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Abstract

We consider detrending procedures in continuous time when the errors fol-
low a Brownian motion and a diffusion process, respectively. We show that
more efficient trend extraction is accomplished by non-orthogonal Hilbert pro-
jections in both cases.

JEL Classification: C22

Key words and phrases: Efficent Detrending, Brownian Motion, Diffusion Process,
Hilbert Projection.

*Phillips thanks the NSF for research support under Grant No. SBR 97-30295. Sun thanks
the Cowles Foundation for support under a Cowles Prize Fellowship. The paper was typed by the

authors in SW2.5.



1. Problem
An observed continuous time process X (t) is generated by the linear system
X(t)=pZ({t)+ W(t),t €[0,1] (1)

where W (t) is an unobservable standard Brownian motion, Z(t) = (¢, ...,t?)" is a time
polynomial vector and 3 is a parameter vector to be estimated.
The following two estimators of 3 are proposed:

g = (/OIZ(t)Z(t)'dt> </OlZ(t)X(t)dt),
8= (/01 ZW (t) zW (t)'dt) h (/01 ZW (t) dX(t)) ,

where Z( is the vector of the first derivatives of Z.
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Part A

1. Show that both B/Z(t) and B,Z(t) are Hilbert projections in L»[0,1]. How do
these projections differ?

2. Find the distributions of B and 3 and compare them in the case where p = 1.
What do you conclude?

Part B
Suppose the system generating X (¢) is
X(t)=6'Z(t) + Je(t), t €0,1] (2)

where J.(t) = fg et=9)edW () for some known constant ¢ < 0, is a linear diffusion, or
Orstein-Uhlenbeck process.

1. Are B/Z (t) and B/Z (t) still Hilbert projections?

2. Calculate the distributions of B and (3 and compare them in the case where
p = 1. What do you conclude?

3. Taking ¢ to be known, can you suggest an unbiased linear estimator of # which
has smaller variance than  and 37 Does it correspond to another Hilbert projection?



2. Solution
Part A: Brownian Motion Case

Define the operator P as

then

P2X = ( /O 1 PX<S)Z<S)/ds> < /O 1 Z(S)Z(s)’ds)_lZ(t)
[( /O 1XZ/ds> < /O 1 ZZ’ds)_l /O g7 < /O 1 ZZ’ds) _1Z(t)
- ( /0 1X(3)Z(s)/ds> < /0 1 Z(S)Z(syds) h Z(t) = PX.

In addition, it is easy to show that (PX,Y) = (PY,X). Thus P is an orthogonal
Hilbert projector onto the manifold spanned by Z(t).
Define the operator @) as

ox =iz~ 1 ix296)) ( | 1 2029 (s ds) "0,

Then () is idempotent because
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while

can = ([ 1 1y ()20 ) ( | 1 Z<1><s>z<1><s>'ds)_l (/ 1 2(6)X (5)ds)

and so (QX,Y) # (X, QY) in general.

Therefore both PX and QX are Hilbert projections of X(¢) onto the space
spanned by Z(t). The difference lies in that PX is an orthogonal projection while
QX is a non-orthogonal projection. We now investigate the statistical properties of
these two projections. R

First consider the distribution of 3. Since

-o-( 1 2(:)2(s)as) B / 2 W(s)ds,

is a linear functional of a Brownian motion, we know that B — B ~ N(0,Vy), where

Vi = (/01 Z(s)Z(s)’ds) h </01 /01 Z(t)(s A t)Z(s)’dtds) (/01 Z(s)Z(s)’ds) 71.

Next consider the distribution of E Since

B—B= ( /0 1 Z“)(S)Z(U(s)/ds)

-1

/ 1 ZW (s)dW (s),

is also a linear functional of a Brownian motion, we know immediately that B — B~

N(0,V3), where
1
Vo = (/ Z(l)(s)Z(l)(s)'ds>
0

We now compare the distributions of B and 3 when p = 1. In this case V; = g and
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Vo = fol dr = 1. Therefore B is a more efficient estimator than B and the efficiency
gain is 20%.

Remark

Note that B/Z (t) is the best Ly[0,1] functional approximation to 3'Z(t) and it is
delivered by an orthogonal projection of X () onto the manifold spanned by Z(t).

On the other hand, 3'Z (t) is the better (more efficient) statistical estimator of 3'Z(t)
and it is delivered by a non-orthogonal projection onto the same space.



