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ABSTRACT

This paper proposes a new class of estimators of the long-run average relationship
when there is no individual time series cointegration. Using panel data with large
cross section (n) and time series dimensions (77), the estimators are based on the
long-run average variance estimate using bandwidth equal to 7. The new estimators
include the panel pooled least squares estimators and the limiting cross sectional least
squares estimator as special cases. It is shown that the new estimators are consistent
and asymptotically normal under both the sequential limit, wherein 7' — oo followed
by n — oo, and the joint limit where T',n — oo simultaneously. The rate condition
for the joint limit to hold is relaxed to y/n/T — 0, which is less restrictive than
the rate condition n/T" — 0, as imposed by Phillips and Moon (1999). By taking
powers of the Bartlett and Parzen kernels, this paper introduces two new classes of
kernels, the sharp kernels and steep kernels, and shows that these new kernels deliver
new estimators of the long-run average relationship that are more efficient than the
existing ones. A simulation study supports the asymptotic results.

JEL Classification: C32; C33

KEYWORDS: Long-run average relationship, long-run variance matrix, multidimen-
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1 Introduction

Nonstationary panel data with large cross section and time series dimensions have
attracted much attention in recent years (e.g. Pedroni 1995; Kao 1999; Phillips and
Moon; 2000 and Baltagi 2000). Financial and macroeconomic panel data sets that
cover many firms, regions or countries over a relatively long time period are familiar
examples. Such a panel data structure allows us to identify the long-run average
relationship between two I(1) random vectors that conventional panel data can not
identify. When the two I(1) random vectors are not cointegrated for any given individ-
ual, the noise in the time series regression is as strong as the signal. As a consequence,
we can not identify the long-run relationship using time series data alone. However,
the noise can often be characterized as independent across individuals. By pooling
the cross section and time series observations, we can attenuate the strong effect of
the noise while retaining the strength of the signal. Phillips and Moon (1999) showed
that both the panel pooled least squares (PLS) regression and the limiting cross-
sectional least squares (CLS) regression provide consistent estimates of the long-run
average relationship.

In this paper, we propose a new class of estimators of the long-run average rela-
tionship. The estimators considered include the PLS and CLS estimators as special
cases and are generally more efficient than both the PLS and CLS estimators. Our
estimators are motivated from the definition of the long-run average relationship.
As shown by Phillips and Moon (1999), the long-run average relationship can be
parametrized in terms of the matrix regression coefficient derived from the cross
sectional average of the long-run variance (LRV) matrices. A natural way to esti-
mate this coefficient is to first estimate the LRV matrices directly and then use these
matrices to construct an estimate of the coefficient. This leads to our LRV-based
estimators of the long-run average relationship. In this paper, we use the kernel es-
timators of the LRV matrices (e.g. White 1980, 2001; Newey and West 1987, 1999;
Andrews 1991; Andrews and Monahan, 1992; de Jong and Davidson 2000). The new
estimator thus depends on the kernel used to construct the LRV matrices.

We show that the new estimator converges to the long-run average relationship
under the sequential limit, in which 7" — oo followed by n — oco. To develop a joint
limit theory, in which 7" and n go to infinity simultaneously, we need to exercise some
control over the relative rate that 7' and n diverge to infinity. The rate condition is
required to eliminate the effect of the bias. For example, Phillips and Moon (1999)
imposed the rate condition n/T" — 0 in order to establish the joint limit of the
PLS estimator. This rate condition is likely to hold when n is moderate and T is
large. However, in many financial panels, the number of firms (n) is either of the
same magnitude as the time series dimension (7") or far greater. To relax the rate
condition, we need an LRV estimator that achieves the greatest bias reduction. It
turns out that the kernel LRV estimator with the bandwidth equal to the time series
dimension fits our purpose. We show that the bias of this particular estimator is of
order O,(1/T), which is the best obtainable rate in the nonparametric estimation
of the LRV matrix. On the other hand, the variance of this estimator does not
vanish. Therefore, such an estimator is necessarily inconsistent, reflecting the usual



bias-variance trade-off.

Using a kernel LRV estimator with the bandwidth equal to the time series di-
mension, we show that the new estimator is consistent and asymptotically normal as
n and T go to infinity simultaneously such that \/n/T — 0. This rate condition is
obviously less restrictive than the rate condition n/7" — 0. The so-derived joint limit
theory therefore allows for a possibly wide cross section relative to the time series
dimension. Since the new estimator incorporates the PLS and CLS estimators as
special cases, our joint limit theory is also applicable to these estimators. The joint
limit theory is the same as that obtained by Phillips and Moon (1999). Hence, our
work reveals that the rate condition n/T — 0 is only sufficient, but not necessary,
for the joint limit theory and that it can be weakened to v/n/T — 0.

The new estimator is consistent under both the sequential limit and the joint
limit, even though the LRV estimator is inconsistent. The reason is that the LRV
estimator is proportional to the true LRV matrix up to an additive noise term. Even
if the effect of the noise in the time series estimation does not die out as T' — oo, the
noise is independent across individuals. Hence, by averaging across all individuals,
we can recover a matrix that is proportional to the long-run average variance matrix.
The consistency of the new estimator follows from the fact that it is not affected by
the proportional factor.

We find that the new estimators with the Bartlett and Parzen kernels are more
efficient than the PLS and CLS estimators designed for a model without individual
effects. However, the new estimators with the Bartlett and Parzen kernels are less
efficient than the PLS estimator for a model with possible individual effects. As
shown by Phillips and Moon (1999), the PLS estimator becomes more efficient when
intercepts are allowed in time series regressions to capture the possible individual
effects. To develop an LRV-based estimator that is more efficient than the latter
estimator, we introduce two new classes of kernels — sharp kernels and steep kernels.
A sharp kernel is defined to be the Bartlett kernel raised to some integer power
(sharpness index), while a steep kernel is defined to be the Parzen kernel raised
to some integer power (steepness index). We show that the new estimator using the
sharp kernel or steep kernel is more efficient than the PLS estimator even if intercepts
are included in time series regressions. In fact, the asymptotic variance of the new
estimator can be made as small as possible by choosing a large sharpness index or
steepness index. Variance reduction usually comes at the cost of bias inflation. We
show that the bias inflation is small when T is large. In addition, for steep kernels,
the bias inflation occurs only to the second dominating bias term but not to the first
dominating bias term. Therefore, the bias inflation is likely to factor in only when T°
is too small.

In this paper, we compare the finite sample performances of the LRV-based es-
timators using sharp and steep kernels with the PLS estimators. The Monte Carlo
simulations show that the LRV-based estimator using the steep kernel with power pa-
rameter 2 or 4 has a smaller RMSE than the PLS estimators for almost all parameter
configurations and (N,T) combinations considered. The superior performance may
be explained by observing that the LRV-based estimator incorporates cross section



and time series information in a delicate and sophisticated way. The cross section
observations are used to reduce variance while the time series observations, together
with the untruncated kernel, are used to reduce bias. So the cross section and time
series observations can be used together to improve the overall estimation of the LRV
matrix and LR average coefficient. The presence of the power parameter p makes
this more flexible. In fact, there is an opportunity for optimal choice of p, but this is
beyond the scope of the current paper.

The kernel LRV estimator using the full bandwidth (the bandwidth is equal to
the sample size) has been suggested by Kiefer and Vogelsang (2002a, 2002b) and Vo-
gelsang (2000) in other settings. Specifically, they considered this type of estimators
in hypothesis testing in the presence of nonparametric autocorrelation. Their moti-
vation is to develop asymptotically valid tests that are free from bandwidth selection
and have good size and power properties. Our motivation is quite different. Our
paper provides another instance that the kernel LRV estimator using the full band-
width is useful. In addition, the PLS and CLS estimators are shown to be special
cases of the new estimator. The LRV matrices implicitly used in these estimators are
kernel LRV estimates using the full bandwidth. Therefore, the new long-run variance
estimator has been employed implicitly in previous papers. Other papers that use or
investigate the new LRV estimator include Jansson (2002), Sun (2002), and Phillips,
Sun and Jin (2003a,2003b). In particular, the latter two papers considered consistent
long-run variance estimation using the sharp and steep kernels.

The use of the LRV matrix to estimate the long-run average relationship has been
explored by Makela (2002). He followed the traditional approach to construct the
long-run variance matrix. His estimator therefore depends on the truncation lag and
is not fully operational. In contrast, our estimator, like the PLS estimator, does not
involve the choice of any additional parameter and seems to be appealing to empirical
analysts.

The rest of the paper is organized as follows: Section 2 describes the basic model,
lays out the assumptions and introduces the new estimator. It also proves that the
new estimator includes the PLS and CLS estimators as special cases. Section 3 es-
tablishes the asymptotic properties of the kernel LRV estimator when the bandwidth
is equal to the sample size. Section 4 develops the sequential and joint limit theory
for the LRV-based estimator. This section also introduces the sharp and steep ker-
nels and examines the asymptotic properties of the resulting LRV-based estimators.
Section 5 provides the Monte Carlo simulation results. Section 6 concludes. Proofs
are collected in the Appendix.

Throughout the paper, vec(-) is the column-by-column vectorization function,
tr(+) is the trace function, and ® is the tensor (or Kronecker) product. K, denotes
the m? x m? commutation matrix that transforms vec(A) into vec(4’), i.e. Kpm =
S Z;nzl eie;@ eje;, where e; is the unit vector (e.g. Magnus and Neudecker, 1979,
1988). For a matrix A = (ai;), ||A| is the Euclidean norm (tr(A’A))1/2 and |A]
is the matrix (|a;;|). “A < 00” means all the elements of matrix A are finite. The
symbol “=" signifies weak convergence, “:=" is definitional equivalence, signifies
equivalence in distribution. For a matrix Z,, “Z, = N(0,X)” means “vec(Z,) =

“—"



N(0,%)”. M is a generic constant.

2 Model and Estimator

This section introduces notation, specifies the data generating process, defines the
estimator and relates it to the existing ones.

2.1 The Model

The model we consider is the same as that in Phillips and Moon (1999). For com-
pleteness, we briefly describe the data generating process. The panel data model is
based on the vector integrated process:

Zi,t :Zi,t—1+Ui,t:t: 1,..T5i=1,...,n (21)

with common initialization Z; o = 0 for all ¢. The zero initialization is maintained for
simplicity. All the results in the paper hold if we assume

Z; o is iid across i with E||Z;o|[* < oco. (2.2)

We partitioned the m-vectors Z; ; and U; 4 into my and m, components (m = mg+m,,)
as Z}, = (Y]}, Xj,) and U], = (U,, ;, Uy, ;). The error term U;; is assumed to be
generated by the random coefficient linear process

Uit = Z CisVit—s, (2.3)
s=0

where: (i) {C;+} is a double sequence of m xm random matrices across i and ¢; (ii) the
m-vectors V; ; are iid across ¢ and ¢t with £V, ; = 0, EVi,tV;”t = I, and EVa‘fi’t = v* for
all ¢ and t, where V,;; is the a-th element of V;;. (iii) C; s and Vj; are independent
for all ¢, j, s, t.

Let Cq,s be the a-th element of vec(Cjs) and opes = EC(’;J’S. We make two
further assumptions on the moments of the random coefficients and the summability

of these moments.

Assumption 1 (Random Coefficient Conditions)
(i) {Cis} is 7id across i for all 5. (i) E[|C;4||* < oc.

Assumption 2 (Summability Conditions)
(1) 22520 57 (0205)"/% < 00. (ii) Syst (0405) "% < 0.

Assumptions 1 and 2(ii) are the same as those in Phillips and Moon (1999). As-
sumption 2(i) is slightly stronger than their Assumption 2(i). Let Ci(1) = > 52, Cis,
CN'@S = > 2et1Cit and (N]@t =320 CN'@SVZ-,LL_S. Under Assumptions 1 and 2, we can
prove the following Lemma, which ensures the integrability of the terms that appear
frequently in our development.



