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Abstract

This paper shows that the mixed normal asymptotic limit of the trend IV estimator with a

fixed number of deterministic instruments (fTIV) holds in both singular (multicointegrated)

and nonsingular cointegration systems, thereby relaxing the exogeneity condition in (Phillips

and Kheifets, 2024, Theorem 1(ii)). The mixed normality of the limiting distribution of fTIV

allows for asymptotically pivotal F and t tests about the cointegration parameters and for

simple efficiency comparisons of the estimators for different numbers K of instruments, as

well as comparisons with the trend IV estimator when K → ∞ with the sample size.
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1 Introduction

Phillips and Kheifets (2024, hereafter, PK(2024)) recently developed a trend instrumental vari-

able approach for estimating cointegrated systems, allowing both singular cointegration (multi-

cointegration (Granger and Lee, 1990)) and nonsingular cointegration. That research considered

both large-K asymptotics where the number of instruments K grows to infinity with the sample
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size n, as in earlier work on cointegration (Phillips, 2014), and fixed-K asymptotics where K is

held fixed. PK (2024) showed that, in the case of multicointegration and under fixed-K asymp-

totics, the asymptotic mixed normality of the trend instrumental variable estimator holds if there

is no long-run correlation between the multicointegrated equilibrium error and the integrated re-

gressor process. In this paper, as a first contribution, we show that asymptotic mixed normality

still holds under fixed-K asymptotics even if there is long-run endogeneity in a multicointegrated

system. Hence, asymptotic pivotal inference under fixed-K asymptotics is possible regardless of

the presence of long-run endogeneity.

As a second contribution, we develop asymptotic F and t limit theory under fixed-K asymp-

totics for a multicointegrated system. Our theory complements the results in Hwang and Sun

(2017) where similar F and t limit theory was established for the cointegration regression in the

absence of multicointegration. The asymptotic F and t limit theory is very convenient to use,

as critical values are readily available from statistical software packages and do not require sim-

ulations. It can also deliver more reliable inference in practical applications, as shown in other

related work (Hwang and Sun, 2017; Müller and Watson, 2018).

The asymptotic mixed normality of the trend IV estimator under both fixed-K asymptotics

and large-K asymptotics simplifies the study of efficiency issues. As the third contribution, we

compare the conditional asymptotic variances for different values of K for a cointegration system

with or without multicointegration. We find that the efficiency gain from increasing K beyond

a certain threshold becomes less significant. This, together with the fact that a finite number

of instruments is always employed in practical work, provides justification for using fixed-K

asymptotics. On the other hand, the fixed-K asymptotic distribution approaches the large-K

asymptotic distribution as K increases to infinity. Consequently, fixed-K asymptotic critical

values are also asymptotically valid under large-K asymptotics. In this sense, critical values

from the F or t distribution are robust with respect to the value of K.

The remainder of this paper is organized as follows. Section 2 establishes the asymptotic

mixed normality under fixed-K asymptotics for a cointegration regression, with or without mul-

ticointegration. Section 3 evaluates the asymptotic relative efficiency of the trend IV estimator

as K varies. Section 4 presents concluding remarks. Proofs are given in the appendix.

2 Asymptotic mixed normality & asymptotic F and t tests

As is common in much of the applied work, we consider the following standard cointegration

model:

yt = x′ta0 + u0t, ∆xt = uxt, for t = 1, . . . , n, (1)

where xt ∈ Rdx for some dx ∈ Z+ and ut := (u0t, u
′
xt)

′ are weakly dependent with long-run

variance matrix:

Ω =
[
Ω00 Ω0x
Ωx0 Ωxx

]
∈ R(dx+1)×(dx+1). (2)
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In this paper, we study the estimation of the cointegrating vector a0 in the presence of endogene-

ity, that is, {∆xt} may be correlated with {u0t} . For this purpose, an augmented form of (1) is

useful, as in equation (9) of PK (2024),

yt = x′ta0 +∆x′tf0 + u0·x,t, u0·x,t = u0t − Ω0xΩ
−1
xxuxt, (3)

with f0 = Ω−1
xxΩx0 and conditional long-run variance Ω00·x = Ω00−Ω0xΩ

−1
xxΩx0 ≥ 0.We consider

both the standard cointegration case where Ω00·x > 0 and the multicointegration case where

Ω00·x = 0; however, our primary focus is on the latter. In this case, we write u0·x,t = ∆et,

thereby assuring the presence of multicointegration, where et has both positive variance and

long-run variance.

