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Abstract

We consider detrending procedures in continuous time when the errors fol-
low a Brownian motion and a diffusion process, respectively. We show that
more efficient trend extraction is accomplished by non-orthogonal Hilbert pro-
jections in both cases.
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1. Problem
An observed continuous time process X(t) is generated by the linear system

X(t) = β 0Z(t) +W (t), t ∈ [0, 1] (1)

whereW (t) is an unobservable standard Brownian motion, Z(t) = (t, ..., tp)0 is a time
polynomial vector and β is a parameter vector to be estimated.
The following two estimators of β are proposed:

�β =

µZ 1

0

Z (t)Z (t)0 dt
¶−1µZ 1

0

Z (t)X(t)dt

¶
,

and

�β =

µZ 1

0

Z(1) (t)Z(1) (t)0 dt
¶−1µZ 1

0

Z(1) (t) dX(t)

¶
,

where Z(1) is the vector of the Þrst derivatives of Z.

Part A

1. Show that both �β
0
Z(t) and �β

0
Z(t) are Hilbert projections in L2[0, 1]. How do

these projections differ?

2. Find the distributions of �β and �β and compare them in the case where p = 1.
What do you conclude?

Part B

Suppose the system generating X(t) is

X(t) = β0Z(t) + Jc(t), t ∈ [0, 1] (2)

where Jc(t) =
R t
0
e(t−s)cdW (s) for some known constant c < 0, is a linear diffusion, or

Orstein-Uhlenbeck process.

1. Are �β
0
Z(t) and �β

0
Z(t) still Hilbert projections?

2. Calculate the distributions of �β and �β and compare them in the case where
p = 1. What do you conclude?

3. Taking c to be known, can you suggest an unbiased linear estimator of β which
has smaller variance than �β and �β? Does it correspond to another Hilbert projection?
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2. Solution
Part A: Brownian Motion Case

DeÞne the operator P as

PX(t) = bβ0Z(t) = µZ 1

0

X(s)Z(s)0ds
¶µZ 1

0

Z(s)Z(s)0ds
¶−1

Z(t),

then

P 2X =

µZ 1

0

PX(s)Z(s)0ds
¶µZ 1

0

Z(s)Z(s)0ds
¶−1

Z(t)

=

"µZ 1

0

XZ 0ds
¶µZ 1

0

ZZ 0ds
¶−1 Z 1

0

ZZ 0ds

#µZ 1

0

ZZ 0ds
¶−1

Z(t)

=

µZ 1

0

X(s)Z(s)0ds
¶µZ 1

0

Z(s)Z(s)0ds
¶−1

Z(t) = PX.

In addition, it is easy to show that (PX, Y ) = (PY,X). Thus P is an orthogonal
Hilbert projector onto the manifold spanned by Z(t).
DeÞne the operator Q as

QX = eβ 0Z = µZ 1

0

dX(s)Z(1)(s)0
¶µZ 1

0

Z(1)(s)Z(1)(s)0ds
¶−1

Z(t).

Then Q is idempotent because

Q2X =

µZ 1

0

d[QX]Z(1)(s)0
¶µZ 1

0

Z(1)(s)Z(1)(s)0ds
¶−1

Z(t)

=

µZ 1

0

dX(s)Z(1)(s)0
¶µZ 1

0

Z(1)(s)Z(1)(s)0ds
¶−1

µZ 1

0

dZ(s)Z(1)(s)0
¶µZ 1

0

Z(1)(s)Z(1)(s)0ds
¶−1

Z(t)

=

µZ 1

0

dX(s)Z(1)(s)0
¶µZ 1

0

Z(1)(s)Z(1)(s)0ds
¶−1

Z(t)

= QX.

