposite directions. For example, if a process becomes

spatially persistent, d?n is increased to address the increasing bias, which comes from the usage
of kernel truncation in the spatial domain. But, the increase of d?n, at the same time, magni�es
the variance term. Therefore, in order to minimize the AMSE�, d?T is decreased to moderate the
in�ation of the asymptotic variance. Figure 1 illustrates this relation of d?n and d

?
T with di¤erent

dependence structure. The two graphs are the level curves of d?n and d
?
T as functions of � and �;

which determine the temporal and spatial persistence respectively in the following DGP:

Vt = �Vt�1 + ut, ut = �Wnut + "t and "t � (0; In);
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Figure 1: Level curves of d?n and d
?
T as functions of spatial and temporal dependence

where Vt, ut and "t are n-vectors such as Vt =
�
V(1;t); V(2;t); : : : ; V(n;t)

�0 and Wn is a spatial weight
matrix. These two graphs indicate that d?n increases as spatial dependence increases or temporal
dependence decreases and that d?T increases as temporal dependence grows or spatial dependence
is reduced.

The corollary below gives a precise sense that (d?n; d
?
T ) is optimal.

Corollary 1 Suppose Assumptions 1 and I1-I7 hold. Assume that `n = �nd
�n
n and `T = �Td

�T
T

for some �n; �T > 0, �n = �1 + o(1), �T = �2 + o(1), B11 > 0 and B22 > 0: Then, for any
sequence of bandwidth parameters fdn; dT g such that dq1n =dq2T ! cd 2 (0;1) and d2q1n `n`T = (nT )!
� 2 (0;1), fd?n; d?T g is preferred in the sense that

lim
(n;T )!1

"
max

(b
(q1)
1 ;b

(q2)
2 )2B

AMSE
�
(nT )2q1q2=(q1�T+2q1q2+q2�n) ; ĴnT (dn; dT ); S

�
� max
(b
(q1)
1 ;b

(q2)
2 )2B

AMSE
�
(nT )2q1q2=(q1�T+2q1q2+q2�n) ; ĴnT (d

?
n; d

?
T ); S

�#
� 0:

The inequality is strict unless dn = d?n (1 + o (1)) and dT = d?T (1 + o (1)) :

Theorem 1 and Corollary 1 are applicable only to �nite order kernels. This rules out the
�at-top kernels which are in�nite order kernels from a frequency domain perspective. In their
general form, the class of �at top kernels is given by

KF =

�
K(�) : K (x) =

�
1
G (x)

if jxj � cF
otherwise

�
(16)

where cF � 1 and G : jxj 2 (cF ; 1] ! [0; 1]: A typical �at-top kernel in KF is the trapezoidal
kernel in which G(x) = maxf(jxj�1)=(cF �1); 0g. The rectangular kernel is an extreme case with
cF = 1. For a �at-top kernel covariance estimator, the asymptotic bias is of smaller order than
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that in Theorem 1(b). As a result, our bandwidth selection procedure does not apply directly
to �at-top kernel estimators. However, it is interesting to consider �at-top kernel estimators
because they are higher-order accurate. This is particularly important in our setting because
�at-top kernels are completely compatible with the adaptiveness of our estimator as explained
below while �nite-order kernels yield some discrepancy. In time series HAC estimation, Andrews
(1991, footnote on p.834) and Lin and Sakata (2012) suggest a practical bandwidth rule for the
rectangular kernel estimator, a special �at-top kernel estimator, based on the MSE criterion. Sun
and Kaplan (2011) explore this problem rigorously and provide a bandwidth selection procedure
that is testing optimal. We extend these methods to the present setting. For any �nite-order
kernel estimator set as the target, we can select the bandwidth parameters for the �at-top kernel
(d?F;n; d

?
F;T ) such that the �at-top-kernel-based covariance estimator has a smaller AMSE

�:
LetKtar;1(�) andKtar;2(�) be the target kernels in the spatial and time domains and (d?tar;n; d?tar;T )

be the respective optimal bandwidth parameters. Let KF;1(�) and KF;2(�) be the �at-top kernels
used in the two domains. Given `n = �nd

�n
n and `T = �Td

�T
T , if we set

d?F;n = d?tar;n

� �Ktar;1
�KF;1

�1=�n
and d?F;T = d?tar;T

� �Ktar;2
�KF;2

�1=�T
; (17)

then the asymptotic variance of the �at-top-kernel estimator is the same as that of the estimator
based on the target kernel. However, under some smoothness conditions, the asymptotic bias of
the �at-top kernel estimator is of smaller order. As a result, the �at-top kernel estimator has
smaller AMSE� than that based on the target kernel.

The unknown values such as B11; B22 and CV in the optimal bandwidth formula (13) can be
estimated using a parametric plug-in method (e.g. Andrews, 1991; and Kim and Sun, 2011). We
consider the following four di¤erent spatiotemporal parametric models, which are introduced in
Anselin (2001):

V
(c)
(i;t) = �c

h
W (c)
n V

(c)
t�1

i
i
+ ~"

(c)
(i;t); (18)

V
(c)
(i;t) = �cV

(c)
(i;t�1) + �c

h
W (c)
n V

(c)
t�1

i
i
+ ~"

(c)
(i;t) (19)

V
(c)
(i;t) = �cV

(c)
(i;t�1) + �c

h
W (c)
n V

(c)
t

i
i
+ ~"

(c)
(i;t) (20)

V
(c)
(i;t) = �cV

(c)
(i;t�1) + �c

h
W (c)
n V

(c)
t

i
i
+ �c

h
W (c)
n V

(c)
t�1

i
i
+ ~"

(c)
(i;t) (21)

where ~"(c)(i;t)
i:i:d� (0; �cc) and [W

(c)
n V

(c)
t ]i is the ith element of vector W

(c)
n V

(c)
t . The spatial weight

matrix W (c)
n is determined a priori and by convention it is row-standardized and its diagonal

elements are zeros.7

For an illustrative purpose, consider the model in (18). It can be rewritten recursively as

7The way to construct a spatial weight matrix is well explained in the spatial econometrics literature (e.g.
LeSage and Pace, 2009).
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follows:

V
(c)
1 = �cW

(c)
n V

(c)
0 + In~"

(c)
1

V
(c)
2 = �2c

�
W (c)
n

�2
V
(c)
0 + �cW

(c)
n ~"

(c)
1 + In~"

(c)
2

...

V
(c)
T = �Tc

�
W (c)
n

�T
V
(c)
0 + �T�1c

�
W (c)
n

�T�1
~"
(c)
1 + �T�2c

�
W (c)
n

�T�2
~"
(c)
2 + : : :+ In~"

(c)
T

Imposing the initial condition of V0 = 0, we can estimator �c by OLS with V̂
(c)
t = (V̂

(c)
(1;t); : : : ; V̂

(c)
(n;t))

0.
We de�ne

~̂R
(c)
ts =

8><>:
In; if t� s = 0�
�̂cW

(c)
n

�t�s
; if t� s > 0

0; otherwise,

and
~̂R
(c)
(i;t) =

h
~̂R
(c)
t1;i;

~̂R
(c)
t2;i; : : : ;

~̂R
(c)
tT;i

i
;

where ~̂R(c)ts;i denotes the i-th row of ~̂R
(c)
ts . Consequently, we approximate J , b

(q1)
1 and b(q2)2 by

Ĵ (c; d) =
�̂cd
nT

nX
i;j=1

TX
t;s=1

�
~̂R
(c)
(i;t)

��
~̂R
(d)
(j;s)

�0
; (22)

b̂
(q1)
1 (c; d) =

�̂cd
nT

nX
i;j=1

TX
t;s=1

�
~̂R
(c)
(i;t)

��
~̂R
(d)
(j;s)

�0
dq1ij ; (23)

b̂
(q2)
2 (c; d) =

�̂cd
nT

nX
i;j=1

TX
t;s=1

�
~̂R
(c)
(i;t)

��
~̂R
(d)
(j;s)

�0
dq2ts ; (24)

where
�̂cd =

1

n(T � 1)� 1

�
"̂(c)
�0 �

"̂(d)
�
;

"̂(c) = (("̂
(c)
1 )

0; :::; ("̂
(c)
T )

0)0, "̂(c)1 = V̂
(c)
1 and "̂(c)t = V̂

(c)
t � �̂cW

(c)
n V̂

(c)
t�1 for t � 2. Substituting these

estimates into the optimal bandwidth formulae, we obtain the data-driven bandwidth parameters
(d̂n; d̂T ) as follows:

d̂n =

 
4q1K

2
q1B̂11

�n�n�T �K1 �K2ĈV
nT

! q2
q1�T+2q1q2+q2�n

 
q1K

2
q1

q2K2
q2

�T B̂11

�nB̂22

! �T
2(q1�T+2q1q2+q2�n)

; (25)

d̂T =

 
4q2K

2
q2B̂22

�T�n�T �K1 �K2ĈV
nT

! q1
q1�T+2q1q2+q2�n

 
q2K

2
q2

q1K2
q1

�nB̂22

�T B̂11

! �n
2(q1�T+2q1q2+q2�n)

: (26)

where

B̂11 = vec
�
b̂
(q1)
1

�0
Svec

�
b̂
(q1)
1

�
; B̂22 = vec

�
b̂
(q2)
2

�0
Svec

�
b̂
(q2)
2

�
; ĈV = tr

h
S(Ipp +Kpp)(Ĵ 
 Ĵ)

i
:
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Since the models in (19), (20) and (21) can be rewritten as

V
(c)
(i;t) =

h�
�cIn + �cW

(c)
n

�
V
(c)
t�1

i
i
+ ~"

(c)
it ;

V
(c)
(i;t) =

�
�c

�
In � �cW (c)

n

��1
V
(c)
t�1

�
i

+

��
In � �cW (c)

n

��1
~"
(c)
t

�
i

;

V
(c)
(i;t) =

��
In � �cW (c)

n

��1 �
�cIn + �cW

(c)
n

�
V
(c)
t�1

�
i

+

��
In � �cW (c)

n

��1
~"
(c)
t

�
i

;

we can derive the data-driven bandwidth parameters with these models using the same procedures
as (18). While the OLS estimator is consistent for (19), it is not for (20) and (21) due to the
endogeneity of [W (c)

n V
(c)
t ]i. For these models, we can obtain consistent estimators using QMLE

as follows:�
�̂c; �̂c; �̂c; �̂cc

�
= argmin
�c;�c;�c;�cc

1

2
ln�cc �

1

n
ln
���In � �cW (c)

n

���+ 1

2�cc

1

nT

TX
t=1

�
"̂
(c)
t

�0 �
"̂
(c)
t

�
:

See Yu, de Jong and Lee (2008) for details. However, we argue that the simple OLS can still be
used for (20) and (21). Since the parametric models are likely to be mis-speci�ed, the QML esti-
mator is not necessarily preferred. In addition, as argued by Andrews (1991), good performance
of the estimator only requires (d̂n; d̂T ) to be near the optimal bandwidth values and not to be
precisely equal to them. Furthermore, OLS estimation is computationally much less demanding.

