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ABSTRACT

This paper proposes a new class of estimators of the long-run average relationship
in nonstationary panel time series. The estimators are based on the long-run average
variance estimate using bandwidth equal to T'. The new estimators include the pooled
least squares estimator and the fixed effects estimator as special cases. It is shown
that the new estimators are consistent and asymptotically normal under both the
sequential limit, wherein T' — oo followed by n — oo, and the joint limit where
T,n — oo simultaneously. The rate condition for the joint limit to hold is relaxed to
v/n/T — 0, which is less restrictive than the rate condition n/T — 0, as imposed by
Phillips and Moon (1999). By exponentiating existing kernels, this paper introduces
a new approach to generating kernels and shows that these exponentiated kernels can
deliver more efficient estimates of the long-run average coefficient.

JEL Classification: C32; C33

KEYWORDS: Long-run average relationship, long-run variance matrix, multidimen-
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1 Introduction

Nonstationary panel data with large cross section (n) and time series dimension (7°)
have attracted much attention in recent years (e.g. Pedroni 1995; Kao 1999; Phillips
and Moon; 1999). Financial and macroeconomic panel data sets that cover many
firms, regions or countries over a relatively long time period are familiar examples.
Such panels have been used to study growth and convergence, the Feldstein-Horioka
puzzle, purchasing power parity, among others. Phillips and Moon (2000) and Baltagi
and Kao (2000) provided recent surveys of this rapidly growing research area. When
both n and T are large, we can allow the parameters in the data generating process
to be different across different individuals, which is not possible in traditional panels.
Such a panel data structure also enables us to define an interesting long run average
relationship for both panel spurious models and panel cointegration models. Phillips
and Moon (1999) showed that both the pooled least squares (PLS) regression and
the fixed effects (FE) regression provide consistent estimates of this long-run average
relationship.

In this paper, we propose a new class of estimators of the long-run average rela-
tionship. Our estimators are motivated from the definition of the long-run average
relationship. As shown by Phillips and Moon (1999), the long-run average relation-
ship can be parametrized in terms of the matrix regression coefficient derived from
the cross sectional average of the long-run variance (LRV) matrices. A natural way
to estimate this coefficient is to first estimate the LRV matrices directly and then
use these matrices to construct an estimate of the coefficient. This leads to our LRV-
based estimators of the long-run average relationship. In this paper, we use kernel
estimators of the LRV matrices (e.g. White 1980; Newey and West 1987; Andrews
1991; Hansen 1992; de Jong and Davidson 2000). The new estimator thus depends
on the kernel used to construct the LRV matrices.

We show that the new estimator converges to the long-run average relationship
under the sequential limit, in which 7" — oo followed by n — oo. To develop a joint
limit theory, in which 7" and n go to infinity simultaneously, we need to exercise some
control over the relative rate that 17" and n diverge to infinity. The rate condition is
required to eliminate the effect of the bias. For example, Phillips and Moon (1999)
imposed the rate condition n/T — 0 in order to establish the joint limit of the PLS
and FE estimators. This rate condition is likely to hold when n is moderate and T
is large. However, in many financial panels, the number of firms (n) is either of the
same magnitude as the time series dimension (7") or far greater. To relax the rate
condition, we need an LRV estimator that achieves the greatest bias reduction. It
turns out that the kernel LRV estimator with the bandwidth equal to the time series
dimension fits our purpose. We show that the bias of this particular estimator is
of order O(1/T'), which is the best obtainable rate in the nonparametric estimation
of the LRV matrix. On the other hand, the variance of this estimator does not
vanish. Therefore, such an estimator is necessarily inconsistent, reflecting the usual
bias-variance trade-off.

Using a kernel LRV estimator with full bandwidth (the bandwidth is set equal
to the time series dimension), we show that the new estimator is consistent and



asymptotically normal as n and T' go to infinity simultaneously such that v/n/T — 0.
This rate condition is obviously less restrictive than the rate condition n/7T — 0. The
so-derived joint limit theory therefore allows for a possibly wide cross section relative
to the time series dimension.

We show that the PLS and FE estimators are special cases of the LRV-based
estimator. These two estimators implicitly use kernel LRV estimates with full band-
width. The underlying kernels are K (s,t) = 1—max(s,t) and K(s,t) = min(s,t)— st,
respectively. As a consequence, our joint limit theory is also applicable to these two
estimators. Hence, our work reveals that the rate condition n/T" — 0 is only suf-
ficient, but not necessary for the joint limit theory and that it can be weakened to
Vn/T — 0.

The new estimator is consistent under both the sequential limit and the joint limit,
even though the LRV estimator is inconsistent. The reason is that the LRV estimator
is proportional to the true LRV matrix up to an additive noise term. If the noise
is assumed to be independent, then by averaging across independent individuals, we
can recover a matrix that is proportional to the long-run average variance matrix.
The consistency of the new estimator follows from the fact that it is not affected by
the proportional factor.

We find that the new estimators with exponentiated kernels are more efficient
than the PLS and FE estimators. The exponentiated kernels are obtained by taking
powers of the popular Bartlett and Parzen kernels. In fact, the asymptotic variance
of the new estimator can be made as small as possible by choosing a large exponent.
This is not surprising as a larger exponent leads to LRV estimates with less variability.
Variance reduction usually comes at the cost of bias inflation. We show that the bias
inflation is small when T is large. In addition, for exponentiated Parzen kernels, the
bias inflation occurs only to the second dominating bias term but not to the first
dominating bias term. Therefore, the bias inflation is likely to factor in only when T°
is too small.

The kernel LRV estimator with full bandwidth has been used in hypothesis testing
by Kiefer and Vogelsang (2002a, 2002b). Our paper provides another instance that
the kernel LRV estimator with full bandwidth is useful. Other papers that investi-
gated the new LRV estimator include Jansson (2002), Sun (2002), and Phillips, Sun
and Jin (2003a, 2003b). In particular, the latter two papers considered consistent
long-run variance estimation using exponentiated kernels.

The use of the LRV matrix to estimate the long-run average relationship has been
explored by Makela (2002). He followed the traditional approach to construct the
long-run variance matrix. His estimator therefore depends on the truncation lag and
is not fully operational. In contrast, our estimator, like the PLS and FE estimators,
does not involve the choice of any additional parameter and seems to be appealing
to empirical analysts.

The rest of the paper is organized as follows: Section 2 describes the basic model,
lays out the assumptions and introduces the new estimator. Section 3 establishes the
asymptotic properties of the kernel LRV estimator when the bandwidth is equal to
the sample size. Section 4 considers the spurious panel model and investigates the



asymptotic properties of the LRV-based estimator. Section 5 extends the results to
the cointegration case. Section 6 concludes. Proofs are collected in the Appendix.

Throughout the paper, vec(-) is the column-by-column vectorization function,
tr(+) is the trace function, and ® is the tensor (or Kronecker) product. K, denotes
the m? x m? commutation matrix that transforms vec(A) into vec(A’), i.e. Ky =
Doiny il €i€i® ejef, where e; is the unit vector (e.g. Magnus and Neudecker, 1979).
For a matrix A = (a;j) , ||A| is the Euclidean norm (tr(A/A))1/2 and | A| is the matrix
(lasj]) . “A < 00” means all the elements of matrix A are finite. The symbol “="
signifies weak convergence, “:=" is definitional equivalence, “=” signifies equivalence
in distribution. For a matrix Z,, “Z, = N(0,X)” means “vec(Z,) = N(0,X)". M
is a generic constant.

2 Model and Estimator

This section introduces notation, specifies the data generating process, defines the
estimator and relates it to the existing ones.

2.1 The Model

The model we consider is the same as that in Phillips and Moon (1999). For com-
pleteness, we briefly describe the data generating process. The panel data model is
based on the vector integrated process:

Zig = Zig—1 + Ui, t=1,...,T;i=1,...,n (2.1)

with common initialization Z; o = 0 for all ¢. The zero initialization is maintained for
simplicity. All the results in the paper hold if we assume

Zi o is iid across i with E||Z;o|[* < oo. (2.2)

We partitioned the m-vectors Z; ; and U; 4 into my and m, components (m = mg+my)
as Z}, = (Y]}, Xi,) and U], = (Uy, ;, Uy, ;). The error term U;; is assumed to be
generated by the random coefficient linear process

o0
Ut =Y CisVit—s, (2.3)
s=0

where: (i) {C;+} is a double sequence of m xm random matrices across i and ¢; (ii) the
m-vectors V; ; are 7id across i and t with EV;; = 0, EV; V], = I;, and EV;M = v* for
all ¢ and t, where V,;; is the a-th element of V. (iii) C; s and Vj; are independent
for all ¢, j, s, t.