Lemma 1 Let Assumptions 1 and 2 hold, then
(a) 3220 8*E || Cis|| < 0,
(b) E|Uis|* < M for some M < oo and all t,
(c) E HCi(l)4||4 < 00,
(d) E‘ U@t ‘ < M for some M < oo and all t,

s [e(jo)] <

Under Assumptions 1 and 2, the processes U; ; admit the following BN decompo-
sition almost surely:

Ci,s

Ui = Ci()Vii + Uip1 — Ui (2.4)
Using this decomposition and following Phillips and Solo (1992), we can prove that

(Tr]
1 ¢ .
ﬁ E Uip = C;(1)Wy(r), as T' — oo for all i, (2.5)
t=1

where Wj(r) is a standard Brownian Motion with var(W;(r)) = rI,, and ‘=’ sig-
nifies the weak convergence conditional on F., = o(Ciy, ..., Ciy, ...), the sigma field
generated by the sequence {Cj;},°, -

2.2 Definition and Estimation of Long-run Average Relationship

Let €); be the long-run variance matrix of Z;; conditional on F,. It is well known
that ; equals the conditional spectral density matrix fr,y,(A) of U evaluated at
the origin, i.e. Q; = fy,v,(0). Partitioning €; conformably, we have

o Uy Qi
Q; = ( yi wai ) (2.6)
We assume that €2; satisfies the following rank condition:

Assumption 3 (Rank Condition) rank();) = m almost surely for all i =1, ..., n.

Assumption 3 implies that the two component random vectors Y;; and X;; of
Zi+ are not cointegrated for any individual ¢ (Engle and Granger 1987). However,
the assumption does not exclude the existence of an interesting long-run relationship
between the panel vectors Y;; and X, ;. This relationship is defined below.

By Lemma 1(c), €2; is integrable and

Qyy Q
QO =EQ = vy oy ) , 2.7

which we called the long-run average variance matrix of Z;;. Following a classical
regression approach, we can analogously define a long-run regression coefficient be-
tween Y and X by 8 = Qme;ml. For more discussion on this analogy, see Phillips
and Moon (2000).



To construct an estimate of 3, we first estimate €2; as follows:

1 L& s 1
=7 Z Z Ui,sK(Ta T) o (2.8)
s=1 t=1
where Uiy = Z; 1 — Z;3—1, K(-,-) is a kernel function. When K (z,y) depends only on
x —y, i.e. K(z,y) is translation invariant, we write K (z,y) = k(z —y). In this case,
); reduces to

T-1 .
0O INT /-
G o= ) k(ZR)Ta), (2.9)
j=—T+1
1 T—j ,
by - [ FEE G sz .

From the above formulation, it is clear that Q; is the usual kernel LRV estimator using
the full bandwidth (the bandwidth is equal to the time series dimension). It should be
noted that translation invariant kernels are commonly used in the estimation of the
LRV matrix. We consider the kernels other than the translation invariant ones only
to include some existing estimators of the long-run average relationship as special
cases. This will be made clear in subsection 2.3.

Based on the above estimate, we can estimate €2 by

O — ny Qym — —lnA
Q= < o @ =n ZQ (2.11)
i=1
The long-run average relationship parameter 3 can then be estimated by

Brav = 0} (2.12)

T

which is called the LRV-based estimator.

Note that the LRV-based estimator (3 i, depends on the observations Z;; only
through their first order difference. Therefore, when the model contains individual
effects such that

Zix = Ai,o-i-th (2.13)

)

Z = Za+ Ui, (2.14)

where Z?,o = 0, and U;; follows the linear process defined in (2.3), the LRV-based

estimator (3 gy can be computed exactly the same as before. In other words, the
LRV-based estimator is robust to the presence of the individual effects.

2.3 Relationship between the new estimator and existing estimators

Phillips and Moon (1999) considered the PLS and CLS estimators for the model with
no individual effects and the PLS estimator for the model with individual effects.



They showed that these estimators are consistent and asymptotically normal. In this
subsection, we examine the relationships between the LRV-based estimator and the
estimators considered by Phillips and Moon (1999).

When the model contains no individual effects, the PLS estimator is defined as

n T n T -1
Bps (zzm,tx;,t) (z zxi,tx;,t) | (2.15)

i=1 t=1 i=1 t=1

Some simple algebraic manipulations show that

T t t
§ / § § E
}/Z-th’L,t ylvs ZL‘“T
t=1 =1

T T
= YD (T—(s+ 1)V (t+1)UysUs,, (2.16)
s=1t=1
and
T T T
XX =D D (T—=(s+ 1)V ({E+1) U, Ul (2.17)
t=1 s=1 t=1
Therefore,
~ 1 en 1 = s
Brrs = <E _ =>> Kpusr( T )Uym U, )
=1 s=1t=1
11l e s -
X <E_ ZZKPLST T )U%SU’ ) : (2.18)
i=1 s:l t=1
where
s t. (s+ 1)V (t+1)
KPLST(T T) = 1 T and
(s+1)V(t+1) = max(s+1,t+1). (2.19)

Hence, the PLS estimator is a special case of the LRV-based estimator. Note that the
kernel for the PLS estimator depends on T'. An asymptotically equivalent LRV-based
estimator is

. 1 n 1 T T s t ,
Bprs = EZTEZKPLS(T,T)UM,SUM’t (2.20)
11 LT s ¢ -1
!/
(A SRt )

where Kprs(s,t) =1—(sVt). The underlying LRV estimator is (2.8) with K(s,t) =
1 — (s Vt). Therefore, the PLS estimator is based on an LRV estimate with the
bandwidth equal to the time series dimension.



For models containing no individual effects, the CLS estimator is defined by

-1
n n
Bensm = (z Yx) (z xi,fxg,T) | (.21)
=1 =1

where 7 = [T'ro|. Plugging in Y; ; = Y; ;1 + Uy, + and X; ¢ = X1 + Uy, +, we have

-1

_ n [Tro] [Tro] n [Tro] [Tro]
ﬂCLS,ro = Z Z Z Uyl, UI Z Z Z Um“sU;“
i=1 s=1 t=1 i=1 s=1 t=1
n T T s ¢ ,
= ;;;KCLS(T,T Uy, sUs. s
n —1
X K 2L asls]| (2.22)
<7, 1s=1 t=1 cusl T )

where Kcorg(s,t) =1{s <rg,t <rg}. Therefore, the CLS estimator is also a special
case of the LRV-based estimator. The underlying variance matrix estimator is (2.8)
with K(s,t) = 1{s <ro,t <ro}.

We now consider the PLS estimator when intercepts are allowed in the time series
regressions. In this case, the PLS estimator is defined as

Fonse = (30 060 7 (- 50} (03 (- 50 (v —f@)’)_l,

i=1 t=1 i=1 t=1
i . (2.23)
where Y; . =1/T Zle Yi:and X;. =1/T Zle X+ But
1 i} 1 AR
T2 (Vi =Yi) (Xiy = Xi) = 5 ) YieXiy — 2. X,
t=1 t=1
T T T T
1 ) 1 —T—-s+1 T-— t +1,
= _QZZ(T_(S\/t)—i_l)Uy“ U TZTUZ/“SZ 1‘1,
s=1 t=1 s=1 t=1
T T
1 T—(svt)+1 (T—s+1\/T—t+1
_ Tzz{ : ) _< : >< ! >}UyhU’ (2.24)
s=1 t=1
Similarly,
1 & 1 & 1
_ _ ., _
> (Ko = Xi) (Xig = X)) = 5 D Xip Xy — X X,
t=1 t=1
e~ (T—(sVt)+1 [(T—s+1\ /[T—t+1
_ Tzz{ . _< : >< ! >}Ux“U’ (2.25)
s=1 t=1



Therefore,
~ "l T st y
ﬁPLS,c = (Z T ZZKPLS,C (Tﬂ T) in,sti,t>
-1
ZKPLSC <S t> Uz, SUa,: t) ) (2'26)
T DET T

i:l s=1t=1

X
oY
3
—_
M'ﬂ

where

T st _T—=(sv)+1 (T—s+1\(T-t+1

The kernel function K}QL Se (s,t) depends on T'. An asymptotically equivalent estima-
tor with a kernel function that is independent of T is

Bprse = (Z ZZKPLSC (T T> Uy“stZ,>

= s=1 t=1

X (Z;’ZZKPLSC<T T> Us,i,s UL, ) : (2.28)
= s=1 t=1

where
Kprse(s,t) =1—(sVt)—(1—s)(1 —t)=min(s,t)— st. (2.29)

From the above expression, it is clear that Bp s, 18 an LRV-based estimator with
kernel K (s,t) = min(s,t) — st.

In summary, the existing estimators or their asymptotically equivalent forms are
special cases of the LRV-based estimator. The underlying LRV estimators use kernels
which are not translation invariant. This sharply contrasts with the usual LRV
estimator where translation invariant kernels are commonly used.

3 Asymptotic Properties of the New LRV Estimator

The properties of ﬂ r.ry evidently depend on those of the long-run variance matrix
estimator Q In this section, we consider the asymptotic properties of Q We first
examine the bias and variance of Q for fixed T" and then establish its asymptotic
distribution.

The bias of QZ depends on the smoothness of fy,y7, () at zero and the properties of
the kernel function. Following Parzen (1957), Hannan (1970), and Andrews (1991),
we define

@ _ 1 N~ qep
Tow: = 5= j;o 319T:(5) (3.30)
The smoothness of the spectral density at zero is indexed by ¢ for which fl%)Ul is finite

almost surely. The larger is q such that f((JlZ)Ul < o0 a.s., the smoother is the spectral
density at zero.



The following lemma establishes the smoothness of the spectral density at A = 0.

Lemma 2 Let Assumptions 1 and 2 hold, then
(0) EY72 o 5 ITi()ll = X720 S E IT5(5)] < oo
2
(b) Brfiy) = EX2 o 5°Ti(j) < co.

COMMENT: Lemma 2(b) reveals that fc(,?)UZ < oo almost surely for i = 1,2,...,n
When gq is even,

fif, = (D72 f, ()] . (3:31)
Therefore, the boundedness of f[(j)Ul implies that fy,y,(\) is differentiable to the
second order at A = 0.

When K(s,t) = k(s —t), the bias of Q; depends on the smoothness of k(z) at
zero. To define the degree of smoothness, we let

kg = lim 1= k@) < oo for ¢ > 0. (3.32)
z—0 |(L‘ |q
The largest g for which £, is finite is defined to be the Parzen characteristic exponent
q*. The smoother is k(z) at zero, the larger is ¢*. The values of ¢* for various kernels
can be found in Andrews (1991).
To investigate the asymptotic properties of Qi, we assume the kernel function
K(s,t) satisfies the following conditions.

Assumption 4 (Kernel Conditions) K (s,t) € K1U Ko where
Ki={K(s,t): K(s,t)=1—(sVt), 1{s <rp,t <rg}, or min(s,t) — st}

and ICo = {K(s,t) : K(s,t) = k(s —t) and
(i) k(x) : [-1,1] — [0,1] is continuous and satisfies k(z) = k(—x) and k(0) =
(i) the Parzen characteristic exponent of k(x) is greater than or equal to one.
(111) k(x) is posmve semi-definite, i.e., for any square integrable function f(x),

fo fo s —1t)f(s)f(t)dsdt > 0}

Assumption 4 guarantees the boundedness of fol fol K?2(r, s)drds, a quantity that
appears in the expressions for the asymptotic variances. Assumption 4(i)-(iii) is not
as restrictive as it seems. Examples of commonly used kernels satisfying Assumption
4(i)—(iii) include the Bartlett and Parzen kernels:

[ 1— |z for |z| <1,
Bartlett ker(r) = { 0 otherwise,
1— 622 +6|z| for 0 < |x| <1/2, (3:33)
Parzen kpr(z) =< 2(1 —|z|)3 for 1/2 < |z| <1,
0 otherwise.