But Q is not orthogonal since

(QX,Y ) =

µZ 1

0

dX(s)Z(1)(s)0ds
¶µZ 1

0

Z(1)(s)Z(1)(s)0ds
¶−1µZ 1

0

Z(s)Y (s)ds

¶
,
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while

(X,QY ) =

µZ 1

0

dY (s)Z(1)(s)0ds
¶µZ 1

0

Z(1)(s)Z(1)(s)0ds
¶−1µZ 1

0

Z(s)X(s)ds

¶
and so (QX, Y ) 6= (X,QY ) in general.
Therefore both PX and QX are Hilbert projections of X(t) onto the space

spanned by Z(t). The difference lies in that PX is an orthogonal projection while
QX is a non-orthogonal projection. We now investigate the statistical properties of
these two projections.
First consider the distribution of bβ. Since

bβ − β = µZ 1

0

Z(s)Z(s)0ds
¶−1 Z 1

0

Z(s)W (s)ds,

is a linear functional of a Brownian motion, we know that bβ − β ∼ N(0, V1), where
V1 =

µZ 1

0

Z(s)Z(s)0ds
¶−1µZ 1

0

Z 1

0

Z(t)(s ∧ t)Z(s)0dtds
¶µZ 1

0

Z(s)Z(s)0ds
¶−1

.

Next consider the distribution of eβ. Since
eβ − β = µZ 1

0

Z(1)(s)Z(1)(s)0ds
¶−1 Z 1

0

Z(1)(s)dW (s),

is also a linear functional of a Brownian motion, we know immediately that eβ − β ∼
N(0, V2), where

V2 =

µZ 1

0

Z(1)(s)Z(1)(s)0ds
¶−1

.

We now compare the distributions of �β and �β when p = 1. In this case V1 = 6
5
and

V2 =
R 1
0
dr = 1. Therefore eβ is a more efficient estimator than bβ and the efficiency

gain is 20%.

Remark

Note that �β
0
Z(t) is the best L2[0, 1] functional approximation to β0Z(t) and it is

delivered by an orthogonal projection of X(t) onto the manifold spanned by Z(t).
On the other hand, �β

0
Z(t) is the better (more efficient) statistical estimator of β 0Z(t)

and it is delivered by a non-orthogonal projection onto the same space.
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Part B: The Diffusion Process Case

Both bβ 0Z(t) and eβ 0Z(t) are still Hilbert projections. The proofs are essentially the
same as before and omitted.
We proceed to compute the distributions of �β and �β. First

bβ − β = µZ 1

0

Z(s)Z(s)0ds
¶−1 Z 1

0

Z(t)Jc(t)dt ∼ N(0, V3),

where

V3 =

µZ 1

0

Z(s)Z(s)0ds
¶−1

V ar

·Z 1

0

Z(t)Jc(t)dt

¸µZ 1

0

Z(s)Z(s)0ds
¶−1

=

µZ 1

0

ZZ 0ds
¶−1½Z 1

0

µZ 1

0

Z(r)Λr,sZ(s)
0ds
¶
dr

¾µZ 1

0

ZZ 0ds
¶−1

.

and Λr,s = EJc(r)Jc(s) =
¡
e(r+s)c − e|r−s|c¢ / (2c) is the covariance kernel of the O-U

process.
Next, the error process Jc(t) =

R t
0
e(t−s)cdW (s) in (2) satisÞes the linear differential

equation
dJc(t) = cJc(t)dt+ dW (t) ,

so we can write eβ − β as
eβ − β = µZ 1

0

Z(1)(s)Z(1)(s)0ds
¶−1µ

Z(1)(1)Jc(1)−
Z 1

0

Z(2)(s)Jc(s)ds

¶
∼ N(0, V4),

where the equality follows from integration by parts and

V4 =

µZ 1

0

Z(1)Z(1)0
¶−1µZ 1

0

Z 1

0

Z(2)(r)Λr,sZ
(2)(s)0dsdr

+Z(1)(1)Λ1,1Z
(1)(1)0 − 2

Z 1

0

Z(1)(1)Λ1,sZ
(2)(s)0ds

¶µZ 1

0

Z(1)Z(1)0
¶−1

.