Let Cg;,s be the a-th element of vec(C;s) and opqs = ECk

" is We make two
tAs)
further assumptions on the random coefficients.

Assumption 1 (Random Coefficient Condition): C; , is iid across i for all s.



Assumption 2 (Summability Condition): Y 2, s (a4as)1/ 4 < .

Assumptions 1 and 2 are the same as Assumptions 1(i) and 2(ii) of Phillips and
Moon (1999). Note that their Assumptions 1(ii) and 2(i) are both implied by their
Assumption 2(ii), so there is no need to state their Assumptions 1(ii) and 2(i) here.
Assumption 1 and the assumption that V;; is iid imply cross sectional independence,
an assumption that may be restrictive for some economic applications. However,
because of the lack of natural ordering, there is no completely satisfactory and general
way of modelling cross-sectional dependence, although some important progresses
have been made, see Conley (1999), Phillips and Sul (2002) and Andrews (2003). In
this paper, we follow the large panel data literature and maintain the assumption of
cross sectional independence. ) )

Let Ci(1) = Y2 Cis, Cis = > 721 Cig and Uiy = > 32 C Vi t—s. Under As-
sumptions 1 and 2, we can prove the following Lemma, which ensures the integrability
of the terms that appear frequently in our development.

Lemma 1 Let Assumptions 1 and 2 hold, then
(a) 3320 $*E || Cisll < o0,
(b) E|Uis|® < M for some M < oo and all t,
(¢) E|Ci(1)||* < oo,
(d) E||Ui4||* < M for some M < oo and all t,
(e) 32220 E(|Cis| ] < o0,

Under Assumptions 1 and 2, the processes U; ; admit the following BN decompo-
sition almost surely:

Ui = Ci()Vii + Uig1 — Ui (2.4)
Using this decomposition and following Phillips and Solo (1992), we can prove that

(Tr]
1
ﬁ Z Uit = Ci;(L)W;(r), as T — oo for all i, (2.5)
t=1

where W;(r) is a standard Brownian Motion with var(W;(r)) = rI,, and ‘=’ signifies
the weak convergence conditional on F, = o(Cjp, ..., Ci,...), the sigma field gener-
ated by the sequence {C;;},°, . Let Sp(r) be the partial sum process, then a formal
definition of the above conditional weak convergence is that

Jim E(h(ST)|Fe) = E (h (C:(1)Wi) | Fe,) (2.6)

for all continuous and bounded functionals on D[0, 1].



2.2 Definition and Estimation of Long-run Average Relationship

Let €; be the long-run variance matrix of Z;; conditional on F,. It is well known
that €; is proportional to the conditional spectral density matrix fu,u,(\) of U;,
evaluated at the origin, i.e. €; = 27 fy,y,(0). Partitioning €2; conformably, we have

Qi Qyai
0 = ( wi Do ) | (2.7)
mei Qmm
By Lemma 1(c), €; is integrable and
Q= B = ( gy@; giﬁ ) 2.8)

which is called the long-run average variance matrix of Z;;. Following a classical
regression approach, we can analogously define a long-run regression coefficient be-
tween Y and X by 8 = Qme;xl. For more discussion on this analogy, see Phillips
and Moon (2000).

To construct an estimate of 3, we first estimate €2; as follows:

ZZUZ K % UL (2.9)

sltl

where Uiy = Z; 1 — Z;3—1, K(-,-) is a kernel function. When K (z,y) depends only on
T —y, ie K(z,y) is translation invariant, we write K (z,y) = k(z —y). In this case,
Q; reduces to

T-1 :
I D) (210)
j=—T+1
T,() = Zt 7 U; Ui for j >0, (2.11)
’ T Zt:—j—i—l Uz,tHUz,t for j < 0. '

From the above formulation, it is clear that QZ is the usual kernel LRV estimator
using the full bandwidth. It should be noted that translation invariant kernels are
commonly used in the estimation of the LRV matrix. We consider the kernels other
than the translation invariant ones in order to include some existing estimators of
the long-run average relationship as special cases. This will be made clear in Section
2.3.

Based on the above estimate, we can estimate €2 by

O — ny Qym _ —lnA
Q= < o @ =n ZQ (2.12)
i=1
The long-run average relationship parameter 3 can then be estimated by

BLRV = Q Qa_:a:’ (2.13)



which is called the LRV-based estimator.

Note that the LRV-based estimator (g depends on the observations Z;; only
through their first order difference. Therefore, when the model contains individual
effects such that

Ziy = Ai,o-i-th (2.14)

)

Zio,t = Zio,t—1+Ui,t, (2.15)

where Z? 0= = 0, and U;, follows the linear process defined in (2.3), the LRV-based

estimator 6 .ry can be computed exactly the same as before. In other words, the
LRV-based estimator is robust to the presence of the individual effects.

2.3 Relationship between New and Existing Estimators

Phillips and Moon (1999) showed that both PLS and FE estimators are consistent
and asymptotically normal. In this subsection, we examine the relationships between
the LRV-based estimator and the PLS and FE estimators.

The PLS estimator is

n T n T -1
BpLs = (ZZthlet> (Z ZXi,th{,t> : (2.16)

=1 t=1 =1 t=1

Some simple algebraic manipulations show that

~ | EN s
s = (L3433 Knsr(G U;Z,)
17 1 & s o
FE S

where
st (s+1)V(t+1)
KPLST(T T) = 1- T and
(s+1)V(t+1) = max(s+1,t+1). (2.18)

Hence, the PLS estimator is a special case of the LRV-based estimator. Note that the
kernel for the PLS estimator depends on T'. If we replace Kprs7(s,t) by Kprs(s,t) =

1—(sVt), then we get an asymptotically equivalent estimator Bpg. In view of (2.9),
we see that Bprg is an LRV-based estimator with kernel K (s,t) =1— (sV ).
We now consider the FE estimator, viz.

T -1

e (S0 - 50) (S 0 0-50)

i=1 t=1



where V; . = 1/T Zthl Yt and X;. = 1/T ZtT:1 Xit. Again, some algebraic manipu-
lations yield

11 . s Dy o
A7 Y Ko (o) Vsl

11 T s -
(s (o)) e

where

KFET<; ;) T—(sj\jt)+1_<T—Ts+1> <T—;+1>' 2.21)

The kernel function Kpg 7 (s,t) depends on T'. As before, we can replace Krg 7(s,t)

by Kpg(s,t) = min(s,t) — st to obtain an estimator BFE that is asymptotically
equivalent to Brg. The resulting estimator Bpp is an LRV-based estimator with
kernel K (s,t) = min(s,t) — st.

In summary, the existing estimators or their asymptotically equivalent forms are
special cases of the LRV-based estimator. The underlying LRV estimators use ker-
nels that are not translation invariant. This sharply contrasts with the usual LRV
estimators where translation invariant kernels are commonly used.

3 Asymptotic Properties of the New LRV Estimator

The properties of B .ry evidently depend on those of the long-run variance matrix
estimator Ql In this section, we consider the asymptotic properties of Ql We first
examine the bias and variance of QZ for fixed T and then establish its asymptotic
distribution.

The bias of Q; depends on the smoothness of fu,u;(A) at zero and the properties of
the kernel function. Following Parzen (1957), Hannan (1970), and Andrews (1991),
we define

1 [e.e]
It = 5= 2 iTi(): (322)

j=—o0

The smoothness of the spectral density at zero is indexed by ¢ for which fgf)Ul is finite

almost surely. The larger is q such that f((JlZ)Ul < o0 a.s., the smoother is the spectral
density at zero.
The following lemma establishes the smoothness of the spectral density at A = 0.

Lemma 2 Let Assumptions 1 and 2 hold, then
(0) B3 o 32 Tl = 32 o 2T ()] < o0.
2
(b) EQnfiy,) = EY3 o 4Tilj) < oo.



When K(s,t) = k(s —t), the bias of Q; depends on the smoothness of k(z) at
zero. To define the degree of smoothness, we let

kq = lim 1_714;(117)

> 0. .
I = < oo forqg>0 (3.23)

The largest g for which £, is finite is defined to be the Parzen characteristic exponent
q*. The smoother is k(z) at zero, the larger is ¢*. The values of ¢* for various kernels
can be found in Andrews (1991).

To investigate the asymptotic properties of Qi, we assume the kernel function
K(s,t) satisfies the following conditions.

