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ABSTRACT

This paper studies fractional processes that may be perturbed by weakly depen-
dent time series. The model for a perturbed fractional process has a components
framework in which there may be components of both long and short memory. All
commonly used estimates of the long memory parameter (such as log periodogram
(LP) regression) may be used in a components model where the data are affected by
weakly dependent perturbations, but these estimates suffer from serious downward
bias. To circumvent this problem, the present paper proposes a new procedure that
allows for the possible presence of additive perturbations in the data. The new esti-
mator resembles the LP regression estimator but involves an additional (nonlinear)
term in the regression that takes account of possible perturbation effects in the data.
Under some smoothness assumptions at the origin, the bias of the new estimator is
shown to disappear at a faster rate than that of the LP estimator, while its asymptotic
variance is inflated only by a multiplicative constant. In consequence, the optimal
rate of convergence to zero of the asymptotic MSE of the new estimator is faster
than that of the LP estimator. Some simulation results demonstrate the viability
and the bias-reducing feature of the new estimator relative to the LP estimator in
finite samples.

JEL Classification: C13; C14; C22; C51

Keywords: Asymptotic bias; Asymptotic normality; Bias reduction; Fractional com-
ponents model; Perturbed fractional process; Rate of convergence



1 Introduction

Fractional processes have been gaining increasing popularity with empirical researchers
in economics and finance. In part, this is because fractional processes can capture
forms of long run behavior in economic variables that elude other models, a feature
that has proved particularly important in modelling inter-trade durations and the
volatility of financial asset returns. In part also, fractional processes are attractive
to empirical analysts because they allow for varying degrees of persistence, including
a continuum of possibilities between weakly dependent and unit root processes.

For a pure fractional process, short run dynamics and long run behavior are driven
by the same innovations. This may be considered restrictive in that the innovations
that drive long run behavior may arise from quite different sources and therefore differ
from those that determine the short run fluctuations of a process. To accommodate
this possibility, the model we consider in the present paper allows for perturbations in
a fractional process and has a components structure that introduces different sources
and types of variation. Such models provide a mechanism for simultaneously cap-
turing the effects of persistent and temporary shocks on the realized observations.
They seem particularly realistic in economic and financial applications when there
are many different sources of variation in the data and both long run behavior and
short run fluctuations need to be modeled.

Specifically, a perturbed fractional process zt is defined as a fractional process
(yt) that is perturbed by a weakly dependent process (ut) as follows

zt = yt + µ+ ut, t = 1, 2, ..., n, (1)

where µ is a constant and

yt = (1− L)−d0wt =
∞∑
k=0

Γ(d0 + k)
Γ(d0)Γ(k + 1)

wt−k, 0 < d0 < 1/2. (2)

Here, yt is a pure fractional process and ut and wt are independent Gaussian processes
with zero means and continuous spectral densities fu(λ) and fw(λ), respectively. We
confine attention to the case where the memory parameter d0 ∈ (0, 1

2) largely for
technical reasons that will become apparent later. The case is certainly the most
relevant in empirical practice, at least for stationary series, but the restriction is
an important one. To maintain generality in the short run components of zt we do
not impose specific functional forms on fu(λ) and fw(λ). Instead, we allow them
to belong to a family that is characterized only by regularity conditions near the
zero frequency. This formulation corresponds to the conventional semiparametric
approach to modelling long range dependence.

By allowing for the presence of two separate stochastic components, the model
(1) captures mechanisms in which different factors may come into play in determin-
ing long run and short run behaviors. Such mechanisms may be expected to occur
in the generation of macroeconomic and financial data for several reasons. For ex-
ample, time series observations of macroeconomic processes often reflect short run
competitive forces as well as long run growth determinants. Additionally, economic

1



and financial time series frequently arise from processes of aggregation and involve
errors of measurement, so that the presence of an additive, short memory disturbance
is quite realistic. For instance, if the underlying volatility of stock returns follows a
fractional process, then realized volatility may follow a perturbed fractional process
because the presence of a bid-ask bounce adds a short memory component to realized
returns, with consequent effects on volatility.

Some empirical models now in use are actually special cases of perturbed fractional
processes. Among these, the long memory stochastic volatility model is growing in
popularity for modelling the volatility of financial time series (see Breidt, Crato and
De Lima, 1998, and Deo and Hurvich, 1999). This model assumes that log r2

t =
yt + µ + ut, where rt is the return, yt is an underlying fractional process and ut =
iid(0, σ2), thereby coming within the framework of (1). Another example is a rational
expectation model in which the ex ante variable follows a fractional process, so that
the corresponding ex post variable follows (1) with ut being a martingale difference
sequence. Sun and Phillips (2000) used this framework to model the real rate of
interest and inflation as perturbed fractional processes and found that this model
helped explain the empirical incompatibility of memory parameter estimates of the
components in the ex post Fisher identity. The study by Granger and Marmol (1997)
provides a third example, addressing the frequently observed property of financial
time series that the autocorrelogram can be low but positive for many lags. Granger
and Marmol explained this phenomenon by considering time series that consist of a
long memory component combined with a white noise component that has a much
larger variance, again coming within the framework of (1).

The main object in the present paper is to develop a suitable estimation pro-
cedure for the memory parameter d0 in (1). As we will show, existing procedures
for estimating d0 typically suffer from serious downward bias in models where there
are additive perturbations like (1 ). The present paper therefore proposes a new
procedure that allows for the possible presence of such perturbations in the data.

The spectral density fz(λ) of zt can be written as fz(λ) = (2 sin λ
2 )−2d0f∗(λ),

where f∗(λ) = fw(λ)+(2 sin λ
2 )2d0fu(λ) is a continuous function over [0, π]. So, fz(λ)

satisfies a power law around the origin of the form fz(λ) ∼ G0λ
−2d0 as λ → 0+,

for some positive constant G0. Therefore, we can estimate d0 by using the linear
log-periodogram (LP) regression introduced by Geweke and Porter-Hudak (1983).
Building on the earlier work of Künsch (1986), Robinson (1995a) established the
asymptotic normality of the LP estimator. Subsequently, Hurvich, Deo and Brodsky
(1998) (hereafter HDB) computed the mean square error of the LP estimator and
provided an MSE-optimal rule for bandwidth selection.

The LP estimator has undoubted appeal. It is easy to implement in practice and
has been commonly employed in applications. However, when the spectral density of
ut dominates that of wt in a neighborhood of the origin, the estimator may be biased
downward substantially, especially in small samples. One source of the bias is the
error of approximating the logarithm of f∗(λ) by a constant in a shrinking neighbor-
hood of the origin. This crude approximation also restricts the rate of convergence.
The rate of convergence of the LP estimator will be shown to be n−2d0/(4d0+1), which
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is quite slow, especially when d0 is close to zero.
To alleviate these problems, we take advantage of the structure of our model and

propose to estimate the logarithm of f∗(λ) locally by c+βλ2d0 . Our new estimator d̂
is defined as the minimizer of the sum of the squared regression errors in a regression
of the form

log Izj = α− 2d log λj + βλ2d
j + error, j = 1, 2, ...,m, (3)

where

Izj = Iz(λj) =
1

2πn
|
n−1∑
t=0

zt exp(itλj)|2, λj =
2πj
n
, (4)

and m is a positive integer smaller than the sample size n.
The new estimator can be seen as a way of utilizing parametric information in a

nonparametric setting. We approximate the unknown function locally by a nonlin-
ear function instead of a constant. One motivation for the nonlinear LP regression
estimator is the local nonlinear least square estimator in the nonparametric litera-
ture. Linton and Gozalo (2000) found that the local nonlinear estimator had superior
performance compared to the usual kernel estimator when the local nonlinear param-
eterization is close to the unknown function. Analogously, we expect the nonlinear
log periodogram regression estimator to work well in the presence of perturbations,
especially when the perturbations are relatively large.

In this paper we investigate the asymptotic and finite sample properties of d̂. We
determine its asymptotic bias, variance, asymptotic mean squared error (AMSE),
and asymptotic normality, and we calculate the AMSE optimal choice of bandwidth
m and its plug-in version. In the presence of the weakly dependent component, we
find that the asymptotic bias of d̂ is of order m4d0/n4d0 , provided that fw(·) and fu(·)
are boundedly differentiable around the origin, whereas that of the LP estimator d̂LP
has the larger order m2d0/n2d0 . The asymptotic variances of d̂ and d̂LP are both of
order m−1. In consequence, the optimal rate of convergence to zero of d̂ is of order
n−4d0/(8d0+1), whereas that of d̂LP is of the larger order n−2d0/(4d0+1). We find that d̂ is
asymptotically normal with mean zero, provided that m8d0+1/n8d0 → 0, whereas d̂LP
is asymptotically normal only under the more stringent condition m4d0+1/n4d0 → 0.

Some Monte Carlo simulations show that the asymptotic results of the paper
mimic the finite sample properties of the new estimator quite well. For the fractional
component processes considered in the simulations, the new estimator d̂ has a lower
bias, a higher standard deviation, and a lower RMSE compared to the LP estimator
d̂LP , as the asymptotic results suggest. The lower bias leads to better coverage
probabilities for d̂ over a wide range of m than for d̂LP . On the other hand, the
lower standard deviation of d̂LP leads to shorter confidence intervals than confidence
intervals based on d̂.

The paper by Andrews and Guggenberger (1999) is most related to our work.
They considered the conventional fractional model (i.e., var(ut) = 0) and proposed
to approximate log fw(λ) by a constant plus a polynomial of even order. Andrews and
Sun (2000) investigated the same issue in the context of a local Whittle estimator.
Other related papers include Henry and Robinson (1996), Hurvich and Deo (1999)
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and Henry (1999). These papers consider approximating log f∗(λ) by a more sophis-
ticated function than a constant for the purpose of obtaining a data-driven choice of
m. The present paper differs from those papers in that a nonlinear approximation is
used in order to achieve bias reduction and to increase the rate of convergence in the
estimation of d0. Also, the nonlinear polynomial function used here depends on the
memory parameter d0 (whereas this is not so in the work just mentioned) and the
estimation procedure for d0 utilizes this information.