To simplify the exposition, we assume that the initial values are zero: x0 = 0 and e0 = 0. In

practice, nonzero initial values can be accommodated by including an intercept in the regression,

as discussed at the end of this section.

Denote Brownian motion with variance (matrix) V by BM(V), let “⇝” signify weak conver-

gence in the relevant probability space, and assume the following.

Assumption 1 (Functional Central Limit Theorem (FCLT))

(a) For the nonsingular case with Ω00·x > 0, the following joint FCLT holds

1√
n

⌊n·⌋∑
t=1

(
u0t
uxt

)
⇝

(
B0(·)
Bx(·)

)
≡ BM(Ω) ,

where Ω, given in (2), is positive definite.

(b) For the singular case with Ω00·x = 0, the following joint FCLT holds

1√
n

⌊n·⌋∑
t=1

(
et
uxt

)
⇝

(
Be (·)
Bx (·)

)
≡ BM

([
ωee ωex
ωxe Ωxx

])
,

where the variance matrix of the above Brownian motion is positive definite.

Define

e0·x,t = et − ωexΩ
−1
xxuxt and ωee·x = ωee − ωexΩ

−1
xxωxe.

Under Assumption 1, for the case Ω00·x > 0, we have

1√
n

⌊n·⌋∑
t=1

(
u0·x,t
uxt

)
⇝

(
B0·x(·)
Bx(·)

)
≡ BM

([
Ω00·x 0′

0 Ωxx

])
;

and for the case Ω00·x = 0,

1√
n

⌊n·⌋∑
t=1

(
e0·x,t
uxt

)
⇝

(
Be·x(·)
Bx(·)

)
≡ BM

([
ωee·x 0′

0 Ωxx

])
,
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where 0 is a dx × 1 vector of zeros, with B0·x := B0 − Ω0xΩ
−1
xxBx and Be·x := Be − ωexΩ

−1
xxBx

independent of Bx.

Using capitals to signify partial summation, we write Yt =
∑t

s=1 ys, Xt =
∑t

s=1 xs, U0·x,t =∑t
s=1 u0·x,s. Define

e+0·x,t = U0·x,t · 1 {Ω00·x > 0}+ e0·x,t · 1 {Ω00·x = 0} ,

g0 = Ω−1
xxωxe · 1 {Ω00·x = 0} ,

where 1 {·} is the indicator function. In matrix form we have the integrated and augmented

model1

Y = [X,C] γ0 + e+, for γ0 := (a′0, b
′
0)

′, (4)

where b0 = (f ′0, g
′
0)

′,

Y = [Y1, . . . , Yn]
′
, X = [X1, . . . , Xn]

′
,

C :=
[

x1 x2 · · · xn
∆x1 ∆x2 · · · ∆xn

]′
=

[
x′

∆x′

]′
,

and

e+ =
[
e+0·x,1, . . . , e

+
0·x,n

]′
.

PK (2024) estimated the above cointegrating model using deterministic instrumental variables{
φj (t/n)

}K

j=1
, where

{
φj (r)

}∞
j=1

is a complete set of basis functions of L2 [0, 1]. In what follows,

we let

φ̃K (r) = (φ1 (r) , . . . , φK (r))
′
, φ̃K,t = φ̃K

(
t

n

)
=

[
φ1

(
t

n

)
, . . . , φK

(
t

n

)]′
,

and so

ΦK =
[
φ̃K,1, . . . , φ̃K,n

]′
is the observation matrix of the instruments. The projection matrix that projects onto the column

space of ΦK is given by PΦK
= ΦK (Φ′

KΦK)
−1

Φ′
K .