10



Note that the three kernels in K; are positive semi-definite. When K(s,t) =

1= (sVe),
[ [ wnsoswaa= [ ( [ 1 ) Bs>0. (330

When K(s,t) ={s <rog,t <ro},

/0 1 /0 1K(s,t)f(s)f(t)dschs = ( /0 ! f(s)ds>2 > 0. (3.35)

When K (s,t) = min(s,t) — st,

/ / K(s,t)f(s)f(t)dsdt = /01F2(s)ds - (/01 F(s)ds>2 >0, (3.36)

where F(s fo r)dr. Therefore, the kernels satisfying Assumption 4 are positive
seml—deﬁnlte As shown by Newey and West (1987) and Andrews (1991), the posi-
tive semi-definiteness guarantees the positive semi-definiteness of 2;. In addition, it
enables us to use the Mercer’s theorem. We present a modified version below, which
helps establish the asymptotic distribution of {2;. For more discussion on the Mercer’s
Theorem, see Tanaka (1996).

Mercer’s Theorem If k(x) is positive semi-definite, then

T_S Z_fm m )

where Ay, > 0 are the ezgenvalues of the kernel and fn(z) are the corresponding
eigenfunctions, i.e. fm(s) = Am fo r—38) fm(r)dr, and the right hand side converges
uniformly over (r,s) € [0 1] x [0, 1].

We proceed to investigate the bias and variance of Q. The following two lemmas
establish the limiting behaviors of the bias and variance of €; as T'— oo.

Lemma 3 Let Assumptions 1 — 4 hold.
(a) If K(s,t) is translation invariant with the Parzen characteristic exponent
q* =1, then

lim TE [E (Qimi) - /LQZ-] — (k1 + DESS),. (3.37)

(b) If K(s,t) is translation invariant with the Parzen characteristic exponent q* >
2, then
Jim TE [E (ﬁi]}"ci> _ MQZ} — 2 Efi,. (3.38)

(c) If K(s,t) € K1, then E (E (QJ]—"Q) - ,uQi) =0 (1/T), where p = fol K (s, s)ds.

11



COMMENTS: (i) When K(s,t) is translation invariant, K(s,s) = k(0) = 1, so
fol K(s,s)ds = 1. In this case, Lemmas 3(a) and (b) show that €; is centered around
a matrix that is equal to the true long-run variance matrix up to a small additive
error. The error has a finite expectation and is independent across i. As a conse-
quence, the average long-run variance matrix can be estimated by averaging Q; over
i=1,2,....,n. When K(s,t) € Ky, Q;, scaled by fol K (s, s)ds, is equal to the true
variance matrix plus a noise term. The average long-run variance matrix can be
estimated by averaging (fol K(s, s)ds) ' Q;overi=1,2,...n

(ii) For the conventional LRV estimator with a truncation parameter St, the
bias is of order O (1/S%) under the assumption that Sp/T + S%/T + 1/Sp — 0
(e.g. Hannan 1970; Andrews 1991). The bias of the conventional estimator is thus
of a larger order than the estimator without truncation. This is not surprising as
truncation is used in the conventional estimator to reduce the variance at the cost of
the bias inflation.

(iii) When K (s,t) is translation invariant, the dominating bias term depends on
the kernel through ki if ¢* = 1. In contrast, when ¢* > 2, the dominating bias term
does not depend on the kernel. From the proof of the Lemma, we see that when
¢* = 2, the next dominating bias term is —27T 2ko E/ f . Therefore, when ¢* > 2,
the kernels exert their bias effects only through high order terms. This has profound
implications for the asymptotic bias of 6 1.ry considered in subsection 4.2.

Lemma 4 Let Assumptions 1 —4 hold. Then we have:
(a) limT_,oovar<vec (QZ — Qz)) =0, where

T T
=773 S (Vi) K (s ) (G Vi) (3.39)

t=1 =1

(b) limT_,oovar(vec(Qi)) = p2var(vec () + 62 (Iy2 + Kpm) E (4 ® Q;) , where

11
62 = / / K2(r, s)drds. (3.40)
0o Jo

COMMENTS: (i) Lemma 4(b) gives the expression for the unconditional variance.
It is easy to see from the proof that the conditional variance has a limit given by

limy_, oo var (vec(A-)|.7-" ) = 6% (L2 + Kpm) (4 @ Q;) . Therefore, the magnitude of

the asymptotic variance depends on 2. This suggests using the kernel that has the
smallest 62 value when the variance of ); is the main concern

(ii) Lemma 4(b) shows that the conditional covariance between the (a,b) and
(c,d) elements of Q converges to 62 (Qacivg + QiadQipe) , where Qi denotes the
(a,b) element of ;. R

(iii) Lemma 4(c) calculates the limit of the finite sample variance of fi,y;,(\)
when A = 0. Following the same procedure and using a frequency domain BN de-
composition, we can calculate the limit of the finite sample variance of fy,y, () for
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other values of A when the full bandwidth is used in the smoothing. This exten-
sion may be needed to investigate seasonally integrated processes. This extension is
straightforward but tedious and beyond the scope of this paper.

Lemma 5 Let Assumptions 1 -4 hold. Then
(a) Conditional on Fe,, Q; = Ci(1)=:;Cl(1);
(b) E(Ci(1)E:Ci(1)'|Fe;) = i, where

1 1
=, = / / K (r, $)dW; (r)dW(s). (3.41)
0 0

COMMENTS: (i) When K (s,t) is translation invariant, 4 = 1. In this case, Lemma 5
shows that €; is asymptotically unbiased, even though it is inconsistent. For other
kernels, QZ is asymptotically proportional to the true LRV matrix. We will show that
the consistency of B; py inherits from this asymptotic proportionality.

(ii) Kiefer and Vogelsang (2002a, 2002b) established asymptotic results similar
to Lemma 5(a) under different assumptions. Specifically, they assumed the kernels
were continuously differentiable to the second order. As a consequence, they had to
treat the Bartlett kernel separately. They obtained different representations of the
asymptotic distributions for these two cases. The unified representation in Lemma 5
is very valuable. It helps us shorten the proof and enables us to prove the asymptotic
properties of 3 py in a coherent way.

(iii) When K(r,s) = 1 — (r V s), some simple calculations show that Z; =
fol Wi(s)W/(s)ds. So

T 1
T2 Z ZiyZi; = Ci(1) ( /0 Wi(s)W;(s)ds> Cl(1). (3.42)

t=1
When K (r,s) = {r <rop,s <1}, we have Z; = W;(ro)W/(ro). So

T
72 Z Zi trro) Zi (1rg) = Ci()Wi(r0) Wy (r0) Gy (1). (3.43)
t=1

When K (r,s) = min(s,t) — st, we have Z; = fol Wi(s)W(s)ds — ( Wi(s)d8)2. So

T

T Z (Ziv—Zi ) (Ziz — Zi.)
=1

~ o) ( /O W)W (s)ds — ( / Wi(s)ds>2> ). (3.44)

The above weak convergence results are consistent with (2.5) and the continuous
mapping theorem.
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4 Asymptotic Properties of the LRV-based Estimator

This section considers the asymptotic properties of the LRV-based estimator. Before
proceeding, we first define some notation. The sequential approach adopted in the
paper is to fix n and allow T to pass to infinity, giving an intermediate limit, then by
letting n pass to infinity subsequently to obtain the sequential limit. As in Phillips
and Moon (1999), we write the sequential limit of this type as (T',n — 00)seq. The
joint approach adopted in the paper allows both indexes, n and T, to pass to infinity
simultaneously. We write the joint limit of this type as (T, n — o).

4.1 Sequential Limit Theory and Joint Limit Theory

The following theorem establishes the consistency of B LRy as either (T, n — 00)seq
or (T,n — 00).

Theorem 6 Let Assumptions 1-4 hold, then
(i) Qm —p Wq,
(ii) ﬁyw —p Wlya
(iii) BLRV —p B,

as either (T,n — 00)seq or (T, — 00).

COMMENT: B LRy 1s consistent even though Q; is inconsistent. This is not surprising
as (); equals u€); plus a noise term. Even if the noise in the time series estimation is
strong, the noise can be characterized as independent across individuals. Hence, by
averaging across individuals, we may weaken the strong effect of noise while main-
taining the strength of the signal. This is reflected in Lemma 6(i) and (ii), which
show that ﬁm and ﬁyx are respective consistent estimates of (2, and €}y, up to a
multiplicative scaler.

Now we proceed to investigate the asymptotic distribution of B Lrv- We consider
the sequential asymptotics first and then extend the result to the joint asymptotics.
In order to get a definite joint limit, we need to control the relative rate of expansion of
the two indexes. Write v/n(Bry—8) = v1(Qye—B%:2) .. Theorem 6 describes the
asymptotic behavior of ﬁm under the sequential and joint limits. Under Assumption
3, Qg has full rank, which implies that .} converge to u=1Q!. Therefore, it suffices
to consider the limiting distribution of \/ﬁ(ﬁym — ,Bﬁm)

Under the sequential limit, we first let T — oo for fixed n. The intermediate limit
is

Vi Qye — 0Q2) = % é@, (4.1)

where

Qi = Cyi(1)ZiCqy(1) — BCai(1)ZiCry(1), (4.2)
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Cyi(1) is the my x m matrix consisting of the first m, rows of C;(1), and Cy;(1) is
the m, X m matrix consisting of the last m, rows of C;(1). In view of Lemma 5, the
mean of the summand is

and the covariance matrix © is Evec(Qi)vec(Qi)'. An explicit expression for © is
established in the following lemma.

Lemma 7 Let Assumptions 1-4 hold. Then © is equal to

M2Evec ( yxi ﬂme) vec ( yi ﬁQxxz)
+62E (me ® ( Yyt BQxyz - ym’ﬂ + ﬂmeﬂl))
+62 (E(Qxyz - xmﬂ ) & ( yxt Bme)) MyMyg

where K, m, 18 the mymg X mym, commutation matriz.

The sequence of random matrices Cy;(1)Z;C%; (1) — BCi(1)2;CL, (1) is iid (0, O)
across ¢. From the multivariate Linderberg-Levy theorem, we then get, as n — oo,

1 < - -
7 2 (Cu(DECL() = BOH(DECL(1) = N(0,©). (4.3)
i=1
Combining (4.3) with the limit lim Q5! = Q1 we establish the sequential limit

in the following theorem.
Theorem 8 Let Assumptions 1 — 4 hold. Then, as (T',n — 00)seqs

ViBrry = B) = N(O, (% @ In,)OrLay (%d © Im,), (4.4)
where O py 18

Ewvec ( Yxi Bme) vec ( yxi ﬂme)
+M_2(52E (me & ( YYi BQxy'L - Qymﬂ + Bmeﬂ/))
+M_262 (E(Qxyz - xmﬂ ) ® ( YTt ﬂme)) myMyg -
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We now show that the limiting distribution continues to hold in the joint asymp-
totics as (T, n — 00). Write \/n(Qy; — Q%) as

\/E(Qyw - ﬂﬁmt) ==

.M§

(Qpes = %)

=1

I
Bl
NE

(Aym Bsz— (Aym Bsz)>

.

;l :
HM:“

E (nyi - ﬁﬁmxi)

= T zn: i + b, (4.5)

where
Q’L T — ym ﬂQmm - E( YT ﬂQmm) (46)
and
1 o~ .

Because of Lemma 3, the term b,r vanishes under the sequential limit. However,
under the joint limit, we need to exercise some control over the relative expansion
rate of (T,n) so that b,r vanishes as (T,n — o0). When this occurs, the term
1/y/n 370 Qi will deliver the asymptotic distribution as (T',n — o).