The rest of the paper is organized as follows. Section 2 formally defines the new
estimator. Section 3 outlines the asymptotics of discrete Fourier transforms and
log-periodogram ordinates, which are used extensively in later sections. Section 4 es-
tablishes consistency and derives asymptotic normality results for the new estimator.
Asymptotic bias, asymptotic MSE, and bandwidth selection are also considered. Sec-
tion 5 investigates the finite sample performance of the new estimator by simulations.
Proofs are collected in the Appendix.

2 Nonlinear Log Periodogram Regression

This section motivates a new estimator that explicitly accounts for the additive per-
turbations in (1). Throughout, (1) is taken as the data generating process and then

fz(λ) = (2 sin
λ

2
)−2d0f∗(λ). (5)

Taking the logarithms of (5) leads to

log(fz (λ)) = −2d0 log λ+ log f∗(λ)− 2d0 log(2λ−1 sin(
λ

2
)). (6)

Replacing fz (λ) by periodogram ordinates Iz(λ) evaluated at the fundamental fre-
quencies λj , j = 1, 2, ...,m yields

log(Izj) = −c0 − 2d0 log λj + log f∗(λj) + Uj +O(λ2
j ), (7)

where c0 = 0.577216... is the Euler constant and Uj = log[Iz(λj)/fz(λj)] + c0.
By virtue of the continuity of f∗(λ), we can approximate log f∗(λj) by a constant

over a shrinking neighborhood of the zero frequency. This motivates log-periodogram
regression on the equation

log(Izj) = constant− 2d log λj + error. (8)

The LP estimator d̂LP is then given by the least squares estimator of d in this regres-
sion. If {Uj}mj=1 behave asymptotically like independent and identically distributed
random variables, then the LP estimator is a reasonable choice. In fact, under as-
sumptions to be stated below, we establish that

√
m(d̂LP − d0) ∼ N(bLP , π

2

24 ) where
bLP = O(m

2d0+1
/n2d0) and ‘∼’ signifies ‘asymptotically distributed.’ The ‘asymp-

totic bias’ of d̂LP itself is therefore of order O(m2d0/n2d0), which can be quite large.
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To reduce the bias, we can approximate log f∗(λj) by a simple nonlinear function of
frequency under the following assumptions:

Assumption 1: Either (a) σu = var(ut) = 0 for all t, so fu(λ) ≡ 0, for λ ∈ [−π, π]
or: (b) σu 6= 0 and fu(λ) is continuous on [−π, π], bounded above and away from
zero with bounded first derivative in a neighborhood of zero.

Assumption 2: fw(λ) is continuous on [−π, π], bounded above and away from zero.
When σu = 0, fw(λ) is three times differentiable with bounded third derivative in a
neighborhood of zero. When σu 6= 0, fw(λ) is differentiable with bounded derivative
in a neighborhood of zero.

Assumptions 1(b) and 2 are local smoothness conditions and hold for many mod-
els in current use, including ARMA models. They allow us to develop a Taylor
expansion of log f∗(λ) about λ = 0 with an error of the order of the first omitted
term. Specifically, when σu = 0,

log f∗(λj) = log fw(0) +O(λ2
j ). (9)

When σu 6= 0,

log f∗(λj)

= log fw(λj) + log[1 + (2 sin
λj
2

)2d0
fu(λj)
fw(λj)

]

= log fw(λj) + log
{

1 + λ2d0
j (1 +O(λ2

j ))
(
fu(0)
fw(0)

+O(λ2
j )
)}

= log fw(0) +
fu(0)
fw(0)

λ2d0
j +O(λ4d0

j ). (10)

So, in either case

log f∗(λj) = log fw(0) +
fu(0)
fw(0)

λ2d0
j +O(λrj) (11)

where O(·) holds uniformly over j = 1, 2, ...,m and r = 4d0{σu 6= 0}+ 2{σu = 0}.
Combining (7) with (11) produces the nonlinear LP regression model:

log(Izj) = −2d0 log λj + α0 + λ2d0
j β0 + Uj + εj , (12)

where

α0 = log fw(0)− c0, β0 = fu(0)/fw(0), and

εj = log f∗(λj)− log fw(0)− β0λ
2d0
j − 2d0[log(2 sin

λj
2

)− log λj ]. (13)

The new estimator is then defined as the minimizer of the sum of squared regression
errors in this model, i.e.

(α̂, d̂, β̂) = arg min
α,d,β

SSE(α, d, β), (14)
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where

SSE(α, d, β) =
m∑
j=1

[log(Izj)− α+ 2d log λj − λ2d
j β]2. (15)

Concentrating (15) with respect to α, we obtain

(d̂, β̂) = arg min
d∈D,β∈B

Q(d, β), (16)

with

Q(d, β) =
m∑
j=1

{(log Izj −
1
m

m∑
k=1

log Izk)

+2d(log λj −
1
m

m∑
k=1

log λk)− β(λ2d
j −

1
m

m∑
k=1

λ2d
k )}2. (17)

where B is a compact and convex set, D = [d1, d2] is a closed interval of admissible
values for d0 with 0 < d1 < d2 < 1/2. Here d1 and d2 can be chosen arbitrarily close
to 0 and 1/2, respectively. We write θ = (d, β), Θ = D ⊗ B for convenience and
assume the true value of θ lies in the interior of the admissible set.

3 Log-periodogram Asymptotics and Useful Lemmas

To establish the asymptotic properties of the new estimator, we need to characterize
the asymptotic behavior of the log-periodogram ordinates Uj = log[Iz(λj)/fz(λj)] +
c0. Define

Azj =
1√
2πn

n−1∑
t=0

zt cosλjt and Bzj =
1√
2πn

n−1∑
t=0

zt sinλjt, (18)

then

Uj = ln

(
A2
zj

fzj
+
B2
zj

fzj

)
+ c0, j = 1, ...,m. (19)

In view of the Gaussianity of Azj and Bzj , we can evaluate the means, variances,
and covariances of Uj , if the asymptotic behavior of the vector(
Azj/f

1/2
zj , Bzj/f

1/2
zj , Azk/f

1/2
zk , Bzk/f

1/2
zk

)
is known. The properties of this vector

depend in turn on those of the discrete Fourier transforms of zt, defined as w (λ) =
(2πn)−1/2∑n

1 zte
itλ.

The asymptotic behavior of w (λ) is given in the following lemma which is a
variant of results given earlier by several other authors (Robinson, 1995a, HDB,
1998, Andrews and Guggenberger, 1999).

Lemma 1 Let Assumptions 1 and 2 hold. Then uniformly over j and k, 1 ≤ k <
j ≤ m, m/n→ 0,
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(a) E [w (λj)w (λj) /fz (λj)] = 1 +O
(
j−1 log j

)
,

(b) E [w (λj)w (λj) /fz (λj)] = O
(
j−1 log j

)
,

(c) E
[
w (λj)w (λk) / (fz (λj) fz (λk))

1/2
]

= O
(
k−1 log j

)
,

(d) E
[
w (λj)w (λk) / (fz (λj) fz (λk))

1/2
]

= O
(
k−1 log j

)
.

It follows directly from Lemma 1 that for 1 ≤ k < j ≤ m,

EA2
zj/fzj =

1
2

+O(
log j
j

), EB2
zj/fzj =

1
2

+O(
log j
j

),

EAzjBzj/fzj = O(
log j
j

), EAzjBzk/(fzjfzk)1/2 = O(
log j
k

). (20)

Using these results and following the same line of derivation as in HDB (1998), we
can prove Lemma 2 below. Since the four parts of this lemma are proved in a similar
way to Lemmas 3, 5, 6 and 7 in HDB, the proofs are omitted here.

Lemma 2 Let Assumptions 1 and 2 hold. Then

(a) Cov (Uj , Uk) = O
(
log2 j/k2

)
, uniformly for log2m ≤ k < j ≤ m,

(b) limn sup1≤j≤mEU
2
j <∞,

(c) E (Uj) = O (log j/j) , uniformly for log2m ≤ j ≤ m,

(d) V ar (Uj) = π2/6 +O (log j/j) , uniformly for log2m ≤ j ≤ m.

With the asymptotic behavior of Uj in hand, we can proceed to show that the
normalized sums 1

m

∑m
j=1 cjUj are uniformly negligible under certain conditions on

the coefficients cj . Quantities of this form appear in the normalized Hessian matrix
below.

Lemma 3 Let {cj(d, β)}mj=1 be a sequence of functions such that, for some p ≥ 0,

sup
(d,β)∈Θ

|cj | = O(logpm) uniformly for 1 ≤ j ≤ m, (21)

and for some q ≥ 0,

sup
(d,β)∈Θ

|cj − cj−1| = O(j−1 logqm) uniformly for 1 ≤ j ≤ m. (22)

Then

sup
(d,β)∈Θ

∣∣∣∣∣∣ 1
m

m∑
j=1

cjUj

∣∣∣∣∣∣ = Op(
logmax(p,q)m√

m
). (23)
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We can impose additional conditions to get a tighter bound. For example, if we
also require that sup(d,β)∈Θ |cm| = O(1), then sup(d,β)∈Θ

∣∣∣ 1
m

∑m
j=1 cjUj

∣∣∣ = Op( logqm√
m

),
as is readily seen from the proof of the lemma. Further, the lemma remains valid if
we remove the ‘sup’ operator from both the conditions and the conclusion.

The following lemma assists in establishing the asymptotic normality of the non-
linear log-periodogram regression estimator.

Lemma 4 Let akn = ak be a triangular array for which

max
k
|ak| = o (m) ,

m∑
k=1+m0.5+δ

a2
k ∼ ρm,

m∑
k=1+m0.5+δ

|ak|p = O (m) , (24)

for all p ≥ 1, and 0 < δ < 0.5. Then,

1√
m

m∑
k=1+m0.5+δ

akUk
d→ N

(
0,
π2

6
ρ

)
. (25)

The proof of this lemma is based on the method of moments and involves a
careful exploration of the dependence structure of the discrete Fourier transforms.
Robinson’s argument (1995a, pp. 1067-70) forms the basis of this development and
can be used here with some minor modifications to account for differences in the
models. Details are omitted here and are available upon request.