Based on the K instrumental variables φ̃K,t, the trend IV (TIV) estimator of a0 is defined

as:

âTIV = argmin
a

(Y −Xa)
′
RK (Y −Xa) = (X ′RKX)

−1
(X ′RKY ), (5)

where

RK = PΦK
− PΦK

C (C ′PΦK
C)

−1
C ′PΦK

. (6)

1The OLS estimator of the parameters in the regression: Yt = X′
ta0+x′

tf0+ ẽt, is referred to as the Integrated

Modified OLS (IM-OLS) estimator by Vogelsang and Wagner (2014), who considered only the nonsingular case

when Ω00·x > 0 and showed that this estimator is asymptotically mixed normal. Phillips and Kheifets (2021) es-

tablished the asymptotic distribution of the IM-OLS estimator when Ω00·x = 0 and demonstrated that singularity

introduces nonstandard asymptotics. As we show below, the application of the trend IV method to the model in

equation (4) restores asymptotic mixed normality. Interestingly, applying the trend IV method to the regression

Yt = X′
ta0 + x′

tf0 + ẽt does not yield an asymptotically mixed normal estimator either, as shown in Kheifets and

Phillips (2024). Therefore, to achieve asymptotic mixed normality in the singular case, we have to include both

xt and ∆xt in the regression and apply the trend IV method.
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Alternatively, and equivalently,

(âTIV, b̂TIV) = argmin
(a,b)

(Y −Xa− Cb)
′
PΦK

(Y −Xa− Cb) .

For orthonormal basis functions
{
φj (r)

}∞
j=1

, we have
∥∥n−1Φ′

KΦK − IK
∥∥
2
= o (1) so that∥∥PΦK

− n−1ΦKΦ′
K

∥∥
2
= o (1) under an asymptotic specification of K (either fixed or growing

with n). Then the TIV is asymptotically equivalent to OLS applied to the transformed and

augmented system

VY = VXa0 + Vxf0 + V∆xg0 + Ve+ = VXa0 + VCb0 + Ve+ , (7)

where we employ the notation VZ = Φ′
KZ for an observation matrix Z. Transformations to VZ

were used, for example, in Hwang and Sun (2018). Standard partitioned least squares regression

on (7) leads to the following estimator of a0 :

âfTIV = (V ′
XQVC

VX)
−1
V ′
XQVC

VY ,

where, for an observation matrix Z with dZ rows, QZ = IdZ
− PZ for PZ = Z (Z ′Z)

−1
Z ′. The

estimator âfTIV is the same as âTIV but with PΦK
replaced by n−1ΦKΦ′

K in the definitions of

âTIV and RK in (5) and (6). A similar construction gives estimators b̂fTIV of b0 as

b̂fTIV = (V ′
CQVX

VC)
−1
V ′
CQVX

VY .

The estimators âfTIV and b̂fTIV are the fixed-K Trend IV (fTIV) estimators in PK (2024),

which may also be referred to as the transformed and augmented OLS (TA-OLS), following

Hwang and Sun (2018). In this paper, we use the same notation and terminology as in PK

(2024). We focus on âfTIV, for which the estimation error is given by

âfTIV − a0 = (V ′
XQVC

VX)
−1
V ′
XQVC

Ve+ . (8)

Unless stated otherwise, throughout this paper âfTIV is the transformed and augmented OLS

estimator based on a fixed number of basis functions (i.e., K is fixed), while âTIV is the trend

IV estimator based on an increasing number of instruments (i.e., the high-dimensional trend IV

estimator that letsK approach infinity as the sample size n grows). Nevertheless, both estimators

can be analyzed under both types of asymptotics.

To establish fixed-K asymptotics, we make the following assumption about the basis functions:

Assumption 2 {φj(·)}Kj=1 are continuously differentiable and orthonormal basis functions on

L2[0, 1].

For ease of comparison, we use the same definitions as in PK (2024) given below:

BX (r) =

∫ r

0

Bx (s) ds, µK =

∫ 1

0

φ̃K (r)BX (r)
′
dr, ηK =

∫ 1

0

φ̃K (r)Bx (r)
′
dr,

ξK =

∫ 1

0

φ̃K (r) dBx (r)
′
, ψ0·x,K =

∫ 1

0

φ̃K (r)B0·x (r) dr,
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ψe·x,K =

∫ 1

0

φ̃K (r) dBe·x (r) =

∫ 1

0

φ̃K (r) dBe (r)− ξKΩ−1
xxωxe,

QξK = IK − ξK(ξ′KξK)−1ξ′K ,

JK = QξK −QξKηK
(
η′KQξKηK

)−1
η′KQξK , and SK = JKµK (µ′

KJKµK)
−1
.