Using Lemma 3, we have

v

s
I
—

E (B (Qyoi — 02|72, )

bnT =

Sl Sl
NE

[E (i — B%ai) + O(1/T)] = O (vn/T), (4.8)

1

-
Il

because the O(+) terms in the summand are independent across i. Therefore, in order
to eliminate the asymptotic bias, we need to assume the two indexes pass to infinity
in such a way that /n/T — 0. Under this condition, we can prove the following
theorem, which provides the asymptotic distribution under the joint limit.

Theorem 9 Let Assumptions 1 — 4 hold. Then, as (T,n — o0) such that \/n/T — 0,

Vi(Brry = B) = N(0,(Q% © In,)OLrv (g © ). (4.9)

COMMENTS: (i) For the PLS estimator, K(r,s) = 1 — (r V s). Therefore,
2 2
(fo (s,s ds) = (fol(l—s)ds> = 1/4, 6 = fol fol K2?(r,s)drds = 1/6,
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and p~26% = 2/3. Hence the PLS estimator satisfies, under both the sequential and
joint limits,
Via(Bprs = 8) = N0, (U ® In,)Oprs () © Im,) (4.10)
with
Oprs = EV@C( yxi ﬂme) VeC( yri ﬂme)
+2/3E (me ® ( yyi ﬁQxyz - ymﬂ + ﬁmeﬂ )) (4'11)
+2/3 (E(Qxyz - xmﬂ) ( YTl ﬂme)) MyMy *

The above limiting distribution is identical to that obtained by Phillips and Moon
(1999). Similarly, we can show that the CLS estimator has the same asymptotic
distribution as in (4.10) but with 2/3 replaced by 1. Again, the limiting distribution
is the same as that obtained by Phillips and Moon (1999).

(ii) When the time series regression includes an intercept, the kernel for the PLS
estimator is K (s,t) = min(s,t) — st. In this case,

/Krrdr—/ (r—r®)dr=1/6, (4.12)

1 1 ps
62 = / K?*(r,s)drds = 2/ / (r —rs)drds
0 o Jo

- /01 <§ (—1+ 3)233> ds = 1/90. (4.13)

So uz26% = 36/90 = 2/5. Hence ﬁpLSC has the limiting distribution in (4.10) with
2/3 replaced by 2/5. Once again, we obtain the asymptotic result that was established
in Phillips and Moon (1999).

and

(iii) BPLS,C is more efficient than the BPLS and BPLS’TO. But BPLS’C is less efficient
~ —2
than Bppy if K = (fol K (s, s)ds) (fol fol K2(r, s)drds) < 2/5. This is apparent

because asymvar(3; gy )—asymvar(3py sc) is

(2/5 = K) E (Qaai @ Qyyi — BQyi — Uil + 8003
+ (2/5 - ’Q) E (Qxyi - meﬁ,) ® (Qym ﬁme) My My
= (2/5—r) E(C(1) © (Cy (1) = BC(1)))
X (I + Kim) (Ca; (1) @ (G, (1) = BC, (1))
which is negative definite if K < 2/5.

The values of « for the Bartlett and Parzen kernels are 0.5 and 0.4473, respectively.
Therefore, 31 gy is asymptotically more efficient than Sppg and Bop.g r, if the Bartlett

or Parzen kernel is used. However, for these two kernels, ﬂ LRy is less efficient than
B pLS,c- The next subsection proposes two new classes of kernels which deliver more

efficient estimators than 3 PLS,c-
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4.2 LRV Based Estimator with Sharp and Steep Kernels

In this subsection, we consider two new classes of kernels and the asymptotic proper-
ties of the LRV-based estimators that these new kernels delivered. These new kernels
have also been considered by Phillips, Sun and Jin (2003a, 2003b).

The first class consists of the sharp kernels defined by k(z) = (1— |z|)?1{|z| < 1},
where p € ZT is the sharpness index. These kernels, as so defined, exhibit a sharp
peak at the origin and include the Bartlett kernel as a special case. The positive
semi-definiteness of sharp kernels inherits from that of the Bartlett kernel as they are
equal to the products of the Bartlett kernels.

For sharp kernels, the Parzen characteristic exponent is ¢* = 1 and

T e € e E
k1 = ili% T =p. (4.14)
The value of & is
1 1 o 9
K= 1—1|r—s drds = . 4.15
L[ a=r=s oTEs (415)

Therefore, k is a decreasing function of the sharpness index p. In principle, we can
choose p to make k as small as possible. However, the finite sample performance can
be hurt when p is too large for a moderate time series dimension. This is because the
bias of QZ increases as p increases, as shown by Lemma 3. In fact, when /n/T — a,

the asymptotic distribution of \/n (BL RV — 6) under the joint limit is
N (b, (% ® Im,)Oprs(Qy ® Im,) (4.16)

where b = —27a (p+ 1) (Q;j@[my)vec(Ef[(Jz)_ U, —ﬁEf[(Jlm)_ v, )- Therefore, the squared
asymptotic bias b'b is increasing in p while the asymptolticlvariance is decreasing in
p. This observation implies that there exists an optimal p that minimizes the mean
squared errors. The optimal p depends on the ratio o and the average spectral density
of U;. We can estimate the optimal p following the lines in Andrews (1991), but we
do not pursue this line of analysis in the present paper

The second class consists of the steep kernels defined by k(z) = (kpgr(x))” where
kpr(x) is the Parzen kernel and p € Z" is the steepness index. These kernels decay
to zero as x approaches 1. The speed of decay depends on p. The larger p is, the
faster the decay and the steeper the kernels. Steep kernels are positive semi-definite
because the Parzen kernel is positive semi-definite. The difference between the sharp
kernels and the steep kernels is that the former are not differentiable at the origin
while the latter are. For steep kernels, the Parzen characteristic exponent is ¢* = 2

and
1—(1—622+6|z)")
. —

ko = lim 6p. (4.17)

z—0 T

The value of s can be calculated using numerical integration. For p =1,2,3,4,5,6,7,8,
the values of k are 0.4473, 0.3359, 0.2806, 0.2459, 0.2216, 0.2033, 0.1890, 0.1772, re-
spectively. Obviously, x decreases as p increases. This is expected because the steep
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kernel with a larger p is smaller than that with a smaller p. Therefore, the steep
kernel can deliver an LRV-based estimator (1,py that is more efficient than 8 pg .,
as long as the steepness index is greater than 1.

When the steep kernel is employed, the dominating bias of Q; is independent
of the steepness index. If (n,7 — o0) such that\/n/T — «, then the asymptotic
distribution of \/7(8y gy — B) is

N (b, (7 ® Im,)OLrV (st @ I, ) (4.18)

where b = —27a(Q} ® I, )vec(E f[(JZUEZ — BF fc(,lm )iUwi)' This limiting distribution
seems to imply that we can choose p to make x as small as possible without inflating
the asymptotic bias. This is true in large samples. But in finite samples, a large s
may lead to a poor performance. The reason is that the second dominating bias term
in ﬁz is T221ko F f[(JQ)UZ, which depends on k5. As a consequence, the asymptotic bias

of B ry under the joint limit is
~2m0( Qi @ L, Joec(Bfy) = BEfGY [ )+ O (ko T?) . (4.19)

The O, (-) vanishes when (n,T — o0) such that\/n/T — «. But in finite samples,

the O (-) may have an adverse effect on the performance of B r.rv- Nevertheless, the
effect is expected to be small, especially when T is large.

4.3 Hypothesis Testing

The asymptotic theory developed above allows us to test hypotheses about the long-
run average relationship. To examine the existence of a nonlinear (or linear) rela-
tionship about the components of the long-run coefficient, we can perform the usual
Wald test. Specifically, the null hypothesis is Hy : ¥(3) = 0, where (+) is a p-vector
of smooth function on a subset R"*™= such that 9¢/03" has full rank p (< mymy).
We construct the Wald statistic:

Wy = n¢(BLRV)‘7¢_1w(BLRV)> (4.20)
where
Vy = 0v(Brry)/0B'Vy ' 0%(BLry) /0B (4.21)
Vs = (Qm_ml ® Imy) OLry (?2;; ® Imy> (4.22)
and
OLry = % ;VGC (Qymi - BLRVﬁzxi> vec (ﬁym’ — BLRVQJCM'),- (4.23)

Some simple manipulations show that this test statistic converges to a y? random
variable under both the sequential and joint limits. The details are omitted here.

Theorem 10 Let Assumptions 1 — 4 hold, Then under Hy, Wy = X;% as (Ty,n —
0)seq or (T'yn — 00) with \/n/T — 0.
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5 Finite Sample Performances

In this section, we investigate the finite sample performances of the LRV-based esti-
mators. The data generating process is

AYz‘,t T Uy, it
(8 ) v (1) 20

with U;; following a VAR(1) process:
Uiy = AU s + Vig, (5.25)

where A; is a 2 x 2 matrix and V;; is a 2 x 1 random vector that is iid across ¢ and ¢
with distribution N(0, I3), i.e

() GOL e

For simplicity, we assume that there is no cross sectional heterogeneity in VAR(1)
coefficients so that A; = A for all 7. In addition, we assume A is symmetric so that

A:(Z 2) (5.27)

for some scalars a and b. It is easy to see that the eigenvalues of matrix A are Ay = a+b
and Ay = a — b. We choose a and b such that A1, Ay € (0,1), i.e

(a,b) e A={(a,b):0<a+b<land 0<a—0b<1}. (5.28)

The process U;; as defined in (5.25)(5.28) is stationary and exhibits some persis-
tence. Note that the set A is a square, which is divided into four triangles by the
two diagonals. The parameter configurations we consider are the centers of these
four triangles and the center of the square itself. More specifically, we consider the
following constellation of parameter configurations:

- ()2t () () o

For the above (a,b) values, the true long run average slope coefficients are § =
4/5,8/17,—4/5,—8/17 and 0, respectively.

In the Monte-Carlo simulations, the initial values were set to zero whenever they
were called for. The data were generated by creating T+100 observations and discard-
ing the first 100 observations to alleviate the effect of initialization. We examine differ-
ent (N, T) combinations and consider three sets of estimators: B PLS> B PLSc} ﬂbl, ﬁbg,
ﬁb4, the LRV-based estimators with sharp kernels (p = 1,2 and 4), and ﬁpl, ﬂp2, 6p4,
the LRV-based estimators with steep kernels (p = 1,2 and 4). For each (N,T') and
(a,b) combination, we calculate the bias, standard error and root mean squared error
(RMSE) of each estimator based on 5000 replications.
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Tables 1-3 report the simulation results when (a,b) = (2/3,1/6). We first consider
the case N = T. As is apparent from Table 1, the absolute biases and standard errors
of all the estimators decrease as N and T increase. As a consequence, the RMSE’s
of all estimators decrease as N and T increase. For any given (N,T'), the biases
of the LRV-based estimators with sharp and steep kernels increase with the power
parameter p, while the standard errors decrease with the power parameter p. This
pattern is consistent with our asymptotic theory in Section 4.2. Table 1 also reveals
that (,, dominates Bpyg . based on the RMSE criterion. The dominance of 3,5 over

B pLs 1s also obvious for a large T' (T" > 25). In addition, for a given power parameter
p, the LRV-based estimator with the steep kernel (Bpp) dominates that with the sharp
kernel (Bbp).