4 Consistency, Asymptotic Normality and Bandwidth
Choice

We first establish asymptotic properties for the LP estimator in the context of the
components model (1). The following theorem gives the limit theory and provides a
benchmark for later comparisons.

Theorem 1 Let Assumptions 1 and 2 hold. Let m = m(n)→∞ and

m2r′+1

n2r′
→ Kσ{σu 6= 0}+K0{σu = 0} (26)

as n→∞, where r′ = 2d0{σu 6= 0}+2{σu = 0} and Kσ,K0 > 0 are constants. Then

√
m(d̂LP − d0)⇒ N(bLP ,

π2

24
), (27)

where

bLP = −(2π)2d0
fu(0)
fw(0)

d0

(2d0 + 1)2
Kσ{σu 6= 0} − 2π2

9

(
f ′′w(0)
fw(0)

+
d0

6

)
K0{σu = 0}.

(28)
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When σu 6= 0, the ratio m2r′+1/n2r′ = m4d0+1/n4d0 → Kσ in (26). This delivers
an upper bound of order O(n4d0/(1+4d0)) on the rate at which m can increase with n
and allows for larger choices of m for larger values of d0. Intuitively, as d0 increases,
the contamination from perturbations at frequencies away from the origin becomes
relatively smaller and we can expect to be able to employ a wider bandwidth in
the regression. To eliminate the asymptotic bias bLP in (27) altogether, we use a
narrower band and set m = o(n4d0/(1+4d0)) in place of (26). Deo and Hurvich (1999)
established a similar result under the assumption that ut is iid, but not necessarily
Gaussian. Their assumption that m4d0+1 log2m/n4d0 = o(1) is slightly stronger than
the assumption made here.

When σu 6= 0, the limit distribution (27) involves the bias

bLP = −(2π)2d0
fu(0)
fw(0)

d0

(2d0 + 1)2
Kσ < 0, (29)

which is always negative, as one would expect, because of the effect of the short
memory perturbations. Correspondingly, the dominating bias term of d̂LP has the
form

bn,LP = −(2π)2d0
fu(0)
fw(0)

d0

(2d0 + 1)2

m2d0

n2d0
< 0. (30)

The magnitude of the bias obviously depends on the quantity fw(0)/fu(0), which is
the ratio of the long run variance of the short memory input of yt to that of the
perturbation component ut. The ratio can be interpreted as a long run signal-noise
ratio (SNR), measuring the strength in the long run of the signal from the yt inputs
relative to the long run signal in the perturbations. The stronger the long run signal
in the perturbations, the greater the downward bias and the more difficult it becomes
to estimate the memory parameter accurately. One might expect these effects to be
exaggerated in small samples where the capacity of the data to discriminate between
long run and short run effects is reduced.

When σu = 0, the theorem contains essentially the same results proved in HDB.
In this case, the dominating term in the bias of d̂LP is given by

bn,LP = −2π2

9

(
f ′′w(0)
fw(0)

+
d0

6

)
m2

n2
. (31)

HDB showed that the dominating bias of d̂LP in the case of pure fractional process
regression is given by the expression

−2π2

9

(
f ′′w(0)
fw(0)

)
(
m

n
)2. (32)

The presence of the additional factor d0/6 in the second term of our expression (31)
arises from the use of a slightly different regressor in the LP regression. In particular,
we employ −2 log λj as one of the regressors in (3), while HDB use −2 log(2 sinλj/2).
These regressors are normally considered to be asymptotically equivalent. However,
while the use of −2 log λj rather than −2 log(2 sinλj/2) has no effect on the asymp-
totic variance, it does affect the asymptotic bias.

9



We now investigate the asymptotic properties of the nonlinear log-periodogram
regression estimator.

Theorem 2 Let Assumptions 1 and 2 hold.

(a) If 1
m + m

n → 0 as m,n→∞, then d̂− d0 = op(1).

(b) If for some arbitrary small ∆ > 0, mn + n4d0(1+∆)

m4d0(1+∆)+1 → 0, as m,n → ∞, then

d̂− d0 = Op
(
(mn )2d0

)
and β̂ − β0 = op(1).

Theorem 2 shows that d̂ is consistent under mild conditions. All that is needed
is that m approaches infinity slower than the sample size n. As shown by HDB,
trimming out low frequencies is not necessary. This point is particularly important
in the present case. In seeking to reduce contaminations from the perturbations,
the lowest frequency ordinates are the most valuable in detecting the long memory
effects.

It is not straightforward to establish the consistency of β̂, because, as n → ∞,
the objective function becomes flat as a function of β. The way we proceed is,
in fact, to show first that d̂ converges to d0 at some slower rate, more precisely,
d̂−d0 = Op((mn )2d0). We prove this rate of convergence stepwise. We start by showing
that d̂ − d0 = op((mn )d1/2) for 0 < d1 < d0, using the fact that βλ2d

j = O(mn )2d1

uniformly in (d, β) ∈ Θ. We can then deduce that d̂ − d0 = op((mn )d0(1+∆)). With
this faster rate of convergence, we have better control over some quantities and can
obtain an even faster rate of convergence for d̂. Repeating this procedure leads to
d̂ − d0 = Op((mn )2d0), as desired. The idea of the proof may be applicable to other
nonlinear estimation problems when the involved variables are integrated of different
orders or have different stochastic orders.

We prove the rate of convergence of d̂ without using the consistency of β̂. This
is unusual because in most nonlinear estimation problems it is common to prove the
consistency of all parameters first in order to establish rates of convergence. The
approach is successful in the present case because when d is close to d0, the regressor
λ2d
j evaporates as n→∞ and approaches zero approximately at the rate of (m/n)2d0 .

We proceed to show that under somewhat stronger conditions and if suitably
normalized, (d̂ − d0, β̂ − β0) is asymptotically normal. The new assumption is as
follows:

Assumption 3: n4d0(1+∆)/m4d0(1+∆)+1 → 0 for some arbitrary small ∆ > 0 and
m2r+1/n2r = O(1) as m,n→∞, where r = 4d0{σu 6= 0}+ 2{σu = 0}.

The two conditions in Assumption 3 are always compatible because r ≥ 4d0 and ∆
is arbitrarily small. The lower bound on the growth rate of m ensures the consistency
of d̂ and β̂, which validates the use of the first order conditions. The upper bound
on the growth rate of m guarantees that the normalized gradient of Q(d, β) is Op(1),
which is required for the asymptotic normality of (d̂, β̂).

10



When σu = 0, the upper bound becomes m5/n4 = O(1), which is the same as
the upper bound for asymptotic normality of the LP estimator for a pure fractional
process.

When σu 6= 0, the upper bound becomes m8d0+1/n8d0 = O(1), which is less
stringent than the upper bound given in Theorem 1. It therefore allows us to take m
larger than in conventional LP regression applied to the fractional components model.
In consequence, by an appropriate choice of m, we have asymptotic normality for d̂
with a faster rate of convergence than is possible in LP regression. However, for
any 0 < d0 < 1/2, the upper bound is more stringent than m = O(n4/5), the upper
bound for asymptotic normality of LP regression in a pure fractional process model.
Hence, the existence of the weakly dependent perturbations in (1) requires the use of
a narrower bandwidth than LP regression for a pure fractional process. Interestingly,
as d0 approaches 1/2, the upper bound becomes arbitrarily close to m = O(n4/5).

We now proceed to establish asymptotic normality. The first order conditions for
(16) are:

Sn(d̂, β̂) = 0, (33)

where

Sn(d, β) = −
m∑
j=1

(
x1j(d, β)− x̄1(d, β)
x2j(d, β)− x̄2(d, β)

)
ej(d, β), (34)

x1j(d, β) = −2 log λj(1− βλ2d
j ), x̄1(d, β) =

1
m

m∑
k=1

x1k,

x2j(d, β) = λ2d
j , x̄2(d, β) =

1
m

m∑
k=1

x2k, and (35)

ej(d, β) = log Izj−
1
m

m∑
k=1

log Izk+2d(log λj−
1
m

m∑
k=1

log λk)−

(
βλ2d

j −
1
m

m∑
k=1

βλ2d
k

)
.

(36)
Expanding Sn(d̂, β̂) about Sn(d0, β0), we have

0 = Sn(d0, β0)+Hn(d0, β0)(d̂−d0, β̂−β0)′+[H∗n−Hn(d0, β0)](d̂−d0, β̂−β0)′, (37)

where Hn is the Hessian matrix, H∗n is the Hessian evaluated at (d∗, β∗), the mean
values between (d0, β0) and (d̂, β̂). The elements of the Hessian matrix are:

Hn,11(d, β) =
m∑
j=1

(x1j − x̄1)2 − β
m∑
j=1

ej
(
log λ2

j

)2
λ2d
j ,

Hn,12(d, β) =
m∑
j=1

(x1j − x̄1)(x2j − x̄2)−
m∑
j=1

ej
(
log λ2

j

)
λ2d
j , (38)

Hn,22(d, β) =
m∑
j=1

(x2j − x̄2)2.