Note that µK , ηK , ξK and SK are K × dx matrices, ψ0·x,K and ψe·x,K are K × 1 vectors, and

JK = Q[ξK ,ηK ] is a K ×K projection matrix, which projects onto the orthogonal complement of

the space spanned by the columns of [ξK , ηK ].

Theorem 1 (Asymptotic Mixed Normality of fTIV) Let Assumptions 1 and 2 hold.

(a) When Ω00·x > 0, we have, for fixed K as n→ ∞,

n (âfTIV − a0)⇝ S′
Kψ0·x,K ≡ MN

(
0,Ω00·xS

′
K

(∫ 1

0

∫ 1

0

(r ∧ s) φ̃K (r) φ̃K (s)
′
drds

)
SK

)
.

(9)

(b) When Ω00·x = 0, we have, for fixed K as n→ ∞,

n2 (âfTIV − a0)⇝ S′
Kψe·x,K ≡ MN

(
0, ωee·x (µ

′
KJKµK)

−1
)
. (10)

In both the singular and nonsingular cases, the limiting distribution is mixed normal with

a zero mean. Unlike the use of OLS applied directly to (3), the fTIV estimator has no second-

order endogeneity bias. This bias is removed simply by using an IV approach that involves

deterministic instruments.

The asymptotic mixed normality in the multicointegration case was shown in Theorem 1(ii)

of PK (2024) under the exogeneity assumption that ωxe = 0 (i.e., g0 = 0), indicating that

the multicointegration error {et} has no long-run correlation with the integrated process {xt} .
Theorem 1(b) establishes the asymptotic mixed normality without the exogeneity assumption,

serving as an addendum to Theorem 1(ii) of PK (2024).

The zero-mean mixed normal asymptotic distribution enables the construction of asymptoti-

cally pivotal tests about cointegration parameters. Consider, for example, the case of multicoin-

tegration.2 To test H0 : Ha = h against H1 : Ha ̸= h for some restriction matrix H ∈ Rp×dx

and vector h ∈ Rp×1, we first obtain the OLS residual vector:

V̂e+ = VY − VX âfTIV − VC b̂fTIV,

and then compute the average of the squared residuals:

ω̂ee·x =
1

K

∥∥∥V̂e+∥∥∥2 ,
2Asymptotic F and t tests can also be developed for the case of nonsingular cointegration within the present

framework; but we focus on multicointegration here.
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where ∥·∥ denotes the Euclidean norm. Based on ω̂ee·x, we calculate the Wald statistic in the

usual way:

WfTIV =
1

ω̂ee·x
[HâfTIV − h]

′
[
H (V ′

XQVC
VX)

−1
H ′

]−1

[HâfTIV − h] /p. (11)

When p = 1, we may calculate the t statistic

TfTIV =
HâfTIV − h√

ω̂ee·xH (V ′
XQVC

VX)
−1
H ′

. (12)

Theorem 2 (Asymptotic F and t tests with fTIV) Let Assumptions 1 and 2 hold. Con-

sider the case of multicointegration with Ω00·x = 0. If K > 3dx and H has full row rank p, then

W∗
fTIV : =

K − 3dx
K

WfTIV ⇝ Fp,K−3dx , (13)

T∗
fTIV : =

√
K − 3dx

K
TfTIV ⇝ tK−3dx

, (14)

for fixed K as n → ∞, where Fp,K−3dx
is the standard F distribution with degrees of freedom p

and K − 3dx, and tK−3dx
is the standard t distribution with degrees of freedom K − 3dx.

Theorem 2 is new and extends the corresponding result in Hwang and Sun (2018), which rules

out multicointegration, to the case of multicointegration. The asymptotic F and t approximations

are not only convenient to use but also more accurate, as the F and t distributions capture

the estimation errors in estimating b0 and ωee·x, which are often ignored in the use of fully

modified methodology. For the corresponding F and t asymptotic theory in other nonstationary

and stationary settings, the reader is referred to Sun (2023), Hwang and Sun (2017), and the

references therein.

In practical work when an intercept λ0 is included in (1), we have the model

yt = x′ta0 + λ0 + u0t.

