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Abstract

This paper establishes the asymptotic distributions of the impulse response

functions in panel vector autoregressions with a �xed time dimension. It also

proves the asymptotic validity of a bootstrap approximation to their sampling

distributions. The autoregressive parameters are estimated using the GMM

estimators based on the �rst di¤erenced equations and the error variance is

estimated using an extended analysis-of-variance type estimator. Contrary to

the time series setting, we �nd that the GMM estimator of the autoregressive

coe¢ cients is not asymptotically independent of the error variance estimator.

The asymptotic dependence calls for variance correction for the orthogonalized

impulse response functions. Simulation results show that the variance correction

improves the coverage accuracy of both the asymptotic con�dence band and the

studentized bootstrap con�dence band for the orthogonalized impulse response

functions.
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1 Introduction

In this paper, we consider the panel vector autoregressions (VARs) where the cross sectional

dimension (N) is large and the time series dimension (T ) is short (typically less than 10).

Panel VARs with a short T have been investigated, for examples, by Holtz-Eakin, Newey,

and Rosen (1988) and Binder, Hsiao, and Pesaran (2005). While these papers focus on

the estimation of the slope coe¢ cients, our focus here is on the estimation of the impulse

response functions (IRFs) and their con�dence bands. Following the traditional panel data

literature, we assume that the slope coe¢ cients are the same across di¤erent cross sectional

units and there is no cross sectional dependence after controlling for the �xed time e¤ects.

These two assumptions allow us to make good long-horizon forecasts, especially when the

forecasting horizon is comparable to the time series length. This argument is consistent

with the view of Binder, Hsiao, and Pesaran (2005) who use short panel VARs to infer the

long run properties of the underlying time series.

For time series data, VARmodels are typically estimated using the equation-by-equation

OLS as it is asymptotically equivalent to the full system-of-equations estimator. For panel

data VARs, the OLS estimator is inconsistent for a �xed T as N ! 1: In this case, the
VAR models are typically estimated using the Anderson-Hsiao (1981, 1982, hereafter AH)

estimator or the Arellano-Bond (1991, hereafter AB) estimator. These estimators can be

applied to each equation in the VAR system or the full system of equations. Holtz-Eakin,

Newey, and Rosen (1988) and Arellano (2003, p.120) point out that it may be possible

to improve the e¢ ciency by estimating the system of equations jointly. We show that,

under the model speci�cation given below, the equation-by-equation AH or AB estimator

is asymptotically equivalent to the corresponding system-of-equations estimator.

Impulse response analysis in the time series setting has been examined by Baillie (1987),

Lütkepohl (1989, 1990), among others. However, there are two important di¤erences be-

tween the time series case and the short panel case considered in this paper.

First, for time series VARs, the OLS estimator of the slope coe¢ cients is asymptotically

independent of the error variance estimator while for short panel VARs the AH or AB

estimator of the slope coe¢ cients depends on the error variance estimator even in the

limit as N ! 1 for a �xed T: Since the regressors are only sequentially exogenous, the

demeaned regressors in the short panel VARs are correlated with the demeaned regression

error. This nonzero correlation leads to the asymptotic dependence between the slope

coe¢ cient estimator and the error variance estimator.

Second, for time series VARs, the error variance estimator based on the estimated

OLS residual is asymptotically equivalent to that based on the true error term. For short
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panel VARs, the error variance estimator has di¤erent asymptotic distributions, depending

on whether the error term is known or is based on estimated slope coe¢ cients and �xed

e¤ects. In other words, the estimation uncertainty of the slope coe¢ cients and the �xed

e¤ects a¤ects the asymptotic distribution of the error variance estimator.

These two di¤erences imply that the usual asymptotic results for orthogonalized impulse

responses are not applicable to short panel VARs. One of the main contributions of the

paper is to derive the asymptotic distributions of the orthogonalized IRFs for short panel

VARs. The asymptotic distributions are obtained under the asymptotic speci�cation that

N !1 with T �xed. Based on our asymptotic result, con�dence bands for the IRFs can

be easily constructed. Although impulse response analyses using short panels have been

employed in the empirical applications, to the best of our knowledge, no study has reported

con�dence bands for orthogonalized IRFs that account for the estimation uncertainty of

the error variance matrix. As a result, the reported con�dence bands are often more narrow

than they should be. This may lead to the �nding of statistical signi�cance that does not

actually exist.

A further contribution of the paper is to establish the asymptotic validity of bootstrap

con�dence bands. Our simulation results show that bootstrap con�dence bands usually

provide more accurate coverage than the asymptotic analytical bands. In addition, the

percentile-t bootstrap band that takes the dependence between the autoregressive coe¢ cient

estimator and the error variance estimator into account performs better than those that do

not.

The rest of the paper is organized as follows. Section 2 describes the vector autoregres-

sion model for panel data and presents the standard GMM estimator of the slope coe¢ cients

and analysis-of-variance-type estimator of the error variance matrix. This section also es-

tablishes the joint asymptotic distribution of the slope coe¢ cients estimator and the error

variance estimator. Using these asymptotic results, we derive in Section 3 the asymptotic

distributions of the orthogonalized and non-orthogonalized impulse response functions. We

also prove the asymptotic validity of various bootstrap con�dence bands. Section 4 provides

some simulation evidence. The �nal section concludes. Proofs and a technical lemma are

collected in the Appendix.

Throughout the paper, vec denotes the column stacking operator and vech is the corre-

sponding operator that stacks only the elements on and below the main diagonal. As usual,

the Kronecker product is denoted by 
; the commutation matrix Km;n is de�ned such that,
for any (m� n) matrix G; Km;nvec(G) = vec(G0); and the m2� (m(m+1))=2 duplication
matrix Dm is de�ned such that Dmvech(F ) = vec(F ) for a symmetric (m�m) matrix F:
Furthermore, D+m = (D

0
mDm)

�1D0m and Lm is the (m(m+ 1))=2�m2 elimination matrix
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de�ned such that, for any (m�m) matrix F; vech (F ) = Lmvec(F ): For matrix A; jjAjj is
the Euclidian norm of A: �)�denotes weak convergence and ���denotes distributional
equivalence.

2 The Model and GMM Estimation

2.1 The Model

We consider an m-dimensional panel VAR(p) process:

yi;t = �+A1yi;t�1 + :::+Apyi;t�p + �i + ui;t (1)

for t = 0; :::; T and i = 1; 2; :::; N where yi;t = (y1;it; :::; ym;it)0, Aj are (m �m) coe¢ cient
matrices, �i is an m�1 vector of individual �xed e¤ects, � is an m�1 vector of intercepts,
and ui;t is the error term. To simplify the discussion, we focus on balanced panel data sets.

For each individual i; the time series starts at period 0 and ends at period T: Without the

loss of generality, we assume that the initial values yi;�1; :::; yi;�p are observed. We make

the following assumption.

Assumption 1. ui;t is independently and identically distributed across i and t with

E(ui;tjyi;t�1; :::; yi;�p) = 0 for 0 � t � T

and

E
�
ui;tu

0
j;sjyi;t�1; :::; yi;�p

�
=

(
�; i = j and t = s

0; otherwise
; for 0 � t � s � T (2)

where � is a positive de�nite matrix.

The model is the same as that considered by Binder, Hsiao, and Pesaran (2005). We

do not parametrize the initial conditions for the VAR model as the asymptotic properties

of the GMM estimators used in this paper do not reply on any parametric speci�cation

of yi;�1; :::; yi;�p: This is an advantage of the GMM estimators as compared to the quasi

maximum likelihood (QML) estimator in Binder, Hsiao, and Pesaran (2005). In their �xed

e¤ects speci�cation, they assume that the initial observations yi;�1; :::; yi;�p are generated

according to

yi;t = (I �A1 � :::�Ap)�1 (�+ �i) + �i;t for � p � t � �1

where the initial deviations �i;t are iid across i and t with zero mean and constant variance

matrix (see their assumption G3). This homogeneity assumption may help improve the

asymptotic e¢ ciency of the QML estimator but will lead to inconsistency when it is violated.
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Here we maintain minimal assumptions without parametrizing the initial conditions and

focus only on the GMM type estimators. The standard GMM estimator considered below

is widely used in empirical applications, see, for example, Love and Zicchino (2002) and

Gilchrist, Himmelberg and Huberman (2005).

We can include the time �xed e¤ects in the model so that

yi;t = �+A1yi;t�1 + :::+Apyi;t�p + �i + �t + ui;t: (3)

We have done so in a previous version of this paper. In this case, we can remove �t by

taking out the cross sectional average. All of our results remain valid for the above model.

To simplify the notation, we focus on the VAR model in (1).

2.2 Panel GMM Estimator and its Asymptotic Distribution

It is well-known that, due to the correlation between the �xed e¤ect �i and the regressors,

the OLS estimator of Aj based on equation (1) is inconsistent when T is small. To remove

the �xed individual e¤ect, we take the �rst di¤erence of equation (1), leading to

�yi;t = A1�yi;t�1 + :::+Ap�yi;t�p +�ui;t; t = 1; :::; T:

The OLS estimator based on the �rst di¤erenced equation is still inconsistent because

�ui;t is correlated with �yi;t�1: The standard GMM estimators of AH and AB employ

instruments that are orthogonal to �ui;t: Additional nonlinear moment conditions implied

by the homoscedasticity assumption in (2) are considered in Ahn and Schmidt (1995) and

Binder, Hsiao, and Pesaran (2005). We provide similar results to this paper for the Ahn and

Schmidt estimator in a previous version of this paper. In what follows, we will mainly focus

on the AB estimator since it is easy to implement as the underlying moment conditions are

linear in parameters. It has also been a standard practice to employ the AB estimator in

empirical studies. In addition, for dynamic panel data models, the latest version of STATA

contains only GMM estimators with linear moment conditions, the leading case of which

is the AB estimator. Furthermore, in his seminal monograph, Hsiao (2003) discusses only

the AB estimator for panel vector autoregressive models. Our results can be extended

straightforwardly to the AH estimator.