Assumption 3 (Kernel Conditions) K (s,t) € K1U Ko where
K1 ={K(s,t): K(s,t) =1—(sVt), or min(s,t) — st}

and ICo = {K(s,t) : K(s,t) = k(s —t) and
(i) k(z) : [-1,1] — [0,1] is symmetric and piecewise smooth with k(0) = 1.
(ii) The Parzen characteristic exponent satisfies ¢* > 1.
(111) k(x) is posmve semi-definite, i.e., for any square integrable function f(x),

fo fo s —1t)f(s)f(t)dsdt > 0}

Note that the two kernels in K are positive semi-definite. When K (s,t) =1 —

(sVi),
//Kst t)dsdt = / </f s) ds > 0. (3.24)

When K(s,t) = min(s,t) — st,

/ / K(s,t)f(s)f(t)dsdt = /01 F?(s)ds — (/01 F(s)ds>2 >0, (3.25)

where F(s fo r)dr. Therefore, the kernels satisfying Assumption 3 are positive
seml—deﬁnlte As shown by Newey and West (1987) and Andrews (1991), the positive
semi-definiteness guarantees the positive semi-definiteness of Ql

We proceed to investigate the bias and variance of Q;. The following two lemmas
establish the limiting behaviors of the bias and variance of QZ as T' — oo.

Lemma 3 Let Assumptions 1 — 3 hold. Define y = fol K(s,s)ds.
(a) If K(s,t) is translation invariant with ¢* =1, then
lim TE | B (QlF.,) - p] = —2m(k + DEF) (3.26)
T—o0 v ! Uil '
(b) If K(s,t) is translation invariant with ¢* > 2, then
Jim TE [E (Qiyfci) } = 27 Ef{Y, (3.27)
(c) If K(s,t) € K1, then E (E (§|f) 1 ) O (1/T).

8



REMARKS: (i) When K (s,t) is translation invariant, K(s,s) = 1, so 4 = 1. In this
case, Lemmas 3(a) and (b) show that €); is centered around a matrix that is equal
to the true long-run variance matrix up to a small additive error. The error has a
finite expectation and is independent across i. As a consequence, the average long-
run variance matrix can be estimated by averaging €; over ¢ = 1,2,...,n. When
K(s,t) € K1, £, scaled by fol K (s, s)ds, is equal to the true variance matrix plus
a n01se term. The average long-run variance matrix can be estimated by averaging
fo (s,5)ds)"1Q; over i =1,2,...,n

(ii) For the conventional LRV estimator with a truncation parameter Sp, the
bias is of order O (1/S%") under the assumption that Sp/T + S /T 4+ 1/Sp — 0
(e.g. Hannan 1970; Andrews 1991). The bias of the conventional estimator is thus
of a larger order than the estimator without truncation. This is not surprising as
truncation is used in the conventional estimator to reduce the variance at the cost of
the bias inflation.

(iii) When K (s,t) is translation invariant, the dominating bias term depends on
the kernel through k; if ¢* = 1. In contrast, when ¢* > 2, the dominating bias term
does not depend on the kernel. From the proof of the Lemma, we see that when
¢* = 2, the next dominating bias term is —277T 2ko E fl(JQI)UZ Therefore, when ¢* > 2,
the kernels exert their bias effects only through high order terms. This has profound
implications for the asymptotic bias of 3 py considered in section 4.2.

Lemma 4 Let Assumptions 1 — 3 hold. Then we have:

(a) limp_oovar(vec(€ — €)) = 0, where

1TT t
Q=T > (Ci(1)Vig) K(5,

t=1 =1

) (Ci(W)Vir)'s (3.28)

'ﬂl\l

(b) limp_, oo var(vec($y)) = p2var(vee () + 62 (L2 + Kpm) E (4 @ Q) , where

1l
6% = / / K2(r, s)drds. (3.29)
0o Jo

REMARKS: (i) Lemma 4(b) gives the expression for the unconditional variance. It
is easy to see from the proof that the conditional variance has a limit given by
limp_oovar(vee(Q)|Fe,) = 62 (1,2 + Kmm) (€ ® €;) . Therefore, the magnitude of
the asymptotic variance depends on 2. This suggests using the kernel that has the
smallest 62 value when the variance of ); is the main concern. R

(ii) Lemma 4(b) calculates the limit of the finite sample variance of fy,,(A) when
A = 0. Following the same procedure and using a frequency domain BN decompo-
sition, we can calculate the limit of the finite sample variance of fUiUi()\) for other
values of A when the full bandwidth is used in smoothing. This extension may be
needed to investigate seasonally integrated processes. This extension is straightfor-
ward but tedious and is beyond the scope of this paper.



Lemma 5 Let Assumptions 1 -3 hold. Then
(a) Conditional on Fe,, Q; = Ci(1)=;Ci(1);
(b) E(C;()E;Ci(1)|Fe,) = 1€di, where

1 1
=, = / / K (r, $)dW; (r)dW(s). (3.30)
0 0

REMARKS: (i) When K(s,t) is translation invariant, g = 1. In this case, Lemma 5
shows that QZ is asymptotically unbiased, even though it is inconsistent. For other
kernels, QZ is asymptotically proportional to the true LRV matrix. We will show that
the consistency of (1 py, inherits from this asymptotic proportionality.

(ii) Kiefer and Vogelsang (2002a, 2002b) established asymptotic results similar
to Lemma 5(a) under different assumptions. Specifically, they assumed the kernels
were continuously differentiable to the second order. As a consequence, they had to
treat the Bartlett kernel separately. They obtained different representations of the
asymptotic distributions for these two cases. The unified representation in Lemma 5
is very valuable. It helps us shorten the proof and enables us to prove the asymptotic
properties of 3 py in a coherent way.

(iii) When K(r,s) € K1, the limiting distribution in Lemma 5(a) is the same as
that obtained by using (2.5) and the continuous mapping theorem.

4 Panel Spurious Regression

This section considers the case where the two component random vectors Y;; and
X of Z;; have no cointegrating relation for any 7. This case is characterized by the
following assumption:

Assumption 4 (Rank Condition) rank({2;) = m almost surely for all i =1, ..., n.
Define §; = Qyqi (Qmi)_l. Assumption 4 implies that
Yie = BiXia + Wi (4.1)

where W;; is a unit root process and the long run covariance between X;; and W;;
is zero, i.e. Z;‘;_Oo EAWi,t_jAX{Vt = 0. Our interest lies in the long run average
coefficient 3 = EQ; (EQmi)_l , which is in general different from the ‘average long
run coefficient’ defined by E3;. For more discussions on this, see Phillips and Moon
(1999).

Before investigating the asymptotic properties of the LRV-based estimate, we first
define some notation. The sequential approach adopted in the paper is to fix n and
allow T to pass to infinity, giving an intermediate limit, then by letting n pass to
infinity subsequently to obtain the sequential limit. As in Phillips and Moon (1999),
we write the sequential limit of this type as (T,n — 00)sq. The joint approach
adopted in the paper allows both indexes, n and T, to pass to infinity simultaneously.
We write the joint limit of this type as (T,n — o0).

10



4.1 Sequential Limit Theory and Joint Limit Theory

The following theorem establishes the consistency of 3 Lry as either (T, n — 00)seq
or (T,n — ).

Theorem 6 Let Assumptions 1—4 hold, then
(a) Quw —p 10,
(b) ﬁyw —p Mye,
(c) BLRV —p B,

as either (T,n — 00)seq or (T, n — 00).

REMARK: BL Rry 1s consistent even though () is inconsistent. This is not surprising
as equals p€2; plus a noise term. Although the noise in the time series estimation
is strong, we can weaken the strong effect of noise by averaging across independent
individuals. This is reflected in Lemma 6(a) and (b), which shows that €, and ﬁym
are respective consistent estimates of {2, and ), up to a multiplicative scalar.

Now we proceed to investigate the asymptotic distribution of B Lrv- We consider
the sequential asymptotics first and then extend the result to the joint asymptotics.
In order to get a definite joint limit, we need to control the relative rate of expansion of
the two indexes. Write v/n(B1ry —8) = vi(Qye—B3022) Q5. Theorem 6 describes the

asymptotic behavior of {2, under the sequential and joint limits. Under Assumption
4, Q. has full rank, which implies that Q > converge to 41 —1Q_ L. Therefore, it suffices
to consider the limiting distribution of \/_ (Qy — 3Qua).