The integrated and augmented model is then given by

Yt = X ′
ta0 + x′tb0 +∆x′tg0 + µ0 + λ0t+ e+0·x,t,

where µ0 is a constant that captures the effects of the initial values x0 and e0. In matrix form

the equations corresponding to (4) and (7) take the same forms, viz.,

Y = [X,C] γ0 + e+ = Xa0 + Cb0 + e+, (15)

VY = [X,C] γ0 + Ve+ = VXa0 + VCb0 + Ve+ , (16)

but now γ0 = (a′0, b
′
0)

′ for b0 = (f ′0, g
′
0, µ0, λ0)

′ and

C =

 x1 x2 · · · xn
∆x1 ∆x2 · · · ∆xn
1 1 · · · 1
1 2 · · · n

′

.
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With these obvious modifications, the fTIV estimator âfTIV of a0 and the Wald and t statistics

WfTIV and TfTIV can be computed in the same way as before.

The asymptotic theory for âfTIV in Theorem 1 continues to hold if we redefine ξK as

ξK =

[∫ 1

0

φ̃K (r) dBx (r)
′
,

∫ 1

0

φ̃K (r) dr,

∫ 1

0

φ̃K (r) rdr

]
∈ RK×(dx+2),

which contains two additional columns, reflecting the inclusion of an intercept and a linear trend

in (15) and (16). Further, the asymptotic F and t test theory in Theorem 2 remains valid after

a simple adjustment. We have, in place of (13) and (14),

W∗
fTIV :=

K − (3dx + 2)

K
WfTIV ⇝ Fp,K−(3dx+2), (17)

T∗
fTIV :=

√
K − (3dx + 2)

K
TfTIV ⇝ tK−(3dx+2), (18)

provided that K > 3dx + 2 and [µK , ηK , ξK ] has full column rank of 3dx + 2. This adjustment

occurs because there are two additional regressors, resulting in a loss of two degrees of freedom. If

the basis functions integrate to zero (i.e.,
∫ 1

0
φ̃K (r) dr = 0) and [µK , ηK , ξK ] has a column rank

of 3dx +1, then the results in (17) and (18) hold with 3dx +2 replaced by 3dx +1. Deterministic

trends can also be included in (1) or (4), and the asymptotic F and t limit theory remains valid,

albeit with a different multiplicative adjustment factor and different degrees of freedom for the

F and t distributions (see, e.g., Section 4 in Hwang and Sun (2018)).

3 Asymptotic relative efficiency

We now compare the asymptotic distributions of the fTIV and TIV estimators under Assumption

1. For the large-K asymptotic results in this section, we follow PK (2024) and consider the basis

functions φj (r) =
√
2 sin((j − 1/2)πr) for j = 1, 2, . . . ,K.3 Theorem 2 of PK (2024) showed

that, in the cointegration case with Ω00·x > 0, under joint large-K asymptotics where both

K → ∞ and n→ ∞, but K = o
(
n4/5−δ

)
for some δ > 0, the following holds:

n (âTIV − a0)⇝ A−1
X·x

∫ 1

0

−−−→
BX·x (r) dB0·x (r) ≡ MN

(
0,Ω00·xA−1

X·x

∫ 1

0

−−−→
BX·x (r)

−−−→
BX·x (r)

′
drA−1

X·x

)
,

where AX·x =
∫ 1

0
BX·x (r)B

′
X·x (r) dr,

−−−→
BX·x (r) =

∫ 1

r
BX·x (s) ds, and

BX·x (r) = BX (r)−
(∫ 1

0

BX (s)B′
x (s) ds

)(∫ 1

0

Bx (s)B
′
x (s) ds

)−1

Bx (r) .

The asymptotic result can be equivalently presented as

n (âTIV − a0) ⇝ A−1
X·x

(∫ 1

0

BX·x (r)B0·x (r) dr

)
3The large-K asymptotic results can be extended to allow for any complete set of orthonormal basis functions

on L2 [0, 1] that are twice continuously differentiable, cf., Phillips (2005, pp.126).
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≡ MN
(
0,Ω00·xA−1

X·x

∫ 1

0

∫ 1

0

(r ∧ s)BX·x (r)BX·x (s)
′
drdsA−1

X·x

)
. (19)

The above representation takes a form similar to that given in Theorem 1(a), as both contain

the covariance kernel (i.e., (r ∧ s)) of standard Brownian motion. PK (2024) also showed in their

Theorem 2 that in the multicointegration case with Ω00·x = 0,

n2 (âTIV − a0)⇝ A−1
X·x

(∫ 1

0

BX·x (r) dBe·x (r)

)
≡ MN

(
0, ωee·xA−1

X·x
)

(20)

under the joint large-K asymptotics specified above.