5 Comparison with CCE, DK and DK� estimators

For comparison, we examine the asymptotic properties of the CCE, DK and DK� estimators
based on our data representation in (8) and (9) under the increasing-smoothing asymptotics. We
also derive the optimal bandwidth parameters for the DK and DK� estimators using the AMSE
criterion.

5.1 CCE

The CCE is de�ned as

ĴAnT =
1

nT

nX
i=1

TX
t;s=1

V̂(i;t)V̂
0
(i;s):

De�ne ~JAnT in the same way but with V̂(i;t) replaced by V(i;t): The crucial condition for ĴAnT
to be consistent is that variables for two di¤erent individuals (or clusters) are uncorrelated,
i.e. EV(i;t)V

0
(j;s) = 0 if i 6= j. Under this condition, ĴAnT is robust to heteroskedasticity and

arbitrary forms of time series correlation. Our spatiotemporal representation accommodates
spatial independence by imposing the following restriction.

Assumption I8 ~r(it;j;s) = 0 if i 6= j.

Under Assumption I8, we have

JnT =
1

nT

nX
i=1

TX
t;s=1

E
h
V(i;t)V

0
(i;s)

i
:
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Assumption I9 For all i 2 En;

lim
T!1

var

 
1p
T

TX
s=1

V(i;s)

!
= J:

Assumption I9 implies the homogeneity of var(T�1=2
PT
s=1 V(i;s)) for i 2 En, under which we

can derive the asymptotic variance of ~JAnT = (nT )
�1Pn

i=1

PT
t;s=1 V(i;t)V

0
(i;s) in Theorem 2 below.

Theorem 2 Suppose that Assumptions 1, I1, I2, I8 and I9 hold. Then lim(n;T )!1 nvar(vec( ~JAnT )) =
(Ipp +Kpp) (J 
 J).

The proof is analogous to the proof of Theorem 1(a) and is omitted here for brevity.8 Theorem
2 and the fact that E ~JAnT = JnT imply the

p
n-convergence of ~JAnT . Under the su¢ cient conditions

for Assumption I5 given in the supplementary appendix, we have ĴAnT � ~JAnT = op (1=
p
n) : Hence

ĴAnT also converges to J at the rate of 1=
p
n; which is consistent with Hansen (2007).

5.2 DK estimator

The DK estimator is based on the time series HAC estimation method with cross sectional
averages. The estimator is de�ned as

ĴDKnT =
1

nT

nX
i;j=1

TX
t;s=1

K2

�
dts
dT

�
V̂(i;t)V̂

0
(j;s):

Similarly, we de�ne ~JDKnT as above but with V̂(i;t) replaced by V(i;t):
For the asymptotic properties, we introduce the following assumptions in place of Assumption

I6.

Assumption I10 As dT !1 with (n; T )!1, given `T = o (T ) ;

lim
(n;T )!1

var

0@ 1p
n`t;T

nX
j=1

X
s:dts�dT

V(j;s)

1A = J;

for all t 2 ET :

Theorem 3 below gives the asymptotic properties of ~JDKnT and ĴDKT . Its proof is omitted here
as it is similar to the proof of Theorem 1.

Theorem 3 Suppose that Assumptions 1, I1, I2, I3(ii), I5, I7(i)(ii), and I10 hold, and dT !1,
`T = o(T ).

(a) lim(n;T )!1 T
`T
var

�
vec( ~JDKnT )

�
= �K2(Ipp +Kpp) (J 
 J).

(b) lim(n;T )!1 dq2T (E
~JDKnT � JnT ) = �Kq2b

(q2)
2 :

8Detailed proofs for Theorems 2�4 are available from the authors upon request.
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(c) If d2q2T `T =T ! � 2 (0;1), then

lim
(n;T )!1

AMSE

�
T

`T
; ĴDKnT ; S

�
=
1

�
K2
q2

�
vec b

(q2)
2

�0
S
�
vec b

(q2)
2

�
+ �K2tr [S(Ipp +Kpp)(J 
 J)] :

Theorem 3(a) and (b) imply that ~JDKnT is consistent if dT ! 1 and `T = o(T ). The rate
of convergence obtained by balancing the variance and the squared bias is T�q2=(2q2+�T ). This
is also the rate of convergence for ĴDKnT under the su¢ cient conditions for Assumption I5 given
in the supplementary appendix. Therefore, the rate of convergence of ĴnT is faster than that of
ĴDKnT if T = o(nq1(2q2+�T )=(q2�n)).

The optimal bandwidth parameter of ĴDKnT based on the AMSE criterion is

dDKT =

 
2q2K

2
q2B22

�T�T �K2CV
T

!1=(2q2+�T )
: (27)

We can obtain the data-driven bandwidth parameter following Andrews (1991).

5.3 DK� estimator

Analogous to the DK estimator, we can consider the usage of spatial HAC estimation applied
to time series averages, especially when n is relatively large and T is relatively small. The DK�

estimator based on the time series averages is

ĴDK
�

nT =
1

nT

nX
i;j=1

TX
t;s=1

K1

�
dij
dn

�
V̂(i;t)V̂

0
(j;s):

Let ~JDK
�

nT denote the infeasible version of ĴDK
�

nT with V̂(i;t) replaced by V(i;t):

Assumption I11 As dn !1 with (n; T )!1; given `n = o (n) ;

lim
(n;T )!1

var

0@ 1p
`i;nT

X
j:dij�dn

TX
s=1

V(j;s)

1A = J;

for all i 2 En:

Theorem 4 below gives the asymptotic properties of ~JDK
�

nT and ĴDK
�

nT . The proof is similar to
the proof of Theorem 1 and is omitted to save space.

Theorem 4 Suppose that Assumptions 1, I1, I2, I3(i), I4, I5, I7, and I11 hold, n2 = o(n),
`n; dn !1 and `n = o(n).

(a) lim(n;T )!1 n
`n
var

�
vec( ~JDK

�
nT )

�
= �K1(Ipp +Kpp) (J 
 J).

(b) lim(n;T )!1 dq1n (E ~JDK
�

nT � JnT ) = �Kq1b
(q1)
1 :
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(c) If d2q1n `n=n! � 2 (0;1), then

lim
(n;T )!1

AMSE

�
n

`n
; ĴDK

�
nT ; S

�
=
1

�
K2
q1vec

�
b
(q1)
1

�0
Svec

�
b
(q1)
1

�
+ �K1tr [S(Ipp +Kpp)(J 
 J)] :

If we can characterize `n = �nd
�n
n , ĴnT achieves the faster convergence rate than ~JDK

�
nT and

ĴDK
�

nT if n = o(T q2(2q1+�n)=(q1�T )). The optimal bandwidth based on the AMSE criterion is

dDK
�

n =

 
2q1K

2
q1B11

�n�n �K1CV
n

!1=(2q1+�n)
: (28)

We can obtain the data-driven bandwidth parameter following Kim and Sun (2011).

6 Adaptiveness of ĴnT

6.1 Flexibility

ĴnT is �exible in the sense that it includes the estimators in the previous section as special cases,
reducing to each of them in large samples with certain choice of the bandwidths and kernel
function.

In order to illustrate the �exibility, we introduce the generalized CCE estimator:

ĴGAnT =
1

nT

nX
i=1

TX
t;s=1

K2

�
dts
dT

�
V̂(i;t)V̂

0
(i;s)

with ~JGAnT as its infeasible version. ĴGAnT includes ĴAnT as a special case with KF (�) 2 KF with
cF = 1 and dT = T .

The following proposition shows the asymptotic equivalence of ĴnT to the existing estimators
with certain sequences of dn and dT .

Proposition 1 Let Assumptions I1 and I2 hold. Assume that ĴnT = ~JnT + op (1) ; Ĵ
GA
nT =

~JGAnT + op (1) ; Ĵ
DK
nT = ~JDKnT + op (1) and ĴDK

�
nT = ~JDK

�
nT + op (1) :

(a) If mini;j (dij) > " for all i 6= j and some " > 0 and dn ! 0 as n ! 1, then ĴnT � ĴGAnT =
op(1).

(b) If K1 (�) is the rectangular kernel, Assumption I3(i) holds, and `n=n ! 1 as n ! 1, then
ĴnT � ĴDKnT = op(1):

(c) If K2 (�) is the rectangular kernel, Assumption I3(ii) holds, and `T =T ! 1 as T !1, then
ĴnT � ĴDK

�
nT = op(1):

The �exibility of our estimator relies on the property that the rectangular kernel does not
downweigh the covariances between spatially or temporally remote units. In contrast, ĴnT with
�nite-order kernels does not completely reduce to ĴDKnT and ĴDK

�
nT with large dn and dT , getting

close to them though.
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Figure 2: Adaptiveness of ĴnT

6.2 Adaptiveness

While ĴnT has advantages in terms of robustness over ĴAnT and in terms of e¢ ciency over Ĵ
DK�
nT

and ĴDKnT , for certain dependence structure, one of the existing estimators is expected to out-
perform the other estimators. If a process is spatially highly persistent, ĴDKnT is expected to
out-perform the other estimators in that it is robust to arbitrary forms of spatial correlation. For
the same reason, ĴDK

�
nT tends to perform better than the others, if a process is temporally highly

persistent. ĴAnT is more e¢ cient than the other estimators in the absence of spatial correlation.
The attractiveness of our estimator ĴnT is that, with the data-driven bandwidth choice, it

becomes close to the estimator that is expected to perform the best. This adaptiveness is the
novel feature of our estimation method. It practically automates the selection of covariance
estimators. As illustrated in Figure 2, adaptiveness arises from the �exibility and data-driven
bandwidth selection procedure. In case that a process is spatially highly persistent, the data-
driven bandwidth selection procedure yields large d̂n so that ĴnT gets close to ĴDKnT . Analogously,
ĴnT becomes close to ĴDK

�
nT if a process is very persistent in the time dimension. In the absence

of spatial dependence, ĴnT becomes close to ĴGAnT with small d̂n.
It should be pointed out that �nite-order kernels do not achieve complete adaptiveness be-

cause downweighing restricts its �exibility in bridging the existing estimators. We can �x this
by employing a rectangular kernel. In this case, with appropriate bandwidth choices, ĴnT is
asymptotically equivalent to the best estimator. The bandwidth selection rule in (17) meets the
requirement, as the selected bandwidths from (17) are proportional to those from (13).9

9Another issue with �at-top kernel estimators is that they are not positive semi-de�nite. Politis (2011) and Lin
and Sakata (2009) propose simple modi�cations to the estimator to enforce the positive (semi) de�niteness without
sacri�cing asymptotic e¢ ciency. In our simulation, we use the method suggested by Politis (2011).
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7 Fixed-smoothing asymptotics

7.1 Limiting theory for ĴnT under �xed-smoothing asymptotics

Following Conley (1999) and Sun and Kim (2013), we assume that, given a distance measure, it is
possible to map the individuals onto a 2-dimensional integer lattice so that dij can be expressed
in terms of the lattice indices. Let the locations be indexed by i = (i1; i2) = [1; 2; : : : ; Ln] 

[1; 2; : : : ;Mn]. We can then rewrite the sample moment conditions that de�ne �̂ as

1

nT

LnX
i1=1

MnX
i2=1

TX
t=1

1i1;i2 V̂(i1;i2;t) = 0;

where V̂(i1;i2;t) is associated with an observation located at (i1; i2) and time t, and the indicator
function 1i1;i2 indicates whether an observation is present at the lattice point (i1; i2):

We introduce the following assumption on the distance measure in the spatial dimension.