Next, we consider the case that N is fixed at 25 and T is allowed to take various
values (Table 2). Again, for all estimators considered, the absolute bias and standard
error decrease as T increases. The former is consistent with the asymptotic result
that the asymptotic bias is of order O (1/T") . The latter may be explained by the fact
that the time series estimate of the LRV becomes less variable as T increases. The
decrease of the standard error is accentuated as 7' continues to increase, reflecting
that the asymptotic variance is independent of T'. As in Table 1, the biases of 3, and

Bpp increase with p while their standard errors decrease with p. For a given power
index p, the RMSE of 3,,, is uniformly smaller than that of 3;, over different values
of T\ In general, for both 3, and §,,, a larger power parameter p may be employed
for larger T' It is also clear from Table 2 that 3,5 has a smaller RMSE than 8prg .

for all T" and BPLS for T' > 25.

Finally, we turn to the case that T is fixed at 25 and N is allowed to change.
Table 3 shows that for each estimator the bias is not sensitive to the width of the
cross sectional dimension. This is expected because the asymptotic theory shows that
the asymptotic bias depends only on 7" but not on N. It is not surprising that the
standard error is decreasing in N as it is of order 1/ VN, according to the asymptotic
distributions. Comparing different estimators, we find that 3p; ¢ is superior to other
estimators in terms of the RMSE.

The observations made above apply to the case (a,b) = (2/3,—1/6). To save
space, we do not reproduce the results for this case. The results for the two cases
(a,b) = (1/3,1/6) and (a,b) = (1/3,—1/6) are similar. For brevity, we report only
the RMSE’s for the case (a,b) = (1/3,1/6), since they are representative of the
results found in the case (a,b) = (1/3,—1/6). Table 4 contains the results. We draw
attention to three aspects of this table. First, when N =T, the RMSE’s of ;, and

Bpp decrease as p increases. This is because the biases (not reported) are on average
much smaller than those in Table 1, and the standard error components determine
the relative magnitudes of the RMSE’s. It is clear from the table that (3,4 has a

smaller RMSE than BM, which in turn has a smaller RMSE than the rest of the
estimators. Second, when N is fixed, the performances of 3;, and 3,, improve as p

increases, just as in the case N =T. When T is less than 50, 3,4 outperforms other
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estimators while when 7' is greater than 50, ﬁb4 outperforms others. Regardless of the
time series dimension, ﬁbQ, ﬁb4, BPQ, 5;;4 have smaller RMSE’s than BPLS and BPLSC

Third, when T is fixed at 25, BPQ is the best estimator, having a smaller RMSE than

any other estimators. This is in contrast with the results in Table 3 where B pLS 18
the best estimator.

We now consider the case (a,b) = (1/2,0). Table 5 reports the RMSE’s. The table
shows that either 3,4 or 3y has the smallest RMSE for all (N, T') combinations con-
sidered. The reason is that the biases are very small for this (a,b) configuration. As
a consequence, variance reduction outweighs bias inflation for the LRV-based estima-
tors and a large power parameter is justified. Note that for all (N, T) combinations,
ﬂbQ, 5174: ﬁp2, ﬂp4 have smaller RMSE’s than ﬁPLS and ﬁPLSC

To sum up, the simulation results reveal that the steep kernel with power pa-
rameter 2 or 4 delivers estimates that have the best performance in an overall sense.
Comparing with the existing estimators 6 prs and ﬁ PLS,c; the estimator ﬁ 5 has a
smaller RMSE for almost all the parameter configurations and (N, T) combmatlons
The only possible exception is when 7" is small (7' < 25).

6 Conclusion

In this paper, we have proposed a unified framework for the estimation of the long-
run average relationship. This framework includes the panel PLS estimators and the
limiting CLS estimator, as well as a class of new estimators. We show that the new
estimators are consistent and asymptotically normal under both the sequential limit
and the joint limit. The joint limit is derived under the rate conditiony/n/T — 0,
which is less restrictive than the rate condition n/T" — 0, as required by Phillips
and Moon (1999). A central result is that, using sharp kernels and steep kernels
introduced in this paper, the new estimators are asymptotically more efficient than
the existing ones. A simulation study shows that steep kernel with the exponent
parameter 2 or 4 produces estimators that dominate the PLS estimators for various
(N, T) combinations.

This paper can be extended in several directions. First, the power parameter p for
the sharp and steep kernels is fixed in the paper. We may extend the results to the case
that p grows to infinity at a suitable rate with N and T" along the lines of Phillips, Sun
and Jin (2003a, 2003b). Second, the LRV-based approach can be used to estimate
the long-run average relationship when there is a cointegrating relationship in the
time series regression. This problem is currently being investigated and the results
will be reported in a future paper. Finally, the LRV-based estimator can be employed
in implementing residual-based tests for cointegration in panel data. Following the
lines of Kao (1999), we can use the LRV-based estimator to construct the residuals
and test for unit roots in the residuals. Kao (1999) used the least squares dummy
variable (LSDV) estimator to construct the residuals. The LSDV estimator is the
same as the PLS estimator when intercepts are included in the time series regressions.
Since the LRV-based estimator is more efficient than the LSDV estimator, the test
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using the LRV-based residuals may have better power properties.
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Table 1: Finite Sample Performances of LRC-based Estimators
with N=T, (a,b)=(2/3,1/6), and 5000 Replications

N&T  Bprs BPLS,C B B o Bpl Bpg Bp4
Bias
25  -0.0120 -0.0898 -0.0663 -0.0897 -0.1272 -0.0749 -0.0978 -0.1284
50  -0.0112 -0.0469 -0.0325 -0.0459 -0.0699 -0.0319 -0.0434 -0.0614
75 -0.0091 -0.0302 -0.0206 -0.0302 -0.0477 -0.0184 -0.0252 -0.0365
100  -0.0083 -0.0236 -0.0168 -0.0239 -0.0372 -0.0140 -0.0182 -0.0256
125 -0.0077 -0.0186 -0.0131 -0.0188 -0.0297 -0.0103 -0.0131 -0.0183
150  -0.0059 -0.0150 -0.0104 -0.0152 -0.0246 -0.0076 -0.0098 -0.0139
Standard Error
25 0.1259  0.1109 0.1096 0.0991 0.0892 0.1019 0.0942 0.0875
50 0.0843  0.0670  0.0687 0.0603 0.0523 0.0633 0.0570 0.0516
75 0.0674  0.0515 0.0533 0.0457 0.0386 0.0489 0.0433 0.0385
100 0.0552 0.0432 0.0457 0.0389 0.0325 0.0421 0.0371  0.0326
125 0.0494 0.0381 0.0408 0.0345 0.0285 0.0376  0.0331  0.0290
150  0.0437 0.0335 0.0364 0.0305 0.0249 0.0336 0.0293  0.0254
Root Mean Squared Error
25 0.1265 0.1427  0.1281  0.1337  0.1553  0.1265 0.1358 0.1554
50 0.0850  0.0818 0.0760 0.0758 0.0874 0.0709 0.0717  0.0802
75 0.0680  0.0597  0.0571 0.0548 0.0614 0.0523 0.0501 0.0531
100 0.0559 0.0492 0.0487 0.0457 0.0494 0.0444 0.0413 0.0415
125  0.0500 0.0424 0.0428 0.0393 0.0412 0.0390 0.0356  0.0343
150  0.0441 0.0367 0.0378 0.0341 0.0350 0.0344  0.0309  0.0290
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Table 2: Finite Sample Performances of LRC-based Estimators
with N = 25, (a,b) = (2/3,1/6), and 5000 Replications

X

T  Bprs Brrse Br1 B2 Bha Bp1 Bp2 pd

Bias
25 -0.0120 -0.0898 -0.0663 -0.0897 -0.1272 -0.0749 -0.0978 -0.1284
50 -0.0105 -0.0455 -0.0308 -0.0446 -0.0690 -0.0304 -0.0421 -0.0602
75 -0.0119 -0.0320 -0.0219 -0.0312 -0.0482 -0.0194 -0.0257 -0.0366
100 -0.0063 -0.0209 -0.0139 -0.0213 -0.0352 -0.0109 -0.0153 -0.0232
125 -0.0075 -0.0201 -0.0139 -0.0195 -0.0302 -0.0108 -0.0134 -0.0185
150 -0.0070 -0.0146 -0.0100 -0.0148 -0.0243 -0.0069 -0.0091 -0.0133
Standard Error
25 0.1259 0.1109 0.1096 0.0991 0.0892 0.1019 0.0942 0.0875
50  0.0843 0.0670 0.0687 0.0603 0.0523 0.0633 0.0570 0.0516
75 0.0674 0.0515 0.0533 0.0457 0.0386 0.0489 0.0433 0.0385
100 0.0552 0.0432 0.0457 0.0389 0.0325 0.0421 0.0371 0.0326
125 0.0494 0.0381 0.0408 0.0345 0.0285 0.0376 0.0331  0.0290
150 0.0437 0.0335 0.0364 0.0305 0.0249 0.0336 0.0293 0.0254
Root Mean Squared Error
25 0.1265 0.1427 0.1281  0.1337 0.1553  0.1265 0.1358  0.1554
50 0.1226  0.1063  0.1037 0.0973 0.1016 0.0959 0.0918  0.0950
75 0.1182 0.0948 0.0964 0.0861 0.0831 0.0880 0.0800 0.0765
100 0.1143  0.0900 0.0938 0.0820 0.0749 0.0867 0.0775 0.0708
125 0.1143 0.0873 0.0925 0.0791 0.0695 0.0851 0.0747 0.0662
150 0.1104 0.0861 0.0927 0.0787 0.0676  0.0857  0.0750  0.0659
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Table 3: Finite Sample Performances of LRC-based Estimators
with T' = 25, (a,b) = (2/3,1/6), and 5000 replications

X

N Bprs  Bprse Br1 B2 Bha Bp1 Bp2 pd

Bias
25 -0.0120 -0.0898 -0.0663 -0.0897 -0.1272 -0.0749 -0.0978 -0.1284
50 -0.0109 -0.0870 -0.0638 -0.0868 -0.1239 -0.0721 -0.0947 -0.1251
75 -0.0108 -0.0881 -0.0655 -0.0881 -0.1248 -0.0736 -0.0959 -0.1259
100 -0.0101 -0.0866 -0.0635 -0.0863 -0.1232 -0.0718 -0.0942 -0.1245
125 -0.0111 -0.0874 -0.0645 -0.0872 -0.1241 -0.0728 -0.0952 -0.1255
150 -0.0100 -0.0876 -0.0643 -0.0870 -0.1239 -0.0726 -0.0950 -0.1252
Standard Error
25 0.1259 0.1109 0.1096 0.0991 0.0892 0.1019 0.0942 0.0875
50  0.0868 0.0774 0.0772 0.0699 0.0627 0.0717 0.0662 0.0614
75 0.0710 0.0617 0.0611 0.0554 0.0500 0.0569 0.0527  0.0490
100  0.0617 0.0544 0.0540 0.0490 0.0442 0.0503 0.0466 0.0433
125 0.0534 0.0486 0.0483 0.0438 0.0394 0.0449 0.0415 0.0386
150  0.0487 0.0441 0.0433 0.0393 0.0355 0.0403 0.0374  0.0348
Root Mean Squared Error
25 0.1265 0.1427 0.1281  0.1337 0.1553  0.1265 0.1358  0.1554
50  0.0875 0.1165 0.1002 0.1114 0.1389 0.1017 0.1155 0.1394
75 0.0718 0.1076  0.0896 0.1041 0.1344 0.0931 0.1094 0.1351
100 0.0625 0.1022 0.0833 0.0992 0.1308 0.0877 0.1051 0.1318
125  0.0545 0.1000 0.0806 0.0976 0.1302 0.0856 0.1039 0.1313
150  0.0497 0.0980 0.0775 0.0955 0.1288 0.0831 0.1021  0.1299
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Table 4: RMSE’s of LRC-based Estimators
with (a,b)=(1/3,1/6) and 5000 Replications