Following arguments similar to those in PK (2024), we can show that âfTIV and âTIV share

the same joint large-K asymptotic distributions, as given in (19) and (20), respectively, for the

cointegration and multicointegration cases. It can be shown that when we let K → ∞, the

fixed-K asymptotic distributions in (9) and (10) of Theorem 1 converge to the joint large-K

asymptotic distributions in (19) and (20), respectively. So the critical values obtained from

fixed-K approximations are asymptotically valid under large-K asymptotics.

Under multicointegration, it turns out that when K grows with n to infinity, the trend IV

method provides asymptotically jointly efficient estimators of the cointegrating coefficient a0

and the multicointegrating coefficient f0. The joint mixed normal limit distribution of a trend

IV estimator corresponds to that in a multicointegrated, correctly specified parametric VAR

model with iid Gaussian innovations, as shown in Kheifets and Phillips (2024). The reason is

that the trend IV method not only fully removes endogeneity effects by reducing the impact

of the error process asymptotically to Be·x but also fully captures the path of the regressors,

reproducing BX , Bx, and BX·x in the limit as K → ∞. This asymptotic efficiency result extends

that in Phillips (1991), which considered only the nonsingular cointegration case and dealt only

with optimal estimation of cointegrating coefficients. Moreover, the result shows that precise

VAR specification (with assumed iid errors) is unnecessary for optimal estimation provided that

efficient methods like the trend IV method with a growing number of instruments are employed.

It is particularly noteworthy that this observation applies to the regression coefficient that is

effectively nonparametric, as the multicointegrating coefficient f0 is a nonparametric long-run

regression coefficient.

From a theoretical perspective, the large-K asymptotic distributions of the fTIV estimator can

be obtained using a two-step sequential limit, where we first holdK fixed and let n→ ∞, followed

by letting K → ∞. Given this, it is of interest to compare the asymptotic distributions of fTIV

for different numbers of instruments, including those of TIV (whereK → ∞ butK = o
(
n4/5−δ

)
).

Because the asymptotic distributions are all mixed normal, it is simplest to compare conditional

variances or standard deviations. To this end, we compute the ratio of the (asymptotic and

random) standard derivation of the fTIV to that of the TIV. For the cointegration case with

Ω00·x > 0, the ratio is√√√√√ S′
K

(∫ 1

0

∫ 1

0
(r ∧ s) φ̃K (r) φ̃K (s)

′
drds

)
SK

A−1
X·x

(∫ 1

0

∫ 1

0
(r ∧ s)BX·x (r)BX·x (s)

′
drds

)
A−1

X·x

.
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For the multicointegration case with Ω00·x = 0, the ratio is√
AX·x

µ′
KJKµK

.

We simulate these ratios for the case when dx = 1, so that Bx (·) is one-dimensional Brownian

motion. In this case, the ratios do not depend on the variance of Bx (·), so it can be replaced

by standard Brownian motion. We simulate standard Brownian motion by {
∑[nr]

t=1 ux,t/
√
n : r ∈

[0, 1]}, where ux,t ∼ iidN (0, 1). We set n = 10, 000, and the number of simulation replications is

also 10,000. The results are presented in Table 1. Under cointegration with Ω00·x > 0, in 75% of

the cases, the standard deviation of the fTIV is no more than 1.18 times as large as that of the

TIV for K = 7 and 1.08 times as large for K = 12. Under multicointegration with Ω00·x = 0, in

75% of the cases, the standard deviation of fTIV is no more than 1.34 times as large as that of

TIV for K = 7 and 1.16 times as large for K = 12. This shows that the fTIV with a moderately

large K becomes nearly as efficient as the TIV.

Table 2 reports the ratios of the confidence interval lengths based on the fTIV and the

TIV estimators. Confidence intervals for the cointegration parameter a0 are defined as [â −
q/nι, â+ q/nι], where â is either the fTIV or TIV estimator, q is the quantile of the asymptotic

distribution given in (9), (10), (19) or (20), and ι = 2 in the case of multicointegration and 1

otherwise. These confidence intervals are infeasible because they depend on unknown conditional

variances. However, the ratio of the lengths of the confidence intervals is the ratio of the quantiles,

which is nuisance-parameter free and can be easily simulated. For example, in the case of

multicointegration, the ratio of the lengths of the 95% confidence intervals is qfTIV/qTIV where

qfTIV and qTIV are the 95% quantiles of MN (0, (µ′
KJKµK)

−1
) and MN

(
0,A−1

X·x
)
, respectively.