The moment conditions for the AB estimator are

E
�
�ui;ty

0
i;t�1�`

�
= 0 for ` = 1; 2; :::; t+ p� 1; t = 1; :::; T: (4)

To write the equations in the vector form, we let

A0|{z}
m�mp

= (A1; A2; :::; Ap) ;
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and de�ne the �rst-di¤erenced variables:

�yi|{z}
T�m

=

0BBBBB@
�y0i;1

�y0i;2

:::

�y0i;T

1CCCCCA ; �ui|{z}
T�m

=

0BBBBB@
�u0i;1

�u0i;2

:::

�u0i;T

1CCCCCA ;

�Xi;t| {z }
mp�1

=

0BBBBB@
�yi;t�1

�yi;t�2

:::

�yi;t�p

1CCCCCA ; �Xi|{z}
T�mp

=

0BBBBB@
�X 0

i;1

�X 0
i;2

:::

�X 0
i;T

1CCCCCA :
We de�ne the level variables yi; ui and Xi similarly except that they have (T + 1) rows.

Then

vec(�yi) = (Im 
�Xi) vec (A) + vec(�ui): (5)

To construct the instrument matrix, we let

Zi =

0BBBBB@

�
y0i;�p; :::; y

0
i;�1

�
0 ::: 0

0
�
y0i;�p; :::; y

0
i;0

�
0 :::

::: ::: ::: :::

0 0 :::
�
y0i;�p; :::; y

0
i;T�2

�

1CCCCCA :=

0BBBBB@
Z 0i;1

Z 0i;2

:::

Z 0i;T

1CCCCCA (6)

which is a T � m [pT + (T � 1)T=2] matrix. Then the moment conditions in (4) can be
written as E

�
(Im 
 Zi)0 vec(�ui)

�
= 0:

The GMM estimator of � = vec (A) is now given by

�̂GMM = vec(Â) := vec((Â1; Â2; :::; Âp)
0) (7)

=
��
Im 
 S0ZX

�
WN (Im 
 SZX)

��1 ��
Im 
 S0ZX

�
WNvec (SZY )

�
where

SZX =
1

N

NX
i=1

Z 0i�Xi; SZY =
1

N

NX
i=1

Z 0i�yi

and WN is a weighting matrix that converges to W; a positive de�nite matrix as N !1:
To estimate the orthogonalized impulse response function, we need to estimate the

covariance matrix �: If the error term ui;t in (1) is observable, then an analysis-of-variance

type estimator of � is given by

~� =
1

N(T + 1)

NX
i=1

TX
t=0

ui;tu
0
i;t:
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Under the assumption that ui;t is normal, it can be shown that ~� is the best quadratic

unbiased estimator. It is also asymptotically equivalent to the QML estimator when a

normal likelihood function is used. Since the error term is not observable, however, we

have to replace it by some estimate. Given the estimate �̂; it is natural to estimate ui;t by

ûi;t = (yi;t � �yi;�)� Â0
�
Xi;t � �Xi;�

�
for t = 0; :::; T:

Here and hereafter, a dot in the subscript indicates the average over that subscript. The

resulting estimator of � is then given by

�̂GMM =
1

NT

NX
i=1

TX
t=0

ûi;tû
0
i;t: (8)

The subscript on �̂GMM indicates that the estimator is based on the GMM estimator of A:

We now consider the large N asymptotics for a �xed T: Under some regularity condi-

tions, we have

P lim
N!1

SZX = S
1
ZX (9)

for some constant matrix S1ZX and

1p
N

NX
i=1

vec
�
Z 0i�ui

�
) N(0;�
 S1ZZ); (10)

where

S1ZZ = P lim
N!1

1

N

NX
i=1

Z 0iGZi; (11)

and G is the T � T symmetric tridiagonal matrix with the main diagonal elements equal
to 2 and the sub-diagonal elements equal �1: Combining (9) and (10), we get

p
N(�̂GMM � �)) N(0;
��)

for some variance matrix 
��:

To minimize the asymptotic variance of the GMM estimator, we choose the weighting

matrix WN such that its limit is W = (�
 S1ZZ)
�1 (see, Hansen 1982). With the optimal

weighting matrix, we have


�� =
n�
Im 
 (S1ZX)

0� (�
 S1ZZ)�1 [Im 
 S1ZX ]o�1 := �
Q�1; (12)

where

Q = (S1ZX)
0 (S1ZZ)

�1 S1ZX :
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The above asymptotic variance can be also achieved by letting

WN = Im 

 
1

N

NX
i=1

Z 0iGZi

!�1
; (13)

in which case W = PlimN!1WN = Im 
 (S1ZZ)
�1 : To see this, note that for this choice

of the weighting matrix, we have

(Im 
 S1ZX)W (Im 
 S1ZX) = Im 
Q;

and

var
��
Im 
 S0ZX

�
WNvec (SZY )

�
! �
Q:

Therefore


�� = (Im 
Q)�1 (�
Q) (Im 
Q)�1 = �
Q�1;

which is identical to the asymptotic variance given in (12).

With the weighting matrix given in (13), the GMM estimator of �̂ reduces to

�̂GMM = vec

8<:
24 NX

i=1

�X 0
iZi

! 
NX
i=1

Z 0iGZi

!�1 NX
i=1

�
Z 0i�Xi

�!35�1

�
 

NX
i=1

�X 0
iZi

! 
NX
i=1

Z 0iGZi

!�1 NX
i=1

(Z 0i�yi)

9=; : (14)

This is the equation-by-equation GMM estimator. Therefore, we have shown that the

equation-by-equation GMM estimator is asymptotically as e¢ cient as the system GMM

estimator. This result is analogous to the asymptotic e¢ ciency of the equation-by-equation

OLS in an ordinary VAR system. Holtz-Eakin, Newey, and Rosen (1988) and Arellano

(2003) both point out the possibility of improving the e¢ ciency by jointly estimating all

equations in the VAR system. Our result shows that, under the assumption of conditional

homoskedasticity given in (2), there is no e¢ ciency gain from joint estimation.

We now focus on the equation-by-equation GMM estimator given in (14) and the asso-

ciated variance estimator de�ned in (8). To establish their joint limiting distribution, we

maintain Assumption 2 below.

Assumption 2. The following hold for some � > 0 :

(i) E(kui;tk4+2�) <1;
(ii) maxiE kXi;0k4+2� <1; maxiE k�ik4+2�) <1;
(iii) S1ZZ and S

1
ZX have full rank,

(iv) E(ui;tu0i;t 
 ui;tjyi;t�1; :::; yi;�p) = 0;
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where Xi;0 = (y0i;�1; y
0
i;�2; :::; y

0
i;�p)

0:

Some comments on Assumption 2 are in order. Assumption 2(i) is a standard moment

condition on ui;t. Assumption 2(ii) assumes that the �xed e¤ect �i and the initial values

yi;�1;:::; yi;�p have uniformly bounded 4+2� moments. Together with Assumption 2(i), As-

sumption 2(ii) ensures that individual contributions to cross sectional averages do not play

a dominating role so that LLN and CLT hold. The moment conditions are not necessary

but su¢ cient for our results. We point out in passing that while we do not parametrize the

initial conditions, we still need to control their cross sectional heterogeneity by assuming

that maxiE kXi;0k4+2� <1:
To avoid the weak instrument problem, we impose Assumption 2(iii). If the initial

observations are generated from the stationary distribution of the process, the full rank

assumption rules out unit roots in the system, see for example, Binder, Hsiao and Pesaran

(2005). It should be pointed out that the presence of a unit root does not necessarily lead

to the weak instrument problem as the �xed individual e¤ects combined with unrestricted

initialization can ensure that S1ZX is of full rank. When the initial values do not follow

the stationary distribution of the VAR process, both �Xi and Zi are a¤ected by the �xed

e¤ect �i. As a result, Zi can help predict �Xi not only because of the presence of time

series dynamics but also because of the presence of the �xed e¤ects.

We maintain the technical condition in Assumption 2(iv) in order to simplify the as-

ymptotic variance. Under this assumption, the infeasible estimator

�̂0 =
1

NT

NX
i=1

TX
t=0

(ui;t � �ui;�) (ui;t � �ui;�)0

is asymptotically independent of
p
N(Â � A): Otherwise, there will be extra terms in the

asymptotic variance that re�ect the skewness of ui;t: This assumption is also needed to

ensure the asymptotic independence of the variance estimator and the slope estimator in

time series VARs. A su¢ cient condition for Assumption 2(iv) to hold is that ui;t follows

an elliptical distribution, which includes normal distributions as special cases.

Let

Xi;t =
�
y0i;t�1; y

0
i;t�2; :::; y

0
i;t�p

�0
; (15)

and

B = �P lim
N!1

1

NT

NX
i=1

TX
t=0

(ui;t � �ui;�)
�
Xi;t � �Xi;�

�0
: (16)

The following theorem establishes the asymptotic distributions of �̂GMM and �̂GMM when

N !1 for a �xed T:
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Theorem 1 Let Assumptions 1 and 2 hold. Then p
N (�̂GMM � �)

p
Nvech(�̂GMM � �)

!
) N (0;
) ; 
 =

 

�� 
0��


�� 
��

!
(17)

where


�� = �
Q�1; (18)


�� = �D+m(Im 
B)
�
�
Q�1

�
�D+mKm;m(Im 
B)

�
�
Q�1

�
; (19)


�� = D+m

�
1

T + 1
�m2 +

1

T (T + 1)
(�
 �) (Im2 +Km;m)

� �
D+m
�0

+D+m
�
�
BQ�1B0

� �
D+m
�0
+D+m

�
BQ�1B0 
 �

� �
D+m
�0 (20)

+D+m
�
�
BQ�1B

�
K 0
m;m

�
D+m
�0
+D+mKm;m

�
�
BQ�1B0

� �
D+m
�0
;

and �m2 = var(vec(ui;tu
0
i;t)) is an m

2 �m2 matrix.