Bprs Brrse Bwm B2 Bpa B B2 Bpa

N&T Root Mean Squared Error (N=T)
25 0.1804 0.1347 0.1375 0.1221 0.1183 0.1267 0.1145 0.1081
50  0.1203 0.0872 0.0930 0.0799 0.0724 0.0860 0.0757 0.0674
75 0.0963 0.0691 0.0741 0.0624 0.0542 0.0688 0.0598 0.0521
100  0.0793 0.0589 0.0644 0.0540 0.0460 0.0600 0.0521 0.0450
125  0.0708 0.0520 0.0569 0.0475 0.0399 0.0532 0.0464 0.0401
150  0.0635 0.0467 0.0520 0.0430 0.0355 0.0485 0.0419 0.0359
T Root Mean Squared Error (N=25)
25 0.1804 0.1347 0.1375 0.1221 0.1183 0.1267 0.1145 0.1081
50  0.1726 0.1201 0.1309 0.1103 0.0944 0.1217 0.1063 0.0930
75 0.1671 0.1167 0.1289 0.1064 0.0869 0.1196 0.1032 0.0889
100  0.1638 0.1167 0.1290 0.1069 0.0862 0.1216 0.1059 0.0913
125 0.1655 0.1143 0.1269 0.1036 0.0820 0.1189 0.1023 0.0872
150  0.1597 0.1164 0.1298 0.1064 0.0840 0.1221 0.1055 0.0903
N Root Mean Squared Error (T=25)
25 0.1804 0.1347 0.1375 0.1221 0.1183 0.1267 0.1145 0.1081
50  0.1254 0.0991 0.0994 0.0917 0.0969 0.0909 0.0838 0.0831
75 0.1015 0.0854 0.0824 0.0792 0.0894 0.0751 0.0711 0.0735
100 0.0873 0.0770 0.0729 0.0718 0.0845 0.0665 0.0640 0.0680
125 0.0777 0.0723 0.0671 0.0680 0.0829 0.0609 0.0596 0.0654
150  0.0701 0.0684 0.0620 0.0644 0.0808 0.0560 0.0559 0.0627

27



Table 5: RMSE’s of LRC-based Estimators
with (a,b) = (1/2,0) and 5000 Replications

Bprs Brrse Bwm B2 Bpa B B2 Bpa

N&T Root Mean Squared Error (N=T)

25 0.2016 0.1433 0.1504 0.1277 0.1059 0.1386 0.1219 0.1068
50  0.1352 0.0955 0.1044 0.0869 0.0702 0.0966 0.0841 0.0728
75  0.1081 0.0778 0.0844 0.0699 0.0557 0.0786 0.0682 0.0587
100  0.0894 0.0655 0.0725 0.0597 0.0471 0.0675 0.0584 0.0500
125 0.0793 0.0580 0.0636 0.0525 0.0415 0.0597 0.0519 0.0445
150  0.0722 0.0526 0.0588 0.0482 0.0376 0.0550 0.0474 0.0404
T Root Mean Squared Error (N=25)
25 0.2016 0.1433 0.1504 0.1277 0.1059 0.1386 0.1219 0.1068
50  0.1928 0.1341 0.1473 0.1230 0.0996 0.1373 0.1198 0.1036
75 0.1863 0.1328 0.1469 0.1208 0.0961 0.1364 0.1178 0.1012
100  0.1855 0.1324 0.1467 0.1210 0.0959 0.1378 0.1196 0.1025
125  0.1861 0.1290 0.1428 0.1165 0.0914 0.1334 0.1150 0.0983
150  0.1820 0.1319 0.1454 0.1195 0.0941 0.1369 0.1187 0.1017
N Root Mean Squared Error (T=25)
25 0.2016 0.1433 0.1504 0.1277 0.1059 0.1386 0.1219 0.1068
50  0.1421 0.1011 0.1071 0.0909 0.0751 0.0986 0.0865 0.0756
75 0.1138 0.0828 0.0869 0.0736 0.0607 0.0798 0.0699 0.0609
100 0.0976 0.0721 0.0757 0.0647 0.0537 0.0701 0.0617 0.0539
125 0.0890 0.0635 0.0670 0.0571 0.0472 0.0618 0.0543 0.0473
150  0.0798 0.0579 0.0604 0.0515 0.0428 0.0557 0.0491 0.0430
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7 Appendix of Proofs

Proof of Lemma 1. Parts (a)—(d) are the same as Lemma 1 of Phillips and Moon
(1999). It remains to prove part (e). From Lemma 9(a) of Phillips and Moon (1999),
for any p > 1 and any p x ¢ matrix A = (a;i;), we have

P q
A7 < MY lagl” (7.1)

i=1 j=1
4\ ] 1/4
)] it

1/4
suffices to consider Z;O;io [E (C4 )} . By the generalized Minkowski inequality

a,i,p

for some constant M. Therefore, to evaluate the order of Z?io [E (‘ CN'Z s

and the Cauchy inequality, we have, for some constant M,

8

o (ci))”
p=0 ~
_ 4+ 1/4
= S |E| Y Cui <3S % B
p=0 t=p+1 p=0 t=p+1
I CIB I ED ol D SRt B B et
p=0t=p+1 p=0 \t=p+1 t=p+1
< w3 3 o) () = (i) (S
p=0 \t=p+1 (p+1) =0 p=1P
< o0 (7.2)

where the last line follows from Assumption 2(ii). This completes the proof of the
Lemma. m

Proof of Lemma 2. Since part (b) follows from part (a), it suffices to prove
part (a). Write EZ;‘;OjQ IT: ()| as

) 0
’ = EZ]2 E Z Ci,q%,t-i—j q‘/;t —p ',p’fc
=0

p,q=0

EY j||E (UiessU | 7))

EZ.] Z Z C,]-Hc‘/;t KV zt —p "p|fci ZEZj2 ZCi7j+pCz/p
3=0 j=0 p=0

p=0k=—j

< EY Y NCiill Gl = B D i 1C 0l || Cill
j=0  p=0 p=0 j=0
< EY. Z]+P 1Cs sl Hc’,p»<EZ Zy IG5l | 1ol

p=0 \j=0 p=0 \j=0
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Therefore, £ 22, 72 |IT:(5)| is bounded by

YD PEICI|C]

p=0j=0

S (Bleut?) B (o)

p=0 ;=0
o) . 1/2 o)
= Y2 (Elcul?) Y E (I
j=0 p=0

where the last line follows from (7.1) and Assumption 2(i). This completes the proof
of part (a). m

IN

)1/2 < 00

Proof of Lemma 3.  We first consider the case that K(s,t) is translation
invariant, i.e. K(s,t) = k(s—t). The proof follows closely those of Parzen (1957) and

Hannan (1970). We decompose FE (QJ]—'CZ) — (); into three terms as follows:

qmaa_zki ) Fa) —
j=—T+1
- Zk' ~hrg - 3 o)
j=—T+1 j_—OO
T-1 . ||
- ¥ (k:(%) ) Z k; J - 3" 1i)
j=—T+1 j=T+1 §I>T

= Qfl + QfQ + Qf?), say.

We consider the expectations of the three terms in turn. First, for ¢ = min(¢*,2),
EQES s,
i1

q (j/T) — NN —g ! w . »
e Z ( 3/T)* )“7‘ Li(j) =T Z ( 17/T)? )‘]‘ ET;(j)

j=—T+1 j=—T+1

_ ey 1{—T+1SJST—1}<‘%>|j|qEFi(j)

= T | 32 ll"ETiG) | (1+ o(1).

The last inequality follows because (k(j/T) —1)|j/T| % converges boundedly to k,
for each fixed j.
Second, EQf2 is

Zk MEF )= -7 Z|]|EF )(1+ o(1))

j=—T+1 j=—00
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using Lemma 2.
Finally, |[EQ¢;| is bounded by

D BN T2 ) P ETi()] =o(T7?). (73)
l3|=T l51=T
Let Qf = (Qf, + QF, + QF) , then we have shown that, when ¢* = 1, limy_,o TEQS =
~27 (k1 + 1) Ef), and when ¢* > 2, limg.o TEQS = —27Ef{}), .
Next, we consider the case that K(s,t) = 1—(sVt). Using EU;(s)U](t) = T;(s—t),
we have

s=1
T 0 T s—1
1 sV(s—jJ 1 sV(s—jJ
S ) D D A R ) B (e e 1 F)
s=1 j=s-T s=1j=1
T T-s T s—1
_ 1 s+ a1 8=
s=1 j=0 p=1 j=1
T—1T—j T-1 T
1 s+ 1 s—7
j=0 s=1 j=1 s=j+1
T—1 . . . T—1 . .
17?2 —2jT+ 2+ —-T : 17245 -T—35%
7=0 7j=1
Therefore £ (QZU—"CZ) —1/2Q; is
T-1
/2" (=25/T+ (/1) +3/T* = 1/T) Ti(=j)
§=0
T—1
+1/2 ) (3/T = (/T = YT) L) = > Tili): (7.5)
J=1 li1>T

From the above equation and Lemma 2, it is easy to see that
E [E (Q|f) 1 /QQi] = O(1/T). (7.6)

We now consider the case K(s,t) = {s < rg,t <ro}. Note that

[T'I‘o} [T’I‘o}

~ 1
FE (QJ.’FCZ) — ’r'()Qi = T S_Zl ; Fi(s — t) — 7‘0Q7;
[Tro]—1 .
o [T’r‘o] _ TTO B ’j’ Ve . e
- 7"O ( TTO - Z 1 [TTO] [TTO] FZ(]) Z F’L(]) (77)
j=—[Tro]+1 |51>[T'ro]
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Again, it is easy to see that F [E (ﬁz\fcl) - roQi] =O0(1/T).
Finally, for the case K (s,t) = min(s, t) — st, E (ﬁi\fci) —1/6Q is

(T~ 'min(s,t) — T ?st) [i(s — t) — 1/69;

s=1j= T
1 Tl
2
+TZ (T~ min(s,s — j) — T *s(s — j)) Ts(j) — 1/69
s=1 j=1
1 T T—s
= TZ [T7's — T 2s(s + 5)] Ti(—)
s=1 j=0
1 T s—1
+:TZ [T (s — 5) — T~ 2s(s — §)] Tu(j) — 1/6Q
p=1j=1
1 T—-1T—j
= 5> 2 (T =T 72s(s +)) Ti(—J)
j=0 s=1
=
1 . _9 . .
72 2 (TTHs=5) =T s(s = ) T(j) - 1/6%
7j=1s=j+1
T-1 2
B 1 —j —3Tj% + 53+ 35T +TF .
- Z 6 T3 71( ])
j=0
(i N YL —|—3JT2—|—T
+2_ "% =3 + ) T (7.8)
j=1 l91=T
It follows from the above equation and Lemma 2 that
BB (ulF.,) —1/6%] = 0(/1). (7.9)

The proof of the theorem is completed by noting that fol k(0)ds = fol ds =1,
fol (1—(sVs))ds = 1/2, fol {s <rp,s <ro}ds = ryp and fol(min(s,s) — 8%)ds =
fol (s—s?)ds=1/6. m

Proof of Lemma 4. Plugging the BN decomposition

Uit = Cs(WWVig + Usp1 — Uiy (7.10)
into
T T 7_
!/
fzzl ’LtK T UZT7 (711)
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we get R
Q=0+ Ry, (7.12)

where R; = R;1 + Rj2 + R;3 with

1 t 7' ~ /

Ry = =C, ZIZIVtK 77 (Uirm1 = Ui )
t=1r1

1 EAN ~ t T v ,
Ri2 = T};Zl(Ui,t—l_Ui,t>K(T»T)V;Tcz(): i1

t=1 1=

 IT ) b o,
Rz = TZZ<U@1&—1—U¢¢) K(T’T) (Ui,T—l_Ui,T)~

t

Il
—
Il
—

We proceed to show that Etr (vec(R;)vec(R;1)") = o(1). It is easy to see that Ry is