Under the sequential limit, we first let T — oo for fixed n. The intermediate limit
is

Vi Qe = Bz) = Z Qi (4.2)

where

Qi = Cyi(1)ZiCh(1) — BC4i(1)EiCri(1), (4.3)
Cyi(1) is the my x m matrix consisting of the first m, rows of C;(1), and Cy;(1) is
the m, X m matrix consisting of the last m, rows of C;(1). In view of Lemma 5, the
mean of the summand is

E(Q) = 1 (EQysi — BEa) = 1 (R — oSt ) =0,

and the covariance matrix © is Evec(Q;)vec(Q;)' . An explicit expression for © is
established in the following lemma.

Lemma 7 Let Assumptions 1-4 hold. Then © is equal to

M2E’UGC( yxi ﬂﬂmm) 1)66( yTi ﬁme)
+52E (me & ( Yy ﬁszz - Qym’ﬂl + ﬂﬂxmﬂl))
+62 (E(Qxyz - meﬂ ) & (Qym BQmmz)) MyMg

11



where K, m, s the mymg X mym, commutation matriz.

The sequence of random matrices Cy;(1)Z;C7;(1) — BCi(1)2;CL; (1) is iid (0, ©)
across ¢. From the multivariate Linderberg-Levy theorem, we then get, as n — oo,

n

1 - -
77 2 (Cu(DECL() = BOa(DECL (1) = N(0,©). (4.4)
i=1
Combining (4.4) with the limit lim Q5! = Q1 we establish the sequential limit

in the following theorem.

Theorem 8 Let Assumptions 1 — 4 hold. Then, as (T',n — 00)seq;

Va(Brry — B) = N(0, (2 © I, )OLav (s © Im,)), (4.5)

where O ry 18

Ewvec ( yxi Bmez) vec ( yxi ﬂme)
—|—M_2(52E (Qm:z & ( yyi BQxyz - Qym‘ﬂ + Bmeﬂ/)) (46)
+M_252 (E(Qa:yz - wmﬂ ) ® ( yri ﬂﬂmz)) Kmymz'

We now show that the limiting distribution continues to hold in the joint asymp-
totics as (T, n — o00). Write \/n(Qyz — BQq) as

Vi@~ 80 = T2 3 (O~ )
=1

= % > " Qix + bar, (4.7)

where
QzT = ym ﬂme - ( YTl ﬂme) (48)
and
I o~ ~
b = 7 ;E(QW — Bz (4.9)

Because of Lemma 3, the term b,7 vanishes under the sequential limit. However,
under the joint limit, we need to exercise some control over the relative expansion
rate of (7,n) so that b,r vanishes as (I,n — o0). When this occurs, the term
1/y/n Y Qi will deliver the asymptotic distribution as (T',n — o).

Using Lemma 3, we have

v

s
I
—

E (B (Qoi — 50| 7.,) )

bnT =

S Sl
NE

[E (Qyei — fQaai) + O(1/T)] = O (Vn/T) , (4.10)

1

-
Il
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because the O(-) terms in the summand are independent across 7. Therefore, in order
to eliminate the asymptotic bias, we need to assume the two indexes pass to infinity
in such a way that /n/T — 0. Under this condition, we can prove the following
theorem, which provides the asymptotic distribution under the joint limit.

Theorem 9 Let Assumptions 1 — 4 hold. Then, as (T,n — o0) such that \/n/T — 0,

ViBrry —B) = N0, () @ I, )OLrv(Qh ® In,))- (4.11)
REMARKS: (i) For the PLS estimator, K(r,s) = 1 — (r V s). Therefore, u? =
(fol(l —8)ds)? = 1/4, 6* = fol fol K2(r,s)drds = 1/6, and p~26% = 2/3. Hence, the
PLS estimator satisfies, under both the sequential and joint limits,
Vi(Bprs = B) = N(0,(2 @ In,)OpLs(Qy @ Im,)) (4.12)
with

Oprs = Evec( yxi ﬂme) VeC( yTi ﬂme)
+2/3E (me & ( YYi BQxyz - ymﬂ + Bmeﬂ )) (4'13)
+2/3E(Qxyi - xmﬁ) ( Yxi Bme) My My *
The above limiting distribution is identical to that obtained by Phillips and Moon
(1999).
(ii) For the FE estimator, K (s,t) = min(s,?)—st. In this case, it is easy to see that
p? = 1/36 and 6% = 1/90. So u~26% = 2/5. Hence ﬂFE has the limiting distribution
given in (4.12) and (4.13) but with 2/3 replaced by 2/5. Once again, the asymptotic
result is consistent with Phillips and Moon (1999).
(iii) The efficiency of B ey depends only on 262 The smaller 262 is, the

more efficient the estimator is. This is because the sum of the last two terms in (4.6)
is

E (Cq,(1) ® (Cy, (1) = BCo,(1))) X (In2 + Kimm) (Ca, (1) @ (Cy, (1) — BC, (1))
which is positive semi-definite. Therefore 3 rg is more efficient than 3 prs- But 3 FE

is less efficient than B py if & = fo (s,8)ds)™ fo fo K2(r,s)drds < 2/5. In the
next subsection, we consider a class of new kernels that have smaller s values.

If we assume that C;; are the same across individuals, then €; = 2 and 3; = 8
for some 3 and all ¢. In this case, Qyz; — 582:2; = 0. As a consequence, O ry reduces
to

17262 (Qaz @ (Qyy — Qo Uay))

and we obtain the following corollary.

Corollary 10 Let Assumptions 1 — 4 hold. If C;y =45 C¢ where Cy is an m x m
nonrandom matriz for all t, then, as (T,n — 00)seq, o as (T,n — 0o) with /n/T —
0,

Vi(Brry = 8) = N0, 1726 (g ® (Uy — i Uy))). (4.15)
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REMARKS: (i) The corollary generalizes a result of Kao (1999). He considered
the homogeneous spurious regression and showed that under the sequential limit, the
fixed effects estimator satisfies (4.15) with p=26% = 2/5.

(ii) Note that the matrix Q) ® (Qyy — Qe Q) is positive semi-definite.
Therefore, the efficiency of BL ry depends only on p~262 regardless of whether Ciy is
heterogeneous or not.

4.2 LRV-Based Estimator with Exponentiated Kernels

In this subsection, we exponentiate some commonly-used kernels and investigate the
asymptotic properties of the LRV-based estimators that these exponentiated kernels
deliver.

We first consider the sharp kernels defined by k(z) = k%, (x), where kpgr(-) is
the Bartlett kernel and p € Z*. These kernels, as so defined, exhibit a sharp peak at
the origin. Sharp kernels are positive semi-definite, as they are equal to the products
of the positive semi-definite kernels. To see this, we may use equation (7.11) in the
appendix and represent the Bartlett kernel by

[ee)
1
kBart(r — s) 2_: )\— m(s), for (r,s) €[0,1]%. (4.16)
Then
Bt =9 =33 ™ A (1) Fon (1) £ (8) Fin(5). (4.17)
n=1m=1
So, for any function g(x) € L?[0,1], we have
2

/ / Pk (r = $)g(s)drds = gjlg - < /0 () () fm(r)dr> >0,

which implies that k%art(r — s) is indeed positive semi-definite. Iterating the above
procedure leads to the positive semi-definiteness of k%, ,(r — s) for any p € Z.

For sharp kernels, the Parzen characteristic exponent is ¢* = 1 and k; = p. The
value of k is kK = 1/(p+1). Therefore, « is a decreasing function of the exponent p. In
principle, we can choose p to make x as small as possible. However, the finite sample
performance can be hurt when p is too large for a moderate time series dimension.
This is because the bias of QZ increases as p increases, as shown by Lemma 3. In fact,

when /n/T — «, the asymptotic distribution of /n (BLRV - ﬁ) under the joint
limit is

N (b, (g @ Im,)OpLs(Qe ® In,)) (4.19)
where b = —2ma (p+ 1) (Q;j@]my)vec(Ef[(JB U, —ﬁEf[(]t)_ v, )- Therefore, the squared
asymptotic bias b'b is increasing in p while the asymptotic variance is decreasing in

p. This observation implies that there exists an optimal p that minimizes the mean
squared errors. The optimal p depends on the ratio o and the average spectral density
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of U;. We can estimate the optimal p along the lines of Andrews (1991), but we do
not pursue this analysis in the present paper.

Next, we consider the steep kernels defined by k(z) = (kpgr(z))” where kpgr(z) is
the Parzen kernel. These kernels decay to zero as x approaches 1. The speed of decay
depends on p. The larger p is, the faster the decay and the steeper the kernel. Steep
kernels are positive semi-definite because the Parzen kernel is positive semi-definite.
The difference between the sharp kernels and the steep kernels is that the former are
not differentiable at the origin while the latter are. For steep kernels, the Parzen
characteristic exponent is ¢* = 2 and ko = 6p. The value of x can be calculated
using numerical integration. They are given in Table 1 for p = 1,...,6. Obviously, k&
decreases as p increases. This is expected because (kpg(2))”* < (kpr(x))? if p; > py.
Therefore, the steep kernel can deliver an LRV-based estimator B ry that is more
efficient than Brp, as long as the exponent is greater than 1 (see Table 1).