Remark 1 Theorem 1 shows that
p
N (�̂GMM � �) is not asymptotically independent of

p
Nvech(�̂GMM � �). This is in sharp contrast with the time series case. For a time

series VAR model with Gaussian innovations, the MLEs of � and � are asymptotically

independent, see Hamilton (1994, Proposition 11.2). To construct valid con�dence bands for

the orthogonalized IRFs from short panel VARs, we have to take the asymptotic dependence

between
p
N (�̂GMM � �) and

p
Nvech(�̂GMM � �) into account.

Remark 2 Equation (41) in the proof states that
p
Nvech(�̂0 � �)! D+m

h
(T + 1)�1 �m2 + T�1 (T + 1)�1 (�
 �) (Im2 +Km;m)

i �
D+m
�0
:

So the asymptotic variance of
p
Nvech(�̂0 � �) contains two terms. The second term

T�1 (T + 1)�1D+m (�
 �) (Im2 +Km;m) (D
+
m)

0 re�ects the estimation uncertainty of the

�xed e¤ects. When T ! 1, the second term is of smaller order than the �rst term

(T + 1)�1D+m�m2 (D+m)
0 and disappears asymptotically. However, when T is assumed to

be �xed, both terms contribute to the asymptotic variance. This is di¤erent from the time

series asymptotics. The di¤erence highlights the risk of naively extending time series results

to short panels.

Remark 3 It is precisely because B 6= 0 that the �xed e¤ects estimator or the least squared
dummy variable (LSDV) estimator is asymptotically biased. If the asymptotic bias of the

�xed e¤ects estimator is nonnegligible, then it is likely that the asymptotic dependence

between �̂GMM and �̂GMM is also nonnegligible. This paper complements the papers by

Anderson and Hsiao (1982) and Arellano and Bond (1991) in that they investigate the

consequence of demeaning for the short panels on the slope estimation while we examine

the consequence on the variance estimation.
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Remark 4 In general, the variance matrix �m2 depends on the fourth-order multivariate

cumulants of ui;t. The relation between product-moments and multivariate cumulants is

rather technical. See Bilodeau and Brenner (1999, Appendix B). However, if we make

some distributional assumptions on ui;t, �m2 may be simpli�ed. For example, if we assume

that ui;t follows an elliptical distribution, then

�m2 =
1

3
� (�
 �) (Im2 +Km;m) +

��
3
� 1
�
vec (�) [vec (�)]0

where � is the kurtosis of any element of the standardized error ~ui;t = ��1=2ui;t: That is

� = E([~u
(j)
i;t ]

4)=fE([~u(j)i;t ]2)g2: For a proof of this result, see Bilodeau and Brenner (1999,
example 13.6). As a special case, when ui;t s iidN(0;�); we have � = 3 and

�m2 = (�
 �) (Im2 +Km;m) :

We will use this formula in our simulation study.

3 Asymptotic Approximation to the Distribution of IRFs

In this section, we �rst de�ne the IRFs for reduced-form VARs and structural VARs. We

then consider the large sample approximation and bootstrap approximation to the sampling

distribution of the IRFs.

3.1 IRFs for Reduced-form and Structural VARs

Since the impulse response function does not depend on the index i and �xed e¤ects in the

system, we omit the subscript i and consider the reduced-form VAR model:

yt = A1yt�1 + :::+Apyt�p + ut for t = 0; :::; T: (21)

The impulse response matrix is de�ned to be

�j =
@yt+j
@u0t

:

The (k,`)-th element of �j describes the response of k-th element of yt+j to one unit impulse

in `-th element of yt with all other variables dated t or earlier held constant. The plot of the

(k,`)-th element of �j as a function of j is called the non-orthogonalized impulse-response

function.

11



To compute �j ; we let

Yt =

0BBBBBBBB@

yt

yt�1

yt�2
...

yt�p+1

1CCCCCCCCA
mp�1

; F =

0BBBBBBBB@

A1 A2 � � � Ap�1 Ap

Im 0 � � � 0 0

0 Im � � � 0 0
...

...
. . .

...
...

0 0 � � � Im 0

1CCCCCCCCA
mp�mp

; Ut =

0BBBBBBBB@

ut

0

0
...

0

1CCCCCCCCA
mp�1

:

Then

Yt =
tX
j=0

F jUt�j + F
t+1Y�1;

so @Yt+j=@U 0t = F
j : By de�nition, �j is the �rst m�m block of F j :

Di¤erentiating both sides of (21) yields:

@yt+j
@u0t

= A1
@yt+j�1
@u0t

+ :::+Ap
@yt+j�p
@u0t

:

That is, �j satis�es the recursive relationship:

�j =

pX
`=1

A`�j�`; j = 1; 2; ::: (22)

with �j = 0 for j < 0 and �0 = Im:

To estimate the non-orthogonalized impulse response, we plug the estimate Â into (22)

and get �̂j =
Pp
`=1 Â`�̂j�` with the initialization �̂j = 0 for j < 0 and �̂0 = Im:

In empirical applications, it is a standard practice to report the orthogonalized impulse

response function. Let PrP 0r = � be the Cholesky decomposition of �; where Pr is a lower

triangular matrix with positive diagonal elements. Then

P�1r yt = P
�1
r A1yt�1 + :::+ P

�1
r Apyt�p + u

r
t for t = 0; :::; T (23)

where urt = P�1r ut has mean zero and variance Im: The orthogonalized impulse response

matrix is de�ned to be

�rj =
@yt+j

@ (urt )
0 =

@yt+j
@u0t

@ut

@ (urt )
0 = �jPr:

In general, the model in (23) does not have a structural interpretation. One exception

is the recursive structural VAR model de�ned by

Ayt = As1yt�1 + :::+Aspyt�p + ust for t = 0; :::; T (24)
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where A is a lower triangular matrix, and ust is a vector white noise process with variance

matrix Im: To obtain the recursive structure, we may have to re-order the variables in yt

according to some economic theory. The structural model coincides with the reduced-form

model in (23) if we let P�1r = A; P�1r Ai = A
s
i and u

r
t = u

s
t : In this case, the IRFs based on

the Cholesky decomposition have structural interpretations.

In the absence of a recursive structure, we decompose � into � = P s (P s)0 where (P s)�1

satis�es the same identi�cation restrictions imposed on the matrix A: This decomposition is
di¤erent from the Cholesky decomposition, as it is dictated by the identi�cation restrictions.

To identify A; it is necessary to impose m(m � 1)=2 restrictions. Following Lütkepohl
(2005, p. 360), we consider the identi�cation restrictions: SAvec(A) = sA where SA is a
m(m� 1)=2�m2 selection matrix and sA is a suitable m(m� 1)=2� 1 �xed vector. Under
these conditions, we solve for P s such that � = P s (P s)0 and SAvec[(P s)�1] = sA:

The reduced-form Cholesky decomposition and the structural decomposition can be

represented in a uni�ed framework. Given the covariance matrix �, we want to �nd P such

that

� = PP 0and Svec(P�1) = s (25)

for some selection matrix S and constant vector s: For the structural VAR, (S; s) is based
on economic theory. For the reduced-form Cholesky decomposition, S is the matrix that
selects the upper triangular elements of P�1 and s is a vector of zeros. Given the matrix

P; the orthogonalized IRFs are �j = �jP:

The orthogonalized IRF can be estimated by plugging the estimates �̂j and �̂ into its

de�nition. More speci�cally, let P̂ be the plug-in estimator of P such that �̂ = P̂ P̂ 0 and

Svec(P̂�1) = s. Then the orthogonalized IRF can be estimated by �̂j = �̂jP̂ :

3.2 Large Sample Approximation

The limiting distribution of �̂j can be derived using the delta method. More speci�cally,

taking transposes of (22) and di¤erentiating the resulting equation with respect to �q; the

q-th element of �; yields:

@�0j
@�q

=

pX
`=1

@�0j�`
@�q

A0` +

pX
`=1

�0j�`
@A0`
@�q

=

pX
`=1

@�0j�`
@�q

A0` + [�
0
j�1;�

0
j�2; :::;�

0
j�p]

@A

@�q
:

Consequently,

@vec
�
�0j

�
@�0

=

pX
`=1

(A` 
 Im)

0@@vec
�
�0j�`

�
@�0

1A+ �Im 
 [�0j�1;�0j�2; :::;�0j�p]� :
13



Let

G0
(m2�pm2)

= 0 and Gj
(m2�pm2)

=
@vec

�
�0j

�
@�0

; j = 1; 2; :::

then

Gj =

pX
`=1

(A` 
 Im)Gj�` + (Im 
 [�0j�1;�0j�2; :::;�0j�p])

with Gj = 0 for j < 0: A closed-form solution for Gj is

Gj =

j�1X
`=0

�` 
 [�0j�`�1;�0j�`�2; :::;�0j�`�p] =
j�1X
`=0

�` 
 J
�
F 0
�j�`�1

;

where J = [Im;0m; :::;0m] is an m�mp matrix.
A consistent estimator of Gj can be obtained by plugging Â and �̂j into the above

equation. The asymptotic distribution of the non-orthogonalized impulse response function

is
p
Nvec

�
�̂0j � �0j

�
d! N(0;
�j) for 
�j = Gj
��G0j : (26)

We can estimate 
�j by


̂�j = Ĝj
̂��Ĝ
0
j (27)

where

Ĝj =

j�1X
`=0

�̂` 
 [�̂0j�`�1; �̂0j�`�2; :::; �̂0j�`�p]; 
̂�� = �̂GMM 
 Q̂�1;

and

Q̂ =

 
1

N

NX
i=1

�X 0
iZi

! 
1

N

NX
i=1

Z 0iGZi

!�1 
1

N

NX
i=1

Z 0i�Xi

!
:

To derive the limiting distribution of �̂j ; we use the delta method again. We compute