Assumption F1 Let d(i1;i2);(j1;j2) denote the distance between the two units located at (i1; i2)
and (j1; j2). Then,

d(i1;i2);(j1;j2)

dn
= d

�
ji1 � j1j
dn

;
ji2 � j2j
dn

�
and d (�; �) is continuously di¤erentiable.

Assumption F1 implies that d(i1;i2);(j1;j2) is a function of ji1 � j1j and ji2 � j2j and is homo-
geneous. This is not overly restrictive. p-norm distances that are usually employed in practice
satisfy this assumption.

Let b1 = dn=Ln, b2 = dn=Mn and b3 = dT =T . Suppose that the level of smoothing is held
�xed such that b = (b1; b2; b3) are �xed constants. Then

ĴnT :=
1

nT

LnX
i1;j1=1

MnX
i2;j2=1

TX
t;s=1

Kb
��

i1
Ln

;
i2
Mn

;
t

T

�
;

�
j1
Ln

;
j2
Mn

;
s

T

��
V̂ �(i1;i2;t)V̂

�0
(j1;j2;s)

where V̂ �(i1;i2;t) = 1i1;i2 V̂(i1;i2;t) and

Kb((x1; x2; x3) ; (y1; y2; y3)) = K ((x1=b1; x2=b2; x3=b3) ; (y1=b1; y2=b2; y3=b3)) ,
K ((x1; x2; x3) ; (y1; y2; y3)) = K1

�
d(x1;x2);(y1;y2)

�
K2 (dx3;y3) : (29)

Under Assumption F1, Kb((x1; x2; x3) ; (y1; y2; y3)) and K ((x1; x2; x3) ; (y1; y2; y3)) depend on
(x1; x2; x3) and (y1; y2; y3) only through jx1 � y1j ; jx2 � y2j and jx3 � y3j :

Assumption F2 (i) Assumption I7(i) holds. (ii) Either Kb (�; �) is continuous on ([0; 1]3�[0; 1]3)
and continuously di¤erentiable almost everywhere on ([0; 1]3�[0; 1]3) or K ((x1; x2; x3) ; (y1; y2; y3)) =
1
�
d(x1;x2);(y1;y2) � 1

	
� 1 fdx3;y3 � 1g :

Assumption F2 accommodates commonly used kernels. We have to single out the rectangular
kernel as Kb (�; �) is not continuous.
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Under Assumption F2(ii), Kb (�; �) is square integrable on ([0; 1]3 � [0; 1]3). So Kb (�; �) has a
Fourier series representation:

Kb ((x1; x2; x3) ; (y1; y2; y3)) = lim
N!1

NX
k;`;m=�N

~�k;`;m'b1;k (x1 � y1)'b2;` (x2 � y2)'b3;m (x3 � y3)

(30)
where 'bi;k (r) = exp

�p
�1�rk=bi

�
and f~�k;`;mg are the (complex) Fourier coe¢ cients. Using the

function form in (29) and Assumption F1, we can rewrite the above complex exponential form
as a trigonometric series:

Kb ((x1; x2; x3) ; (y1; y2; y3)) = lim
L!1

LX
�=1

�{�b;� ((x1; x2; x3))�b;� (y1; y2; y3) ; (31)

where f�b;� (x1; x2; x3) �b;� (y1; y2; y3)g is an orthonormal basis for L2([0; 1]3 � [0; 1]3) under the
Lebesgue measure and by default we set �b;1 (�) to be the constant function.

When Kb (�; �) is continuous and continuously di¤erentiable almost everywhere on ([0; 1]3 �
[0; 1]3); the convergence in (30) and (31) is absolute and uniform in (x1; x2; x3) 2 [0; 1]3 and
(y1; y2; y3) 2 [0; 1]3: When Kb ((x1; x2; x3) ; (y1; y2; y3)) is positive de�nite, continuous and sym-
metric, the uniform series representation in (31) can also be obtained using Mercer�s theorem.
When a rectangular kernel is used, the convergence is in terms of the L1 and L2 norms under the
Lebesgue measure.

Let V �(i1;i2;t) = 1i1;i2V(i1;i2;t) and e
�
(i1;i2;t)

= 1i1;i2e(i1;i2;t) with e(i1;i2;t)
i:i:d:� N (0; Ip) : We main-

tain the following high level assumption.

Assumption F3 As (n; T )!1; the following holds

P

0@24 1p
nT

X
i1;i2;t

�b;�

�
i1
Ln

;
i2
Mn

;
t

T

�
V �(i1;i2;t)

35 < v for � = 1; 2; : : : ;L

1A
= P

0@24� 1p
nT

X
i1;i2;t

�b;�

�
i1
Ln

;
i2
Mn

;
t

T

�
e�(i1;i2;t)

35 < v for � = 1; 2; : : : ;L

1A+ o (1)
for every �xed L where v 2 Rp, b 2 (0; 1]3 and � is the matrix square root of J; i.e. ��0 = J:

Assumption F3 is satis�ed if a CLT holds jointly over � = 1; 2; :::;L for

1p
nT

X
i1;i2;t

�b;�

�
i1
Ln

;
i2
Mn

;
t

T

�
V �(i1;i2;t):

This is in contrast with the FCLT assumption often made in the �xed-smoothing asymptotic the-
ory. The above CLT assumption corresponds to the �nite dimensional convergence in an FCLT.
It is weaker than an FCLT which requires an additional tightness condition. It is not trivial to
verify the tightness condition in a spatial setting, as the indexing sets are more complicated than
in a time series setting. The CLT holds under weaker conditions and therefore can accommodate
a wider range of panel data processes. Some primitive su¢ cient conditions for this assumption
are provided in Sun and Kim (2013).
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When Assumption F3 holds, we write

1p
nT

X
i1;i2;t

�b;�

�
i1
Ln

;
i2
Mn

;
t

T

�
V �(i1;i2;t)

a� � 1p
nT

X
i1;i2;t

�b;�

�
i1
Ln

;
i2
Mn

;
t

T

�
e�(i1;i2;t)

jointly over � = 1; 2; : : : ;L where �a��signi�es that the two sides are asymptotically equivalent in
distribution as (n; T )!1:

To establish the �xed-smoothing asymptotics, we make one more high level assumption:

Assumption F4 For all (r1; r2; �) 2 [0; 1]3 ;

1

nT

[r1Ln]X
i1=1

[r2Mn]X
i2=1

[�T ]X
t=1

~Z�(i1;i2;t)
~X�0
(i1;i2;t)

!p r1r2�Q

where ~Z�(i1;i2;t) = 1i1;i2
~Z(i1;i2;t) and ~X�

(i1;i2;t)
= 1i1;i2

~X(i1;i2;t):

Proposition 2 Let Assumptions 1 and F1�F4 hold, then for b 2 (0; 1]3 we have

ĴnT
a� �ĴanT�0 (32)

where for �e� = (nT )�1
P
j1;j2;s

e�(j1;j2;s);

ĴanT :=
1

nT

X
i1;j1;i2;j2;t;s

Kb
��

i1
Ln

;
i2
Mn

;
t

T

�
;

�
j1
Ln

;
j2
Mn

;
s

T

���
e�(i1;i2;t) � �e

�
��

e�(j1;j2;s) � �e
�
�0
:

In the absence of an FCLT, we can not follow the standard arguments for establishing the
�xed-smoothing asymptotics to prove Proposition 2. Instead, we rely on Lemma 2 given in the
appendix. The lemma is crucial for our proof and may be of independent interest. The demeaning
of e�(i1;i2;t) in Proposition 2 re�ects the estimation uncertainty in �̂.

Under Assumptions 1, F3 and F4, we have

p
nT
�
�̂ � �0

�
a� Q�1�

1p
nT

X
i1;i2;t

e�(i1;i2;t) (33)

and this holds jointly with (32). So under H0,

FnT
a�

0@RQ�1� 1p
nT

X
i1;i2;t

e�(i1;i2;t)

1A0 �RQ�1�ĴanT�0Q0�1R0��1
0@RQ�1� 1p

nT

X
i1;i2;t

e�(i1;i2;t)

1A =g

d
=�0

�
1

nT

X
Kb
��

i1
Ln

;
i2
Mn

;
t

T

�
;

�
j1
Ln

;
j2
Mn

;
s

T

���
"�(i1;i2;t) � �"

�
��

"�(j1;j2;s) � �"
�
�0��1

�=g

:
d
=F anT (g; b) (34)

where

� =
1p
nT

X
i1;i2;t

"�(i1;i2;t) and "
�
(i1;i2;t)

= 1i1;i2"(i1;i2;t) with "(i1;i2;t)
i:i:d:� N (0; Ig) :
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Here we have used RQ�1�e�(i1;i2;t)
d
= ~�"�(i1;i2;t) for some nonsingular g � g matrix ~�: It is easy to

show that

F anT (g; b) =
p
nT �"0

24 1

nT

X
i;j

X
s;t

K1

�
dij
dn

�
K2

�
dts
dT

�
("it � �") ("js � �")0

35�1pnT �"=g; (35)

where "it
i:i:d:� N(0; Ig) and �" = (nT )

�1P
it "it:

We summarize the above result in the theorem below.

Theorem 5 Let Assumptions 1 and F1 �F4 hold, then FnT
a� F anT (g; b). More precisely,

P (FnT < x) = P (F anT (g; b) < x) + o (1) as (n; T )!1 for �xed b:

Under the �xed-smoothing asymptotics, FnT is asymptotically equivalent in distribution to
F anT (g; b), which is a quadratic form in a normal vector

p
nT �" with a random and independent

weighting matrix. The random weighting matrix re�ects the estimating uncertainty of the vari-
ance estimator. The distribution of F anT (g; b) is nonstandard but can be easily simulated. To
obtain a realization of F anT (g; b); we only have to draw nT i:i:d: standard normal g-vectors f"itg
and plug them into the simple representation in (35). Lattice mapping, which is needed for our
theoretical development, is not necessary in empirical implementation of our test.

7.2 Expansion of F anT (g; b) and F -approximation

Under the sequential asymptotics where (n; T ) ! 1 for �xed b1; b2; b3 followed by letting
(b1; b2; b3) ! 0; we present the asymptotic expansion of the distribution of F anT (g; b) in (34)
and establish the validity of a standard F -approximation.