When p = 1, some algebra gives V3 = 3
2c5
[2c3 + 3c2 − 3 + 3(c − 1)2e2c] and

V4 = Λ1,1 =
e2c−1
2c
. So V3/V4 = 3[2c3 + 3c2 − 3 + 3(c − 1)2e2c]/[c4(e2c − 1)]. Figure 1

graphs the relative efficiency of eβ and bβ, i.e. V3/V4 against c. It reveals that bβ is more
efficient than eβ for small values of c. As c approaches zero, eβ becomes more efficient,
which is consistent with our results in Part A. As c approaches zero from below, the
linear diffusion Jc behaves like the underlying Brownian motion and the estimator
delivered by the non-orthogonal projection is more efficient. The cutoff value of c is
approximately −3.80. When c < −3.80, V3 < V4; When −3.80 ≤ c < 0, V3 ≥ V4.
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c 0-1-2-3-4-5

1.3

1.2

1.1

1

0.9

Figure 1
c 0-2-4-6-8-10

2.2

2

1.8

1.6

1.4

1.2

1

Figure 2

A More Efficient Estimator

We now propose another unbiased estimator β, which is more efficient than both
�β and �β. DeÞne Zc(t) = Z(1)(t)− cZ(t) and

β =

µZ 1

0

Zc(t)Zc(t)
0dt
¶−1µZ 1

0

Zc(t)dX (t)− c
Z 1

0

Zc(t)X (t) dt

¶
. (3)

Recall that dJc(t) = cJc(t)dt + dW (t) , so we may linearly transform the model (2)
to

dX(t)− cX (t) dt = β0 £Z(1)(t)− cZ (t)¤ dt+ dW (t) , t ∈ [0, 1], (4)

in which the innovations dW (t) are independent. The estimator β in (3) is the �least
squares� estimator of β in the system (4). It follows from (3) and (4) that

β − β =
µZ 1

0

Zc(t)Zc(t)
0dt
¶−1µZ 1

0

Zc(t)dW (t)

¶
∼ N(0, V5),

where

V5 =

µZ 1

0

Zc(t)Zc(t)
0dt
¶−1

.

When p = 1, V5 =
³R 1

0
(ct− 1)2dt

´−1
= 3

c2−3c+3 . Figure 2 graphs V3/V5 and V4/V5

against c. It shows that β is indeed more efficient than both bβ and eβ for all values of
c < 0.
DeÞne the operator M as

MX =

µZ 1

0

dX (t)Zc(t)
0 − c

Z 1

0

X (t)Zc(t)
0dt
¶µZ 1

0

Zc(t)Zc(t)
0dt
¶−1

Z(t). (5)

Then, since Z (t) is continuously differentiableZ 1

0

dZ (t)Zc(t)
0 − c

Z 1

0

Z (t)Zc(t)
0dt =

Z 1

0

Zc(t)Zc(t)
0dt,
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we have

MZ =

µZ 1

0

dZ (t)Zc(t)
0 − c

Z 1

0

Z (t)Zc(t)
0dt
¶µZ 1

0

Zc(t)Zc(t)
0dt
¶−1

Z(t) = Z (t)

and by virtue of the deÞnition (5)

M2X =MMX

=

µZ 1

0

dX (t)Zc(t)
0 − c

Z 1

0

X (t)Zc(t)
0dt
¶µZ 1

0

Zc(t)Zc(t)
0dt
¶−1

MZ(t)

=

µZ 1

0

dX (t)Zc(t)
0 − c

Z 1

0

X (t)Zc(t)
0dt
¶µZ 1

0

Zc(t)Zc(t)
0dt
¶−1

Z(t)

= MX.

So M is a Hilbert projection. In addition, it is easy to see that (MX,Y ) 6= (X,MY )
in general. Therefore, β

0
Z(t) =MX is a non-orthogonal Hilbert projection. However

it delivers the minimum variance unbiased trend estimator in this case.

Remarks

(a) The transformed system (4) is the continuous time version of the traditional
Cochrane-Orcutt transformation of a discrete time regression model to remove
autoregressive errors.

(b) The results obtained here clearly apply for any differentiable deterministic se-
quence Z (t) for which

R 1
0
ZZ 0dt,

R 1
0
Z(1)Z(1), and

R 1
0
ZcZc

0dt are positive deÞ-
nite.
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