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ABSTRACT

The paper develops a new heteroscedasticity and autocorrelation robust test in a time
series setting. The test is based on a series long run variance matrix estimator that involves
projecting the time series of interest onto a set of orthonormal bases and using the sample
variance of the projection coe�cients as the long run variance estimator. When the num-
ber of orthonormal bases K is �xed, a �nite sample corrected Wald statistic converges to
a standard F distribution. When K grows with the sample size, the usual Wald statistic
converges to a chi-square distribution. We show that critical values from the F distribution
are second-order correct under the conventional increasing-smoothing asymptotics. Simu-
lations show that the F approximation is more accurate than the chi-square approximation
in �nite samples.

JEL Classi�cation: C13; C14; C32; C51

Keywords: Asymptotic expansion, F-distribution, Fixed-smoothing asymptotics, Increasing-
smoothing asymptotics, long run variance, robust standard error, nonparametric series
method.



1 Introduction

The paper considers heteroscedasticity and autocorrelation robust inference in a time series
setting. In the presence of nonparametric autocorrelation, it is standard practice to use a
kernel-based method to estimate the long run variance (LRV) of the moment process, e.g.,
Newey and West (1987) and Andrews (1991). Recent research on kernel LRV estimation
has developed new and more accurate asymptotic approximations to the associated test
statistics. See, for example, Kiefer and Vogelsang (2005), Jansson (2004), Sun and Phillips
and Jin (2008, SPJ hereafter). The new asymptotic approximation is obtained under the
limiting thought experiment where the amount of nonparametric smoothing is held �xed.
However, the new approximation has not been widely adopted in empirical studies. A
possible reason is that the new approximation is not standard and critical values have to
be simulated. In this paper, we employ a nonparametric series method for LRV estimation.
A great advantage of this method is that the asymptotic distribution of the associated
Wald statistic is standard regardless of the limiting thought experiments we use. So more
accurate inference can be conducted without any extra computational cost.

The basic idea behind the series LRV estimation is to project the moment process onto
a set of basis functions designed to represent the long-run behavior directly. The outer-
product of each projection coe�cient is a direct and asymptotically unbiased estimator of
the LRV. The series LRV estimator is simply an average of these direct estimators. It can
also be regarded as the sample variance of the projection coe�cients. By construction,
the series LRV estimator is automatically positive semide�nite, a desirable property for
practical use of this estimator.

The smoothing parameter in the series LRV estimator is the number of basis functions
K employed. Depending on the asymptotic speci�cations on K; there are two types of
asymptotics: the �xed-smoothing asymptotics under which K is assumed to be �xed and
the increasing-smoothing asymptotics under which K is assumed to grow with the sample
size but at a slower rate. These two types of asymptotics correspond to the �xed-b asymp-
totics and the small-b asymptotics for kernel LRV estimation, as introduced in Kiefer and
Vogelsang (2005). By capturing the estimation uncertainty of the LRV estimator, the �xed-
smoothing asymptotics is often more accurate than the increasing-smoothing asymptotics
in �nite samples.

To obtain a standard limiting distribution under the �xed-smoothing asymptotics, we
require the basis functions to be orthonormal and have zero `mean' in that they integrate to
zero on [0,1]. These two conditions ensure that the direct LRV estimators are asymptotically
independent and the series LRV estimator converges to a normalized Wishart distribution.
As a result, under the �xed-smoothing asymptotics, a modi�ed Wald statistic converges to
a standard F distribution. This is in contrast with the conventional increasing-smoothing
asymptotics under which the Wald statistic converges to a chi-square distribution.

In �nite samples and in practical situations, we often choose the smoothing parameterK
to reect the temporary dependence and the sample size. In general, K increases with the
sample size. This practice is more compatible with the increasing-smoothing asymptotics.
To justify the use of the �xed-smoothing asymptotics in �nite samples, we establish a high
order expansion of the modi�ed Wald statistic under the increasing-smoothing asymptotics.
Using the high order expansion, we show that critical values from the �xed-smoothing
limiting distribution, i.e. the F distribution, are second-order correct under the increasing-
smoothing asymptotics. A direct implication is that we can use �xed-smoothing critical
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values regardless whether the �nite sample situation is more compatible with the increasing-
smoothing asymptotics or not.

On the basis of the high order expansion, we obtain an approximate measure of the
coverage probability error (CPE) of a �nite sample corrected Wald con�dence region. We
select the smoothing parameter K to minimize the CPE. Our proposed CPE-optimal K is
di�erent from the MSE-optimal K as given in Phillips (2005) in terms both the orders of
magnitude and the constant coe�cients.