De�ne the centered version of the kernel function K�b (�; �) as

K�b ((x1; x2; x3) ; (y1; y2; y3))

= Kb ((x1; x2; x3) ; (y1; y2; y3))�
Z
[0;1]3

Kb ((x1; x2; x3) ; (y1; y2; y3)) dx1dx2dx3

�
Z
[0;1]3

Kb ((x1; x2; x3) ; (y1; y2; y3)) dy1dy2dy3

+

Z
[0;1]3

Z
[0;1]3

Kb ((x1; x2; x3) ; (y1; y2; y3)) dx1dx2dx3dy1dy2dy3:

Then it is easy to show that

ĴnT
a� �

24 1

nT

X
i1;j1;i2;j2;t;s

K�b
��

i1
Ln

;
i2
Mn

;
t

T

�
;

�
j1
Ln

;
j2
Mn

;
s

T

��
e�(i1;i2;t)e

�0
(j1;j2;s)

35�1 �0: (36)

Since K�b ((x1; x2; x3) ; (y1; y2; y3)) 2 L2([0; 1]6); it has a Fourier series representation:

K�b ((x1; x2; x3) ; (y1; y2; y3))

=

1X
k;`;m;k0;`0;m0=1

�k`mk0`0m0 b1;k(x1) b2;`(x2) b3;m(x3) b1;k0(y1) b2;`0(y2) b3;m0(y3)

:=

1X
k;`;m;k0;`0;m0=1

�k`mk0`0m0%b;k`m (x1; x2; x3) %b;k0`0m0 (y1; y2; y3) ; (37)
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where f%b;k`m (x1; x2; x3) %b;k0`0m0 (y1; y2; y3)g is an orthonormal basis for L2([0; 1]3 � [0; 1]3). The
convergence is in terms of L1 and L2 norms, which is su¢ cient for a distributional representation.
As
R
[0;1]3 K

�
b ((x1; x2; x3) ; (y1; y2; y3)) dx1dx2dx3 = 0 for any (y1; y2; y3) by de�nition, %b;k`m(�) has

the �zero mean�property, i.e.Z
[0;1]3

%b;k`m (x1; x2; x3) dx1dx2dx3 = 0:

Using the representation in (37), we have

1
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X
i1;j1;i2;j2;t;s
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i1
Ln

;
i2
Mn

;
t

T

�
;

�
j1
Ln

;
j2
Mn

;
s

T

��
"�(i1;i2;t)"

�0
(j1;j2;s)

d
=

1X
k;`;m;k0;`0;m0=1

�k`mk0`0m0�b;k`m�
0
b;k0`0m0 ; (38)

where �b;k`m = (nT )
�1=2P

i1;i2;t
%b;k`m (i1=Ln; i2=Mn; t=T ) "

�
(i1;i2;t)

:
We can simplify the above representation. First, using the Cantor tuple function, we can

encode (h1; h2; h3) into a single natural number h. That is,

h = �(3)(h1; h2; h3) := �(2)(�(2)(h1; h2); h3);

where
�(2)(h1; h2) =

1

2
(h1 + h2)(h1 + h2 + 1) + h2:

The map between (h1; h2; h3) and h is one-to-one and onto. With this de�nition, we abuse the
notation a little and write

�h1h2h3h01h02h03 = �hh0 and �b;h1h2h3 = �b;h:

With this result, we follow Sun and Kim (2012) to obtain

1X
k;`;m;k0;`0;m0=1

�k`mk0`0m0�b;k`m�
0
b;k0`0m0 =

1X
k=1

��k�nT;k�
0
nT;k;

where ��k is related to the centered kernel function K
�
b (�; �) and �nT;k !d �k

i:i:d:� N (0; Ig) :
Using Lemma 2 in the appendix, we can show that for �xed b1; b2; b3;

gF anT (g; b)!d gF1 (g; b)
d
= �0

" 1X
k=1

��k�k�
0
k

#�1
�; as (n; T )!1

where � � N(0; Ig) and � is independent of �k for all k. By de�nition, �k� 0k is a Wishart distribu-
tion Wg(Ig; 1), so

P1
k=1 �

�
k�k�

0
k is an in�nite weighted sum of independent Wishart distributions.

Let 1X
k=1

��k�k�
0
k =

�
v11 v12
v21 v22

�
;

where v11 is a scalar. Following Sun (2010), we can show that

P fgF1 (g; b) � zg = EGg
�
z
�
v11 � v12v�122 v21

��
= EGg (zv11:2) ;
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where Gg(�) is the cdf of a central �2g variate and v11:2 = v11 � v12v
�1
22 v21: As (b1; b2; b3) ! 0;

we expect v11:2 to be concentrated around 1. By taking a Taylor expansion Gg (zv11:2) around
Gg (z) and computing the moments of v11:2; we can prove the following theorem.

Theorem 6 Suppose Assumptions 1 and F1�F4 hold. Under the sequential asymptotics where
(n; T )!1 followed by letting (b1; b2; b3)! 0, we have

lim
(n;T )!1

P fgF anT (g; b) � zg = P fgF1 (g; b) � zg = Gg (z) +A (z) b1b2b3 + o (b1b2b3)

where
A (z) = G00g (z) z

2c2 �G0g (z) z [c1 + (g � 1) c2] ;

and

c1 =

Z
[�1;1]3

K ((x1; x2; x3) ; (x1 + y1; x2 + y2; x3 + y3)) dy1dy2dy3;

c2 =

Z
[�1;1]3

K2 ((x1; x2; x3) ; (x1 + y1; x2 + y2; x3 + y3)) dy1dy2dy3:

Since K ((x1; x2; x3) ; (x1 + y1; x2 + y2; x3 + y3)) depends only on (y1; y2; y3) ; c1 and c2 are
constants, which can be computed either analytically or numerically.

Theorem 6 characterizes the nonstandard distribution gF1 (g; b) when b1; b2 and b3 are small.
It clearly shows that the di¤erence between gF1 (g; b) and �2g depends on the smoothing para-
meters, kernel function and the number of restrictions being tested.

It is interesting to see that this representation of gF1 (g; b) is the same as that obtained by
Sun (2010) for the �xed-smoothing asymptotic distribution of the Wald statistic in a time series
context.

Let

�1 =
1X
k=1

��k =

Z
[0;1]3

K�b ((x1; x2; x3) ; (x1; x2; x3)) dx1dx2dx3

= 1�
Z
[0;1]3

Z
[0;1]3

Kb ((x1; x2; x3) ; (y1; y2; y3)) dx1dx2dx3dy1dy2dy3

�2 =
1X
k=1

(��k)
2 =

Z
[0;1]3

Z
[0;1]3

[K�b ((x1; x2; x3) ; (y1; y2; y3))]
2 dx1dx2dx3dy1dy2dy3:

De�ne D = d�21=�2e where d�e denotes the ceiling function. Then using the same argument as in
Sun (2010), we have the following approximation:

�1 (D � g + 1)
D

F1 (g; b)
d� Fg;D�g+1: (39)

The following theorem gives a rigorous description of the F -approximation.

Theorem 7 Suppose Assumptions 1 and F1�F4 hold. As (b1; b2; b3)! 0; we have

P

�
�1 (D � g + 1)

D
F1 (g; b) � z

�
= P fFg;D�g+1 � zg+ o (b1b2b3) :
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To use Theorem 7, we can estimate D by DnT = d�21nT =�2nT e where
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and
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:

Here �1nT ; �2nT and K�
i;j;t;s are the �nite sample versions of �1; �2 and K

�
b ; respectively.

It is easy to show that �1nT = �1 (1 + o (1)) ; �2nT = �2 (1 + o (1)) and DnT = D (1 + o (1)) ;
as (n; T ) ! 1: Let D�

nT = max(5; dDnT � g + 1e) and F�g;D�
nT
be the 1 � � quantile of the F

distribution with the degrees of freedom g and D�
nT . Based on Theorem 7, for the F -test version

of Wald statistic, FnT , we can use

F�nT := �nTF
�
g;D�

nT
where �nT =

DnT
�1nT max f1; (DnT � g + 1)g

; (41)

as the critical value for the test with nominal size �. In (41), we employD�
nT andmax f1; (DnT � g + 1)g

in place of DnT � g + 1 to ensure that the variance of the F distribution exists and that �nT is
positive. We use the critical values in (41) in our simulation.

Unreported simulation results indicate that F�nT are reasonably close to the 1�� quantile of
F anT (g; b) when b1; b2 and b3 are small (< 0:3): Accordingly, we recommend using the adjusted F
critical values F�nT when the data-driven bandwidths turn out to be small. As b1; b2 and b3 in-
crease, however, the discrepancy of the F -approximation from F anT (g; b) may become large. Thus,
if the bandwidth selection rule yields large bandwidths, we recommend using the nonstandard
critical values obtained by simulating the asymptotically equivalent distribution given in (35).

8 Monte Carlo simulation

In this section, we provide some simulation evidence on the �nite sample performance of our
covariance estimator and the associated testing procedure. We choose the bandwidths based on
the AMSE� criterion and consider the rectangular kernel as well as the Parzen kernel to construct
ĴnT . We compare the performance of ĴnT with ĴDKnT , Ĵ

A
nT and Ĵ

DK�
nT . We evaluate the covariance

estimators and the associated testing procedures using the RMSE criterion, the coverage error of
the associated con�dence intervals (CIs) or regions, and the size-adjusted power. The coverage
error of the CIs is equivalent to the error of rejection probability of the underlying tests under
the null. We examine the robustness to the measurement errors in economic distance. It is also
investigated how the number of restrictions being tested a¤ects the performance of the Wald test
under the two di¤erent limiting thought experiments.

We assume a lattice structure, in which each individual is located on a square grid of integers.
We use the Euclidean distance for dij . The data generating processes we consider here are:
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DGP1: Yit = �0 + uit �0 = 0;

ut = �ut�1 + "t; "t = (I � � ~Wn)
�1vt; vt

i:i:d:� N(0; In);

DGP2: Yit = X
(1)
it �10 + : : :+X

(p)
it �p0 + �i + ft + uit;

�10 = : : : = �p0 = 0, �i = ft = 0;

Xt = �Xt�1 + �t; �t = (I � � ~Wn)
�1�t; �t

i:i:d:� N(0; In)

ut = �ut�1 + "t; "t = (I � � ~Wn)
�1vt; vt

i:i:d:� N(0; In);

where Xit is a p-vector, Xt = (X1t; : : : ; Xnt)
0 and ut = (u1t; : : : ; unt)

0. ~Wn is a contiguity matrix
and individuals i and j are neighbors if dij = 1. Following the convention, it is row-standardized
and its diagonal elements are zero. The parameters � and � determine the strength of the
temporal and spatial correlation. We consider the following values for � and �: 0, 0.3, 0.6 and
0.9.

DGP1 is used for the RMSE criterion and DGP2 is used for the coverage accuracy of the
associated CIs. DGP2 includes the individual and time e¤ects and �0 is estimated with the �xed-
e¤ects OLS estimator. It is a special case of the setting of this paper in (1) in which Xit = Zit:
In contrast, these e¤ects are absent in DGP1 for easy calculation of the RMSE. We estimate �0
in DGP1 by the sample average.