11



Define the diagonal matrix Dn = diag(
√
m,λ2d0

m

√
m). We show in the following

lemma that the normalized Hessian D−1
n Hn(d0, β0)D−1

n converges in probability to a
2× 2 matrix defined by

Ω =

(
4 −4d0

(2d0+1)2

−4d0
(2d0+1)2

4d2
0

(4d0+1)(2d0+1)2

)
, (39)

and the ‘asymptotic bias’ of the normalized score D−1
n Sn(d0, β0) is −bn, where

bn = {σu 6= 0}m1/2λ4d0
m b1n + {σu = 0}m1/2λ2

mb2n, (40)

and

b1n =
f2
w(0)

2f2
u(0)

(
8d0

(4d0+1)2

− 8d2
0

(2d0+1)(4d0+1)(6d0+1)

)
,

b2n =
(
f ′′w(0)
fw(0)

+
d0

6

)( −2
9

2d0
3(2d0+3)(2d0+1)

)
. (41)

Before stating the lemma, we need the following notation. Let Jn(d, β) be a 2× 2
matrix whose (i, j)-th element is

Jn,ij =
m∑
k=1

(xik(d, β)− x̄i(d, β)) (xjk(d, β)− x̄j(d, β)) , (42)

and let Θn be a set defined by

Θn = {(d, β) : |λ−d0
m (d− d0)| < ε and |β − β0| < ε}. (43)

Lemma 5 Let Assumptions 1-3 hold. We have

(a) sup(d,β)∈Θn ||D
−1
n (Hn(d, β)− Jn(d, β))D−1

n || = op(1),

(b) sup(d,β)∈Θn ||D
−1
n [Jn(d, β)− Jn(d0, β0)]D−1

n || = op(1),

(c) D−1
n Jn(d0, β0)D−1

n → Ω,

(d) D−1
n Sn(d0, β0) + bn ⇒ N(0, π

2

6 Ω).

Theorem 3 Let Assumptions 1, 2 and 3 hold, then

Dn

(
d̂− d0

β̂ − β0

)
− Ω−1bn ⇒ N(0,

π2

6
Ω−1) (44)

where

Ω−1 =

[
1

16d2
0

(2d0 + 1)2 1
16d3

0
(2d0 + 1)2 (4d0 + 1)

1
16d3

0
(2d0 + 1)2 (4d0 + 1) 1

16d4
0

(4d0 + 1) (2d0 + 1)4

]
.

12



Remark 1 From the above theorem, we deduce immediately that the asymptotic
variance of

√
m(d̂− d0) is π2

24Cd, where Cd = 1 + 4d0+1
4d2

0
> 1. Approximating log f∗(·)

locally by a nonlinear function instead of a constant therefore inflates the usual
asymptotic variance of the LP regression estimator in a pure fractional model by the
factor Cd. This is to be expected, as adding more variables in regression usually
inflates variances.

Remark 2 The ‘asymptotic bias’ of (d̂, β̂)′ is equal to D−1
n Ω−1bn. Some algebraic

manipulations show that when σu = 0,

D−1
n Ω−1bn = −2π2

9

(
f ′′w(0)
fw(0)

+
d0

6

)
(
m

n
)2

 (d0−1)(2d0+1)
d0(2d0+3)

(2d0+1)2(4d0+1)
d2

0(2d0+3)

 , (45)

and when σu 6= 0,

D−1
n Ω−1bn = −(2π)4d0f2

w(0)
f2
u(0)

(
m

n
)4d0

 d0(2d0+1)

(4d0+1)2(6d0+1)
2(2d0+1)2

(4d0+1)(6d0+1)

 . (46)

Remark 3 When σu 6= 0, according to (46) the asymptotic bias of d̂ is of order
m4d0/n4d0 . In contrast, the asymptotic bias of the LP estimator is of order m2d0/n2d0 ,
as shown above in (30). The asymptotic bias of the new estimator is therefore smaller
than that of the LP estimator by order m2d0/n2d0 . When σu = 0, the asymptotic
bias of d̂ is of the same order as that of d̂LP , as seen from (31) and (45). The relative
magnitude depends on the value of d0 and the curvature of fw(λ) at λ = 0.

Remark 4 Note that β̂ converges more slowly by a rate of (mn )−2d0 than d̂. Heuris-
tically, the excitation levels of the two regressors (log λj and λ2d0

j ) and thus their infor-
mation content are different. More specifically, we have

∑m
j=1(log λj−

∑m
k=1 log λk/m)2

= O(m) whereas
∑m

j=1(λ2d0
j −

∑m
k=1 λ

2d0
k /m)2 = O(mλ2d0

m ).

Next, we consider issues of bandwidth choice in the case where σu 6= 0. Following
the above remarks, the asymptotic mean-squared error (AMSE) of d̂ is

AMSE(d̂) = K2(
m

n
)8d0 +

π2

24m
Cd, (47)

where
K = (2π)4d0β2

0

d0 (2d0 + 1)
(4d0 + 1)2 (6d0 + 1)

. (48)

Straightforward calculations yield the value of m that minimizes AMSE(d̂), viz.

mopt = [(
π2Cd

192d0K2
)1/(8d0+1)n8d0/(8d0+1)], (49)
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where [·] denotes the integer part.
In contrast, the AMSE of d̂LP is

AMSE(d̂LP ) = K2
LP (

m

n
)4d0 +

π2

24m
, (50)

where
KLP = (2π)2d0β0

d0

(2d0 + 1)2
. (51)

So the AMSE-optimal bandwidth for d̂LP is

mopt
LP = [(

π2

96d0K2
LP

)1/(4d0+1)n4d0/(4d0+1)]. (52)

When m = mopt, the AMSE of d̂ converges to zero at the rate of n−8d0/(8d0+1).
In contrast, when m = mopt

LP , the AMSE of d̂LP converges to zero only at the rate
of n−4d0/(4d0+1). Thus, the optimal AMSE of d̂ converges to zero faster than that of
d̂LP .

Of course, the optimal bandwidth (49) depends on the unknown quantities d0 and
β0. Consistent estimates are readily available under Assumptions 1, 2 and 3. A data
dependent choice of m for the computation of d̂ can be obtained by plugging initial
estimates of β0 and d0 into (49).

5 Simulations

5.1 Experimental Design

This section investigates the finite sample performance of the new estimator in com-
parison with conventional LP regression. The chosen data generating process is

zt = (1− L)−d0wt + ut, (53)

where {wt : t = 1, 2, ..., n} are iid N(0, 1), {ut : t = 1, 2, ..., n} are iid N(0, σ2
u) and

{wt} are independent of {ut}.
We consider the following constellation of parameter combinations

d0 = 0.25, 0.45, 0.65, 0.85, and
σ2
u = 0, 4, 8, 16. (54)

In view of the fact that the LP estimator is consistent for both stationary fractional
processes (d0 < 0.5) and nonstationary fractional processes (0.5 ≤ d0 < 1) (see Kim
and Phillips, 1999), we expect the new estimator to work well for nonstationary
fractional component processes for this range of values of d0 as well as for stationary
fractional component processes over (0 < d0 < 0.5). Hence it is of interest to include
some values of d0 that fall in the nonstationary zone.

The value of σ2
u determines the strength of the noise from the perturbations. The

long run SNR increases as σ2
u decreases. When σ2

u = 0, zt is a pure fractional process
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with an infinite long run SNR. The inverse of the long run SNR, viz. fu(0)/fw(0),
takes the values 0, 4, 8, 16. These are close to the values in Deo and Hurvich (1999).
In their simulation study, the ratio fu(0)/fw(0) takes the values 6.17 and 13.37.

We consider sample sizes n = 512 and 2048. Because n has the composite form
2k (k integer) for these choices, zero-padding is not a concern when we use the fast
Fourier transform to compute the periodogram. For each sample size and parameter
combination, 2000 replications are performed from which we calculate the biases,
standard deviations and root mean square errors of d̂ and d̂LP , for different selections
of the bandwidth m. Then, for each parameter combination, we graph each of these
quantities as functions of m (m = 4, 5, ..., n/2). The results are shown in panels (a)-(c)
of Figs. 1–5.

In addition, we compute the coverage probabilities, as functions of m, of the
nominal 90% confidence intervals that are obtained using the asymptotic normality
results of Theorems 1 and 3. When constructing these confidence intervals, we es-
timate the variances of d̂ and d̂LP using finite sample expressions rather than the
limit expressions, because the former yield better finite sample performance for all
parameter combinations and for both estimators. The variance of d̂ is estimated by
the (1,1) element of the inverse of the Hessian matrix, which is

π2

6
H22,n(d̂, β̂)

(
H11(d̂, β̂)H22(d̂, β̂)−H2

12(d̂, β̂)
)−1

, (55)

whereas the variance of d̂LP is estimated by

π2

24

 m∑
j=1

log λj −
1
m

m∑
k=1

log λk

−2

. (56)

We calculate the average lengths of the confidence intervals as functions of m. The
coverage probabilities and the average lengths are graphed against m in panels (d)
and (e) of Figs. 1–5.

5.2 Results

We report results only for the cases d0 = 0.45 and d0 = 0.85, since these are repre-
sentative of the results found in the other two cases, d0 = 0.25 and 0.65, respectively.
Also, for each value of d0, we discuss only the cases σ2

u = 0 and σ2
u = 8, as the results

for the other values of σ2
u were qualitatively similar.

We first discuss the results when d0 = 0.45 and σ2
u = 0. In this case, zt is a pure

fractional process. Fig. 1(a) shows that the bias of d̂ is positive and larger than that
of d̂LP . The positive bias of d̂ conforms to our asymptotic results. From Remark 2,
the asymptotic bias of d̂ is −π2

27 (mn )2(d0 − 1)(2d0 + 1)(2d0 + 3)−1, which is always
positive for d0 < 1. Fig. 1(b) shows that the variance of d̂ is larger than that of
d̂LP , as predicted by Theorem 3. Comparing RMSE’s in Fig. 1(c), we see that the
RMSE of d̂ is larger than that of d̂LP . The inferior performance of d̂ in this case is not
surprising since the LP estimator is designed for pure fractional processes, whereas
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our estimator d̂ allows for additional noise in the system and is designed for perturbed
fractional processes. However, it is encouraging that the LP estimator outperforms
the new estimator only by a small margin. Apparently, the cost of including the
additional regressor, even when it is not needed, is small.

Next, we discuss the results when d0 = 0.45 and σ2
u = 8. Fig. 2(a) shows that the

LP estimator d̂LP has a large downward bias in this case, whereas the new estimator
d̂ has a much smaller bias. Apparently, the bias-reducing feature of d̂ established
in the asymptotic theory is manifest in finite samples. Fig. 2(b) shows that the
standard error of d̂LP is less than that of d̂ for all values of m, again consistent
with the asymptotic results. For each estimator, the standard error declines at the
approximate rate 1/

√
m as m increases, because m is the effective sample size in the

estimation of d0. Fig. 2(c) shows that the RMSE of d̂ is smaller than that of d̂LP
over a wide range of m values. Fig. 2(d) shows that the coverage probability of d̂ is
fairly close to the nominal value of 0.9, provided that m is not taken too large. In
contrast, d̂LP has a true coverage probability close to 0.9 only for very small values
of m. This is due to the large bias of d̂LP . However, the larger standard error of d̂
leads to longer confidence intervals on average, and this is apparent in Fig. 2(e).