When the steep kernel is employed, the dominating bias of QZ is independent of
the exponent. If (n,T — oo) such that\/n/T — «, then the asymptotic distribution

of \/ﬁ(BLRV — () is
N (b, (s @ Im,)OLrv (U ® Im, ) (4.20)

where b = —27a(Q; ® I, )vec(E f[(JZUIZ — BE f(glm)ZUa:,b) This limiting distribution
seems to imply that we can choose p to make x as small as possible without inflating
the asymptotic bias. This is true in large samples. But in finite samples, a large &
may lead to a poor performance. The reason is that the second dominating bias term
in ﬁz is T227koF fl(Jf)Uz’ which depends on k3. As a consequence, the asymptotic bias

of 3 r,ry under the joint limit is
~2my/) T(Qd @ L, Joec(Bf) = BEfLY 1) + 0 (ka/n/T2).

The O (-) term vanishes when (n, T — oo) such that\/n/T — «. But in finite samples,
the O (-) term may have an adverse effect on the performance of 3 gy . Nevertheless,
the effect is expected to be small, especially when T is large.

Finally, we may take powers of the kernels in ; and obtain more efficient es-
timates. Although Assumption 3 does not cover exponentiated kernels of this sort.
Theorems 8 and 9 go through without modification.

Table 1 summarizes the values of k for different exponentiated kernels. The table
clearly shows that for a given ‘mother’ kernel, the value of x decreases as the exponent
increases. Recall that the smaller k is, the more efficient the LRV-based estimator
is. We can thus conclude that a larger exponent (p) gives rise to a more efficient
estimator.
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Table 1: The Values of « for Some Kernels*
p=1 p=2 p=3 p=4 p=>5 p=6
0.5000 0.3333 0.2500 0.2000 0.1666 0.1429
Parzen 0.4473 0.3359 0.2806 0.2459 0.2216 0.2033
(1—rVs)P 0.6666 0.6000 0.5714 0.5556 0.5455 0.5385
(min(r,s) —rs)? 0.4000 0.2857 0.2331 0.2016 0.1800 0.1642

* k= (fol K (s, s)ds)_z(fol fol K2(r,s)drds)

k

D
Bartlett
o

5 Heterogeneous Panel Cointegration

This section assumes that the variables in Z;; are cointegrated. As discussed in
Engle and Granger (1987), the long run covariance matrix is singular in this case.
We consider the case that the cointegration relationships are different for different
individuals.

Following Phillips and Moon (1999), we strengthen the summability condition
and impose additional conditions.

Assumption 5 (Summability Conditions’)
(1) 20 5" (04as)* < 0.
(i) >oog 52 (U8as)1/8 < oo. (iii) Y°52, (Ulﬁas)l/lﬁ < o0

Assumption 6 (Rank Conditions): rank(€;) = rank(£2;4; ) = m, and rank(£y,;) =
m, almost surely for all i =1,...,n.

Assumption 7 (Tail Conditions): The random matrix €2;,; has continuous density
function f with

(i) f(Q2) = O(exp {tr(—cf2}) for some ¢ > 0 when tr(2) — oo.

(i) f(Q2) = O((det(£2)7)) from some y > 7 when det(2) — oo.

Note that Assumption 5 is stronger than Assumption 2. Therefore, under As-
sumptions 1, 3 and 5, all results in Section 3 continue to hold. Let a; = (I, , —0;),
where 8; = Qu,;Q,%. Assumption 6 implies that @;C;(1)Cy, (1) = 0. As a conse-
quence, o;C;(1) = 0, i.e. Cy(1) = B;Cri(1). Define By = i Z;p = Yip — 5, Xiz.
Then, using «;C;(1) = 0, we have:

t
Eiy = oy Z (Ci(l)‘/%,s +Uis-1— Ui,s) = ;Ui o — ;Ui

s=1

Therefore, Assumption 6 implies the existence of the following panel cointegration
relationship with probability one:

Yit = BiXit+ Eiy (5.1)
Xit = Xip—1+ Uz
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where

E; - —aiD;
and ~
~ —o;C; 6 if s < t,
Di s — ~ = . .
’ { —ai(Ci,s — Ci,s—t) if s > ¢. (5 3)

Let Gi(1) = 320 Gis, Gis = >0y 1 Gip and Fyp = 372 Gy Vit As shown
by Phillips and Moon (1999), Assumptions 5 and 7 ensure that quantlties analo-
gous to those in Lemma 1 are bounded. Specifically, E> % s%||G;, S, E HFi,t”2>
E||G;(D)|[*, E||E;4]|* and S (B||Gys|HY* are all bounded.

Using the long run covariance matrix, we can estimate the individual cointegration
relationship by ﬂ = Qymﬂ LTt follows from Lemma 5 that

X’

Quai = 6;Ce, V)ECh (1), Quui = Coy (1)ECL, (1), (5.4)

As a consequence, BZ = [3;, which implies that BZ —p B;. This is because §; is a
constant conditional on F,.

The following theorem establishes the rate of convergence of BZ Before stating
the theorem, we define the Lipschitz continuity. A function f (-): I' — R is Lipschitz
continuous if there exists a constant M > 0 such that ||f(z) — f(y)]| < M ||z — y||
for all x and y in I'. It is easy to see that the kernels satisfying Assumption 3 are
Lipschitz continuous.

Lemma 11 Let Assumptions 5-7 hold. Assume that the kernel function K(-,-) is
symmetric and Lipschitz continuous. Then

(a) T(3; — B;) = Op(1) if K(1,7) =0 for almost all r.

(b) VT(B; — 8;) = Op(1) if K(1,r) # 0 for some r in a set with positive Lesbegue

measure.

REMARKS: (i) The Lemma shows that BZ is not only consistent but also converges
to the true value at the rate of v/T or T. This result is particularly interesting.
Although both ﬁym and ﬁm are inconsistent, the linear combination ﬁym — BZAym
is consistent, reflecting the singularity of the long run covariance matrix ;. In fact,
the proof of the lemma shows that Qym 3,0 yzi = Op(1/V/T) or Op(1/T), depending
on the kernel used.

(ii) The kernel K(-,-) may be called a ‘tied down’ kernel if K(1,s) = K(r,1) =0
for any r and s. Since both kernels in Ky are ‘tied down’ kernels, 3; converges to 3
at the rate of T'if K € ICy. This is of course a well-known result. Lemma 11(a) has
more implications. Given any kernel function K(r, s), we can construct a new kernel
K*(r,s) = K(r,s) — K(1,s) — K(r,1) + K(1,1) such that K*(1,s) = K*(r,1) =0
for any r and s. The new kernel is then able to deliver an estimator that is super-
consistent.
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(iii) For translation invariance kernels, K (1,r) = k(1 —r) # 0 in general. So
the estimator that they deliver is only v/T-consistent. The difference in the rate of
convergence arises because the dominated terms are different for different types of
kernels.

We now investigate the asymptotic distribution of 6 rry in the heterogeneous
panel cointegration model. We first consider the sequential limit of /n (€, ﬂﬂm)
The intermediate limit for large T is the same as that given by (4.2). More expllcltly7

f( ﬂQm \/—Z yz Hz () ﬁcﬂm() zcalm(l))

Following exactly the same arguments, we can show that the summands are iid (0, ©).
Invoking the multivariate Linderberg-Levy Theorem and using the consistency of {2,
we have, as (T',n — 00)seq

VaBrry — B) = N(0, (%) ® In, )01V (2 @ In,)). (5.5)

The next theorem shows that the asymptotic distribution is applicable to the case
of joint limit. The proof of the theorem follows steps similar to that of Theorem 9
and is omitted.

Theorem 12 Suppose Assumptions 1-8 and 6 hold. Then, as (T,n — 00)seq, OT as
(T,n — o00) with \/n/T — 0,

\/E(BLRV —B8) = N(0,(Q, ® Imy)GLRV(Q;xl ® Im,))- (5.6)

REMARKS: (i) Note that Assumption 7 is not needed for the theorem to hold. The
strong summability conditions in Assumption 5 are also not necessary. The asymp-
totic distribution not only has precisely the same form as in the spurious regression
case, but also holds under the same conditions. However, Assumptions 5 and 7 are
required for Lemma 11, as it replies on the panel BN decomposition of the error term
Ei,t-

(ii) Since the limiting distribution is the same as that in Theorem 9, the remarks
given there and the efficiency analyses presented in Section 4.2 remain valid. There-
fore, in the presence of heterogeneity, the LRV-based estimator is more efficient than
the PLS and FE estimators if exponentiated kernels are used.