For the estimators ĴDKnT and ĴDK
�

nT ; we employ the respective data-driven bandwidths in (27)
and (28), using the time series AR(1) or spatial AR(1) as the approximating plug-in model. For
ĴnT with the Parzen kernel, we employ the bandwidths given in (14) and (15), using the spa-
tiotemporal parametric model in (20) as the approximating plug-in model. Wn is the contiguity
matrix in which individuals i and j are neighbors if dij = 1. We set �n = 2 and `n = �d2n.
Note that the approximating parametric models for ĴDK

�
nT and ĴnT are mis-speci�ed whereas the

AR(1) model for ĴDKnT is correctly speci�ed. We employ the QMLE to estimate parameters in
(20) and (28). For ĴnT with the rectangular kernel, we use the Parzen kernel as the target kernel
to obtain the data-driven bandwidths.

To obtain a positive semi-de�nite covariance estimator with the rectangular kernel, we follow
Politis (2011) and modify ĴnT : According to the spectral decomposition, ĴnT = Û �̂Û 0, where Û is
an orthogonal matrix and �̂ = diag(�̂1; : : : ; �̂p) is a diagonal matrix whose diagonal elements are
the eigenvalues of ĴnT . Let �̂+ = diag(�̂

+
1 ; : : : ; �̂

+
p ) where �̂

+
s = max(�̂s; 0). Then, we de�ne our

modi�ed estimator as Ĵ+nT = Û �̂+Û 0: As each eigenvalue of Ĵ+nT is nonnegative, Ĵ
+
nT is positive

semi-de�nite.
The number of simulation replications is 5000, and three di¤erent sample sizes are considered;

(i) small T and n; T = 15; n = 49 (7�7), (ii) large T and small n; T = 50; n = 49, and (iii) small
T and large n; T = 15; n = 196 (14� 14). The following values are used for each kernel.

�K1 �K2 c1 c2 Kq

Parzen 0.2889 0.2697 0.4123 0.1558 -6
Rectangular 1 1 6.2926 6.2926

We allow for the case with measurement errors in the distance measure. The error contami-
nated distance, d�ij is generated as follows. If dij < 2, then dij is observed without a measurement
error. If dij � 2, then we observe d�ij :

d�ij = dij + eij ;
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where eij = �1; 0; 1 with equal probabilities. PHAC, CCE, DK and DK� denote the test statistics
based on ĴnT , ĴAnT , Ĵ

DK
nT , and Ĵ

DK�
nT ; respectively. We use the F -approximation based on (41) to

obtain critical values under the �xed-smoothing asymptotics.
Table 1 presents the ratios of the RMSE to JnT for ĴnT and ĴDKnT evaluated at the data depen-

dent bandwidth parameters (d̂n; d̂T ) and d̂DKT and at infeasible optimal bandwidth parameters
(d?n; d

?
T ) and d

DK
T . The infeasible bandwidth parameters are obtained by plugging the true data

generating process into the AMSE� and AMSE formulae. Several patterns emerge. First, ĴnT
outperforms ĴDKnT in almost all the cases. When spatial dependence is absent or weak, ĴnT has a
substantially smaller RMSE than ĴDKnT . Even when � = 0:9, these two estimators are not much
di¤erent. In particular, when the rectangular kernel is used, ĴnT is as accurate as and sometimes
more accurate than ĴDKnT . This implies that adaptiveness works well in this setting. Second,
increasing n reduces only the RMSE of ĴnT while increasing T reduces the RMSEs of both esti-
mators. This is expected, as the rate of convergence of ĴDKnT depends only on T while that of ĴnT
depends on both n and T: Finally, the results under both feasible and infeasible AMSE�-optimal
bandwidths show that the AMSE� criterion is e¤ective in controlling the RMSE of ĴnT :10

Table 2 reports the empirical coverage probabilities (ECPs) of 95% CIs associated with the
di¤erent covariance estimators: ĴnT , ĴDKnT , Ĵ

A
nT , and Ĵ

DK�
nT . DGP2 is used with a univariate

regressor (p = 1). We use both the �xed-smoothing asymptotics and the increasing-smoothing
asymptotics for critical values based on PHAC. We use the �xed-smoothing asymptotics for DK
and DK�, and the increasing-smoothing asymptotics for CCE: From this table, we can �rst com-
pare the size properties of PHAC using the rectangular kernel with those of the alternative test
statistics. When � = 0 with high temporal autocorrelation, CCE performs better than PHAC.
However, as � increases, the performance of PHAC becomes better than that of CCE. Compared
with DK�, the CIs associated with PHAC have more accurate coverage probability if the process
is spatially persistent. When the process is temporally persistent, DK� yields more accurate
coverage probability. Both PHAC and DK� become more accurate with large n, but only the
performance of PHAC improves when T increases. In comparison with DK, we see that PHAC is
more accurate when the process is temporally persistent or n is large. When a process is spatially
persistent and temporal dependence is weak, DK tends to show better performance in testing,
but PHAC also performs almost as good as DK. Second, Table 2 compares the performances of
PHAC under two di¤erent asymptotics. The results indicate that the �xed-smoothing asymptotic
approximation is substantially more accurate than the increasing-smoothing asymptotic approx-
imation. The di¤erence increases as the process becomes more persistent. When � = � = 0:9 and
T = 15; n = 49, the ECP of the PHAC with the rectangular kernel under the �xed-smoothing
asymptotics is 80:0% but it is only 63:0% under the increasing-smoothing asymptotics. Third,
Table 2 provides strong evidence that the rectangular kernel performs better than the �nite-order
kernel under the �xed-smoothing asymptotics. The performance of PHAC with the rectangular
kernel is very robust to spatial dependence so that the size distortion does not increase much
with spatial dependence. This size advantage of the rectangular kernel arises from its bias reduc-
ing property and the adaptiveness of the bandwidth choice rule. Finally, Table 2 shows that our
testing procedure based on the �xed-smoothing asymptotics is reasonably robust to measurement
errors. Comparing PHAC with PHACe, we see that the performance of PHACe is quite close to
that of PHAC in most cases.

Table 3 compares the performances of the two di¤erent asymptotics when more than one

10The RMSE of ĴDK
�

nT has also been compared in the simulation. Unreported results show that ĴnT tends to have
a smaller RMSE than ĴDK

�
nT in most cases and especially with large T and/or under weak temporal autocorrelation.
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parameters or restrictions are considered. DGP2 is used with p = 3. The con�dence regions are
obtained by inverting the Wald test of H0 : �1 = 0 with g = 1 and H0 : �1 = �2 = �3 = 0
with g = 3; respectively. The table evidently indicates that under the increasing-smoothing
asymptotics the error in coverage probability increases with the number of parameters being
considered. The coverage error becomes especially severe when the process is highly persistent.
When g = 3 and � = � = 0:9, the ECP of PHAC with the Parzen kernel is only 28.5% under
the increasing-smoothing asymptotics. The coverage error of PHAC also increases under the
�xed-smoothing asymptotics with the number of parameters or restrictions being tested but
much lesser. This is consistent with our asymptotic expansion in Theorem 6. The theorem shows
that the �xed-smoothing asymptotics and F -approximation correct for the number of restrictions
being jointly tested.

Figure 3 presents size-adjusted power of the PHAC and DK with the sample size of T =
15; n = 49: We use the DGP2 with p = 1, but consider the following local alternative hypothesis

H1
�
�2
�
: �1 = �10 + c=

p
nT

where c =
�
E
�
~Xit ~X

0
it

��1 h
(nT )�1

P
i;t

P
j;sE

�
uitujs ~Xit ~X

0
js

�i
E
�
~Xit ~X

0
it

��1��1=2
~c with ~c =

� = k k ;  i:i:d:� N (0; 1) : The scaling matrix c is computed by simulation. We compute the
power using the 5% empirical critical values under the null and with data-driven bandwidth
parameters. Figure 3 show that the proposed procedure has better power in most of dependence
structures we consider. Even under strong spatial dependence (� = 0:9), it has almost the same
power as the DK except one extreme case (� = 0:9; � = 0:9).

9 Conclusion

In this paper we study robust inference for linear panel models with �xed e¤ects in the presence
of heteroskedasticity and spatiotemporal dependence of unknown forms. We consider a bivariate
kernel covariance matrix estimator and examine the properties of the covariance estimator and
the associated test statistic under both the increasing-smoothing asymptotics and the �xed-
smoothing asymptotics. We also derive the optimal bandwidth selection procedure based on an
upper bound of the AMSE. For the �xed-smoothing asymptotic distribution, we establish the
validity of an F -approximation. The adaptiveness of our estimator ensures that it can be safely
used without the knowledge of the dependence structure.

Instead of using the upper bound of the AMSE as the criterion, we can study the optimal
bandwidth selection based on a criterion that is most suitable for hypothesis testing and CI
construction. It is interesting to extend the bandwidth selection methods in time series HAC
estimation by Sun (2010) and Sun and Kaplan (2011) to the panel setting.
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APPENDIX

Proof of Theorem 1

For notational simplicity, we re-order the individuals and time and make new indices. For i(j) =
1; :::; `j;n, di(j)j � dn, and for i(j) = `j+1;n; : : : ; n, di(j)j > dn. For t(s) = 1; :::; `s;T , dt(s)s � dT ,
and for t(s) = `s+1;T ; : : : ; T , dt(s)s > dT .

(a) Asymptotic Variance

We have

nT

`n`T
cov

�
~JnT (c1; d1) ; ~JnT (c2; d2)

�
:=

1

nT`n`T
(C1nT + C2nT + C3nT ) ;

where
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nTpX
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�
E"4l � 3

� nX
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�
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K2

�
duv
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�
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(d1)
(j;s);lr

(c2)
(a;u);lr

(d2)
(b;v);l

C2nT =

nTpX
l;k=1

nX
i;j;a;b=1

TX
t;s;u;v=1

K1

�
dij
dn

�
K2

�
dts
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�
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�
duv
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(c1)
(i;t);lr
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For C1nT , under Assumptions I1 and I2

1

nT`n`T
jC1nT j �

c4R
`n`T

1

nT

nTpX
l=1

��E"4l � 3�� � c4RcEp

`n`T
= o(1): (A.1)

In order to consider boundary e¤ects, we can decompose C2nT as follows

C2nT := D1nT +D2nT +D3nT +D4nT +D5nT
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where

D1nT =
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D1nT is based on nonboundary units whereas D2nT , D3nT , D4nT and D5nT are based on boundary
ones.

First, applying the proof of Theorem 1 in Kim and Sun (2011), we can show that

lim
(n;T )!1

1

nT`n`T
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i;a2En

`i;nX
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and
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:

(A.3)

It is straightforward to show that (A.2) and (A.3) imply

lim
(n;T )!1

1

nT`n`T
D1nT = �K1 �K2J (c1; c2) J (d1; d2) :
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For D2nT , we have

1

nT`n`T
D2nT

� 1

nT

nX
i;a=1

X
t=2ET
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u=1

���(c1c2)(it;au)

���
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���
1A = o(1); (A.4)

as T2=T ! 0. Using the similar procedure to (A.4), we can show D3nT = o(nT`n`T ), D4nT =
o(nT`n`T ) and D5nT = o(nT`n`T ) given T2=T ! 0 and n2=n! 0.