Part B: The Diffusion Process Case

Both B/Z (t) and E/Z (t) are still Hilbert projections. The proofs are essentially the
same as before and omitted. R 3
We proceed to compute the distributions of # and 3. First

5= ([ 22syas)
where

v — < /O 1Z(3)Z(s)’ds)_1Var [ /O 1Z(t)Jc(t)dt] < /O 1Z(3)Z(s)’ds)
- < /O 1 ZZ’ds)_l{ /O 1 < /O 1 Z(r)AT,SZ(s)’ds) dr} ( /O 1 ZZ’ds)

and A, s = EJ.(r)J.(s) = (e(”s)c — e""s|c) / (2¢) is the covariance kernel of the O-U
process.

Next, the error process J,(t) = fg et=9)edW (s) in (2) satisfies the linear differential
equation

-1

/ 20Ttk ~ N(0.VA).
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dJ.(t) = cJ.(t)dt + dW (t),
SO we can write E — 3 as

o= ( 1 202 (s)ds) ) (29w - | 1 291605 ) ~ V0.V,

where the equality follows from integration by parts and

vV, = (/ 1>Zl>’> <//Z<2> A, Z3) (s) dsdr
0
1
+ZW(1)A 2V (1) -2 / Z(l)(l)ALsZ(?)(s)’ds) ( / Z<1>Z<1>'>
0 0

When p = 1 some algebra gives V3 = 3%[2¢® + 3¢ — 3 4 3(c — 1)%¢*] and
Vi= Ay = <=1 So V)V, = 3[20 + 3¢ — 3 + 3(c — 1)%e¥]/[c*(e* — 1)]. Figure 1
graphs the relatlve efficiency of ﬁ and ﬁ i.e. V3/Vy against c. It reveals that ﬁ is more
efficient than ﬁ for small values of c¢. As ¢ approaches zero, ﬁ becomes more efficient,
which is consistent with our results in Part A. As ¢ approaches zero from below, the
linear diffusion J. behaves like the underlying Brownian motion and the estimator

delivered by the non-orthogonal projection is more efficient. The cutoff value of c is
approximately —3.80. When ¢ < —3.80, V3 < V,; When —3.80 < ¢ < 0, V3 > V.
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A More Efficient Estimator

We now propose another unbiased estimator /3, which is more efficient than both
3 and 3. Define Z,(t) = ZW(t) — cZ(t) and

3= ( /0 1 Zc(t)Zc(t)’dt) ( /0 1 Z.(H)dX () — ¢ /0 1 Z.(H)X (¢) dt). (3)

Recall that dJ.(t) = cJ.(t)dt + dW (t), so we may linearly transform the model (2)
to
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dX(t) —eX (t)dt = B [ZD(t) — cZ (t)] dt +dW (t), t € [0, 1], (4)

in which the innovations dW (t) are independent. The estimator 3 in (3) is the ‘least
squares’ estimator of 3 in the system (4). It follows from (3) and (4) that

5-0= ([ zwzera) ([ zwaro)~vow,

v, = ( /0 1 Zc(t>Zc(t>’dt)1

1
Whenp =1, Vs = (fol(ct — 1)2dt> =52 —- Figure 2 graphs V3/V5 and V,/Vs

against c. It shows that 3 is indeed more efficient than both ﬁ and 6 for all values of
c < 0.
Define the operator M as

-1

where

-1

MX = ( /0 X (1) Zu(t) — ¢ / Xt )( /0 1Zc(t)Zc(t)’dt> 2. ()

Then, since Z (t) is continuously differentiable

/ iz (t) Z.(t) — ¢ / 'z (t) Zo(t)dt = / 1 Z.(1) Z.(t) dt,
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we have

MZ = ( /0 iz (t) Z.(t) — ¢ /0 1Z(t) Zc(t)’dt) ( /0 1 Zc(t)Zc(t)’dt) Z(t) = Z (¢)

and by virtue of the definition (5)

M?*X = MMX
-1

= (/0 dX (t _c/ X (t ) (/01 Zc(t)Zc(t)’dt> MZ(t)

1

_ (/OldX _c/ X (¢ ) (/01 Zc(t)Zc(t)’dt> Z(t)

= MX.

So M is a Hilbert projection. In addition, it is easy to see that (M X,Y) # (X, MY)
in general. Therefore, B/Z (t) = M X is a non-orthogonal Hilbert projection. However
it delivers the minimum variance unbiased trend estimator in this case.

Remarks

a) The transformed system (4) is the continuous time version of the traditional
Y
Cochrane-Orcutt transformation of a discrete time regression model to remove
autoregressive errors.

e results obtained here clearly apply lor any differentiable deterministic se-

b) Th Its obtained h learl ly fi diff iable d
quence Z (t) for which fol Z7'dt, fol ZW 7z and fol Z.Z.'dt are positive defi-
nite.