T

1 T
?;CZQ)VMK( lo— TZC Wit (5, )0l
1 & t +1 t .
+7 ;C Wi Z < T - ) - K(=. %)) U, (7.13)
= qu) + Rﬁ) + Rl(l), say.
But Etr (vec (R(i)) vec (RZ(I))/> is
1 e 1 L o\
2 ZZK(T T T T )Etr (vec 0) vec (C’i(l)‘/LSUi’O) >
t=1 s=1
1 e~ L ) :
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t=1 s=1
1 L& t 1 s 1 ;o
= pL L K@K )P (Gi0llp © CViVLCID)  (1.14)
t=1 s=1

where the first equality follows from the fact that for m x 1 vectors A and B,
vec(AB') = B ® A, the third equality follow from the rules that
(A® B)(C® D) =AC ® BD. In view of the fact that tr(C ® D) = tr(C)tr (D), we
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write Etr (vec (RS)) vec (Rg)),> as

= ZK2 = ) Btr (Ui,oﬁi’,o ® Ci(l)Cé(l))

_ TQZ K2 Bl (Ui,oﬁé,o) tr (Ci(1)C(1))
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T
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Y e (e

(7.15)

where the last two equalities follow from Lemma 1(c) and (d) and the boundedness

of K(-,-).
For notational simplicity, let

t 1 s 1
K )

Then Etr (Vec (RZ(I ) vec ( )/> is equal to

Kr(t,s) = K(

(7.16)

= 75 2 > Kr(ts)Bir (CopVir—pVir_,Ciy © GOV VL, CI(D))
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It is easy to show that Jj is

a1 > 25 2Bt (Cip Gy p © CNCID))
< L sz% 230 ((CigrCly ) o (GOCHD))
< %;;mé,%) 5 (o))" [ (rescons)]”
< % 3 [E (( G, )4>]1/2:0p(T—1) (7.18)

by Lemma 1(e), where M is a generic constant.
We now consider Jo. Note that

Cir—pVipVigClr—q ® Ci(1) ViV, CH(1)
= (Cir—p ® (1)) (VigViy © ViaVs) (Clry ® CHD)).

Some tedious calculations show that E (V;p‘/;’ ® V;t‘/;’ 5) is

1,2, ifp=q#t=s
vec(I )vee(In,), ifp=t#q=s
Kom, ifp=s#qg=t

Lz 4 vec(Im)vec(I) + Kmm + (Y mjen®@ey ifp=s=q=t

where ¢ = (v? — 3), ey is the m x m matrix with the (I,1)*" element being one and
the other elements being zeros. Then, in view of the independence between {C; r—p,
C;(1)} and V;, we can write Jo as Ja1 + Jog + Jog + Jog where
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We now consider the above four terms one by one. For Js1, we have

I = %zif@(f 280 (G yClr_y) ® (CCHD))
- 5 >y K25 0B (ir (o Ol ) tr (CHC))

Gur|) (1))

IA
rlis
M~
M= T
%
NI~
=
X\

=
-\

< %i (= (Jers])) " (= (len))
< 3 (w(Jeu])) " =oam

by Lemma 1(c) and (e).
For Ja, we have, using tr(AB) = vec(A’)'vec(B) and tr(CD) < ||C| || D] for
square matrices C' and D,

T T
J = % Z Z Kr(p,q)Etr (Vec(éi,T—pCz{(1))Vec(éivT_qCZ{(1))/)
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T T
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2
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by Lemma 1(c) and (e).
For Jaz, we have, using tr ((C ® D)Kpm) < ||C|| || D] for square matrices C' and
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Jog =
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Finally, Joy = 0 if ¢ = 0. Otherwise, ¢! Joy is

— Z Z K22, 2Bt ((Cirp @ G (en @ en) (Chryp 2 CID) )

p=1 =1

- LS SRy L Bt (CarpeuClr_,) © (C)CH1)

p=1[=1

1 rm 9,0 1 - 4 A 1/2
= w2 ) KG7) (E Cir—pein EHCi(l)euH)
p=11[1=1
T m
1 p 1 ~ 1/2
< 2P 2 o H 4 ()14 4
< TZ;K (2 2) (B |[Corp| leul* BUC0)* leu]*)
T 1/2
m 2P 1 ~ 4 4 _ 2
< E;K (5.7 ( B |[Cia Euciu)H) — 0(1/T?),
where we have used ||ey|| = 1.

/
Combining the above results yields Ftr (vec (Rg)) vec (Rg)) ) =O(1/T).

Let

AT(ta sz Q) = |:K(

t 741 t T p g+1
T’T) TT][K(

!
then Etr <vec (Rﬁ’)) vec (Rl(f)) ) can be written as
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1 T T-1 T T-1 _
Etrﬁz >N At 7, p, q)vee(Ci(1)Vi U L )vee(Cl(1) Vi Uf )
t=1 7=1 p=1 ¢=1
1 T T-1
= Btrog 33 Art.rp,0) (0 UL, @ COVVE,CI)
t,p=17,9=1
1 T T-1 00
= Btr > Ar(t,7,0,9) Y CikViriVig;Ci; ® Ci()Viu Vi, Ci(1)
t,p=171,q=1 k,j=0
T T-1 7—1qg—1
= Etr— Z Z AT t,T,D,q chlk‘/;T £V zq JC, ®Ci(1)Vi,tVi,,pCz((1)
t,p=171,q=1 k=0 5=0
T T-1
+EtrT2§: > Ar(t,m,p.q chzkv;f WVig_iCli ® Ci()Vi, Vi ,Ci(1)
t,p= 17—7‘1 1 k= TJ q
= H1+ Hy
where
T T-1 T q
H = EtT‘— Z Z AT t,7,p,q ZCZT k‘/;kvl Cz,q —j ®C( )V;?,tv;’,,pcz{(l):
t,p=171,q=1 k=1 j=1
T T-1
H2 = 2 Z Z A t, 7— p: chzkv;’r k zq 90, ®C( )V;,tv;/,pci(l)
t,p=17,q=1 k=T j=q

It is easy to see that Hs is bounded by

T T-1 00
Etr—z > At .t q !Z( i,r+kC, q+k) ® Ci(1)C(1)
t=1 17,q=1 k=0
T T-1 o0 . 4\ 1/4 B 4\ 1/4
< @y 2 ety (Blesa]) (Bl
t=1 7,q=1 k=0
T T-1
< o SO S IKG/T, (4 1)/T) — K(t/T,7/T)|0() = o(1),
t=1 =1
where the last line follows from the observation that the kernel function K(-,-) is
continuous almost surely.
Write Hy as
1 I T1 T q
Btre 3 57 Aqtrp,0) 303 Cor k@ Cil1) (VikViy @ VieVly) Gl ©CH1),
t,p=171,q=1 k=1 j=1
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which is the sum of four terms, say, H11 + Hio + Hi3 + Hi4. Here Hyq is

T T-1T-1 TG ~
Btz > 5. S Arltmip 3 (G ® i) (Clyrs @ Ci(V))
t=1 =1 1 k=0
T— 1;1" 1 TAG

1T
_ TQ;

Z ZAT (t,7,p,q (C'i,’r-‘rkcz q+]) (Ci(1)Ci(1))
t =1 ¢g=1

| L. T-1T- '
— 5%5;;

1 TAqG o 1/4
AT(taTapa Z ( lT+kH )
1

k=0

>

=1 7=

()

q=

%WWMWWW

= o(1),
H12 18
1 T-1 T T q
EtrﬁZZATtTp, Z ir—k @ Ci(1) (vee(Iy)vec(T, ))C{q3®0/()
7,q=1p=1 k=1 j=1

cod]) (eleta]) B (o)

T-1 T q
< Etr% S At 7,p.q) (E‘

7-7q:1 k=1 ]:]_

= o(1),
H13 1S
T-1 Toq4
Etrﬁ Z Ar(t,,p, Q)ZZ ”—kct/q—J ® Ci(1)Ci(1) Kinm
r,q=1 k=1 j=1
T-1 T q 1/4 1/4
< w2 st 3 (Eco) (Bles]) B ()
T,9= k=1 j=1
= o(1),
and Hy4 is
T-1 m TAq ~
(Etr D Art,Tpa)> (cw_k ®ci(1)) (en @ ey) (Czq =Yedt )>
r,q=11=1 k=1
~ 4 4\ 1/4 4\ 1/2
< ZaEir Z Ar(t,m.p.q Z( Cira > ( €0 ) E (Icim))
= o(1). R

We have therefore proved Etr (vec (Ry1) vec (Ri1)") = o(1). As a consequence, we
also have Etr (vec (R;2) vec (R;2)") = o(1). Similarly, we can prove Etr (vec (R;3) vec (R;3)") =
0(1). Details are omitted.
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Part (c) From part (b), we deduce immediately that

~ ~ P ~ ~ /
var(vec(2;) = Evec(§; — EQ;)vec (QZ - EQz)

~ ~\/

= Evec(Q; — EQ;)vec (QZ - EQZ) + o(1).

~ /
Note that Evec(;)vec (QZ) equals

T
1 t T D
Eﬁ K(=, =
t,7,p,q=1

o K (s )vee (CUDVid Vi CI(L) vee (Ci(1)Vip Vi CHL))'

_ E% 3 K(_,%m(%%)(ci(1>v;~,7®ci<1m,t> (Vi Ci(1) @ V{,Ci(1))

) (Ci(DVir Vi Ci(1)) @ (Ci(1)Via Vi, Ci(1))

1,q

I

t
N —_
=
Sl
N
=
Sl
Nl

T m
= > K f>> CE(Gi(1) ® Ci(1)) <Z€zz ® ezl) (G eCin)  (7.20)

and

1<t ¢ /
- E_:lK(T’ T) var (vec (C3(1)Cj(1))) +

T T
(% > K2(%a %>> E(Ci(1) ® Ci(1)) (L2 + Kmm) (Ci(1) ® Ci(1)) + o(1).

t=1 =1
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Letting T" — oo completes the proof. m

Proof of Lemma 5. Part (a) Lemma 3 has shown that Q; = €; + op(1).

To establish the asymptotic distribution of QZ, we only need to consider Q Using
Mercer’s Theorem, we have, for any T,

[e.9]

t T 1
K(pp) = 35 tn(p)in(p)
R 1, b, T <1 -
- 23 fm(f)fm(T)er:EM:OHmf( V(). (721)
Therefore, €; = C;(1) (ﬁz 1+ Qz7g> Ci(1) where
~ lemm,, w2 1, & 7
Qi,l = Tzzm,tz)\_fm(f)fm(f)v;tﬂ (7'22)
t=1r=1 m=1""T
5 1 - s 1 t T
Qip = TZZVM > o Sm () fn () Vi (7.23)

It is easy to see that, for a fixed My,

— 1 d T \y/t
Q1 = Z N < Z Vit fm (= ) <ﬁ§fm(f)vm>
N Zi / Fn(P)dWi(r) / Fm(5)dW!(s)

- // (Z)\ )> dW;(r)dW; (s). (7.24)

Following the same argument as in (7.20), we have, as My — oo,

T T
E (vec(ﬁig)vec(ﬁig)') = 0(%) Z Z Evec (ViiVi,) vec (V;,tVZT)I
t=1 7=1
= o(1), (7.25)

which implies that Q;p = op(1) as My — oo. Combining the above results (e.g.
Nabeya and Tanaka, 1988), we obtain

~

1 1
G = ) /0 /0 K (r, $)dW; (r)dW! (s)C4(1)
— O (DECU). (7.26)

Part (b) The mean of any off-diagonal element of Z; is obviously zero. It suf-
fices to consider the means of the diagonal elements. They are fol K(s,s)ds. So
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EZ; = fo (s, 8)dsIy,. As a consequence EC;(1)Z;C(1) = C;(1)Ci(1) fol K(s,s)ds =
Q fo (s,s)ds. m