Thus,

lim
(n;T )!1

1

nT`n`T
C2nT = �K1 �K2J (c1; c2) J (d1; d2) :

By symmetry,
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Therefore,
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In terms of matrix form,
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(b) Asymptotic Bias

Let cnT := dq1n =d
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T and cnT = cd + o(1) where cd > 0. We have
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(c) AMSE
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we have
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where the last equality holds by Theorem 1(a) and (b).

Proof of Corollary 1

For any sequence of (dn; dT ) ; let �nT := �nT (dn; dT ) = d2q1n `n`T = (nT ) and cnT := cnT (dn; dT ) :=
dq1n =d

q2
T : The mapping between (dn; dT ) and (�nT ; cnT ) is one-to-one and invertible. We can

express (dn; dT ) in terms of (�nT ; cnT ) as follows:
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Some elementary calculations show that the above dominating term is uniquely minimized over
(�nT ; cnT ) 2 R2+ at (�?nT ; c?nT ) where
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The inequality holds with equality if and only if �nT = �?nT (1 + o (1)) and cnT = c?nT (1 + o (1)) :
In other words, the inequality is strict unless dn = d?n (1 + o (1)) and dT = d?T (1 + o (1)) :
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Proof of Proposition 1

(a) ĴnT � ĴGAnT = op(1) if dn ! 0 as n!1:

Under the assumptions of Proposition 1, it is enough to show that
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as dn ! 0 because K1 (dij=dn) = 0 for all i 6= j provided dn < mini;j dij . With the similar
procedures, we can show that ~C3nT ! 0 and ~C4nT ! 0: Therefore, (A.6) holds.
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By Chebyshev�s inequality, we have
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��� > �� � 1

�2
E
�
~JnT (c; d)� ~JDKnT (c; d)

�2
:= �C1nT + �C2nT + �C3nT + �C4nT ;

for any �; where

�C1nT =
1

�2
1

n2T 2

nX
i;j;a;b=1

TX
t;s;u;v=1

nTpX
l=1

�
K1

�
dij
dn

�
� 1
��

K1

�
dab
dn

�
� 1
�
K2

�
dts
dT

�
K2

�
duv
dT

�
� r(c)(i;t);lr

(d)
(j;s);lr

(c)
(a;u);lr

(d)
(b;v);l

�
E"4l � 3

�
�C2nT =

1

�2
1

n2T 2

nX
i;j;a;b=1

TX
t;s;u;v=1

nTpX
l;k=1

�
K1

�
dij
dn

�
� 1
��

K1

�
dab
dn

�
� 1
�
K2

�
dts
dT

�
K2

�
duv
dT

�
� r(c)(i;t);lr

(d)
(j;s);lr

(c)
(a;u);kr

(d)
(b;v);k

�C3nT =
1

�2
1

n2T 2

nX
i;j;a;b=1

TX
t;s;u;v=1

nTpX
l;k=1

�
K1

�
dij
dn

�
� 1
��

K1

�
dab
dn

�
� 1
�
K2

�
dts
dT

�
K2

�
duv
dT

�
� r(c)(i;t);lr

(d)
(j;s);kr

(c)
(a;u);lr

(d)
(b;v);k

�C4nT =
1

�2
1

n2T 2

nX
i;j;a;b=1

TX
t;s;u;v=1

nTpX
l;k=1

�
K1

�
dij
dn

�
� 1
��

K1

�
dab
dn

�
� 1
�
K2

�
dts
dT

�
K2

�
duv
dT

�
� r(c)(i;t);lr

(d)
(j;s);kr

(c)
(a;u);kr

(d)
(b;v);l:

We can show that �C1nT = o (1) using the same argument as in (A.1). For �C2nT ; as K1(�) is the
rectangular kernel,

�C2nT =
1

�2
1

n2T 2

nX
i;j;a;b=1

TX
t;s;u;v=1

�
K1

�
dij
dn

�
� 1
� �
K1

�
dab
dn

�
� 1
�
K2

�
dts
dT

�
K2

�
duv
dT

�

(cd)
(it;js)

(cd)
(au;bv)

� 1

�2

0@ 1

nT

nX
i;j=1

TX
t;s=1

�
K1

�
dij
dn

�
� 1
�
d�qSij

���(cd)(it;js)

��� dqSij
1A2

=
1

�2

0@ 1

nT

nX
i;j=1

TX
t;s=1

1

�
dij
dn

> 1

�
d�qSij

���(cd)(it;js)

��� dqSij
1A2

� 1

�2

0@ 1

nT

nX
i;j=1

TX
t;s=1

1

�
dij
dn

> 1

�
(dn)

�qS
���(cd)(it;js)

��� dqSij
1A2

� 1

�2
(dn)

�2qS

0@ 1

nT

nX
i;j=1

TX
t;s=1

���(cd)(it;js)

��� dqSij
1A2

! 0
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as dn !1: For �C3nT ; we have:

�C3nT =
1

�2
1

n2T 2

nX
i;j;a;b=1

TX
t;s;u;v=1

�
K1

�
dij
dn

�
� 1
��

K1

�
dab
dn

�
� 1
�

�K2

�
dts
dT

�
K2

�
duv
dT

�

(cc)
(it;au)

(dd)
(js;bv)

� 1

�2
1

n2T 2

nX
i;j;a;b=1

TX
t;s;u;v=1

�
K1

�
dij
dn

�
� 1
��

K1

�
dab
dn

�
� 1
� ���(cc)(it;au)

(dd)
(js;bv)

���
=

1

�2
1

n2T 2

nX
i;j;a;b=1

TX
t;s;u;v=1

1

�
dij
dn

> 1

�
1

�
dab
dn

> 1

� ���(cc)(it;au)
(dd)
(js;bv)

���
=

1

�2
1

n2T 2

nX
i;j;a;b=1

TX
t;s;u;v=1

1

�
dij
dn

> 1

�
1

�
dab
dn

> 1

�
1

�
dia
dn

� 1
�
1

�
djb
dn

� 1
�

�
���(cc)(it;au)

(dd)
(js;bv)

���+ o (1)
=

1

�2
1

nT

nX
i=1

X
a:dia=dn�1

TX
t=1

TX
u=1

���(cc)(it;au)

���
0@ 1

nT

X
j:dij=dn>1

X
fb:djb=dn�1; dab=dn>1g

TX
s=1

TX
v=1

���(dd)(js;bv)

���
1A+ o (1) :

As `i;n � c`n with some constant c, if `n=n! 1; then

1

nT

X
fj:dij=dn>1g

X
fb:djb=dn�1; dab=dn>1g

TX
s;v=1

���(dd)(js;bv)

���
=
n� `n
n

1

(n� `n)T
X

fj:dij=dn>1g

X
fb:djb=dn�1; dab=dn>1g

TX
s;v=1

���(dd)(js;bv)

���! 0;

which implies �C3nT ! 0 as (n; T )!1:With the same procedure, we can show that �C4nT = o (1) :
Therefore, (A.7) holds.

(c) ĴnT � ĴDK
�

nT = op(1) if `T =T ! 1 as T !1:

The proof is analogous to the proof of (b).

The proof of Proposition 2 uses the lemma below whose proof is given in the supplementary
appendix.

Lemma 1 Let

X�;nT :=
1p
nT

LnX
i1=1

MnX
i2=1

TX
t=1

�b;�

�
i1
Ln

;
i2
Mn

;
t

T

�
V̂ �(i1;i2;t):

Then, under Assumptions F3 �F4

X�;nT
a� Xa�;nT := �

1p
nT

X
i1;i2;t

�b;�

�
i1
Ln

;
i2
Mn

;
t

T

�0@e�(i1;i2;t) � 1

nT

X
i1;i2;t

e�(i1;i2;t)

1A
jointly over � = 1; 2; :::;L for every �xed L.
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Lemma 2 Suppose �nT = �nT;L + �nT;L: Assume
(i) P (�nT;L < �)� P (��nT;L < �) = o(1) for each �xed L and each � 2 R as (n; T )!1;
(ii) P (��nT;L < �)� P (�nT < �) = o(1) uniformly in (n; T ) for each � 2 R as L ! 1;
(iii) The CDF of �nT is equicontinuous when n and T are su¢ ciently large,
(iv) �nT;L !p 0 uniformly in (n; T ) as L ! 1: Then

P (�nT < �) = P (�nT < �) + o(1) for each � 2 R as (n; T )!1:

Proof of Lemma 2. Let " > 0: Under condition (iii), we can �nd � > 0 such that for some
integer C > 0;

P (� � � � �nT < � + �) � "

for all (n; T ) with min(n; T ) � C: Under condition (iv), we can �nd an N such that

P (j�nT;Lj > �) � "

for all L � N and all (n; T ) : From condition (ii), we can �nd N 0 � N such that��P ���nT;L < �
�
� P (�nT < �)

�� � "

for all L � N 0 and all n and T: It follows from condition (i) that for any �xed L0 � N 0; there
exists a ~C(L0) � C such that ��P (�nT;L0 < �)� P

�
��nT;L0 < �

��� � "

for (n; T ) with min (n; T ) � ~C(L0):
When min (n; T ) � ~C(L0); we have

P (�nT � �) = P (�nT;L0 + �nT;L0 � �)

� P (�nT;L0 � � + �) + P (j�nT;L0 j > �)

� P
�
��nT;L0 � � + �

�
+ 2" � P (�nT < � + �) + 3"

� P (�nT < �) + 4":

Similarly,

P (�nT � �) = P (�nT;L0 + �nT;L0 � �)

� P (�nT;L0 � � � �)� P (j�nT;L0 j � �)

� P (��nT;L0 � � � �)� 2" � P (�nT � � � �)� 3"
� P (�nT � �)� 4":

Since the above two inequalities hold for all " > 0; we must have P (�nT < �) = P (�nT < �)+o(1):

Proof of Proposition 2

We �rst consider the case that Kb (�; �) is continuous on ([0; 1]3 � [0; 1]3) and continuously di¤er-
entiable almost everywhere on ([0; 1]3 � [0; 1]3): Let

�JnT =
1

nT

LnX
i1;j1=1

MnX
i2;j2=1

TX
t;s=1

1X
�=1

���b;�

�
i1
Ln

;
i2
Mn

;
t

T

�
�b;�

�
j1
Ln

;
j2
Mn

;
s

T

�
V̂ �(i1;i2;t)V̂

�0
(j1;j2;s)

:
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Since

Kb ((x1; x2; x3) ; (y1; y2; y3)) = lim
L!1

LX
�=1

�{�b;� ((x1; x2; x3))�b;� (y1; y2; y3) ; (A.8)

where the right hand side converges absolutely and uniformly over
�
[0; 1]3 � [0; 1]3

�
, �JnT and ĴnT

have the same limiting distribution.
We use Lemma 1 and Lemma 2 to complete the proof. We write

�JnT = �nT;L + �nT;L for �nT;L =
LX
�=1

��X�;nTX
0
�;nT and �nT;L =

1X
�=L+1

��X�;nTX
0
�;nT :

By Lemma 1, for each �xed L;