C�j = @vec(�
0
j)=@�

0 and C�j = @vec(�0j)=@ [vech(�)]
0 as follows:

C�j =
@vec

�
P 0�0j

�
@�0

=
�
Im 
 P 0

� @vec��0j�
@�0

=
�
Im 
 P 0

�
Gj ;

C�j =
@vec

�
P 0�0j

�
@ [vech(�)]0

= (�j 
 Im)
@vec (P 0)

@ [vech(�)]0
= (�j 
 Im)

Km;m@vec (P )

@ [vech(�)]0
:

To obtain a closed form expression for @vec (P ) =@ [vech(�)]0 ; we di¤erentiate both sides

of the equations in (25) and get"
2D+m (P 
 Im)
S[(P�1)0 
 P�1]

#
vec (dP ) =

"
vech (d�)

0

#
:

14



Let Om be the �rst m (m+ 1) =2 column of the matrix on the left hand side, that is"
2D+m (P 
 Im)
S[(P�1)0 
 P�1]

#�1
= [Om;�]

for some m2�m (m+ 1) =2 matrix Om and m2�m (m� 1) =2 matrix �: Then vec (dP ) =
Omvech (d�), and so

C�j = (�j 
 Im)Km;mOm:

The following theorem gives that asymptotic distribution of the orthogonalized IRF �̂j :

Theorem 2 Let Assumptions 1 and 2 hold. Assume that the matrix"
2D+m (P 
 Im)
S[(P�1)0 
 P�1]

#

is of full rank. Then
p
Nvec[(�̂j ��j)0]

d! N (0;
�j) ; (28)

where


�j = [C�j ; C�j ]

 

�� 
��


�� 
��

! 
C 0�j

C 0�j

!
; (29)

and

C�j =
�
Im 
 P 0

�
Gj ; C�j = (�j 
 Im)Km;mOm:

In the time series setting, the matrix 
�� = 0 (e.g. Proposition 1 in Lütkepohl (1990)).

As a result, the cross product terms C�j
��C 0�j , C�j
��C
0
�j are not present in the as-

ymptotic variance of the orthogonalized IRF. In contrast, for short panel VARs, 
�� 6= 0;
and the cross product terms can not be ignored. In addition, compared to the time series

cases, the asymptotic variance 
�� contains a few extra terms, re�ecting the estimation

uncertainty of the slope coe¢ cients and the �xed e¤ects. So for short panel VARs, it is

important to include the cross product terms C�j
��C 0�j , C�j
��C
0
�j and extra terms in


�� in computing the asymptotic variance, especially when T is small.

The matrix Om can be simpli�ed if P is restricted to be a lower triangular matrix. In

this case

Om =
@vec (P )

@ [vech(�)]0
= L0m

@vech (P )

@ [vech(�)]0
:

But it follows from � = PP 0 that vec (d�) = (Im2 +Kmm) (P 
 Im) vec(dP ) and so

@vech (P )

@ [vech(�)]0
=
�
Lm (Im2 +Kmm) (P 
 Im)L0m

��1
=
�
2D+m (P 
 Im)L0m

��1
:
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As a result

Om = L
0
m

�
2D+m (P 
 Im)L0m

��1
:

The structural VAR model in (24) is referred to as the A-model by Lütkepohl (2005, p.

358). Another class of structural VAR models, the so-called B-model, is de�ned to be

yt = A
s
1yt�1 + :::+A

s
pyt�p + Bust for t = 0; :::; T

where ust is normalized to have mean zero and variance Im: To identify the structural

parameter B; we impose m(m� 1)=2 restrictions of the form SBvec(B) = sB: In this case,
the map between the reduced form variance � and the structural matrix B is de�ned by
� = BB0 and SBvec(B) = sB: In other words, we solve for P such that � = PP 0 such that
SBvec(P ) = sB: Theorem 2 continues to hold but Om is now the �rst m (m+ 1) =2 column

of the matrix "
2D+m (P 
 Im)

SB

#�1
:

To consistently estimate the asymptotic variance 
�j ; we plug consistent estimates of

C�j ; C�j ;
��;
�� and 
�� into (29), leading to


̂�j = Ĉ�j
̂��Ĉ
0
�j + Ĉ�j
̂��C

0
�j + Ĉ�j
̂��Ĉ

0
�j + Ĉ�j
̂��Ĉ

0
�j ; (30)

where

Ĉ�j = (Im 
 P̂ 0)Ĝj and Ĉ�j = (�̂j 
 Im)Km;mÔm:

Here 
̂�s are de�ned in (18)�(20) with B;Q;� replaced by B̂; Q̂; �̂GMM ; where

B̂ =
1

NT

NX
i=1

TX
t=0

ûi;t
�
Xi;t � �Xi;�

�0
:

Ôm is the �rst m (m+ 1) =2 column of24 2D+m

�
P̂ 
 Im

�
SA[(P̂�1)0 
 P̂�1]

35�1 or
24 2D+m �P̂ 
 Im�

SB

35�1 ;
respectively for the A-model and B-model. For recursive structural VARs, we can take

Ôm = L
0
m

h
2D+m

�
P̂ 
 Im

�
L0m

i�1
:
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3.3 Bootstrap Approximation

The large sample approximation in the previous subsection is based on the delta method.

In �nite samples, the approximation may not capture the �nite sample distribution very

well. In this subsection, we consider the bootstrap approximation to the IRFs.

We use the nonparametric iid bootstrap along the cross sectional dimension. Let

fyi = (yi;�p; :::; yi;T )0; i = 1; 2; :::; Ng denote the original sample and P denote the true dis-
tribution that generates the sample fy1; :::; yNg. The bootstrap sample is denoted by

fy�i = (y�i;�p; :::; y�i;T )0; i = 1; 2; :::; Ng where y�i follows the bootstrap distribution P�, a dis-
crete distribution that places probability mass 1=N at each point in the sample fy1; :::; yNg :
By de�nition, the bootstrap sample satis�es

�y�i;t = Â1�y
�
i;t�1 + :::+ Âp�y

�
i;t�p +�u

�
i;t; t = 1; :::; T:

where fu�i = (u�i;�p;:::; u
�
i;T )

0; i = 1; 2; :::; Ng are simple random draws from the estimated

errors fûi = (ûi;�p;:::; ûi;T )0; i = 1; 2; :::; Ng :
The GMM estimator of � based on the bootstrap sample is

�̂�GMM = vec((Â�1; :::; Â
�
p)
0)

= vec

8<:
24 NX

i=1

(�X�
i )
0 Z�i

! 
NX
i=1

(Z�i )
0GZ�i

!�1 NX
i=1

(Z�i )
0�X�

i

!35�1

�
 

NX
i=1

(�X�
i )
0 Z�i

! 
NX
i=1

(Z�i )
0GZ�i

!�1 NX
i=1

(Z�i )
0�y�i

9=; ;
where the variables X�

i ; Z
�
i and y

�
i are de�ned in the same way as Xi; Zi and yi except that

they are based on the bootstrap sample. Similarly, the bootstrap estimator of � is

�̂�GMM =
1

NT

NX
i=1

TX
t=0

û�i;tû
�0
i;t;

where

û�i;t =
�
y�i;t � �y�i;�

�
� (Â�)0

�
X�
i;t � �X�

i;�
�
; for t = 0; :::; T:

Given �̂�GMM and �̂�GMM ; we can compute the IRFs �̂
�
j and the orthogonalized IRFs

�̂�j using the same procedure as that for �̂j and �̂j : In addition, we can compute 
̂
�
�j and


̂��j in exactly the same way as 
̂�j and 
̂�j de�ned in (27) and (30) but use the bootstrap

sample.

Theorem 3 Let Assumption 1, Assumptions 2(iii) and (iv) hold. In addition, assume that

E(kui;tk16+8�); maxiE kXi;0k16+8� ; maxiE k�ik16+8� are �nite for some � > 0. Then for
any conformable vector c; the following hold uniformly over x 2 R :
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(a) P
�
c0
p
Nvec[(�̂�j � �̂j)0] < x

�
= P

�
c0
p
Nvec[(�̂j � �j)0] < x

�
+ o(1);

(b) P
�
c0
p
Nvec[(�̂�j � �̂j)0] < x

�
= P

�
c0
p
Nvec[(�̂j ��j)0] < x

�
+ o(1);

(c)

P

0@c0pNvec[(�̂�j � �̂j)0]q
c0
̂��jc

< x

1A = P

0@c0pNvec[(�̂j � �j)0]q
c0
̂�jc

< x

1A+ o(1);
(d)

P

0@c0pNvec[(�̂�j � �̂j)0]q
c0
̂��jc

< x

1A = P

0@c0pNvec[(�̂j ��j)0]q
c0
̂�jc

< x

1A+ o(1):
To evaluate the probabilities in Theorem 3, we �rst condition on the original sample

under which the average statistics of interest converge almost surely. The moment condi-

tions in Theorem 3 ensure that the sample we condition on occurs with probability one.

Consequently, the conditional convergence results can then be converted into unconditional

results. The moment conditions are likely to be stronger than necessary but they facilitate

the proof.

To prove Theorem 3, we �rst show that [
p
N (�̂�GMM � �̂GMM ) ;

p
Nvech(�̂�GMM �

�̂GMM )] has the same joint limiting distribution as [
p
N (�̂GMM � �) ;

p
Nvech(�̂GMM �

�)] in Lemma 1 given in the appendix. We then invoke a delta-type method for bootstrap

approximation. For the standard delta method, it is su¢ cient to assume that the function

of interest is continuous. Here we require the function to be continuously di¤erentiable.

The delta method for bootstrap approximation is likely to be of independent interest.

A direct implication of Theorem 3 is that bootstrap percentile con�dence band and

bootstrap percentile-t con�dence band are asymptotically valid to the �rst order. Higher

order re�nement of the bootstrap approximation may require stronger moment conditions

and some adjustment of the bootstrap GMM estimator when the model is overidenti�ed

(c.f. Horowitz, 1997). This is beyond the scope of the present paper.