We now turn to the results when d0 = 0.85 and σ2
u = 0. Figure 3 shows that both

d̂LP and d̂ work reasonably well for nonstationary fractional processes (1/2 ≤ d0 < 1).
Compared with Fig. 1, we observe that the difference in the standard errors of these
two estimators becomes smaller while the difference in the biases remains more or less
the same. Although d̂LP is still a better estimator than d̂ in this case, the advantage
of d̂LP has clearly diminished with the increase in d0.

Figure 4 provides results for the case d0 = 0.85 and σ2
u = 8. Fig. 4(a) shows that

the bias reduction from using d̂ is substantial. For example, when m = 40, the bias
of d̂LP is −0.18, while that of d̂ is only −0.02. The evidence therefore suggests that
d̂ is effective in reducing bias not only in stationary fractional component models
but also in nonstationary models. Fig. 4(b) shows that the standard error of d̂ is
only slightly larger than that of d̂LP . The large bias reduction and small variance
inflation lead to a smaller RMSE for d̂ over a wide range of m values, as shown in
Fig. 4(c). In addition, the coverage probability based on d̂LP decreases very rapidly
as m increases, whereas that based on d̂ decreases much more slowly. In fact, the
coverage probability based on d̂ is close to 0.9 over a wide range of m values. Fig. 4(e)
shows that the superior performance of the coverage probability of d̂ comes at the
expense of having longer confidence intervals on average than those based on d̂LP .

The simulations also reveal that the bias of d̂LP is always negative when σu > 0
and that the absolute value of the bias increases with σ2

u, due to stronger contami-
nation from the perturbations that this produces. In addition, d̂ is more effective in
bias reduction for larger values of d0. Intuitively, when d0 is small, the bias of d̂LP is
small no matter what value σu may take. For a large value of σu, the perturbation
component dominates the fractional component, so that d̂LP would be around 0. In
this case, the bias of d̂LP is small only because the true value of d0 itself is small.
Also, for small values of σu, the bias from contamination is naturally going to be
small. Therefore, in both cases, the bias of d̂LP will be small when d0 is small and
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there is not much scope for d̂ to manifest its bias-reducing capacity.
Finally, for the large sample size n = 2048, the qualitative comparisons made and

conclusions reached for the n = 512 sample size continue to apply. Fig. 5 presents
the results for one particular specification (d0 = 0.85, σ2

u = 8) which shows that d̂
has a much smaller bias and a slightly larger variance than d̂LP . The RMSE of d̂ is
much smaller than that of d̂LP over a wide range of m values.

To sum up, the simulations show that, for fractional component processes, the
new estimator d̂ has a lower bias, a higher standard deviation, and a lower RMSE
in comparison to the LP estimator d̂LP , corroborating the asymptotic theory. The
lower bias generally leads to improved coverage probability in confidence intervals
based on d̂ over a wide range of m. On the other hand, the lower standard deviation
of d̂LP leads to shorter confidence intervals than those based on d̂.

6 Conclusion

In empirical applications it has become customary practice to investigate the order
of integration of the variables in a model when nonstationarity is suspected. This
practice is now being extended to include analyses of the degree of persistence using
fractional models and estimates of long memory parameters. Nonetheless, for many
time series, and particularly macroeconomic variables for which there is limited data,
the actual degree of persistence in the data continues to be a controversial issue. The
empirical resolution of this problem inevitably relies on our capacity to separate low-
frequency behavior from high-frequency fluctuations and this is particularly difficult
when short run fluctuations have high variance. Actual empirical results often depend
critically on the discriminatory power of the statistical techniques being employed to
implement the separation.

The model used in the present paper provides some assistance in this regard. It
allows for an explicit components structure in which there are different sources and
types of variation, thereby accommodating a separation of short and long memory
components and allowing for fractional processes that are perturbed by weakly depen-
dent effects. Compared to the conventional formulation of a pure fractional process
like (2), perturbed fractional processes allow for multiple sources of high-frequency
variation and, in doing so, seem to provide a richer setting for uncovering latent
persistence in an observed time series. In particular, the model provides a mecha-
nism for simultaneously capturing the effects of persistent and temporary shocks and
seems realistic in economic and financial applications when there are many different
sources of variation in the data. The new econometric methods we have introduced
for estimating the fractional parameter in such models take account of the presence
of additive disturbances, and help to achieve bias reduction and attain a faster rate
of convergence. The asymptotic theory is easy to use and seems to work reasonably
well in finite samples.

The methods of the paper can be extended in a number of directions. First, it is
of interest to study the performance of the methods here under non-Gaussian errors,
as in Deo and Hurvich (1999) for LP regression. Second, the nonlinear approximation
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approach can be used in combination with other estimators, such as the local Whittle
estimator (Robinson 1995b), which seems natural in the present context because
the procedure already uses optimization methods. In addition, the idea of using
a nonlinear approximation can be applied to nonstationary fractional component
models and used to adapt the methods which have been suggested elsewhere (e.g.,
Phillips, 1999, Shimotsu and Phillips, 2001) for estimating the memory parameter in
such models to cases where there are fractional components.

Appendix of Proofs

Proof of Lemma 1. A spectral density satisfying Assumptions 1 and 2 also satisfies
Assumptions 1 and 2 of Robinson (1995a). In consequence, the lemma follows from
Theorem 2 of Robinson (1995a). Since we normalize the discrete Fourier transform
by the spectral density f

1/2
z (λ) instead of the power function C

−1/2
g λ−d, (4.2) of

Robinson (1995a) is always zero and the extra term ( jn)min(α,β) in Robinson (1995a)
does not arise in our case. �

Proof of Lemma 3. Note that

1
m

m∑
j=1

cjUj =
1
m

[log2 m]∑
j=1

cjUj +
1
m

m∑
j=[log2 m]+1

cjUj ≡ F1 + F2. (A.1)

But E sup(d,β)∈Θ |F1| is less than

E
1
m

[log2 m]∑
j=1

sup
(d,β)∈Θ

|cj ||Uj | 6
logpm
m

[log2 m]∑
j=1

(EU2
j )1/2 = O(logp+2m/m) (A.2)

by Lemma 2(b). Hence

sup
(d,β)∈Θ

|F1| = Op(logp+2m/m) = Op(
logpm√

m
). (A.3)

Let

sr =
r∑

k=[log2 m]+1

Ur, r = [log2m] + 1, ...,m and s[log2 m] = 0. (A.4)

Then, from Lemma 2(a), (c) and (d), it follows that

Es2
r =

r∑
k=[log2 m]+1

EU2
k + 2

∑
[log2 m]+1≤k<j≤r

EUjUk

=
r∑

k=[log2 m]+1

(
π2

6
+ k−1 log k) + 2

r∑
[log2 m+1]≤k<j<r

O(k−2 log2 j) (A.5)

= O(r) +O(r log2 r/ log2m),
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which implies sr = Op(r1/2). Using this result and partial summation, we have:

sup
(d,β)∈Θ

|F2| ≤ sup
(d,β)∈Θ

∣∣∣∣∣∣ 1
m

m∑
j=log2 m+1

cjUj

∣∣∣∣∣∣
= sup

(d,β)∈Θ

1
m

∣∣∣∣∣∣
m∑

j=log2 m+1

sj−1(cj−1 − cj)

∣∣∣∣∣∣+ sup
(d,β)∈Θ

1
m
|smcm|

=
1
m

m∑
j=log2 m+1

Op(j1/2)O(j−1 logqm) +Op(
logpm√

m
)

=
logqm
m

m∑
j=log2 m+1

Op(j−1/2) +Op(
logpm√

m
)

= Op(
logqm√

m
) +Op(

logpm√
m

) = Op(
logmax(p,q)m√

m
). (A.6)

Combining (A.3) with (A.6), we get sup(d,β)∈Θ

∣∣∣ 1
m

∑m
j=1 cjUj

∣∣∣ = Op( logmax(p,q) m√
m

).
�

Proof of Theorem 1. When σu = 0, the theorem is essentially the same as
results already established in HDB. Only one modification is needed. HDB use
−2 log(2 sinλj/2) as one of the regressors while we employ −2 log λj . The use of
−2 log λj rather than −2 log(2 sinλj/2) has no effect on the asymptotic variance, but
it does affect the asymptotic bias. This is because the asymptotic bias comes from
the dominating term in εj and this term is different for different regressors. Using
−2 log(2 sinλj/2) as the regressor yields

εj = log fw(λj)− log fw(0) =
(
f ′′w(0)
2f ′w(0)

)
λ2
j (1 + o(1)). (A.7)

In contrast, using −2 log λj as the regressor yields

εj = log fw(λj)− log fw(0)− 2d0

(
log(2 sin

λj
2

)− log λj

)
=

(
f ′′w(0)
2f ′w(0)

+
d0

12

)
λ2
j (1 + o(1)). (A.8)

With this adjustment, the arguments in HDB go through without further change.
Now consider the case σu 6= 0. Rewrite the spectral density of zt as

fz(λ) = λ−2d0g(λ), (A.9)

where g(λ) = (λ−12 sinλ/2)−2d0f∗(λ). Since

g(λ)− g(0) = (1 +O
(
λ2
)
)
(
fw(0) + λ2d0fu(0) +O(λ2)