Simulations show that 95% confidence intervals based on the fTIV are 25% and 35% larger for

K = 7 than those based on the TIV in the cointegration and multicointegration cases. For

K = 12, they are 13% larger in both cases. Note that for the construction of feasible confidence

intervals, the length comparisons will depend on the efficiency of estimating both a0 and the

quantiles of the asymptotic distributions.

Table 1: Descriptive statistics of the ratio of the (asymptotic) standard deviations of the fTIV

with K = 7 and K = 12 to that of the TIV (K → ∞).

Cointegration Multicointegration

K = 7 K = 12 K = 7 K = 12

mean 1.171 1.071 1.282 1.129
std 0.360 0.134 0.330 0.119
min 0.584 0.682 1.004 1.004
25% 1.029 1.014 1.097 1.053
50% 1.074 1.036 1.182 1.094
75% 1.184 1.083 1.344 1.164
max 9.038 3.875 6.453 3.050
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Table 2: Descriptive statistics of ratios of the confidence interval lengths based on the fTIV with

K = 7 and K = 12 to that based on the TIV (K → ∞).

Cointegration Multicointegration

Coverage K = 7 K = 12 K = 7 K = 12

0.99 1.274 1.123 1.493 1.174
0.95 1.244 1.129 1.348 1.134
0.90 1.187 1.094 1.327 1.145

4 Final remarks

The primary advantage of the high-dimensional trend IV approach to estimation and inference is

its joint asymptotic efficiency in estimating the cointegrating and multicointegrating parameters,

while treating the system innovations nonparametrically. The gains in efficiency and confidence

region precision from high-dimensional trend IV are evident in simulations but are by no means

excessive compared to fTIV with a moderate number of instruments. In practical work, a finite

number of instruments is always employed, and the specific asymptotics that hold the number of

instruments fixed may provide more reliable distributional approximations. Under this approach

to the limit theory, fTIV delivers an asymptotically valid, easy-to-use, and more accurate F and

t tests while retaining the nonparametric advantage of TIV.

Appendix of proofs

Proof of Theorem 1. By virtue of summation by parts, integration by parts, and the

continuous mapping theorem, the following weak convergence results hold:

(a) n−1/2Ve+ ⇝ ψe·x,K when Ω00·x = 0 and n−3/2Ve+ ⇝ ψ0·x,K when Ω00·x > 0;

(b) n−1/2V∆x ⇝ ξK ;

(c) n−3/2Vx ⇝ ηK ;

(d) n−5/2VX ⇝ µK .

Then, for Part (a),

n (âfTIV − a0) =
(
n−5V ′

XQVC
VX

)−1
n−4V ′

XQVC
Ve+ ⇝ (µ′

KJKµK)
−1 (

µ′
KJKψ0·x,K

)
= S′

Kψ0·x,K .

Since the randomness of (µK , ηK , ξK) is fully driven by Bx (·) , which is uncorrelated with and

hence independent of B0·x (·) , it follows that ψ0·x,K =
∫ 1

0
φ̃K (r)B0·x (r) dr is independent of

(µK , ηK , ξK) . Therefore, conditional on (µK , ηK , ξK) , ψ0·x,K follows the normal distribution

N
(
0,Ω00·x

(∫ 1

0

∫ 1

0
(r ∧ s) φ̃K (r) φ̃K (s)

′
drds

))
. Consequently, the limit distribution is mixed
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normal:

n (âfTIV − a0)⇝ S′
Kψ0·x,K ≡ MN

(
0,Ω00·xS

′
K

(∫ 1

0

∫ 1

0

(r ∧ s) φ̃K (r) φ̃K (s)
′
drds

)
SK

)
.

For Part (b),

n2 (âfTIV − a0) =
(
n−5V ′

XQVC
VX

)−1
n−3V ′

XQVC
Ve+

⇝ (µ′
KJKµK)

−1 (
µ′
KJKψe·x,K

)
= S′

Kψe·x,K .