�nT;L
a� ��nT;L :=

LX
�=1

��X
a
�;nTX

a0
�;nT

so condition (i) in Lemma 2 is satis�ed. Let �nT :=
P1
�=1 ��X

a
�;nTX

a0
�;nT ; then it is easy to see that

condition (ii) in Lemma 2 holds. The uniformity in condition (ii) holds because

�nT � ��nT;L =
1X

�=L+1
��X

a
�;nTX

a0
�;nT

and for any r1 and r2 2 Rp

E
��r01 ��nT � ��nT;L� r2�� � C

1X
�=L+1

j��j ! 0 (A.9)

uniformly in (n; T ) for some constant C > 0: To verify condition (iii) in Lemma 2, we note that

Xa�;nT !d Xa�

jointly for � = 1; 2; :::;LX for any �xed constant LX, where fXa� ; � = 1; 2; :::;LXg are jointly normal
with

var (Xa� ) = J lim
(n;T )!1

1

nT

X
i1;i2;t

�
�b;�

�
i1
Ln

;
i2
Mn

;
t

T

�
1i1;i2 � ��b;�

�2
;

cov(Xa�1 ;X
a
�2) = J lim

(n;T )!1

1

nT

X
i1;i2;t

�
�b;�1

�
i1
Ln

;
i2
Mn

;
t

T

�
1i1;i2 � ��b;�1

� �
�b;�2

�
i1
Ln

;
i2
Mn

;
t

T

�
1i1;i2 � ��b;�2

�
:

In the above, ��b;� = (nT )
�1P

i1;i2;t
1i1;i2�b;� (i1=Ln; i2=Mn; t=T ) : Now

�nT :=

LXX
�=1

��X
a
�;nTX

a0
�;nT +

1X
�=LX+1

��X
a
�;nTX

a0
�;nT := �

(1)
nT;LX + �

(2)
nT;LX :

Using the joint distributional convergence of
n
Xa�;nT

o
to fXa� g ; we have �

(1)
nT;LX !

d
PLX
�=1 ��X

a
�X

a0
�

which in turn converges to �1 :=
P1
�=1 ��X

a
�X

a0
� as LX !1. On the other hand,

�
(2)
nT;LX !

p 0 uniformly in (n; T ) as LX !1 (A.10)
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Using the similar argument for proving Lemma 2, we have �nT !d �1; which has a continuous
distribution. So for any � and �; we have

P (� � � � �nT < � + �) = P (� � � � �1 < � + �) + o (1)

as (n; T )!1: Given the continuity of the CDF of �1; for any " > 0; we can �nd a � > 0 such
that P (� � � � �nT < � + �) � " for all (n; T ) when n and T are su¢ ciently large. We have thus
veri�ed Condition (iii) in Lemma 2. Finally, for any r1 and r2 2 Rp; we have

E
��r01�nT;Lr2�� � 1X

�=L+1
j��jE

�
r01X�;nTX

0
�;nT r2

�
� C

1X
�=L+1

j��j ! 0 (A.11)

uniformly in (n; T ) as L ! 1: Hence �nT;L !p 0 uniformly in (n; T ) as L ! 1:
It follows from the above steps that

�JnT
a�

1X
�=1

��X
a
�;nTX

a0
�;nT (A.12)

=d �
1

nT

X
i1;j1;i2;j2;t;s

Kb
��

i1
Ln

;
i2
Mn

;
t

T

�
;

�
j1
Ln

;
j2
Mn

;
s

T

���
e�(i1;i2;t) � �e

�
��

e�(j1;j2;s) � �e
�
�0
�0;

and ĴnT
a� �JanT�0 as desired.

Next, we consider the case with the rectangular kernel. We follow the same arguments as
above but with some modi�cations. We de�ne

~� = �0 +Q
�1 1

nT

nX
i=1

TX
t=1

�Zituit;

which is asymptotically equivalent to �̂ in the sense that
p
nT
�
�̂ � �0

�
=
p
nT
�
~� � �0

�
+op (1) :

By construction ~� has a �nite fourth moment while �̂ may not have any moment. On the basis
of ~�; we introduce another pseudo estimator:

�JnT =
1

nT

X
i1;j1;i2;j2;t;s

Kb
��

i1
Ln

;
i2
Mn

;
t

T

�
;

�
j1
Ln

;
j2
Mn

;
s

T

��
~V �(i1;i2;t)

~V �0(j1;j2;s)

and rede�ne �JnT to be

�JnT =
1

nT

X
i1;j1;i2;j2;t;s

1X
�=1

���b;�

�
i1
Ln

;
i2
Mn

;
t

T

�
�b;�

�
j1
Ln

;
j2
Mn

;
s

T

�
~V �(i1;i2;t)

~V �0(j1;j2;s):

where ~V �(i1;i2;t) = 1i1;i2
~V(i1;i2;t) and ~V(i1;i2;t) = ~Zit( ~Yit � ~X 0

it
~�): It is not hard to show that ĴnT =

�JnT + op(1). In addition,

1p
nT

LnX
i1=1

MnX
i2=1

TX
t=1

�b;�

�
i1
Ln

;
i2
Mn

;
t

T

�
V̂ �(i1;i2;t)

=
1p
nT

LnX
i1=1

MnX
i2=1

TX
t=1

�b;�

�
i1
Ln

;
i2
Mn

;
t

T

�
~V �(i1;i2;t) + op (1)
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for � = 1; 2; :::;L. So Lemma 1 holds with V̂ �(i1;i2;t) replaced by ~V
�
(i1;i2;t)

:

It remains to show that �JnT = �JnT+op (1) and �JnT is asymptotically equivalent in distribution
to �JanT�

0: For the �rst result, we can use the L1 and L2 convergence of the Fourier series

expansion and show via some tedious calculations that E
h
vec( �JnT � �JnT )

0Svec( �JnT � �JnT )
i
=

o (1) as (n; T )!1: For the second result, we use the similar argument for proving (A.12). We
only have to modify (A.9), (A.10) and (A.11). Instead of using the absolute moment as in (A.9)
and (A.11) to obtain the convergence in probability, we compute the mean and variance and use
Chebyshev�s inequality to obtain the same result. The modi�cations are needed because when
the kernel functions are continuous and piecewise smooth, we have

P1
�=1 j��j < 1: In contrast,

for the rectangular kernel, we have only
P1
�=1 �� <1 and

P1
�=1 �

2
� <1:

Lemma 3 As (b1; b2; b3)! 0; we have

(a) �1 = 1� b1b2b3c1 + o (b1b2b3) ; (b) �2 = b1b2b3c2 + o (b1b2b3) :

Proofs are given in the supplementary appendix.

Lemma 4 As (b1; b2; b3)! 0; we have
(a) E

�
v11 � v12v�122 v21

�
= 1� b1b2b3c1 � (g � 1) b1b2b3c2 + o (b1b2b3) ;

(b) E
�
v11 � v12v�122 v21

�2
= 1� 2b1b2b3 (c1 + (g � 2) c2) + o (b1b2b3) ;

(c) E
��
v11 � v12v�122 v21

�
� 1
�2
= 2b1b2b3c2 + o (b1b2b3) :

Proof of Lemma 4

This is a direct application of Lemma 3 in Sun (2010).

Proof of Theorem 6

Taking a Taylor expansion, we have

P fgF1 (g; b) � zg
= EGg

�
z
�
v11 � v12v�122 v21

��
= Gg (z) +G

0
g (z) zE

��
v11 � v12v�122 v21

�
� 1
�
+
1

2
G00g (z) z

2E
��
v11 � v12v�122 v21

�
� 1
�2

+
1

2
E
�
G00g (~z)�G00g (z)

�
z2
��
v11 � v12v�122 v21

�
� 1
�2

where ~z is between z and z
�
v11 � v12v�122 v21

�
: Using Lemma 4, we have

P fgF1 (g; b) � zg
= Gg (z)�G0g (z) z [b1b2b3c1 + (g � 1) b1b2b3c2] +G00g (z) z2b1b2b3c2 + o (b1b2b3)
= Gg (z) +

�
G00g (z) z

2c2 �G0g (z) z (c1 + (g � 1) c2)
�
b1b2b3 + o (b1b2b3)

= Gg (z) +A (z) b1b2b3 + o (b1b2b3) :
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Proof of Theorem 7

Using Lemma 3, we have

D =
1

b1b2b3c2
(1 + o (1)) ; (A.13)

�1 (D � g + 1)
D

=
1

1 + b1b2b3 [c1 + (g � 1) c2]
+ o (b1b2b3) : (A.14)

It now follows from (A.14) and Theorem 6 that

P

�
�1 (D � g + 1)

D
F1 (g; b) � z

�
= P fgF1 (g; b) � gz [1 + b1b2b3 (c1 + (g � 1) c2)]g+ o (b1b2b3)
= Gg (gz [1 + b1b2b3 (c1 + (g � 1) c2)])
+A (gz [1 + b1b2b3 (c1 + (g � 1) c2)]) b1b2b3 + o (b1b2b3)
= Gg (gz) +G

0
g (gz) gz [c1 + (g � 1) c2] b1b2b3 +A (gz) b1b2b3 + o (b1b2b3)

= Gg (gz) +G
00
g (gz) g

2z2c2b1b2b3 + o (b1b2b3) :

By de�nition,

P fFg;D�g+1 � zg = P

(
�2g � gz

�2D�g+1
D � g + 1

)
= EGg

 
gz

�2D�g+1
D � g + 1

!

= Gg (gz) +G
0
g(gz)gzE

 
�2D�g+1
D � g + 1 � 1

!