(iii) The asymptotic theory developed above allows us to test hypotheses about
the long-run average coefficient 3. To test the null hypothesis Hy : ¢(3) = 0, where
¥(+) is a p-vector of smooth function on a subset R™v*™= such that 9¢/ 0’ has full
rank p (< mym,), we construct the Wald statistic: W, = m/)(ﬁLRV) Y (Bray),
where

Vy = BT/J(BLRV)/aﬁI‘A/_law(BLRv)/aﬂ (5.7)
(Q ® I, ) OrLry (me ® Im ) (58)

o
I
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and @LRV is the sample analogue of (4.6). Some simple manipulations show that
this test statistic converges to a X;% random variable under both the sequential and
joint limits.

6 Conclusion

In this paper, we have proposed an LRV-based estimator of the long-run average
relationship. Our estimator includes the pooled least squares and fixed-effects esti-
mators as special cases. We show that the LRV-based estimator is consistent and
asymptotically normal under both the sequential limit and the joint limit. The joint
limit is derived under the rate condition \/n/T — 0, which is less restrictive than the
rate condition n/T" — 0, as required by Phillips and Moon (1999). A central result is
that, using exponentiated kernels introduced in this paper, the LRV-based estimator
is asymptotically more efficient than the existing ones.

It should be pointed out that we have not considered the homogeneous panel
cointegration model. When the long run relations are the same across individuals,
the LRV-based estimator may have a slower rate of convergence than the PLS and
FE estimators. We have shown that, when translation invariant kernels are used,
B; is only VT consistent. Because of the slower rate of convergence, we expect
that the LRV-based estimator converges at the rate of v/nT in homogeneous panel
cointegration models. The v/nT-rate is slower than the \/nT-rate that is attained by
the PLS and FE estimators. However, the \/nT-rate can be restored if ‘tied down’
kernels are used. The efficiency of the LRV-based estimator with other ‘tied down’
kernels is an open question.

This paper can be extended in several directions. First, the power parameter p for
the sharp and steep kernels is fixed in the paper. We may extend the results to the
case that p grows to infinity at a suitable rate with IV and T  along the lines of Phillips,
Sun and Jin (2003a, 2003b). Second, the LRV-based estimator can be employed in
implementing residual-based tests for cointegration in panel data. Following the lines
of Kao (1999), we can use the LRV-based estimator to construct the residuals and test
for unit roots in the residuals. Since the LRV-based estimator is more efficient than
the fixed effects estimator employed by Kao (1999), the test using the LRV-based
residuals may have better power properties. Finally, we generate the new kernels by
exponentiating existing ones. An alternative approach to generating kernels is to start
from a mother kernel k and consider the class {ky(s,t)} = {k(b~'r,bs) : b€ (0,1]}
(Kiefer and Vogelsang 2003). For this approach, Theorems 8, 9, and 12 go through
but with g and 62 defined by

1 1 1
o= / k(b 1r, b7 r)dr and 62 = / / k2(b~ 1, b7 s)drds. (6.9)
0 0 Jo

With the above extension, we may analyze the efficiency of the LRV-based estimators
for different values of b. In general, the efficiency will not be monotonic in b € (0, 1].
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7 Appendix of Proofs

Proof of Lemma 1. Parts (a)—(d) are the same as Lemma 1 of Phillips and Moon
(1999). It remains to prove part (e). From Lemma 9(a) of Phillips and Moon (1999),
for any p > 1 and any p x ¢ matrix A = (a;i;), we have

P q
A7 < MY lagl” (7.1)

i=1 j=1
.4
for some constant M. Therefore, to evaluate the order of Y o, [E(‘ Cis|| Y4, it
suffices to consider Y% [F (C’;lz p)]l/ 4. By the generalized Minkowski inequality and
the Cauchy inequality, we have, for some constant M,
e - 1/4
B (Cl)]
p=0 "
_ 4+ 1/4
= D |F| 2 Cuia <2 > [B(Ca)]
p=0 i t=p+1 p=0t=p+1
1/2 1/2
- 1/8,2 L/8, > 1/4,4 1/4,-4
= Z Z (U4itt ) <U4zt )S Z Z Tyt Z Oyt t
p=0t=p+1 p=0 \t=p+1 t=p+1
< s (3 o (—) < M< ot 4#) L
> 3/2 = O 44t 3/2
p=0 \t=p+1 (p + 1) / t=0 p=1 p /
< o0 (7.2)

where the last line follows from Assumption 2. This completes the proof of the
Lemma. =

Proof of Lemma 2. Since part (b) follows from part (a), it suffices to prove
part (a). Write £ 72 [T5())]| as

0 0
’ = EZ]2 E Z Ci,q%,t-i—j q‘/;t —p ',p’fc
=0

p,q=0

EY 2 ||E (UiessU | 7))

= EZ-] Z Z Ca]-HCV;t £V zt —p ',p|Fci :EZ]2 ZCi,j-HDCz/p
Jj=0 j=0 p=0

p=0k=—j

< EY Y NCiill |Gl = B D i 1C 0l || Cill
j=0  p=0 p=0 j=0
< EY Z]+P 1Cs sl Hc’,p»<EZ Zy IG5l | 1ol

p=0 \j=0 p=0 \j=0

20



Therefore, £ 22, 72 |IT:(5)| is bounded by

ZZJQEHC,JH 1% |

p=0 j=0

3305 (Eear?) e 1)
2)1/25_"315 (HCi,p 2)1/2 e

o0
> A (ElCy
=0

where the last line follows from (7.1) and Assumption 2. This completes the proof of
part (a). m

IN

Proof of Lemma 3.  We first consider the case that K(s,t) is translation
invariant, i.e. K(s,t) = k(s—t). The proof follows closely those of Parzen (1957) and
Hannan (1970). We decompose E(§2;|F.,) — €; into three terms as follows:

BOF) -%— 3 KL EEG)IF.) — 0
j=—T+1
= Y wda-ng- 3o
j=—T+1 j_—OO
T-1 . H
- ¥ (k:(%) ) Z k; J - 3" 1i)
j=—T+1 —T+1 lj1=T

= QF + Q5 + Qf3, say.

We consider the expectations of the three terms in turn. First, for ¢ = min(g*,2),
EX)¥, is,

T-1 .
rop Y (MO ey = S (MUDZ) o)

j=—T+1 j=—T+1

_ 1 i H{-r+1<j<T-1} (‘%

) 517 ELLG)

= T | > I ETi(5) | (1+o(1).

The last inequality follows because (k(j/T) —1)|j/T|™? converges boundedly to k,
for each fixed j.
Second, F(), is

Zk MEF )= -7 Z|]|EF )(1+ o(1))

j=—T+1 j=—00
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using Lemma 2.
Finally, || EQS] is bounded by

S TELG)| T2 Y P BTG = o(T 7). (7.3)
l71>T l71>T
Let Qf = (5, + Q, + Q%) , then we have shown that, when ¢* = 1, limg_, o, TEQS =
—2m (ky + 1) Ef{}), and when ¢* > 2, limp_oo TEQS = —2Ef{}), .