4 Simulation Evidence

In this section, we provide some simulation evidence on the accuracy of the asymptotic

approximation and the bootstrap approximation to the sampling variability of the orthog-

onalized impulse response functions.

We consider the panel VAR model with two variables. The data generating process is

yi;t = �+Ayi;t�1 + �i + Pei;t
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for i = 1; 2; :::; N and t = 1; 2; :::; T where � = (0; 0)0; ei;t s iid N(0; I2) and �i s
iidN(0; I2): For each given T; we set the initial value of the process fyi;tg to be zero and
generate a 2-dimensional time series of length T + Td: We drop the �rst Td observations to

obtain the simulated sample.

We specify matrices A and P as follows. Let R and S be 2� 2 random matrices whose

elements are iid from the uniform [0; 1] distribution. Let b1 and b2 be the eigenvectors of

R0R: We set A to be

A = �1b1b
0
1 + �2b2b

0
2

for �1 and �2 2 (0:10; 0:35; 0:60; 0:85); �1 6= �2; and set P to be the low triangle matrix

such that P 0P = SS0: Since the performance of the AB estimator may be sensitive to the

speci�cations of A and P (e.g. Bun and Kiviet, 2006), we have experimented with di¤erent

random matrices R and S: We have also experimented with

P =

 
1 0

� 1

!
for di¤erent values of �: The qualitative information from our simulation results remains

more or less the same.

We consider di¤erent N and T combinations, i.e. N = 100; 200 and T = 5; 10; 20: We

set Td to be 1; 5; 10; 50. For each (N;T ) combination, we estimate the model using the AB

estimator. To avoid the weak instrument problem, we do not use the lagged dependent

variables dated too early as instruments. Instead, we set the maximum number of lags of

the dependent variable that can be used as instruments to be 3. Our simulation results

change only slightly when we set the maximum number of lags to be 1, 2 and 4. The

number of simulation replications is 5000.

4.1 The Asymptotic and Bootstrap Con�dence Bands

Given the estimated autoregressive and variance parameters, we construct the orthogonal-

ized impulse response functions and the corresponding 95% con�dence band based on the

asymptotic distribution in (28). As a comparison, we also construct the 95% con�dence

band when 
�� and 
�� are set to be


�� = 0; 
�� = (T + 1)
�1D+m (�
 �) (Im2 +Km;m)

�
D+m
�0
: (31)

In this case, the asymptotic dependence between
p
N (�̂GMM � �) and

p
Nvech(�̂GMM �

�) and the additional randomness of
p
Nvech(�̂GMM � �) are ignored. Both con�dence

bands are of the formh
�̂j(k; `)� 1:96� 
̂�j(k; `)=

p
N; �̂j(k; `) + 1:96� 
̂�j(k; `)=

p
N
i
:
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For convenience, we call the con�dence band with the naive asymptotic variance given in

(31) the naive CLT con�dence band and the one based on (26) the variance-corrected CLT

con�dence band.

In the simulation experiment, we also consider the �nite sample performances of boot-

strap con�dence bands. Hall (1992) discuses three types of bootstrap con�dence bands.

See Lütkepohl (2005) for VARs. The �rst is Hall�s percentile con�dence band. In our case,

the 95% bootstrap con�dence band is�
�̂j(k; `)� CV

�̂�j (k;`)

U ; �̂j(k; `)� CV
�̂�j (k;`)

L

�
; (32)

where CV
�̂�j (k;`)

U and CV
�̂�j (k;`)

L are the 97.5% and 2.5% quantiles of �̂�j (k; `) � �̂j(k; `);
respectively.

The other two types of bootstrap bands are based on the t-statistic. For the original

sample, the t-statistic is

t =

p
N
h
�̂j(k; `)��j(k; `)

i

̂�j(k; `)

(33)

while for the bootstrap sample the t-statistic is

t� =

p
N
h
�̂�j (k; `)� �̂j(k; `)

i

̂��j(k; `)

: (34)

Then the equal-tailed percentile-t con�dence band ish
�̂j(k; `)� CV t

�
U � 
̂�j(k; `)=

p
N; �̂j(k; `)� CV t

�
L � 
̂�j(k; `)=

p
N
i
; (35)

where CV t
�
U and CV t

�
L are the 97.5% and 2.5% quantiles of t� respectively. If instead

of t�, the quantiles are calculated based on jt�j, then we have the symmetric percentile-t
con�dence band. Let CV jt

�j be the 95% quantile of the bootstrap distribution of jt�j ; the
symmetric bootstrap con�dence band is:h

�̂j(k; `)� CV jt
�j � 
̂�j(k; `)=

p
N; �̂j(k; `) + CV

jt�j � 
̂�j(k; `)=
p
N
i
: (36)

General bootstrap theory suggests that the symmetric percentile-t con�dence band

has the most accurate coverage probability among the three bootstrap con�dence bands

considered here. See Hall (1992). An extensive simulation study in a previous version of

this paper supports this qualitative observation. So we focus on the symmetric percentile-

t con�dence band hereafter. Depending on how 
̂�j(k; `) and its bootstrap version are

computed, we obtain two di¤erent symmetric percentile-t bootstrap con�dence bands: the

naive bootstrap con�dence band and the variance-corrected bootstrap con�dence band.
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4.2 Simulation Results

Figure 1 graphs the empirical coverage of di¤erent con�dence bands against the forecasting

horizons when N = 100, T = 5; Td = 1: The con�dence bands considered are: the naive

CLT band, the variance-corrected CLT band, the naive symmetric percentile-t bootstrap

band, and the variance-corrected symmetric percentile-t bootstrap band. Here we focus on

the case (�1; �2) = (0:1; 0:6) ; which is representative of other cases. We will refer to this

parameterization as our base case hereafter. The empirical coverage of the CLT con�dence

bands is the coverage rate based on 5000 rounds of Monte Carlo simulations. For the

bootstrap con�dence bands, we compute their empirical coverage based on 999 bootstrap

replications in each of 5000 simulation replications.

Several patterns emerge from the �gure. First, the empirical coverage of the variance-

corrected CLT is closer to the nominal coverage probability than the naive CLT con�dence

band. For some scenarios, the variance-corrected CLT con�dence band dominates the naive

CLT con�dence band by a large margin. Across all the subplots in the �gure, we �nd that

the empirical coverage of the naive CLT band is considerately lower than the nominal

coverage. A direct implication is that the naive asymptotic variance under-estimates the

sampling variability of the impulse response. As a result, inferences based on the naive

asymptotic variance may lead to the �nding a statistically signi�cant relationship that

does not actually exist. Second, similar to the �ndings for the CLT bands, the advantage in

coverage for the variance-corrected bootstrap band over the naive bootstrap band is visible,

although the margin of improvement is smaller than the CLT case. Third, the bootstrap

con�dence band has a more accurate coverage than the corresponding CLT con�dence

band. The larger coverage error of the CLT bands may re�ect the limitation of the delta

method in capturing the �nite sample distribution for the IRFs. On the other hand, the

coverage of the bootstrap band is very close to the nominal level for all forecasting horizons.

This superior performance suggests that the bootstrap approximation may provide a high

order re�nement to the �rst order normal approximation. This is an interesting theoretical

question for future research.

Figure 2 shows the median widths of the con�dence bands reported in Figure 1. It is

clear that the variance-corrected con�dence bands, for both the asymptotic and bootstrap

ones, are wider than the corresponding naive band. From this �gure, we can see that the

widths of the con�dence bands ranked from high to low are: variance-corrected bootstrap

band, naive bootstrap band, variance-corrected CLT band, and naive CLT band. This is

generally true for all the other cases that we consider. The next �gure, Figure 3, shows

the average and median of the relative biases of the IRFs. The biases are measured as
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percentages of the true IRFs. We can see that the biases of the one-period-ahead IRF can

be either positive or negative, ranging from 8% to almost 50% of the true IRFs. For longer

horizon IRFs, the mean biases fall within the 10% range.

We do not report the �gures for other parameter con�gurations but summarize the main

results here. We have considered a DGP with higher persistence. In our high persistence

case, the eigenvalues �1 and �2 of A are set to be 0:1 and 0:85. Since �2 is closer to 1,

the process is more persistent. The rest of the parameters, N , T and Td, remain the same

as in the base case. Compared to the base case, the coverage of the bootstrap band is in

similar range but the coverage of the CLT bands improves for this case. A contributing

factor to this improvement is that the median bias for this high persistence case is much

lower than the base case. When the process becomes more persistent, the signal-to-noise

ratios, as measured by var(ym;it)=var(um;it); become higher but the instruments become

weaker. These two o¤setting forces have opposite impacts on the coverage accuracy. When

Td is small and the variance of the �xed e¤ects var(�i) is relatively large, the instruments

remain relatively strong. The e¤ect of higher signal-to-noise ratios dominates that of weaker

instruments, leading to improved coverage accuracy. Simulations show that for large Td

and small var(�i); the coverage accuracy may deteriorate as the process becomes more

persistent.

The next case we consider contains more observations with N = 200, the only deviation

from the base case. The coverage probability for both the CLT bands and the bootstrap

bands increase under larger N . In particular, the coverage of the bootstrap bands closely

tracks the 95% nominal coverage probability for all four IRFs and for all forecasting hori-

zons. As one would expect, the mean and median of the relative biases of the IRFs remain

the same as in the base case, which con�rms that the biases come from the time series

dimension rather than the cross sectional dimension.

We also examine a case in which the time series are close to be stationary. The parameter

con�guration is the same as the base case except that Td is now equal to 50. The margin of

improvement from using the variance-corrected con�dence bands shrinks a little comparing

with the base case but remains positive and visible in the omitted �gure.