+
1

2
G00g(gz)

�
gz

D � g + 1

�2
E
�
�2D�g+1 � (D � g + 1)

�2
+ o

�
1

D � g + 1

�
= Gg (gz) +

1

D
G00g(gz)g

2z2 + o

�
1

D

�
= Gg (gz) +G

00
g (gz) g

2z2c2b1b2b3 + o (b1b2b3)

where we have used (A.13). Hence

P

�
�1 (D � g + 1)

D
F1 (g; b) � z

�
= P fFg;D�g+1 � zg+ o (b1b2b3) :
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Table 1: RMSE/Estimand with ĴnT and ĴDKnT �DGP1

� �
0.0 0.3 0.6 0.9 0.0 0.3 0.6 0.9

T=15, n=49
0.0 0.10 0.20 0.28 0.46 0.42 0.21 0.25 0.43
0.3 ĴnT 0.17 0.34 0.46 0.67 ĴnT 0.14 0.33 0.43 0.60
0.6 (d̂n; d̂T )PA 0.23 0.43 0.56 0.72 (d?n; d

?
T )PA 0.17 0.41 0.53 0.71

0.9 0.36 0.55 0.67 0.84 0.31 0.53 0.65 0.83
0.0 0.15 0.25 0.32 0.40 1.00 0.36 0.36 0.36
0.3 ĴnT 0.24 0.40 0.52 0.71 ĴnT 0.20 0.31 0.41 0.53
0.6 (d̂n; d̂T )RE 0.32 0.51 0.65 0.69 (d?n; d

?
T )RE 0.20 0.42 0.52 0.64

0.9 0.41 0.60 0.72 0.84 0.20 0.57 0.63 0.81
0.0 0.47 0.47 0.48 0.47 0.36 0.36 0.36 0.36
0.3 ĴDKnT 0.55 0.55 0.54 0.55 ĴDKnT 0.56 0.56 0.55 0.56
0.6 (d̂DKT ) 0.69 0.69 0.69 0.69 (dDKT ) 0.71 0.71 0.71 0.71
0.9 0.88 0.88 0.88 0.88 0.88 0.89 0.89 0.89

T=50, n=49
0.0 0.06 0.13 0.19 0.40 0.42 0.12 0.18 0.39
0.3 ĴnT 0.11 0.25 0.34 0.57 ĴnT 0.13 0.24 0.32 0.51
0.6 (d̂n; d̂T )PA 0.15 0.35 0.50 0.63 (d?n; d

?
T )PA 0.14 0.31 0.40 0.58

0.9 0.27 0.49 0.59 0.81 0.21 0.44 0.57 0.75
0.0 0.08 0.16 0.19 0.21 1.00 0.20 0.20 0.20
0.3 ĴnT 0.15 0.28 0.41 0.58 ĴnT 0.20 0.26 0.31 0.33
0.6 (d̂n; d̂T )RE 0.21 0.44 0.70 0.57 (d?n; d

?
T )RE 0.20 0.32 0.39 0.47

0.9 0.37 0.61 0.69 0.79 0.20 0.48 0.57 0.69
0.0 0.28 0.28 0.28 0.28 0.20 0.20 0.20 0.20
0.3 ĴDKnT 0.40 0.40 0.40 0.40 ĴDKnT 0.38 0.37 0.37 0.38
0.6 (d̂DKT ) 0.53 0.54 0.53 0.54 (dDKT ) 0.51 0.52 0.51 0.52
0.9 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77

T=15, n=196
0.0 0.05 0.13 0.19 0.30 0.43 0.20 0.21 0.27
0.3 ĴnT 0.09 0.25 0.35 0.55 ĴnT 0.07 0.24 0.32 0.46
0.6 (d̂n; d̂T )PA 0.14 0.32 0.43 0.57 (d?n; d

?
T )PA 0.12 0.30 0.39 0.56

0.9 0.30 0.43 0.53 0.71 0.28 0.42 0.51 0.69
0.0 0.08 0.17 0.23 0.34 1.00 0.36 0.36 0.36
0.3 ĴnT 0.14 0.28 0.44 0.69 ĴnT 0.10 0.26 0.31 0.44
0.6 (d̂n; d̂T )RE 0.19 0.41 0.57 0.65 (d?n; d

?
T )RE 0.10 0.31 0.39 0.54

0.9 0.24 0.45 0.58 0.75 0.10 0.36 0.50 0.67
0.0 0.46 0.47 0.46 0.47 0.36 0.36 0.36 0.36
0.3 ĴDKnT 0.54 0.57 0.55 0.55 ĴDKnT 0.55 0.56 0.56 0.56
0.6 (d̂DKT ) 0.69 0.69 0.69 0.69 (dDKT ) 0.71 0.71 0.71 0.71
0.9 0.88 0.88 0.88 0.88 0.89 0.89 0.89 0.89
The subscripts �PA�and �RE�denote the Parzen and rectangular kernels, respectively. Left
and right panels are based on data-driven bandwidths and infeasible bandwidths, respectively.
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Table 2: Empirical Coverage Probabilities of Nominal 95% CIs Constructed
Using Alternative Covariance Estimators - DGP2

� �
0.0 0.3 0.6 0.9 0.0 0.3 0.6 0.9 0.0 0.3 0.6 0.9

T=15, n=49
0.0 94.4 93.5 91.7 86.8 95.3 95.2 95.0 93.8 94.2 94.1 92.6 91.7
0.3 PHAC 92.7 91.5 90.1 85.1 DK 93.5 93.3 93.5 92.3 PHAC 92.7 92.2 91.3 90.1
0.6 (PA,F) 89.1 88.8 85.5 79.8 (PA,F) 88.5 87.9 88.8 88.0 (RE,F) 89.8 89.8 88.7 87.6
0.9 86.5 85.4 82.1 76.1 80.2 81.2 81.0 79.9 86.0 85.1 85.4 80.0
0.0 94.4 93.5 91.1 86.3 94.1 92.4 84.5 54.0 94.2 93.8 92.5 88.7
0.3 PHACe 92.5 91.2 89.3 84.3 CCE 94.0 91.8 84.9 53.5 PHACe 92.1 91.5 90.5 86.7
0.6 (PA,F) 88.6 88.0 84.7 81.0 (I) 93.5 91.8 83.9 53.9 (RE,F) 88.6 89.1 87.4 84.2
0.9 85.5 84.1 81.1 81.0 93.3 90.8 83.9 54.3 85.0 84.5 83.3 80.4
0.0 94.1 93.3 90.7 84.6 95.0 94.0 91.8 86.1 93.9 93.5 91.1 88.2
0.3 PHAC 92.3 91.2 89.2 82.2 DK� 94.7 93.9 91.6 85.0 PHAC 92.1 91.2 89.8 85.9
0.6 (PA,I) 88.4 87.9 83.3 72.8 (PA,F) 94.6 93.8 91.7 84.9 (RE,I) 88.2 88.2 84.2 74.9
0.9 85.2 83.7 77.9 64.4 94.7 93.2 91.2 85.1 82.6 81.9 75.0 63.0

T=50, n=49
0.0 94.7 94.0 92.8 88.2 95.2 95.2 94.9 94.3 94.6 94.5 93.7 93.9
0.3 PHAC 93.6 93.1 91.9 87.9 DK 94.0 94.1 94.4 93.7 PHAC 94.0 93.8 93.3 93.5
0.6 (PA,F) 92.4 91.5 89.6 84.9 (PA,F) 91.3 91.7 91.2 91.1 (RE,F) 92.4 92.4 91.6 92.2
0.9 88.9 88.6 85.9 76.0 84.9 85.2 85.1 84.7 88.6 88.8 89.0 85.1
0.0 94.7 93.8 92.1 87.1 94.2 92.0 84.7 54.3 94.5 94.3 93.2 91.2
0.3 PHACe 93.3 92.6 90.8 86.3 CCE 93.9 92.3 84.6 54.6 PHACe 93.4 93.0 91.2 89.1
0.6 (PA,F) 91.9 91.2 88.5 86.4 94.1 92.4 84.4 54.2 (RE,F) 92.4 92.0 90.3 89.3
0.9 88.1 87.6 85.9 79.9 93.2 92.4 84.8 53.3 88.1 88.2 87.5 81.7
0.0 94.6 93.9 92.5 87.4 95.5 94.1 92.4 84.8 94.5 94.3 93.2 93.0
0.3 PHAC 93.5 92.9 91.4 86.7 DK� 95.0 94.2 92.2 86.6 PHAC 93.7 93.3 91.9 91.4
0.6 (PA,I) 92.1 91.2 87.9 80.7 (PA,F) 95.0 94.1 92.1 86.5 (RE,I) 91.9 91.7 88.7 83.5
0.9 87.9 87.2 80.5 68.9 93.8 93.6 92.1 85.2 86.4 85.9 77.2 71.8

T=15, n=196
0.0 93.9 93.5 93.3 90.9 94.5 94.2 95.0 94.8 93.7 93.7 94.0 92.8
0.3 PHAC 92.5 93.1 91.7 88.3 DK 92.9 93.9 93.9 92.6 PHAC 92.5 93.6 92.4 91.3
0.6 (PA,F) 91.0 90.2 88.7 86.2 (PA,F) 88.7 89.0 88.5 88.6 (RE,F) 90.6 90.6 90.3 91.0
0.9 88.3 89.3 87.3 81.9 80.0 81.4 80.4 79.3 87.8 88.3 87.9 83.8
0.0 94.0 93.1 92.9 90.1 94.4 93.0 86.9 51.0 93.9 93.6 93.8 91.8
0.3 PHACe 92.4 92.5 91.0 87.0 CCE 94.6 92.9 86.4 50.6 PHACe 92.0 92.8 91.9 89.2
0.6 (PA,F) 90.2 89.0 87.4 86.2 94.3 93.2 86.0 51.4 (RE,F) 90.1 90.0 89.7 88.7
0.9 87.9 88.2 85.8 87.2 94.5 93.2 86.0 50.6 87.0 87.8 87.2 85.6
0.0 93.9 93.3 92.9 89.4 94.2 93.0 94.0 91.2 93.6 93.5 93.4 90.5
0.3 PHAC 92.4 93.0 91.2 86.2 DK� 94.6 94.0 93.9 91.2 PHAC 92.3 93.3 91.5 87.1
0.6 (PA,I) 90.8 89.8 87.3 79.7 (PA,F) 94.5 94.4 93.3 90.7 (RE,I) 90.0 89.9 87.6 78.6
0.9 88.1 88.6 84.8 71.6 94.7 94.3 93.7 91.3 87.0 86.8 81.9 66.7
�PA�and �RE�denote the Parzen and rectangular kernels respectively.
�F�and �I�denote �xed-smoothing and increasing-smoothing respectively.
The superscript �e�denotes measurement errors.
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Table 3: Empirical Coverage Probabilities of Nominal 95% Con�dence
Regions Constructed with Di¤erent Number of Restrictions - DGP2

g=1 g=3
� � �

0.0 0.3 0.6 0.9 0.0 0.3 0.6 0.9
0.0 93.6 92.7 90.9 86.5 92.8 91.2 87.8 78.1

PHAC 0.3 91.8 91.1 88.9 84.0 90.4 88.0 84.4 74.0
(PA,F) 0.6 89.2 88.3 85.3 79.0 85.4 82.5 77.5 66.6

0.9 87.3 86.4 82.2 74.4 80.2 77.1 71.4 58.6
0.0 93.3 92.3 90.1 84.1 92.3 90.2 84.9 70.3

PHAC 0.3 91.5 90.7 88.0 81.0 89.7 86.7 81.1 63.0
(PA,I) 0.6 88.4 87.6 83.0 71.9 83.4 79.7 70.0 44.5

0.9 86.1 84.7 77.4 63.2 76.4 71.5 57.3 28.5
0.0 93.5 93.2 92.0 90.5 92.7 92.0 90.2 86.8

PHAC 0.3 91.8 91.1 89.8 89.2 90.2 88.8 86.8 83.5
(RE,F) 0.6 89.5 89.4 88.6 86.6 86.2 85.0 85.4 87.8

0.9 86.7 86.1 85.7 80.6 79.3 78.0 81.7 84.1
0.0 93.1 92.7 90.9 86.6 91.7 90.2 85.9 74.3

PHAC 0.3 91.2 90.5 88.3 84.0 88.4 86.5 81.5 66.3
(RE,I) 0.6 88.0 87.9 84.6 73.0 81.0 78.5 69.4 51.2

0.9 83.5 82.1 75.1 62.5 68.0 64.3 51.6 53.4
See notes to Table 2.
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Figure 3: Size-adjusted power of the PHAC and DK with n = 49; T = 15.
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