)
− fw(0) = O(λ2d0) (A.10)
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as λ → 0+, g(λ) is smooth of order 2d0. Combining this with our assumption that
m → ∞ and m4d0+1/n4d0 = O(1) verifies Assumptions 1 and 2 of Andrews and
Guggenberger (1999). Hence their Theorem 1 is valid with r = 0, s = 2d0 and
q = 2d0. It is easy to show that the term O (mq/nq) in their theorem is actually
−(2π)2d0 fu(0)

fw(0)
d0

(2d0+1)2
m2d0

n
2d0

. Andrews and Guggenberger established asymptotic nor-

mality under their assumption 3 that m4d0+1/n4d0 = o(1). In fact, asymptotic nor-
mality holds under our assumption m4d0+1/n4d0 = O(1) as long as an asymptotic
bias of order O(1) is allowed.�

Proof of Theorem 2. Let Vj(d, β) = 2(d− d0) log λj −βλ2d
j +β0λ

2d0
j . Then we can

decompose m−1Q(d, β) into three parts as follows:

1
m
Q(d, β) =

1
m

m∑
j=1

{Uj − U + εj − ε+ Vj − V }2 (A.11)

=
1
m

m∑
j=1

(Vj − V̄ )2 +
2
m

m∑
j=1

(Uj + εj)(Vj − V̄ ) +
1
m

m∑
j=1

(Uj + εj − Ū − ε̄)2,

where the dependence on (d, β) has been suppressed for notational simplicity. Since
1
m

∑m
j=1(Uj + εj − Ū − ε̄)2 is independent of (d, β), we only need to consider the first

two terms.
Part (a) We prove part (a) by showing that 2

m

∑m
j=1(Uj + εj)(Vj − V̄ ) = op(1)

uniformly in (d, β) and 1
m

∑m
j=1(Vj − V̄ )2 converges uniformly to a function, which

has a unique minimizer d0.
First, we show

sup
(d,β)∈Θ

∣∣∣∣∣∣ 1
m

m∑
j=1

Uj(Vj − V̄ )

∣∣∣∣∣∣ = Op(
1√
m

). (A.12)

We proceed by verifying the conditions in Lemma 3. The first condition holds because

sup
(d,β)∈Θ

|Vj(d, β)− V̄ (d, β)|

≤ 2 sup
(d,β)∈Θ

|d− d0| | log λj −
1
m

m∑
j=1

log λj |+ 2 sup
(d,β)∈Θ

|β||λ2d
j −

1
m

m∑
j=1

λ2d
j |

= 2 sup
(d,β)∈Θ

|d− d0| logm+O(1) = O(logm) uniformly over j. (A.13)

The second condition holds because

sup
(d,β)∈Θ

|Vj(d, β)− Vj−1(d, β)|

≤ 2 sup
(d,β)∈Θ

|d− d0| | log(1− 1
j

)|+ 2 sup
(d,β)∈Θ

|βλ2d
j (1− (1− 1

j
)2d)|

= O(
1
j

) for all j, (A.14)
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where the final line follows from the fact that sup(d,β)∈Θ |1 − (1 − 1
j )2d| = O(1

j ). In
addition,

|Vm(d, β)− V̄ (d, β)|

= 2 sup
(d,β)∈Θ

|d− d0|| log λm −
1
m

m∑
j=1

log λm|+O(1)

= 2 sup
(d,β)∈Θ

|d− d0|| logm− 1
m

m∑
j=1

log j|+O(1) = O(1). (A.15)

Hence (A.12) is satisfied.
Next, we show that sup(d,β)∈Θ | 1

m

∑m
j=1 εj(Vj(d, β)− V̄ (d, β))| = Op(λ4d0

m ). Under
Assumptions 1 and 2,

εj = log f∗(λj)− log fw(0)− (2 sin
λj
2

)2d0β0 − 2d0[log(2 sin
λj
2

)− log λj ]

= O(λrj) = O(λ4d0
j ), (A.16)

so we have, using (A.14) and (A.15)

sup
(d,β)∈Θ

| 1
m

m∑
j=1

εj(Vj(d, β)− V̄ (d, β))|

≤ sup
(d,β)∈Θ

1
m

∣∣∣∣∣∣
m∑
j=1

j−1∑
r=1

εr(Vj−1(d, β)− Vj(d, β))

∣∣∣∣∣∣+ sup
(d,β)∈Θ

1
m
|
m∑
j=1

εj ||Vm(d, β)− V̄ (d, β)|

= λ4d0
m

1
m

∣∣∣∣∣∣
m∑
j=1

j−1∑
r=1

Op(
r

m
)4d0(

1
j

)

∣∣∣∣∣∣+Op(λ4d0
m ) = Op(λ4d0

m ) = op(1). (A.17)

Finally,

1
m

m∑
j=1

(Vj − V̄ )2 =
1
m

m∑
j=1

(
2(d− d0)(log(

j

m
)− 1

m

m∑
k=1

log(
k

m
)) + o(1)

)2

= 4(d− d0)2

 1
m

m∑
j=1

log2(
j

m
)− (

1
m

m∑
k=1

log(
k

m
))2

+ o(1)

= 4(d− d0)2(1 + o(1)), (A.18)

where o(·) holds uniformly over (d, β) ∈ Θ. Here we have employed 1
m

∑m
j=1 log2( jm)−(

1
m

∑m
k=1 log( km)

)2
= 1 + o(1).
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Let Dδ = {d : |d− d0| > δ}. In view of (A.12), (A.17) and (A.18), we have

P
(
d̂ ∈ Dδ

)
≤ P (Q(d̂, β̂) ≤ Q(d0, β0))

≤ P

 min
d∈Dδ ,β∈B

 1
m

m∑
j=1

(Vj − V̄ )2 +
2
m

m∑
j=1

(Uj + εj)(Vj − V̄ )

 ≤ 0


≤ P

 min
d∈Dδ ,β∈B

1
m

m∑
j=1

(Vj − V̄ )2 ≤ sup
d∈Dδ ,β∈B

∣∣∣∣∣∣ 2
m

m∑
j=1

(Uj + εj)(Vj − V̄ )

∣∣∣∣∣∣


≤ P

 min
d∈Dδ ,β∈β

1
m

m∑
j=1

(Vj − V̄ )2 ≤ o(1)


≤ P (min

d∈Dδ
4(d− d0)2 ≤ o(1))→ 0, (A.19)

which completes the proof.
Part (b) Compared with log λj , λ2d0

j is negligible since d0 > 0. Due to the
difference in the orders of magnitude of the regressors, it is not straightforward to
establish the consistency of β̂. In fact, we proceed by showing first that d̂ converges
to d0 at some preliminary rate and then go on to show that d̂− d0 = Op((mn )2d0). We
obtain this rate sequentially.

First, we show that d̂− d0 = op((mn )d1/2). From Q(d̂, β̂)−Q(d0, β0) ≤ 0, we get

1
m

m∑
j=1

(Vj(d̂, β̂)− V̄ (d̂, β̂))2

≤ − 2
m

m∑
j=1

(Uj + εj)(Vj(d̂, β̂)− V̄ (d̂, β̂)) (A.20)

≤ sup
(d,β)∈Θ

∣∣∣∣∣∣ 2
m

m∑
j=1

(Uj + εj)(Vj(d, β)− V̄ (d, β))

∣∣∣∣∣∣
= Op(

1√
m

) +Op(λ4d0
m ) = op

(
(
m

n
)2d1

)
, (A.21)

where the last equality follows from the assumptions that n4d0(1+∆)/m4d0(1+∆)+1 =
o(1) and that d ≥ d1 > 0. But 1

m

∑m
j=1(Vj(d̂, β̂)− V̄ (d̂, β̂))2 equals

1
m

m∑
j=1

2(d̂− d0)(log(
j

m
)− 1

m

m∑
j=1

log(
j

m
)) +O(λ2d̂

m ) +O(λ2d0
m )

2

= 4(d̂− d0)2(1 + o(1)) +O(λ2d0
m ) +O(λ2d̂

m )

= 4(d̂− d0)2(1 + o(1)) +O(
m

n
)2d1 . (A.22)

Therefore,
4(d̂− d0)2(1 + o(1)) +Op

(
(
m

n
)2d1

)
≤ op

(
(
m

n
)2d1

)
, (A.23)
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which implies that d̂− d0 is at most Op((mn )d1). Thus d̂− d0 = op((mn )d1/2).
Second, we show that d̂ − d0 = op

(
(mn )d0(1+∆)

)
. Since d̂ − d0 = op((mn )d1/2),

we only need consider d ∈ D′n = {d : |d − d0| < ε(mn )d1/2} for some small ε > 0.
Approximating sums by integrals and using the formulae:

1
m

m∑
j=1

(
j

m
)k log(

j

m
) = − 1

(k + 1)2
+ o(1), k ≥ 0, (A.24)

and
1
m

m∑
j=1

(
j

m
)k log2(

j

m
) =

2
(k + 1)3

+ o(1), k ≥ 0, (A.25)

we deduce that 1
m

∑m
j=1 V

2
j (d, β)−

(
V̄ (d, β)

)2 is equal to(
8(d− d0)2 +

β2λ4d
m

4d+ 1
+
β2

0λ
4d0
m

4d0 + 1
+

4(d− d0)βλ2d
m

2d+ 1
− 4(d− d0)β0λ

2d0
m

2d0 + 1

)
(1 + o(1))

−2ββ0λ
2d+2d0
m

2d+ 2d0 + 1
(1 + o(1))−

(
2(d− d0) +

βλ2d
m

2d+ 1
− β0λ

2d0
m

2d0 + 1

)2

(1 + o(1))

=

4(d− d0)2 +

[
2dβλ2d

m

(2d+ 1)
√

4d+ 1
− 2d0β0λ

2d0
m

(2d0 + 1)
√

4d0 + 1

]2
 (1 + o(1)) (A.26)

+
8dd0ββ0λ

2d+2d0
m

(2d+ 1)(2d0 + 1)

(
1√

(4d+ 1)(4d0 + 1)
− 1

2d+ 2d0 + 1

)
(1 + o(1))

= 4(d− d0)2 +O(λ4d0
m ) = 4(d− d0)2 + o(λ2d0(1+∆)

m ), (A.27)

where the O(·) and o(·) terms hold uniformly over (d, β) ∈ D′n × B. The last line
follows because when |d− d0| ≤ ε(mn )d1/2,

λ2d
m = λ2d0

m λ2d−2d0
m = λ2d0

m exp((2d− 2d0) log λm)
≤ constλ2d0

m exp(λd1/2
m | log λm|) = O(λ2d0

m ). (A.28)

Using Q(d̂, β̂)−Q(d0, β0) ≤ 0 again, we have

1
m

m∑
j=1

(Vj(d̂, β̂)− V̄ (d̂, β̂))2 ≤ Op(
1√
m

) +Op(λ4d0
m ) = op

(
(
m

n
)2d0(1+∆)

)
, (A.29)

where the equality follows from the assumption n4d0(1+∆)/m4d0(1+∆)+1 = o(1). Com-
bining (A.27) and (A.29), we get

4(d̂− d0)2 + o(λ2d0(1+∆)
m ) ≤ op

(
(
m

n
)2d0(1+∆)

)
. (A.30)

Hence d̂− d0 = op((mn )d0(1+∆)).
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Next, we show that d̂− d0 = op
(
(mn )3d0(1+∆)/2

)
. We first prove that∣∣∣ 1

m

∑m
j=1 Uj(Vj − V̄ )

∣∣∣ = op
(
(mn )3d0(1+∆)

)
and

∣∣∣ 1
m

∑m
j=1 εj(Vj − V̄ )

∣∣∣ = op
(
(mn )3d0(1+∆)

)
uniformly in (d, β) ∈ D′′n ×B, where D′′n = {d : |d− d0| < ε(mn )d0(1+∆)}.