The basic qualitative observations are the same for other (N;T ) combinations and ini-

tialization schemes and for 90% con�dence bands. In an overall sense, the bootstrap bands

have smaller coverage errors than the corresponding CLT bands, and variance correction is

e¤ective in reducing the coverage errors.
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5 Conclusion

The paper establishes the asymptotic distribution of the orthogonalized impulse response

function for short panel VARs. Due to the correlation between the demeaned regressors and

the demeaned error term, the estimator of the autoregressive coe¢ cients and that of the

error variance are not independent, even in large samples with a �xed time series dimension.

The dependence calls for correction for the asymptotic variance of the orthogonalized im-

pulse response function. In this paper, we have developed the corrected asymptotic formula

for both reduced form VAR and structural VAR for short panels. We also have proved the

asymptotic validity of the bootstrapped con�dence bands in this context.

Our simulation analysis shows that the proposed variance correction leads to con�dence

bands that have smaller coverage errors. In practical applications, we recommend using the

corrected variance to studentize the t-statistic and employ the bootstrap approximation to

construct the con�dence bands.
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Figure 1: The Empirical Coverage of Di¤erent 95% Con�dence Bands of the Orthogonalized
IRFs for the Base Case with N = 100; T = 5; and Td = 1
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6 Appendix

Proof of Theorem 1. To establish the asymptotic distribution of �̂GMM , we only need
to verify the conditions for the LLN in (9), (11), and the CLT in (10). Under the cross
sectional independence, a su¢ cient condition for the LLN in (9) is

max
i
E
h

Z 0i�Xi

2i <1:

But for a generic constant C; which may be di¤erent for di¤erent occurrences,

max
i
E
h

Z 0i�Xi

2i � Cmax

i
max
t=1;:::;T

max
s=1;:::;t

E


�Xi;ty0i;t�s

2

� Cmax
i

max
t=1;:::;T

max
s=1;:::;t

max
�=1;:::;p

E


�yi;t��y0i;t�s

2

� Cmax
i

max
t=0;:::;T

(E kyi;tk4) � C:

The last inequality holds by Assumptions 2(i) and 2(ii). Similarly, we can show that the
LLN in (11) holds under Assumptions 2(i) and 2(ii).

To verify the Lyapunov condition for the CLT, we use the Cramer-Wold theorem. Let
Zui = K

0vec (Z 0i�ui) for any �xed vector K and �2i = var (Zui) : Under Assumptions 2(i)
and 2(ii), we have

max
i
E(jZuij2+�) = max

i
E(
��K 0vec

�
Z 0i�ui

���2+�)
� Cmax

i
E


�Z 0i�ui�

2+�

� Cmax
i

�
E kZik4+2�

�1=2 �
E k�uik4+2�

�1=2
� C:

So
PN
i=1E(jZuij

2+�) = O(N). Under Assumption 2(iii), we have 
NX
i=1

�2i

!
= NK 0E

"
�
 1

N

NX
i=1

Z 0iGZi

#
K � CN

for some constant C and large enough N; as plimN�1PN
i=1 Z

0
iGZi is of full rank. This

implies that
�PN

i=1 �
2
i

��1��=2
= o

�
N�1��=2�. As a result,

lim
N!1

 
NX
i=1

�2i

!�1��=2 NX
i=1

E(jZuij2+�) = 0:

That is, the Lyapunov condition holds.
It remains to establish the asymptotic distribution of �̂GMM and its relationship with

�̂GMM : Writing �̂GMM in terms of the unobserved error term, we have

�̂GMM =
1

NT

NX
i=1

TX
t=0

�
(yi;t � �yi;�)�A0

�
Xi;t � �Xi;�

�
�
�
Â�A

�0 �
Xi;t � �Xi;�

��
�
�
(yi;t � �yi;�)�A0

�
Xi;t � �Xi;�

�
�
�
Â�A

�0 �
Xi;t � �Xi;�

��0
;

= �̂0 + I1 + I2 + I3
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where

�̂0 =
1

NT

NX
i=1

TX
t=0

(ui;t � �ui;�) (ui;t � �ui;�)0 ;

I1 =
�
Â�A

�0 1

NT

NX
i=1

TX
t=0

�
Xi;t � �Xi;�

� �
Xi;t � �Xi;�

�0 �
Â�A

�
;

I2 = � 1

NT

NX
i=1

TX
t=0

(ui;t � �ui;�)
�
Xi;t � �Xi;�

�0 �
Â�A

�
;

I3 = �
�
Â�A

�0 1

NT

NX
i=1

TX
t=0

�
Xi;t � �Xi;�

�
(ui;t � �ui;�)0 :

In view of Â�A = Op(1=
p
N); we have

p
NI1 = op (1) : As a result,

p
N(�̂GMM � �) =

p
N(�̂0 � �) +

p
NI2 +

p
NI3 + op (1) : (37)

To evaluate I2 and I3; we note that

1

NT

NX
i=1

TX
t=0

(ui;t � �ui;�)
�
Xi;t � �Xi;�

�0
= B + op (1) ;

where the op (1) term follows from Assumptions 2(i) and (ii). Therefore,

p
NI2 = �B

p
N
�
Â�A

�
+ op (1) ;

p
NI3 = �

p
N
�
Â�A

�0
B0 + op (1) : (38)

Combining (37) with (38) yields

p
N
�
�̂GMM � �

�
=
p
N(�̂0 � �)�B

p
N
�
Â�A

�
�
p
N
�
Â�A

�0
B0 + op (1) :

To derive the limiting distribution of
p
N(�̂GMM � �); we consider each of the three

terms. First,

p
N(�̂0 � �) =

1p
NT

NX
i=1

"
TX
t=0

(ui;t � �ui;�) (ui;t � �ui;�)0 � �
#

=
1p

N (T + 1)

NX
i=1

TX
t=0

�
ui;tu

0
i;t � �

�
� 1p

NT (T + 1)

NX
i=1

TX
s;t=0;s 6=t

ui;tu
0
i;s (39)

Using the Lyapunov CLT, we have

p
Nvech(~�� �) = vech

 
1p

N (T + 1)

NX
i=1

TX
t=0

�
ui;tu

0
i;t � �

�!
(40)

) N

�
0;

1

T + 1
D+m�m2

�
D+m
�0�

;
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where �m2 = var[vec(ui;tu
0
i;t)]: It is easy to see that the Lyapunov condition holds under

Assumption 2(i). Similarly,

vech

0@ 1p
NT (T + 1)

NX
i=1

TX
t=0

TX
s=0;s 6=t

ui;tu
0
i;s

1A
) N

�
0;

1

T (T + 1)
D+m (�
 �) (Im2 +Km;m)

�
D+m
�0�

:

As a result,

p
Nvech

�
�̂0 � �

�
) N

�
0; D+m

�
1

T + 1
�m2 +

1

T (T + 1)
(�
 �) (Im2 +Km;m)

� �
D+m
�0� (41)

where we have used the asymptotic independence between the two terms in (39).
Next, using the properties of the commutation matrix: Km;m

�
�
BQ�1B0

�
=
�
BQ�1B0 
 �

�
Km;m

and Km;mK 0
m;m = Im2 ; we can show that

vech
h
B
p
N
�
Â�A

�i
) N

�
0; D+m

�
�
BQ�1B0

� �
D+m
�0�
;

and

vech

�p
N
�
Â�A

�0
B0
�
) N

�
0; D+m

�
BQ�1B0 
 �

� �
D+m
�0�
:

In addition,

cov

�
vech

h
B
p
N
�
Â�A

�i
; vech

�p
N
�
Â�A

�0
B0
��

= D+m
�
�
BQ�1B0

�
K 0
m;m

�
D+m
�0
:

Therefore,

B
p
N
�
Â�A

�
+
p
N
�
Â�A

�0
B0 ) N(0; VAB);

where

VAB = D+m(�
BQ�1B0)
�
D+m
�0
+D+m

�
BQ�1B0 
 �

� �
D+m
�0 (42)

+D+m(�
BQ�1B)K 0
m;m

�
D+m
�0
+D+mKm;m

�
�
BQ�1B0

� �
D+m
�0
:

We proceed to prove that
p
N(�̂0��) and

p
N(Â�A) are asymptotically independent

under Assumption 2(iv). We write

p
Nvec(Â�A) =M 1p

N

NX
i=1

vec

 
TX
t=1

Z 0i;t�2 (ui;t � ui;t�1)
!
+ op (1)
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for some matrix M: Note that

E

TX
t=0

vec
�
ui;tu

0
i;t � �

� TX
t=1

�
vec

�
Z 0i;t�2ui;t

��0
= E

TX
t=0

vec
�
ui;tu

0
i;t

� TX
t=1

�
vec

�
Z 0i;t�2ui;t

��0
= E

TX
t=0

TX
s=1

(ui;t 
 ui;t)
�
u0i;s 
 Zis�2

�
= E

TX
t=0

TX
s=1

�
ui;tu

0
i;s 
 ui;tZis�2

�
= E

TX
t=1

TX
s=1

�
ui;tu

0
i;s 
 ui;tZis�2

�
= E

TX
s=1

X
t6=s

�
ui;tu

0
i;s 
 ui;tZis�2

�
+ E

TX
t=1

�
ui;tu

0
i;t 
 ui;tZi;t�2

�
= E

TX
t=1

�
ui;tu

0
i;t 
 ui;tZi;t�2

�
= E

TX
t=1

��
ui;tu

0
i;t 
 ui;t

�

 Zi;t�2

�
= 0

by Assumption 2(iv). Similarly,

E
TX
t=0

vec
�
ui;tu

0
i;t � �

� TX
t=1

�
vec

�
Z 0i;t�2ui;t�1

��0
= 0:

Hence the �rst term in (39) is asymptotically independent of
p
N(Â�A): It is easy to see

that the asymptotic independence also holds for the second term in (39).
As a result, p

Nvech
�
�̂GMM � �

�
! N(0;
��); (43)

where 
�� is de�ned in the theorem.
Finally, we examine the asymptotic covariance between vech[

p
N(�̂GMM � �)] and

vec[
p
N(Â � A)]: Since

p
N(�̂0 � �) is asymptotically independent of

p
N(Â � A); the

asymptotic covariance is given by


�;� = �cov
�
vech

h
B
p
N
�
Â�A

�i
; vec

hp
N
�
Â�A

�i�
�cov

�
vech

�p
N
�
Â�A

�0
B0
�
; vec

hp
N
�
Â�A

�i�
= �D+m(Im 
B)

�
�
Q�1

�
�D+mKm;m(Im 
B)

�
�
Q�1

�
: (44)

Combining (43), (44) and
p
N (�̂GMM � �) ) N(0;
��) completes the proof of the

theorem.