Next, we consider the case that K € K;. Some algebraic manipulations show that

T T

B@IF) = 7 3 S Ko B — )
1T SssltllTs_l o
= T;K(T»WD(O)+f;;f{(7,7)[n(s—ﬂ+Fi(t—s)]

1 T s 8 1 T :; s s—j
= T;K(f’f)ri(o)‘*'fz :Z K (=, =) [0i() + Di(=5)] -

When K(s,t) =1—(sVt),

T
1 S S 1T -1
— K= 2y = -
Tsz_; (7 7) 2 T
1 i K s—j) 1T 2T 442+ =T
T & T T 2 T2 '

Combining the above calculation with the steps for the translation invariant case,
we can get E(E(Q;|F.,) — 1/2Q;) = O(1/T). Similarly, we can show that when
K(s,t) = min(s,t) — st,

T T 2

1 s s 1 s s2 1(T —1)

= K(Z 2y = = 22y 7

TSE_:1 (T’T) T;(T T2) 6 712

T . ) ) ) )
1 s s—7j, 1j—T —35T?+ T3 — 53 + 35T
T2 K = 3 T3 -
s=j+1

and B(E(Q4|F.,) —1/69;) = O(1/T).
The proof of the theorem is completed by noting that fol k(0)ds = 1,
fol (1—(sVs))ds=1/2and fol(min(s,s) —s%)ds=1/6. =

Proof of Lemma 4. Plugging the BN decomposition

Uit = Ci(1)Vi + Uip1 — Uiy (7.4)
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into

1 t T
o, _ _2 :2 : ) /
Q'L _ T i~ U’L,tK(T; T)UZ,T7 (7 5)
we get N _
Q; = Q; + R;, (7.6)

1 rz t T, (~ ~ 1\
Ry = T i(l)z_:zw,tK(?,?) (Ui,T—l_Ui,T>>

1
Ry = TZ

L I.T
Ry = 7))

T
1 t 1, -~ 1 t T -~
S GV (5 )0k = 5 D0 GV (o, 1)U

But Etr(vec(REll))veC(Rg)),) is

T T
- t S id ) / /
= O K 2K (G Bt (Uil © GOV Cl) (7.8)

where the first equality follows from the fact that for m x 1 vectors A and B,
vec(AB') = B ® A, the third equality follow from the rule that
(A® B)(C® D) =AC ® BD. In view of the fact that tr(C ® D) = tr(C)tr (D), we
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WI'it() Et’ (Vec(lzz( )) v EC( ’E]))/) d

- T22K2 5 ;,)Etr (Tuolto) tr (C:)CHD)

- %ZKQ B ia||” lCiIP
t=1
L I 1/2
< B R (Bo]) £ (o)
t=1
T
_ %;K%%,%)O(l):c)(%), (7.9)

where the last two equalities follow from Lemma 1(c) and (d) and the boundedness
of K(-,-).
The proofs of Etr(vec(R( ))VeC(R( )) ) = op(1) and Etr(vec(RZ(?))vec(Rg))’) =
op(1) are rather lengthy. They are given in Sun (2003). The details are omitted here.
Given that Etr(vec(R(f))vec(R( )))’, k=1,2,3, wehave Etr (vec (R;1) vec (R;1)') =
o(1). As a consequence, we also have Etr (vec (Ri2) vec (Rj2)") = o(1). Similarly, we
can prove Etr (vec (R;3) vec (R;3)’) = o(1). Again, details are omitted.
Part (c) From part (b), we deduce immediately that

~ ~ ~ ~

var(vec(y) = Evec(Q; — EQ;)vee(Q — EQ)
= Evec(ﬁi - Eﬁi)vec(ﬁi - Eﬁz)' +o(1).

Note that Evec(€;)vec(€)" equals

Ly K 2K ) (G0 © C) ViV © ViaVLy) (CUD @ CUD)
tT,pq 1
- ( 2221@ t ) (Ci(1) & G(1)) (CH1) @ (D))

T 2
+ (% S K %)) Evee (C(1)CL(1)) vee (C(1)CI(L))
t=1

T
( >R %)) E (Ci(1) ® Ci(1) K (C1(1) ® Ci(1))

[

1 T
+ ﬁgl
1 o, t ¢ ,
T ﬁ;_IK(T ) | CE(Ci E eu®@ey | (Ci(1)® Ci(1))  (7.10)
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and

(Evec(ﬁi)) (Evec(ﬁi))/

'ﬂ

— <TZK — ) Evec (Ci(1)Cl(1)) Evec (C;(1)Ci(1))’,

~ -~

so Evec(Q; — EQ;)vec(Q; — EQ;) is
1 & e\ ,
(f Z_:K(T,?O var (vec (Ci(1)Ci(1))) +
t

(Tz ZZK2 o ) (Ci(1) ® Ci(1)) (L2 + Kmm) (Ci(1) ® C{(1)) + o(1).

t=1 =1

Letting T" — oo completes the proof. m

Proof of Lemma 5. Part (a) Lemma 3 has shown that Q; = €; + op(1).
To establish the asymptotic distribution of Ql, we only need to consider Q Since
the kernels are assumed to be continuous and positive semi-definite, it follows from
Mercer’s theorem that K (r,s) can be represented as

oo

K(T7 8) = Z ifm(r)fm(s)a (7.11)

m=1

where A\, > 0 are the elgenvalues of the kernel and f,,(z) are the corresponding
eigenfunctions, i.e. fi(s) = Ap, fo (r,8) fm(r)dr, and the right hand side converges
uniformly over (r,s) € [0 1] x [0,1]. In fact, for the two kernels in Ky, we have

min(r,s) —rs = Z 5 sinwmr sin mms, (7.12)
> m(2m—1)r w(2m—1)s
1 — max(r,s) = Z 2m —7)e cos 5 cos 5 . (7.13)

For kernels in Kz, we have the Fourier series representation:

[ee)
k(x) = % + Z A, COS MTT, (7.14)

m=1

where a,, = f_ll k(x)exp (—immx) dz, > o7 |am| < oo, and the right side of (7.14)
converges uniformly over z € [—1,1]. It follows from the above representation that
for any r, s € [0, 1],

o0
k(r—s) = (120 + Z Ay, COSMITT COSMTTS + Z am Sin mar sinmms. (7.15)
m=1 m=1
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Hence, under Assumption 3, the kernels can be represented by (7.11) with smooth
eigenfunctions.
Using (7.11), we have, for any T,

%I 1 — 1
= D s In@ (G Y I a() (T16)
m=1 m=Mo+1 """
Therefore, €; = Cy( )(Qzl —i—ng) CI(1) where
~ lnm, X 1, to, T
Qz,l = Tzzm,tz)\_fm(T)fm(T)VZﬂ (717)
t=1 7=1 m=1"""
= 1 - > 1 t T\
Q2 = TZZVZ,L‘ > /\—fm(T)fm(T)V;T (7.18)

It is easy to see that, for a fixed My,
Mo T T
~ 1 1 t 1 T
Qi1 = E — | —= E Vi = — E —)V/
v 1 Am <\/T =1 z,tfm(T)> <\/T — fm(T) m)
Mo 1 1 1
- } : - / Fon ()W (r) / F(s)dW!(s)
m 0

- [ ( ol >fm<s>) AW ()W (5) (.19)

The above weak convergence result follows from integration and summation by parts
and the continuous mapping theorem. Note that the integral fo fm(r)dW;(r) is well
defined because f,,,(+) is of bounded variation.

Following the same argument as in (7.10), we have, as My — oo,

E(vec(Qiz)vee( Z Z Evec ViV ) vec (VQJJ/ZT)' =o(1), (7.20)
t=1 1=1

which implies that Q; = op(1) for any T' as My — oo. Combining the above results
(e.g. Nabeya and Tanaka, 1988), we obtain

-~

9 = C) /0 /0 K (r, $)dWi (r)dW!(s)CL(1)
— O (DECUL). (7.21)

Part (b) The mean of any off-diagonal element of Z; is obviously zero. It suf-
fices to consider the means of the diagonal elements. They are fol K(s,s)ds. So
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EZ; = fo (s, 8)dsIy,. As a consequence EC;(1)Z;C(1) = C;(1)Ci(1) fol K(s,s)ds =
Q fo (s,s)ds. m

Proof of Theorem 6. By Assumption 3, €),,; is positive definite almost surely,
and /Qgzic > 0 for any ¢ # 0 in R™=, Thus EdQuzic = Qe > 0, which implies
Qs is positive definite. Hence Q) exists, and part (c) follows from parts (a) and
(b). It remains to prove parts (a) and (b). We first consider the joint probability
limits. To prove Qm —p 18y and ny —p 1y as (T,n — 00), it is sufficient to
show that plimz,,, .\n iy 1th — 4€2. Note that E(Q|Fe,) = psd +Qf where
QF = QF, + Q% +QF and QF, k = 1,2,3 are defined in the proof of Lemma 3. We
can write Q; as € = ufY +QF 4+ QF, where € is iid across ¢ with EQ¢ = O(1/T') and
25 is iid across ¢ with EQ5 = 0. Therefore,

n

. RPN , 1 e Oe
L Z Q = P (7 00) Z (182 + € + )
i=1 =1

n n
. o’ ) 1
— pl S Q) 4 plimg, o (=305
pPiaMy 1 n—00) <n ) +plm(T,n 00) (TL p z)
1
+p1im(T,n—>oo) (E § Qf)