Following the same steps as in the proof of Lemma 3, we compute the orders of
|Vj(d, β)− V̄ (d, β)|, |Vm(d, β)− V̄ (d, β)| and |Vj(d, β)− Vj−1(d, β)| as follows.

First, sup(d,β)∈D′′n×B |Vj(d, β)− V̄ (d, β)| is bounded by

2 sup
(d,β)∈D′′n×B

|d− d0|| log λj −
1
m

m∑
j=1

log λj |+ 2 sup
(d,β)∈D′′n×B

|β||λ2d
j −

1
m

m∑
j=1

λ2d
j |

= 2 sup
(d,β)∈Θ

|d− d0| logm+O(λ2d0
m )

= O((
m

n
)d0(1+∆) logm) uniformly over j. (A.31)

Similarly, sup(d,β)∈D′′n×B |Vm(d, β)− V̄ (d, β)| is bounded by

2 sup
(d,β)∈D′′n×B

|d− d0|| log λm −
1
m

m∑
j=1

log λm|+O(λ2d0
m )

= 2 sup
(d,β)∈D′′n×B

|d− d0|| logm− 1
m

m∑
j=1

log j|+O(λ2d0
m )

= O
(

(
m

n
)d0(1+∆)

)
. (A.32)

Furthermore, sup(d,β)∈D′′n×B |Vj(d, β)− Vj−1(d, β)| is not greater than

2 sup
(d,β)∈D′′n×B

||d− d0|| log(1− 1
j

)|+ 2 sup
(d,β)∈D′′n×B

|βλ2d
j (1− (1− 1

j
)2d)|

= O(
1
j

(
m

n
)d0(1+∆)) for all j. (A.33)

Invoking the same argument as in the proof of Lemma (3), we obtain

sup
(d,β)∈D′′n×B

∣∣∣∣∣∣ 1
m

m∑
j=1

Uj(Vj − V̄ )

∣∣∣∣∣∣ = Op

(
(
m

n
)d0(1+∆) 1√

m

)
= op

(
(
m

n
)3d0(1+∆)

)
, and

sup
(d,β)∈D′′n×B

∣∣∣∣∣∣ 1
m

m∑
j=1

εj(Vj − V̄ )

∣∣∣∣∣∣ = op

(
(
m

n
)d0(1+∆)+4d0

)
= op

(
(
m

n
)3d0(1+∆)

)
,(A.34)

as desired.
In addition, it follows from (A.27) that when d ∈ D′′n, 1

m

∑m
j=1(Vj − V̄ )2 = 4(d−

d0)2(1 + o(1)) + o(λ3d0(1+∆)
m ). Applying the same argument as before, we get

4(d̂− d0)2(1 + o(1)) + o(λ3d0(1+∆)
m ) ≤ op(

m

n
)3d0(1+∆), (A.35)
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and so d̂− d0 = op((mn )3d0(1+∆)/2).
Repeating the procedure again we obtain d̂ − d0 = op

(
(mn )7d0(1+∆)/4

)
if

7(1+∆)/4 < 2. Further iterations of this procedure lead to d̂−d0 = op

(
(mn )(2−2−k)(1+∆)

)
,

k = 0, 1, 2, 3, ... if (2 − 2−k)(1 + ∆) < 2. We stop the iteration if we obtain d̂ −
d0 = op

(
(mn )(2−2−k0 )(1+∆)

)
for some k0 ≥ 0 such that (2 − 2−k0)(1 + ∆) < 2 and

(4− 2−k0)(1 + ∆) ≥ 4. In this case, we have∣∣∣∣∣∣ 1
m

sup
(d,β)∈D∗n×B

m∑
j=1

Uj(Vj − V̄ )

∣∣∣∣∣∣
= Op

(
(
m

n
)(2−2−k0 )(1+∆)d0

1√
m

)
= op

(
(
m

n
)(4−2−k0 )(1+∆)d0

)
= op

(
(
m

n
)4d0

)
, (A.36)

and

sup
(d,β)∈D∗n×B

∣∣∣∣∣∣ 1
m

m∑
j=1

εj(Vj − V̄ )

∣∣∣∣∣∣ = op

(
(
m

n
)4d0

)
, (A.37)

where D∗n = {d : |d − d0| < ε(mn )(2−2−k0 )(1+∆)}. Applying the same argument as
before, we deduce

4(d̂− d0)2(1 + o(1)) +O(λ4d0
m ) ≤ op(

m

n
)4d0 . (A.38)

In consequence, d̂− d0 = Op(mn )2d0 .
Now, since (2d+2d0 +1)2− (4d+1)(4d0 +1) = 4d2−8dd0 +4d2

0 = 4(d−d0)2 > 0,
we deduce from (A.26) that

1
m

m∑
j=1

(Vj − V̄ )2 ≥

(
2dβλ2d

m

(2d+ 1)
√

4d+ 1
− 2d0β0λ

2d0
m

(2d0 + 1)
√

4d0 + 1

)2

(1 + o(1)). (A.39)

In view of 1
m

∑m
j=1(Vj(d̂, β̂)− V̄ (d̂, β̂))2 ≤ op(λ4d0

m ), we obtain(
2d̂β̂λ2d̂

m

(2d̂+ 1)
√

4d̂+ 1
− 2d0β0λ

2d0
m

(2d0 + 1)
√

4d0 + 1

)2

(1 + o(1)) ≤ op(λ4d0
m ). (A.40)
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But

2dβ̂λ2d̂
m

(2d̂+ 1)
√

4d̂+ 1
− 2d0β0λ

2d0
m

(2d0 + 1)
√

4d0 + 1

=
2d̂β̂λ2d̂

m

(2d̂+ 1)
√

4d̂+ 1
− 2d̂β0λ

2d̂
m

(2d̂+ 1)
√

4d̂+ 1
+

2d̂β0λ
2d̂
m

(2d̂+ 1)
√

4d̂+ 1
− 2d̂β0λ

2d0
m

(2d̂+ 1)
√

4d̂+ 1

+
2d̂β0λ

2d0
m

(2d̂+ 1)
√

4d̂+ 1
− 2d0β0λ

2d0
m

(2d0 + 1)
√

4d0 + 1

=
2d̂λ2d̂

m

(
β̂ − β0

)
(2d̂+ 1)

√
4d̂+ 1

+
2d̂β0(λ2d̂

m − λ2d0
m )

(2d̂+ 1)
√

4d̂+ 1

+

(
2d̂

(2d̂+ 1)
√

4d̂+ 1
− 2d0

(2d0 + 1)
√

4d0 + 1

)
O(λ2d0

m )

=
2d̂λ2d̂

m

(2d̂+ 1)
√

4d̂+ 1

(
β̂ − β0

)
+Op(

∣∣∣λ2d̃
m log λm(d̂− d0)

∣∣∣) +Op(λ4d0
m )

=
2d̂λ2d̂

m

(2d̂+ 1)
√

4d̂+ 1

(
β̂ − β0

)
+ op(λ3d0

m ), (A.41)

where d̃ is between d̂ and d0. So(
2d̂λ2d̂

m

(2d̂+ 1)
√

4d̂+ 1

(
β̂ − β0

)
+ op(λ3d0

m )

)2

≤ op(λ4d0
m ). (A.42)

This implies that

4d̂λ4(d̂−d0)
m

(2d̂+ 1)2
(

4d̂+ 1
)(β̂ − β0)2 ≤ op(λ4d0

m ), (A.43)

from which we deduce that β̂ − β0 = op(1). �

Proof of Lemma 5
Part (a) The (2,2) element of supθ∈Θn ||D

−1
n (Hn(d, β) − Jn(d, β))D−1

n || is zero,
so it suffices to consider the (1,1) and (1,2) elements. Since

Izj + 2d log λj − βλ2d
j = α0 + Uj + εj + (d− d0) log λ2

j + β0λ
2d0
j − βλ2d

j ,

supθ∈Θn |
β
m

∑m
j=1 ej(log λ2

j )
2λ2d

j |, the (1,1) element, is bounded by L1 +L2 +L3 +L4,
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where

L1 = sup
θ∈Θn

∣∣∣∣∣∣ βm
m∑
j=1

(
(log λ2

j )
2λ2d

j −
1
m

m∑
k=1

(log λ2
j )

2λ2d
j

)
Uj

∣∣∣∣∣∣ ,
L2 = sup

θ∈Θn

∣∣∣∣∣∣ βm
m∑
j=1

(
(log λ2

j )
2λ2d

j −
1
m

m∑
k=1

(log λ2
j )