Proof of Theorem 6. By Assumption 3, €2,,; is positive definite almost surely,
and ¢/Qgzic > 0 for any ¢ # 0 in R™=. Thus Ed/Quzic = dQppc > 0, which implies
Qs is positive definite. Hence Q! exists, and part (c) follows from parts (a) and
(b). It remains to prove parts (a) and (b). We first consider the joint probability
limits. To prove ﬁm —p (18, and ﬁym —p 1Qye as (T,n — 00), it is sufficient
to show that plim g,y =" Y i, lim Q; = Q. Note that E (QJ]-'CZ) = pf + QF
where 2 = Qfl + Q5 +QF% and QF, k = 1,2,3 are defined in the proof of Lemma 3.
We can write {; as Q = MQz + QF + QF, where € is iid across ¢ with EQ§ = O(1/T)
and €) is iid across ¢ with E€) = 0. Therefore,

, 1 g . - e
phm(Tm_,oo) E Z Q’L = pllm(T,nHoo)% Z (Q’L + Qz + Qz)
i=1 i=1

. . 1o e
= plim ;o) < Z Q; ) + Plim7 o0 (ﬁ ; Qz)
+phm(T,n—>oo) (ﬁ Z Q’f)
= pQ+ phimz, o) < Z Qe> (7.27)

by the law of large numbers. The last line holds because 2; and €27 do not depends
on T. In this case, the joint limits as (T,n — oo) reduces to the limits as n —
oco. It remains to show that plim(T’n_,oo)n_l S, Q5 = 0. To save space, we only
present the proof for plim(T’n_,OO)n_l S Q¢ = 0. A sufficient condition is that
M 7,00y B [t D00 Q4 |] = 0. Using Lemma 2, we have

n n T-1 .
Blisos |~y ¥ (k(%)—l)nm
i=1 i=1 j=-T+1
1 n T-1
n 2

< e) - 1|10
i=1 j=—T+1
n T_1 9 1/2 . 1/2
1 .9 ] -2 (12
< 2| X TG - D FPEING)
i=1 \j=—T+1 J=—00
1/2
T—-1 . . 2
M (1 Jn—2./J 1
< I J— - —) — .

s (Tyn — o0). By the Markov inequality, we get plim(r_p’n_,oo)n_1 S Q5 =0,
which completes the proof of the joint limits.

42



Next, we consider the sequential probability limits. By Lemma 5(a) of Phillips and
Moon (1999) it suffices to show that, for fixed n, the probability limit plimp_, <+ S°7" | Q;
exists. But the latter is true by Lemma 4(b). m

Proof of Lemma 7. Note that

Evec (Cyi(1)ZiChi(1) = ACai(DEiChi (1) vee (Cyi(1ZiChi(1) = ACui(DEiC5;(1)'
= E (vec(Cyi(1) — BCr(1 ))uzcl (1 )) vee ((Cyi(1) — BCri(1))E:Ch,(1 ))
= B (Cui(1) ® (Cyi(1) — BCwi(1))vec(Z:)) (vec(E;) Chi(1) @ (Cyi(1) — BC(1)))
= FECu(1)®( ) — BCri(1 )) (vec(Ei)vec(Z;)") Cri(1) ® (Cys(1) — BCRi(1)).

We need to calculate F (vec(E;)vec(E;)"). Write E (vec(Z;)vec(E;)) as

E </01 /01 K(r, s)vec (dWi(T)dWi'(s)) /01 /01 K (p, q)vec (dWi(p)dW{(q)),>

1 1 1l
= / / / / K(r,s)K(p,q)E (vec (dWi(r)dW](s)) vec (dWi(p)dW{(q))')
01 01 o Jo
= /0 /0 I(r#s) K(r,r)K(s,s)E (Vec (dW;(r)dW(r)) vec (dWi(s)dWi'(s))')

(Cyi
Cyi(1

11
2 (r)dW](s)) vec (r)dW!(s))'
+/O /0 I # 5) K(r, )E (vee (dWi(r)diW{(s)) vee (dWi(r)dW{(s))')
o r#s) K2(r,s)E (vec dW;(r)dW(s)) vec (dW-(s)dW!(r))l>
[ 10 5) K2 (vee (awir)aw; ()W,
1
+/O K*(r,7)E (Vec (dW;(r)dW(r)) vec (dW;(r)dWi(r)) ) .
We consider the four terms one by one. The first term is
/0 /0 I(r#s) K(r,r)K(s,s)E (vec (dW;(r)dW(r)) vec (dWi(s)dWi'(s))’)
1 1
- /O /O I(r # 5) K(r,r)K (s, 5)E (dWi(r) @ dWi(r)) (dW(s) @ dW(s)))
1 1
- / / I(r #5) K(r,r)K(s, 5) (EdWi(r) @ dWi(r)) (EdW!(s) © dW!(s))

_ / / I(r £ 5) K(r,r)K(s, s)vec(Im)vec(L,) drds
= pPvec(Iy)vec(Iy,)'.
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The second term is
1 1 /
10 # ) K2 ) (vee (@itr)aw() vee (awiryaw () )
0o Jo
1 1
= [ [ 19 K200 (@it 2 awie) (7))
1 1
— /0 /O I(r # s) K*(r,s)E ((dW;(s)dW(s)) @ (dW;(r)dW(r)))
= /1 /1 I(r #s) K*(r,s) (Iy ® L) drds
0o Jo
1 1
= 2 r,s)dras = 2 2,
= ImQ/O/OK(,)dd 1,26
The third term is
[ 1) Ko (see @ )WS) v (@i o)1) )
- /0 /0 I(r # ) K*(r,s)E ((dWi(s) ® dW;(r)) (dW(r) ® dW(s)))
_ /0 /0 I(r # 5) K2(r,8)E ((dWi(s) ® dWi(r)) (dW!(s) ® dW!(r) Kpm))
= /0 /0 I(r # s) KQ(T, s)E (dWi(s)dW{(s) ® dWi(T)dW{(T)) K.
- /1 /1 I(r # s) K2(r,s) (Im ® I) Kmdrds
0o Jo
1,1
= 2(pr. 8)drds = 2

where the third line follows from a property of the commutation matrix, i.e. dW}(r)®
dwl(s) = dW/(s) ® dW](r)Kmm, See Part (ix) of Theorem 3.1 in Magnus and
Neudecker (1979). Finally, the fourth term is

/0 K%(r,r)E (vec (dWi(T)dWi’(T)) vec (dWi (r)dWi/(r))’)
_ /0 K2(r,r)E (dWi(r) © dWi(r)) (dW!(r) @ dW/(r))
_ /O K2(r,r)E (dWi(r)dW;(r)) @ (dWi(r)dW}(r)) = 0.

Therefore

E (vec(E;) vec(E;)') = pPvec(In)vec(In) + 6% (Im2 + Kuym) -
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Consequently,
EC(1) ® (CyZ(l) BCi(1))E (Vec(uz)vec(az) ) Cg,m'(l) ® (Cyi(l) - ﬁcm‘(l)),

= 1*Cai(1) ® (Cyi(1) = BCai(1))vec(Im)vee(Im)' Cpi(1) @ (Cyi(1) = BCi(1))
+62E (Cai(1) ® (Cyi(1) = BCai(1))) (Cri(1) @ (Cyi(1) = BCii(1)))
+62E (Cai(1) ® (Cyi(1) = BCai(1))) ((Cyi(1) = BCi(1))’ @ C(1)) Komym,

= N2EV€C ((Cyi(l) — BC(1 ))Ing/cz( )) vec ((Cyi(l) — BC(1 ))ImC’;Z( ))
+6%E (Qaai @ (Qyyi — Byi — YailB + B%ail3))
+6% (E(Qayi — i) @ (Qyoi — Bai)) Knym,
= ,u2EveC( yai — Qi) vee (Qyz; — Buai)
‘HSQE (me ® ( Yyl ﬂQxyz - yxiﬁ + ﬂmeﬁ,))
‘HSQ (E(Qxyz - xmﬁ ) ( yri ﬂme)) Kmyml'
Here we have used the identity that
Koo (Cl1) @ (1) = BCoi(1)') = ((Cop(1) = BC(D)) © Cla(D)) Ky
(see Part (viii) of Theorem 3.1 in Magnus and Neudecker (1979)). m
Proof of Theorem 9. Under the joint limit, we have shown Qm —p 18, and

bor —p 0 as (n,T — o0) and v/n/T — 0. To prove the theorem, it suffices to show
that

% Z Q@T = N(O, @)
=1

under the joint limit. Note that Q; 7 are iid random matrices across 7 with zero mean
and covariance matrix O = Evec(Q; r)vec(Q; 1) . To calculate Or, let

0 0
Gmn = (0 Imm>and

M = TZ 5T T2 Z
Then, by Lemma 4 (b), O is
EVGC( yxi ﬁsz_E( yxi ﬁmez)VeC( yxi ﬁQym_E( yxi ﬁQym)
= Bvec[(In,, —B) (% — BD) G| vee [ (T, —8) (% — B Gin|
= [G’ ( My s —6)] FEvec (ﬁz — Eﬁl) vec (QZ — Eﬁz), [G;n ® (Imy, —6)]’
= ur [G’ (Imy» —B)] Evec (Ci(1)Ci(1)) vee (Ci(1)C;(1)) [Ghy @ (Im,, —0)]'
— 13 (Gl @ (Im,, —B)] Evec (C;(1)Ci(1 ))Evec( {(1)CH) [Ghy ® (I, —6)]
+67 [Gr @ (I, =0)] (Ci(1) ® Ci(1)) (Ci(1) © C{(1) [Grn @ (I, —B)]
(1))

(Ci
+6% (Gl @ (Im,, —0)] (Ci(1) © C5(1)) K (CL(1) @ CL(1)) [Gly @ (I, —B)]
+o(1).

@
@
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Hence,

Or = TEvec((Imy,— )Ci(1)CL(1)Gon) vee (I, —B)Ci(1)CH1)Grm) + o(1)
83Cli(1) ® (Cyi(1) = BC(1)) (Im2 + Komm) Clpg(1) @ (Cya(1) = BCoi (1))’
= ,uTEvec( yei — BQai) (vee(Qyei — fQuei)) + 0 (1)

+83 (Co(1)CL (1) @ ((Cuil1) = BCr(1))(Coi1) = BC(1)))
67 {Cui(1) @ (Cpa(1) = BCwi(1)} {(Cy (1) = BCu(1)) © CLa) | Koy,
= M%EV@C( yTi ﬂme) (VeC( yxi Bme))

‘HS%Eme by ( yyi ﬂQxyz - ymﬁ + ﬂmeB,)
_HS%"E (Qxyi - xmﬁ) ( yri ﬂme) mymg + O( )

So {Qir}: is an iid sequence with mean zero and covariance matrix Or.

Next we apply Theorem 3 of Phillips and Moon (1999) with C; = Ipn,m, to
establish 1/y/n > " | Qi = N(0,0). Conditions (i), (ii) and (iv) of the theorem are
obviously satisfied in view of the facts that C; = I,m, and O — © as T' — oo. To
prove the uniform integrability of ||Q; 7|, we use Theorem 3.6 of Billingsley(1999).
|
E|Qil| , then ||Q; || is uniformly integrable. Note that, using the continuous mapping
theorem, we have, as T — oo,

= Qil* = ||Cyi(1)EiCLi(1) — BCw()ECL (D)
1 1
_ H(Cyi(l)—ﬁcxi(l)) [ [ weameamiees

2

)

and

E ”Qi,T”2 = Ftr (Vec(Q@T)vec(Qi,T)') =tr(Or)
— tr(0) = E[Qi*.

Therefore, ||@Q;,7] is uniformly integrable. Invoking Theorem 3 of Phillips and Moon
(1999) to complete the proof. m
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