Lemma 1 Let the assumptions in Theorem 3 hold, then for any conformable vector c :

P
�
c0
� p

N (�̂�GMM � �̂GMM )p
Nvech(�̂�GMM � �̂GMM )

�
< x

�
= P

�
c0
� p

N (�̂GMM � �)p
Nvech(�̂GMM � �)

�
< x

�
+ o (1)

uniformly over x 2 R as N !1 for a �xed T:
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Proof of Lemma 1. The result is on the joint convergence of
p
N (�̂�GMM � �̂GMM )

and
p
N(�̂�GMM � �̂GMM ): We prove only the convergence of the marginal distributions,

as the joint convergence follows easily from the same argument we present here. The proof
consists of two parts.

Part (a) Proof of
p
N (�̂�GMM � �̂GMM )) N(0;
��):

By construction, we have

�̂�GMM � �̂GMM

= vec

8<:
24 NX

i=1

(�X�
i )
0 Z�i

! 
NX
i=1

(Z�i )
0GZ�i

!�1 NX
i=1

(Z�i )
0�X�

i

!35�1

�
 

NX
i=1

(�X�
i )
0 Z�i

! 
NX
i=1

(Z�i )
0GZ�i

!�1 NX
i=1

(Z�i )
0�u�i

9=; : (45)

De�ne the set of samples E� as

E�=
n
[y1(!); :::; yN (!)]:

(i) N�1PN
i=1�X

0
iZi ! S1XZ ;

(ii) N�1PN
i=1 Z

0
iGZi ! S1ZZ ;

(iii) N�2PN
i=1 vec

�
(�Xi)

0 Zi
�
fvec

�
(�Xi)

0 Zi
�
g0 ! 0;

(iv) N�2PN
i=1 vec (Z

0
iGZi) fvec [Z 0iGZi]g0g ! 0;

(v)
hPN

i=1 jZuij
2
i�1��=2PN

i=1 jZuij
2+� ! 0

(vi) Â! A
o

In the above de�nition, S1XZ = (S1ZX)
0 and Zui = K 0vec (Z 0i�ui) for any �xed vector K:

Under the moment conditions in the theorem, we have

1X
N=1

P

 




N�1
NX
i=1

�
�X 0

iZi � S1XZ
�




 > "

!

�
1X
N=1

E

�


PN
i=1 (�X

0
iZi � S1XZ)




4�
N4"4

= O

 1X
N=1

1

N2"4

!
<1 (46)

It follows from the Borel-Cantelli lemma that N�1PN
i=1�X

0
iZi ! S1XZ almost surely. So

condition (i) in the de�nition of E� holds almost surely. Similarly, we can show conditions
(ii)-(iv) and (vi) hold almost surely. To show that condition (v) holds almost surely, we let
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�Zui = jZuij2+� � E
�
jZuij2+�

�
and note that

1X
N=1

P

 ����� 1N
NX
i=1

�Zui

����� > "
!

�
1X
N=1

E
�PN

i=1
�Zui

�4
N4"4

=
1X
N=1

E
�PN

i=1
�Z4ui

�
N4"4

+
1X
N=1

h�PN
i=1E

�Z2ui

�i2
N4"4

�
1X
N=1

E
�PN

i=1
�Z4ui

�
N4"4

+
1X
N=1

h�PN
i=1E

�Z2ui

�i2
N4"4

<1

where the last line follows because

E
�
�Z4ui
�
= E

�
jZuij2+� � E jZuij2+�

�4
= O

�
E jZuij8+4�

�
= O

�
E kZik16+8� E kuik16+8�

�
= O(1)

using the moment conditions in the theorem. So
PN
i=1 jZuij

2+� = Oa:s: (N) : Similarly, we

can show that
hPN

i=1 jZuij
2
i�1��=2

= Oa:s:
�
N�1��=2� : Consequently, condition (v) indeed

holds almost surely. We can conclude that P (E�) = 1:
Conditional on the sample in E�, (�X�

i )
0 Z�i is a triangular array of rowwise iid random

variables and a law of large numbers gives

1

N

NX
i=1

(�X�
i )
0 Z�i � E�

�
(�X�

i )
0 Z�i

�
= op� (1) (47)

where E� denotes the expectation with respect to the bootstrap distribution P�, and op� (1)
denotes a sequence of random variables that converges to zero in probability under P�: By
de�nition,

E�
�
(�X�

i )
0 Z�i

�
=
1

N

NX
i=1

�X 0
iZi ! S1XZ :

Combining this with (47) yields

1

N

NX
i=1

(�X�
i )
0 Z�i = S

1
XZ + o

�
p (1) : (48)

By the same argument, we have, conditional on E�;

1

N

NX
i=1

(Z�i )
0GZ�i = S

1
ZZ + op� (1) : (49)

Therefore,24 1
N

NX
i=1

(�X�
i )
0 Z�i

! 
1

N

NX
i=1

(Z�i )
0GZ�i

!�1 
1

N

NX
i=1

(Z�i )
0�X�

i

!35�1 = Q+o�p (1) : (50)
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Next 
1

N

NX
i=1

(�X�
i )
0 Z�i

! 
1

N

NX
i=1

(Z�i )
0GZ�i

!�1
1p
N

NX
i=1

(Z�i )
0�u�i := I4 + I5

where

I4 =

 
1

N

NX
i=1

(�X�
i )
0 Z�i

! 
1

N

NX
i=1

(Z�i )
0GZ�i

!�1
1p
N

NX
i=1

E�
�
(Z�i )

0�u�i
�
;

I5 =

 
1

N

NX
i=1

(�X�
i )
0 Z�i

! 
1

N

NX
i=1

(Z�i )
0GZ�i

!�1
1p
N

NX
i=1

�
(Z�i )

0�u�i � E�
�
(Z�i )

0�u�i
�	
:

For I4; we use (48) and (49) to obtain:

I4 =

 
1

N

NX
i=1

�X 0
iZi + o

�
p (1)

! 
1

N

NX
i=1

Z 0iGZi + o
�
p (1)

!�1 
1p
N

NX
i=1

Z 0i�ûi

!
= o�p (1)

where the second equality holds because

1

N

NX
i=1

�X 0
iZi

 
1

N

NX
i=1

Z 0iGZi

!�1
1p
N

NX
i=1

Z 0i�ûi = 0;

by the de�nition of the GMM estimator �̂GMM :
For I5; we have, using (48) and (49) again:

I5 =
�
S1XZ + o

�
p (1)

� �
S1ZZ + o

�
p (1)

��1 1p
N

NX
i=1

�
(Z�i )

0�u�i � E�
�
(Z�i )

0�u�i
�	
:

By the Lyapunov CLT for triangular arrays, we have

vec

(
1p
N

NX
i=1

�
(Z�i )

0�u�i � E�
�
(Z�i )

0�u�i
��)

=
1p
N

NX
i=1

��
Im 
 (Z�i )

0� vec(�u�i )� E� ��Im 
 (Z�i )0� vec(�u�i )�	
) N(0;�
 S1ZZ):

De�ne Z�ui = K
0vec

�
(Z�i )

0�u�i
�
for any conformable constant vectorK: Then the Lyapunov

condition is

1hPN
i=1E

�
�
jZ�uij

2
�i1+�=2 NX

i=1

E� jZ�uij
2+� ! 0 for some � > 0:

That is
1hPN

i=1 jZuij
2
i1+�=2 NX

i=1

jZuij2+� ! 0 for some � > 0:
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This condition holds conditional on the sample in E�. Therefore

I5 ) N(0; S1XZ [S
1
ZZ ]

�1 [S1XZ ]
0) � N(0; Q):

As a result,

vec

24 1
N

NX
i=1

(�X�
i )
0 Z�i

! 
1

N

NX
i=1

(Z�i )
0GZ�i

!�1
1p
N

NX
i=1

(Z�i )
0�u�i

35
) N

�
0;
h
Im 
 S1XZ (S1ZZ)

�1
i
(�
 S1ZZ)

h
Im 
 (S1ZZ)

�1 (S1XZ)
0
i�

� N(0;�
Q):

Together with (50), this leads to
p
N (�̂�GMM � �̂GMM ) ) N

�
0;
�
Im 
Q�1

�
(�
Q)

�
Im 
Q�1

��
� N

�
0;�
Q�1

�
conditional on E�: Equivalently, for any conformable vector c�;

P�
�p
Nc0� (�̂

�
GMM � �̂GMM ) < xjE�

�
! �

�
x

c0� [�
Q�1] c�

�
:

Since P(E�) = 1; the above conditional result implies the following unconditional almost
sure convergence result:

P�
�p
Nc0� (�̂

�
GMM � �̂GMM ) < x

�
! �

�
x

c0� [�
Q�1] c�

�
a.s. as N !1

for all x 2 R: This and the dominated convergence theorem imply

P
�p
Nc0� (�̂

�
GMM � �̂GMM ) < x

�
= EP �

�p
Nc0� (�̂

�
GMM � �̂GMM ) < x

�
! �

�
x

c0� [�
Q�1] c�

�
for all x 2 R;

or equivalently p
N (�̂�GMM � �̂GMM )! N

�
0;�
Q�1

�
:

Thus, the unconditional asymptotic distribution of the bootstrap statistic
p
N (�̂�GMM � �̂GMM )

isN
�
0;�
Q�1

�
; which is the same as that of the original-sample statistic

p
N (�̂GMM � �) :