2λ2d
j

)
εj

∣∣∣∣∣∣ ,
L3 = sup

θ∈Θn

∣∣∣∣∣∣ βm
m∑
j=1

(
(log λ2

j )
2λ2d

j −
1
m

m∑
k=1

(log λ2
j )

2λ2d
j

)
(d− d0) log λ2

j

∣∣∣∣∣∣ , and

L4 = sup
θ∈Θn

∣∣∣∣∣∣ βm
m∑
j=1

(
(log λ2

j )
2λ2d

j −
1
m

m∑
k=1

(log λ2
j )

2λ2d
j

)(
β0λ

2d0
j − βλ2d

j

)∣∣∣∣∣∣ .
(A.44)

We first show that L1 = op(1). Note that log2(λ2
j )λ

2d
j − 1

m

∑m
k=1 log2(λ2

k)λ
2d
k equals

4 log2 λm

(
λ2d
j −

1
m

m∑
k=1

λ2d
k

)
+ 8 log λm

(
log(

j

m
)λ2d
j −

1
m

m∑
k=1

log(
k

m
)λ2d
k

)

+4 log2(
j

m
)λ2d
j −

4
m

m∑
k=1

log2(
k

m
)λ2d
k . (A.45)

L1 is thus bounded by supθ∈Θn |4βλ
2d
m |(log2 λmL11 + 2|logλm|L12 + L13), where

L1i+1 = sup
θ∈Θn

∣∣∣∣∣∣ 1
m

m∑
j=1

(
(
j

m
)2d logi(

j

m
)− 1

m

m∑
k=1

(
k

m
)2d logi(

k

m
)

)
Uj

∣∣∣∣∣∣ , i = 0, 1, 2.

(A.46)
It follows from Lemma 3 that L1i+1 = Op( logim√

m
). The first condition is satisfied

because

sup
θ∈Θn

∣∣∣∣∣∣( jm)2d logi
(
j

m

)
− 1
m

m∑
j=1

(
j

m
)2d logi

(
j

m

)∣∣∣∣∣∣ = O(logi(m)). (A.47)
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The second condition is satisfied because

sup
θ∈Θn

∣∣∣∣( jm)2d logi
(
j

m

)
− (

j − 1
m

)2d logi
(
j − 1
m

)∣∣∣∣
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θ∈Θn

∣∣∣∣( jm)2d logi
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j
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)2d logi
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m
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(
j
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)2d logi
(
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θ∈Θn
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(
j

m

)
(
j

m
)2d

∣∣∣∣ ∣∣∣∣1− (1− 1
j

)2d
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+ sup
θ∈Θn

(
(
j − 1
m

)2di

∣∣∣∣logi−1

(
j − 1
m

)
1

j − 1

∣∣∣∣)
= O(j−1 logim) for all j. (A.48)

Therefore

L1 = Op(
log2 λm√

m
λ2d1
m +

| log λm| logm√
m

λ2d1
m +

log2m√
m

λ2d1
m ) = o(1). (A.49)

We then show L2 = op(1). For i = 0, 1, 2, define L2i as L1i is defined, but with

Uj replaced by εj . Since supθ∈Θn
1
m

∑m
j=1

∣∣∣( jm)2d logi( jm)− 1
m

∑m
k=1( km)2d logi( km)

∣∣∣ =
O(1), we have

L2 = Op

(
λ6d0
m (log2 λm + 2 log |λm|+ 1)

)
= op(1). (A.50)

We next show that L3 = op(1). Following a similar procedure, we bound L3 by
supθ∈Θn |8β(d− d0)λ2d

m |(log2 λmL31 + 2| log λm|L32 + L33), where

L3i+1 = sup
θ∈Θn

∣∣∣∣∣∣
 1
m

m∑
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(
j
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)2d logi+1(
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)2d logi(
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 1
m

m∑
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log(
j

m
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∣∣∣∣∣∣ .
(A.51)

In view of 1
m

∑m
j=1( jm)k log j

m = − 1
(k+1)2 + o(1), k ≥ 0, it is easy to show that

L3i+1, i = 0, 1, 2 are bounded. Hence

L3 = Op

(
λ2d1
m (log2 λm + 2| log λm|+ 1)

)
= op(1). (A.52)

Continuing, we show that L4 = op(1). Since supθ∈Θn

∣∣∣β0λ
2d0
j − βλ2d

j

∣∣∣ = O(1), it is
easy to see that

L4 = Op

(
λ2d1
m (log2 λm + 2| log λm|+ 1)

)
= op(1). (A.53)

Therefore supθ∈Θn |
β
m

∑m
j=1 ej(log λ2

j )
2λ2d

j | = op(1).
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Following the same procedure, we can show that

sup
θ∈Θn

|λ−2d0
m

1
m

m∑
j=1

ej
(
log λ2

j

)
λ2d
j | = op(1). (A.54)

The details are omitted.
Part (b) We consider the individual elements of sup(d,β)∈Θn ||D

−1
n [Jn(d, β) −

Jn(d0, β0)]D−1
n || in turn.

Since x1j = −2 log λj(1+o(1)), the (1,1) element can be readily shown to be o(1).
Similarly, the (1,2) element can be written as sup(d,β)∈Θn 2|L5 − L6|(1 + o(1)) where

L5 = − 1
m

m∑
k=1

(
(
j

m
)2d − 1

m

m∑
k=1

(
k

m
)2d

)(
log(

j

m
)− 1

m

m∑
k=1

log(
k

m
)

)
and

L6 = − 1
m

m∑
j=1

[(
(
j

m
)2d0 − 1

m

m∑
k=1

(
k

m
)2d0

)(
log(
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log(
k
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)]
.

Approximating sums by integrals yields

L5 = − 4d
(2d+ 1)2

(1 + o(1)), and

L6 = − 4d0

(2d0 + 1)2
(1 + o(1)).

Therefore, the (1,2) element is sup(d,β)∈Θn 2| 4d0
(2d0+1)2 − 4d

(2d+1)2 |(1 + o(1)) = o(1).
Finally, the (2,2) element is
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(4d0 + 1)(2d0 + 1)

∣∣∣∣ = op(1). (A.55)

Part (c) Part (c) holds by using x1j = −2 log λj(1 + o(1)) and x2j = λ2d0
j and

approximating sums by integrals.
Part (d) Let ξj = (ξ1j , ξ2j)′, where

ξ1j = −2 log
j

m
+

2
m

m∑
j=1

log
j

m
, ξ2j = (

j

m
)2d0 − 1

m

m∑
j=1

(
j

m
)2d0 . (A.56)

Then, we can rewrite D−1
n Sn(d0, β0) as

D−1
n Sn(d0, β0) = − 1√

m

m∑
j=1

ξj(Uj + εj)(1 + o(1)). (A.57)
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Note that
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(A.58)

and
m∑
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(A.59)

Therefore

D−1
n Sn(d0, β0) + bn =

1√
m

m∑
j=1

ξjUj + o(1). (A.60)

We now prove that for any vector v = (v1, v2)′, 1√
m

∑m
j=1 v

′ξjUj ⇒ N(0, π
2

6 v
′Ωv).

Write
1√
m

m∑
j=1

v′ξjUj = T1 + T2 + T3, (A.61)
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where

T1 =
1√
m

log8 m∑
j=1

ajUj , T2 =
1√
m

m0.5+δ∑
j=log8 m+1

ajUj

T3 =
1√
m

m∑
j=m0.5+δ

ajUj , aj = v′ξj , (A.62)

for some 0 < δ < 0.5.
Since max1≤j≤m |ξ1j | = O(logm) and max1≤j≤m |ξ2j | = O(logm), we have

max1≤j≤m |aj | = O(logm). Therefore the proofs in HDB that T1 = op(1) and T2 =
op(1) are also valid in the present case. We now show that T3 → N(0, π

2

6 v
′Ωv) by

verifying that the sequence {aj} satisfies (24) with ρ = v′Ωv. The first condition of
(24) holds as max1≤j≤m |aj | = O(logm) = o(m). The second condition holds because

m∑
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= mv′(
1
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ξ′jξj)v + o(m) ∼ mv′Ωv. (A.63)

The last equality follows because we can show that limm→∞
1
m

∑m
j=1 ξ

′
jξj = Ω by

approximating the sums by integrals. The third condition holds because
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= O(m) +O(m) +O(m) = O(m). (A.64)

Here we have employed
∑m

j=m0.5+δ+1 |ξ1j |p = O(m). See (A18) in HDB (1998).
The above results combine to establish part (d). �

Proof of theorem 3
Scaling the first order conditions, we have

−D−1
n Sn(d0, β0) = D−1

n Hn(d0, β0)D−1
n Dn(d̂− d0, β̂ − β0)′

+D−1
n [H∗n −Hn(d0, β0)]D−1

n Dn(d̂− d0, β̂ − β0)′. (A.65)
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Thus

Dn(d̂− d0, β̂ − β0)′ (A.66)

= −
{
D−1
n Hn(d0, β0)D−1

n +D−1
n [H∗n −Hn(d0, β0)]D−1

n

}−1
D−1
n Sn(d0, β0).

But since d̂ − d0 = Op((mn )2d0), we know that (d̂, β̂) and (d∗, β∗) belong to Θn with
probability approaching one. Therefore,

||D−1
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n ||
≤ sup
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(
||D−1

n [Hn(d, β)− Jn(d, β)]D−1
n ||+ ||D−1

n [Hn(d0, β0)− Jn(d0, β0)]D−1
n ||

)
+ sup

(d,β)∈Θn

||D−1
n [Jn(d, β)− Jn(d0, β0)]D−1

n ||

= op(1), (A.67)

by Lemma 5. Furthermore,

D−1
n Hn(d0, β0)D−1

n = D−1
n [Hn(d0, β0)− Jn(d0, β0)]D−1

n ||+D−1
n Jn(d0, β0)D−1

n

= Ω + o(1). (A.68)

Consequently,

Dn(d̂− d0, β̂ − β0)′ − Ω−1bn = −Ω−1
(
D−1
n Sn(d0, β0) + bn

)
+ op(1)

⇒ −Ω−1N(0,
π2

6
Ω) =d N(0,

π2

6
Ω−1). (A.69)
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