Since (µK , ηK , ξK) depends only on Bx (·) , which is uncorrelated with and hence indepen-

dent of Be·x (·) , ψe·x,K =
∫ 1

0
φ̃K (r) dBe·x (r) is independent of (µK , ηK , ξK) . Conditional on

(µK , ηK , ξK) , ψe·x,K follows the normal distribution N (0, ωee·x
∫ 1

0
φ̃K (r) φ̃′

K (r) dr). Due to the

orthonormality of the basis functions (
∫ 1

0
φ̃K (r) φ̃′

K (r) dr = IK), the limit distribution is mixed

normal with the conditional variance matrix simplified from a sandwich form to a single matrix

component:

n2 (âfTIV − a0)⇝ S′
Kψe·x,K ≡ MN

(
0, ωee·x (µ

′
KJKµK)

−1
)
.

Proof of Theorem 2. Since V̂e+ = Q[VX ,VC ]Ve+ , we have

ω̂ee·x = V ′
e+Q[VX ,VC ]Ve+/K.

Using this and Theorem 1, we obtain:

WfTIV =
[HâfTIV − h]

′
[
H (V ′

XQVC
VX)

−1
H ′

]−1

[HâfTIV − h] /p

V ′
e+Q[VX ,VC ]Ve+/K

=
[âfTIV − a0]

′
H ′

[
H (V ′

XQVC
VX)

−1
H ′

]−1

H [âfTIV − a0] /p

V ′
e+Q[VX ,VC ]Ve+/K

⇝
ψ′
e·x,KSKH

′
[
H (µ′

KJKµK)
−1
H ′

]−1

HS′
Kψe·x,K/p

ψ′
e·x,KQ[µK ,ηK ,ξK ]ψe·x,K/K

=

∥∥P[SKH′]ψe·x,K
∥∥2 /p∥∥Q[µK ,ηK ,ξK ]ψe·x,K
∥∥2 /K . (21)

Under the assumption that
{
φj (·)

}K

j=1
are orthonormal, ψe·x,K follows the normal distribution

N (0, ωee·xIK). Hence, conditional on (µK , ηK , ξK) ,∥∥P[SKH′]ψe·x,K
∥∥2 /ωee·x =d χ2

p,∥∥Q[µK ,ηK ,ξK ]ψe·x,K
∥∥2 /ωee·x =d χ2

K−3dx
,

where =d denotes distributional equivalence. The two chi-square variates above are condi-

tionally independent, as they are based on two conditionally independent normals, namely
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Q[µK ,ξK ,ηK ]ψe·x,K and HS′
Kψe·x,K . The conditional independence between these two normals

holds because, conditional on (µK , ηK , ξK), we have

cov(Q[µK ,ηK ,ξK ]ψe·x,K , HS
′
Kψe·x,K)

= ωee·xQ[µK ,ηK ,ξK ]SKH
′ = ωee·xQ[µK ,ηK ,ξK ]Q[ξK ,ηK ]µK (µ′

KJKµK)
−1
H ′

= ωee·x

{
Q[ξK ,ηK ] − P[Q[ξK,ηK ]µK ]

}
Q[ξK ,ηK ]µK (µ′

KJKµK)
−1
H ′

= ωee·xQ[ξK ,ηK ]µK (µ′
KJKµK)

−1
H ′ − ωee·xQ[ξK ,ηK ]µK (µ′

KJKµK)
−1
H ′

= 0.

Therefore, conditional on (µK , ηK , ξK) ,∥∥P[SKH′]ψe·x,K
∥∥2 /p∥∥Q[µK ,ηK ,ξK ]ψe·x,K
∥∥2 /K =d

χ2
p/p

χ2
K−3dx

/K
,

and
K − 3dx

K

∥∥P[SKH′]ψe·x,K
∥∥2 /p∥∥Q[µK ,ηK ,ξK ]ψe·x,K
∥∥2 /K =d

χ2
p/p

χ2
K−3dx

/ (K − 3dx)
=d Fp,K−3dx .

The conditional distribution does not depend on the conditioning variables (µK , ηK , ξK), and

hence it is also the unconditional distribution. We have therefore shown that:

W∗
fTIV =

K − 3dx
K

WfTIV ⇝
χ2
p/p

χ2
K−3dx

/ (K − 3dx)
=d Fp,K−3dx

.

The result for the t-statistic can be proved similarly, and the details are omitted.
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