1=1

1 n
= pQ+ phimz, o) < Z Q) (7.22)

n

by the law of large numbers. The last line holds because €2; and €2 do not depends
on T. In this case, the joint limits as (T,n — 00) reduces to the limits as n —
co. It remains to show that plimp,, _)n~ IS, Q¢ = 0. To save space, we only
present the proof for plimp, ) n~t Zz_ QF, = 0. A sufficient condition is that
lim 7y, o0y £ Hn_l S04 ‘ = 0. Using Lemma 2, we have

n n T-1 .
Elryen|-g|2 X (k-1)no

=1 i=1 j=—T+1
1 n T-1 ]
J— _1 p— p—
P X k) - E )
i=1 j=—T+1
) n T_1 ] 9 1/2 o ) 1/2
O I A LCORS > PEITG)
i=1 \j=-T+1 j=—00
1/2
T-1 . . 2
M (1 J—2],,J ( 1 )
— | = )2 k(%) 1 =0, —= 7.23

s (Tyn — o0). By the Markov inequality, we get plim(r_p’n_,oo)n_1 S Q5 =0,
which completes the proof of the joint limits.
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Next, we consider the sequential probability limits. By Lemma 5(a) of Phillips and
Moon (1999) it suffices to show that, for fixed n, the probability limit thT—»ooi S Q;
exists. But the latter is true by Lemma 4(b). m

Proof of Lemma 7. Note that

Evec (Cyi(1)Z;Ci(1) — BCi(1)Z:Chi(1)) vec (Cyi(1)EiChy (1) — BCri(1 )uiC’;i(l)),
= E(VeC(C' i(1) — BC4i(1))=:C,(1 )) vec ((Cyt(l) 5 2i(1 ))HZC, (1 ))
E(Czi(1) ®(Cyz(1) — BCyi(1))vec(Z;) ( eC(Ei ( ) ® ( i(1 )_ﬂCm‘(l))l)
EC3i(1) ® (Cyi(1) = BC(1)) E (vee(Ei)vee(E:)') Cpi(1) @ (Chi(1) = BC(1))',

and E (vec(Z;)vec(Z;)’) can be written as

E </01 /01 /01 /01 k(r, $)k(p, q)vec (AW, (r)dW;,(s)) vec (dWm(p)dWJn(q))’) .

Some calculations show that F (vec (dWp,(r)dW (s)) vec (AW, (p)dW},(q))) is

vec(Iy)vec(Iy) drdp, ifr=s#p=q,
I,,2drds, ifr=p#£s=gq,
Kpymdrds, ifr=q+#s=np,
0, otherwise.

(7.24)

Using the above result, we have
E (vec(Z;) vec(Z;)') = pPvec(Im)vec(In) + 6% Iz + Kpum) -
Consequently,

EC;(1) ® (Cyz(l) BCL(1))E (Vec(uz)vec(uz) ) C’;i(l) ® (Cyi(l) - BCxi(l))l

= 1Cai(1) ® (Cyi(1) = BCai(1))vec(Im)vec(Im) Cry(1) @ (Cyi(1) — BCai(1))
+62E (Cai(1) ® (Cyi(1) = BCii(1))) (Crs(1) @ (Cya(1) = BCai(1))')
+62E (Cai(1) ® (Cyi(1) = BCai(1))) ((Cyi(1) = BCi(1)) ® C4(1)) Komym,

= @Bvec ((Cyi(1) — BCu(1) InCln(1)) vee ((Cyp(1) = BCai( 1) InCl(1))’
+6°E (me ® (nyi — BQayi — ymﬂ, =+ ﬂmeﬁ,))
+52 ( (wai - mmﬁl) ( yai ﬂme)) MyMg
= M2Evec( yai — BQaai) vee (Qyai — BQuui)
+62E (i ® (i — By — Vil + 8%aif3))
+52 (E(waz - wmﬁ) ( Yyt ﬂsz)) MyMyg *

Here we have used the identity that

Kim (Calcz(l) ® (Cyi(l) - ﬂC’m(l))') = ((Cyi(l) - ﬁCm( )) ® Cglcz( )) MyMg )
(see Part (viii) of Theorem 3.1 in Magnus and Neudecker (1979)). =
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Proof of Theorem 9. Under the joint limit, we have shown Qm —p 18z, and
bpr —p 0 as (n,T — oo) and y/n/T — 0. To prove the theorem, it suffices to show
that

% > Qir = N(0,0)
i=1

under the joint limit. Note that Q; 7 are iid random matrices across 7 with zero mean
and covariance matrix O = Evec(Q; r)vec(Q; 1) . To calculate Or, let

0 0
Gm = (O I, ) and
1 T - 2 T T
pr = T;K(T’T) z_:z_;
Then, by Lemma 4 (b), O is
EVGC( yxi ﬁQmm - E(Aym ﬁme)VeC( yxi ﬁQym - E(Aym ﬁQym)
—  Bvec [(Imy, —5) (QZ - EQZ) Gm} vec [(Imy, —5) (QZ - E§Z> Gm]'
=[G ® (I, —5)] Bvee (i — B ) vee (% — BO,) (G, © (I, )]
= > [G/ ( my,—ﬁ)] Evec( H(1)Ci(1 )) vec (C( )C/(l)) [G' ( my,—ﬁ)]'
—13 (Gl @ (I, , —B)] Evec (C;(1)Ci(1 ))Evec( {(1)CH) [Ghy @ (I, —6)]
+67 (G ® (Im,, —0)] (Ci(1) ® Gi(1)) (CI(1) @ C(1)) [Grpy @ (Im,, —B)]'
)

(1)) (Ci(
+6% [Gry ® (Imy, —B)] (Ci(1) ® Ci(1)) Ky (C1(1) @ CH(1)) [Gr @ (Imy, —5)]’
+o(1).

'ﬂl
'ﬂl\‘

!/

A few more calculations give us

Or = M%EVGC( yxi Bszz) (Vec( yai ﬁme))
—l—(S%E (mez — mmﬂ ) ( yTi Bme) mymg T O (1)

So {Qir}: is an iid sequence with mean zero and covariance matrix @T

Next we apply Theorem 3 of Phillips and Moon (1999) with C; Lnym, to
establish 1/y/n > " | Q; 7 = N(0,0). Conditions (i), (ii) and (iv) of the theorem are
obviously satisfied in view of the facts that C; = I, 1, and O — © as T' — oco. To
prove the uniform integrability of ||Q; ||, we use Theorem 3.6 of Billingsley(1999).
Put in our context, the theorem states that if |Q; 7| = ||Qil and E||Q;r| —
E||Q;l| , then ||Q; 7| is uniformly integrable. Note that, using the continuous mapping
theorem, we have, as T — oo,

1Qirl® = 1Qil* = ||Cyi(D)EiCLi(1) — BCai(1)EiCh (1)
1 1
_ H(Cyi(l)—ﬁ%(l)) [ [ wesamanecnw

2

Y
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and

E ”Qi,T”2 = Ftr (Vec(Q@T)vec(Qi,T)') =tr(Or)
— tr(0) = E[|Qi”.
Therefore, ||@Q;,7] is uniformly integrable. Invoking Theorem 3 of Phillips and Moon
(1999) to complete the proof. m

Proof of Lemma 11. Note that 3, — 3; = (Qym B:Q2i) Q0 o we first consider
the stochastic order of Qy;; — 3;2z4;. By definition,

T T
~ 1 t t ,
Qym = fzzgz(]ﬂmt[((?a TZZ it zt 1 K(T )Umﬂ—
T=11t=1 =1 t=1
1 t T
= BZQmmZ+T§:1t§:1 it zt 1 K(T,T)Uéﬂ-
T T-1
1 t T t+1 7
= jo Ty K(——=, Iyu!
ZZ it ’T ( T ’T))me'
=1 t=1
T
"‘ﬂzﬂxm + EzT ZK 5 T)U;IEZT (7.25)

where the last equality follows from summation by parts.
Therefore, when K(1,7) = K(s,1) =0 for any r and s,

T T-1
T (@i = B:ei) = S 3 Bial(K ~ kL Ty 7.26
ym xm - ,t ( T T)) ;T ( . )
=1 t=1

Following the same steps as the proof of Lemma 4(a), we can prove that

T T-1
t+1 7 ;o
Z;;E ~ K(“2= 2)Us,r = Op(1), (7.27)

provided that K(-,-) is Lipschitz continuous. As a consequence, we get T(3; — ;) =
0,(1). o
When K(1,5) # 0, VT Qi — 8;Quzi) equals

L= t+1 7
E; K — K(1 . (7.2
;; t( 2) = K(— T)> zTZ - (7.28)
In view of (7.27), the first term op(1). The second term is O,(1) because

T
VT Y KL, 2)Us . = / LKL W) CL). (7.29)
T=1 0

Hence \/T(Qym — B%ai) = Op(1), which implies that VT(B; — B;) = Op(l). m
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