Part (b): Proof of
p
N(�̂�GMM � �̂GMM )) N(0;
��):

Note that

û�i;t =
�
y�i;t � �y�i;�

�
� (Â�)0

�
X�
i;t � �X�

i;�
�

=
�
y�i;t � �y�i;�

�
� Â

�
X�
i;t � �X�

i;�
�
� (Â� � Â)0

�
X�
i;t � �X�

i;�
�

= u�i;t � �u�i;� � (Â� � Â)0
�
X�
i;t � �X�

i;�
�
;

we have
�̂�GMM = �̂�0 + I

�
1 + I

�
2 + I

�
3 ;
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where

�̂�0 =
1

NT

NX
i=1

TX
t=0

�
u�i;t � �u�i;�

� �
u�i;t � �u�i;�

�0
;

I�1 =
�
Â� � Â

�0 1

NT

NX
i=1

TX
t=0

�
X�
i;t � �X�

i;�
� �
X�
i;t � �X�

i;�
�0 �
Â� � Â

�
;

I�2 = � 1

NT

NX
i=1

TX
t=0

�
u�i;t � �u�i;�

� �
X�
i;t � �X�

i;�
�0 �
Â� � Â

�
;

I�3 = �
�
Â� � Â

�0 1

NT

NX
i=1

TX
t=0

�
X�
i;t � �X�

i;�
� �
u�i;t � �u�i;�

�0
:

As in the proof of part (a), we �rst derive the asymptotic distribution conditional on an
event that occurs with probability one. De�ne E = E�\E� where

E�=
n
[y1(!); :::; yN (!)]:

(i) (NT )�1
PN
i=1

PT
t=0

�
Xi;t � �Xi;�

� �
Xi;t � �Xi;�

�0 ! S1XX ,
(ii) (NT )�1

PN
i=1

PT
t=0 (ui;t � �ui;�)

�
Xi;t � �Xi;�

�0 ! B;

(iii) (NT )�1
PN
i=1

PT
t=0

�
(ui;t � �ui;�) (ui;t � �ui;�)0

�
! �;

(iv) VN ! D+m

h
T�1�m2 + [T (T + 1)]�1 (�
 �) (Im2 +Km;m)

i
(D+m)

0
;

(v) N�1PN
i=1

PT
t=0 vech

�
(ui;t � �ui;�) (ui;t � �ui;�)0

�
vec(Zi�ui)! 0

o
and

VN =
1

T 2
1

N

NX
i=1

vech

"
TX
t=0

(ui;t � �ui;�)0 (ui;t � �ui;�)
#

�
(
vech

"
TX
t=0

(ui;t � �ui;�)0 (ui;t � �ui;�)
#)0

� 1

T 2N2

NX
j=1

vech

"
TX
t=0

(uj;t � �ui;�)0 (uj;t � �ui;�)
#

�
NX
i=1

vech

"
TX
t=0

(ui;t � �ui;�)0 (ui;t � �ui;�)
#0
:

Under the moment conditions in the theorem, a strong law of large number implies that
P (E�) = 1:

In view of part (a), we have I�1 = o
�
p(1=

p
N): So

p
N(�̂�GMM � �̂GMM ) =

p
N(�̂�0 � �̂GMM ) +

p
NI�2 +

p
NI�3 + o

�
p (1) : (51)
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Conditional on E ,

1

NT

NX
i=1

TX
t=0

�
u�i;t � �u�i;�

� �
X�
i;t � �X�

i;�
�0

=
1

NT

NX
i=1

TX
t=0

ûi;t
�
Xi;t � �Xi;�

�0
+ o�p (1)

=
1

NT

NX
i=1

TX
t=0

(ui;t � �ui;�)
�
Xi;t � �Xi;�

�0
+ o�p (1) = B + o

�
p (1) :

Therefore,

p
NI�2 = �B

p
N
�
Â� � Â

�
+ o�p (1) ;

p
NI�3 = �

p
N
�
Â� � Â

�0
B0 + o�p (1) : (52)

Combining (51) with (52) yields

p
N(�̂�GMM � �̂GMM ) =

p
N(�̂�0� �̂GMM )�B

p
N
�
Â� � Â

�
�
p
N
�
Â� � Â

�0
B0+o�p (1) :

Now
p
N(�̂�0 � �̂GMM )

=
1p
NT

NX
i=1

TX
t=0

n�
u�i;t � �u�i;�

� �
u�i;t � �u�i;�

�0 � E� h�u�i;t � �u�i;�� �u�i;t � �u�i;��0io+ o�p (1) :
Conditional on E , the �rst term is a normalized sum of iid random variables with mean
zero. By the Lyapunov CLT for triangular arrays, we have

vech
hp
N
�
�̂�0 � �̂GMM

�i
! N(0; V )

where

V = lim
N!1

1

T 2
var�

(
TX
t=0

vech[
�
u�i;t � �u�i;�

� �
u�i;t � �u�i;�

�0
]

)

= lim
N!1

1

T 2
1

N

NX
i=1

vech

"
TX
t=0

ûi;tû
0
i;t

#(
vech

"
TX
t=0

ûi;tû
0
i;t

#)0

� lim
N!1

1

T 2N2

NX
i=1

NX
j=1

vech

"
TX
t=0

ûi;tû
0
i;t

#(
vech

"
TX
t=0

ûj;tû
0
j;t

#)0

and var� is the variance operator under P�. By de�nition,

ûi;t = ui;t � �ui;� �
�
Xi;t � �Xi;�

�
(Â�A);

so conditional on E , we have

vech

"
TX
t=0

ûi;tû
0
i;t

#
= vech

"
TX
t=0

(ui;t � �ui;�)0 (ui;t � �ui;�)
#
+ o(1):
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Consequently,

V = lim
N!1

VN = D
+
m

�
1

T + 1
�m2 +

1

T (T + 1)
(�
 �) (Im2 +Km;m)

� �
D+m
�0
:

We have therefore shown that, conditional on E ,

vech
hp
N
�
�̂�0 � �̂GMM

�i
) N

�
0; D+m

�
1

T + 1
�m2 +

1

T (T + 1)
(�
 �) (Im2 +Km;m)

� �
D+m
�0�

:

Next, using part (a), we can show that

B
p
N
�
Â� � Â

�
+
p
N
�
Â� � Â

�0
B0 ) N(0; VAB);

where VAB is de�ned in (42).
Finally, we prove that

p
N(�̂�0� �̂GMM ) and

p
N(Â�� Â) are asymptotically indepen-

dent conditional on E . That is, we need to show

1p
N

NX
i=1

TX
t=0

vech
h�
u�i;t � �u�i;�

� �
u�i;t � �u�i;�

�0i
is asymptotically independent of

1p
N

NX
i=1

vec
�
(Z�i )

0�u�i � E�
�
(Z�i )

0�u�i
�	
:

Their covariance is

cov�

 
TX
t=0

vech
h�
u�i;t � �u�i;�

� �
u�i;t � �u�i;�

�0i
; vec

�
(Z�i )

0�u�i
�!

=
1

N

NX
i=1

vech(û0iûi)vec(Zi�ûi)�
"
1

N

NX
i=1

vec(û0iûi)

#"
1

N

NX
i=1

vec(Zi�ûi)

#

=
1

N

NX
i=1

TX
t=0

vech
�
(ui;t � �ui;�) (ui;t � �ui;�)0

�
vec(Zi�ui)

�
"
1

N

NX
i=1

TX
t=0

(ui;t � �ui;�) (ui;t � �ui;�)0
#"

1

N

NX
i=1

vec(Zi�ui)

#
+ o(1)

! 0:

As a result, conditional on E , we have
p
Nvech

�
�̂�GMM � �̂GMM

�
) N(0;
��): (53)

Using the same argument as in part (a), we can show that this conditional convergence
result implies unconditional convergence. That is, for any conformable vector c�;

P
hp
Nc0�vech

�
�̂�GMM � �̂GMM

�
< x

i
! �

�
x

c0�
��c�

�
:
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In this result, the randomness with respect to both the bootstrap sample and the original
sample is taken into account.

Part (c): Proof of Uniformity over x 2 R:
It follows from parts (a) and (b) that

P
�
c0
� p

N (�̂�GMM � �̂GMM )p
Nvech(�̂�GMM � �̂GMM )

�
< x

�
= P

�
c0
� p

N (�̂GMM � �GMM )p
Nvech(�̂GMM � �GMM )

�
< x

�
+ o (1)

for any given x 2 R: By Polya�s theorem (see DasGupta, 2008, p. 3), the above pointwise
result holds uniformly over x 2 R:

Proof of Theorem 3. Part (a) For any conformable vector c; we can write

c0vec[(�̂�j )
0] = Fj(Â

�) and c0vec[(�̂j)0] = Fj(Â)

where Fj is a continuously di¤erentiable function. By the Delta method, we have

Pfc0vec[
p
N(�̂�j � �̂j)0] < xg = PfF

(1)
j (Â)vec[

p
N(Â� � Â)] < xg+ o (1)

and
Pfc0vec[

p
N(�̂j � �j)0] < xg = PfF (1)j (A)vec[

p
N(Â�A)] < xg+ o (1)

where F (1)j (A) = @Fj (A) =@vec(A)
0: Combining the above two equations with

@Fj (A)

@vec(A)0
jA=Â =

@Fj (A)

@vec(A)0
+ op (1) ;

which holds by the consistency of Â and the continuity of F (1)j (�) ; yields

Pfc0vec[
p
N(�̂�j � �̂j)0] < xg = Pfc0vec[

p
N(�̂j � �j)0] < xg+ o (1) :

Invoking the Polya�s theorem gives the desired result.
Part (b). The same argument for part (a) applies. Details are omitted.
Parts (c)(d). It is su¢ cient to show that 
̂�j = 
�j + op (1), 
̂�j = 
�j + op (1),


̂��j = 
�j + op (1) ; and 
̂
�
�j = 
�j + op (1) : The proof is straightforward and details are

omitted here.
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