Some discussions of this paper's contributions relative to the author's other work are
in order. Sun (2011a) employs the series LRV estimator for OLS trend inference in a
simple linear trend model, while the focus here is on general stationary time series and
M estimation. So the present paper complements Sun (2011a). The idea of CPE-optimal
smoothing parameter choice was used in the unpublished working papers Sun and Phillips
(2008) and Sun (2011b) but these two papers focus on kernel LRV estimation and inference.
In addition, the present paper relaxes the functional CLT assumption, which is typically
maintained in the literature on the �xed-smoothing asymptotics, to a multivariate CLT.
This can be viewed as a technical advantage of using the series LRV estimator.

The rest of the paper is organized as follows. Section 2 describes the problem at hand
and provides an overview of the series LRV estimator. Section 3 investigates the limiting
behavior of the Wald statistic under the �xed-smoothing asymptotics. Section 4 gives a
higher order distributional expansion of the modi�ed Wald statistic under the conventional
increasing-smoothing asymptotics. On the basis of this expansion, we consider selecting K
to minimize the coverage probability error in Section 5. The subsequent section reports
simulation evidence. The last section provides some concluding discussion. Proofs of the
main results and their extensions are given in the Appendix.

2 Basic Setting and Series LRV Estimator

Consider an M-estimator, �̂T , of a d� 1 parameter vector �0 that satis�es

�̂T = argmin
�2�

QT (�) := argmin
�2�

1

T

TX
t=1

�(�; Zt)

where � is a compact parameter space,
�
Zt 2 Rdz

	T
t=1

are the time series observations, and
�(�; Zt) is a twice continuously di�erentiable criterion function. To achieve identi�cation,
we assume that � = �0 is the unique minimizer of Q(�) = E�(�; Zt) over �. De�ne

st (�) =
@�(�; Zt)

@�
and HT (�) =

1

T

TX
t=1

@st (�)

@�0
:

Then under some additional regularity conditions, we have

p
T
�
�̂T � �0

�
= �H�1

T

�
~�T

� 1p
T

TX
t=1

st (�0) ;

where HT (~�T ) is de�ned to be

HT

�
~�T

�
:= T�1

TX
t=1

@st

�
~�T

�
@�0

,
@st

�
~�T

�
@�0

:=

24@st
�
~�T1

�
@�1

; :::;
@st

�
~�Td

�
@�d

35
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with ~�Ti = �0 + �Ti

�
�̂T � �0

�
for some �Ti 2 [0; 1] and i = 1; 2; :::; d:

Suppose we want to test the null hypothesis that H0 : R�0 = r against H1 : R�0 6= r
for some p� d matrix R with full rank. Under the null hypothesis, we have

p
T
�
R�̂T � r

�
= � 1p

T

TX
t=1

ut

�
~�T ; �0

�
where

ut (�1; �2) = RH�1
T (�1) st (�2) :

Invoking a CLT, we can obtain:
p
T
�
R�̂T � r

�
d! N(0;
) where 
 = ��0 =

P1
j=�1 � (j),

� (j) = RH�1 �Est (�0) s0t�j (�0)�H�1R0 and H = EHT (�0) :

The above asymptotic result provides the usual basis for the Wald test. To implement
the test, we need to �rst estimate the long run variance matrix 
: Many nonparametric
estimation methods are available in the econometrics literature. Most LRV estimators
use kernel-smoothing methods that involve taking a weighted sum of sample autocovari-
ances. In this paper, following Phillips (2005, 2006), Sun (2006, 2011a), and M�uller (2007),
we consider a nonparametric series method that involves projecting the time series onto
orthonormal basis functions.

Let f�kg1k=1 be a sequence of orthonormal basis functions in L2[0; 1] and ût = ut(�̂T ; �̂T ):
De�ne the sample inner product

�̂k =
1p
T

TX
t=1

�k(
t

T
)ût

and construct the direct LRV estimator:


̂k = �̂k�̂
0
k

for each k = 1; 2; :::;K: Taking a simple average of these direct estimators yields our series
LRV estimator:


̂ =
1

K

KX
k=1


̂k

where K is the number of basis functions used.
The series LRV estimator has di�erent interpretations. It can be regarded as a multiple-

window estimator with window function �k(t=T ), see Thomson (1982). It also belongs to
the class of �lter-bank estimators and 
̂ is a simple average of the individual �lter-bank
estimators 
̂k. For more discussions along this line, see Stoica and Moses (2005, ch. 5).
Furthermore, the series LRV estimator can be written as


̂ =
1

T

TX
t=1

TX
s=1

ûtKG(
t

T
;
s

T
)û0s

where

KG(r; s) =
1

K

KX
k=1

�k (r)�k (s) :
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So the series LRV estimator 
̂ can be regarded as a kernel LRV estimator with the gener-
alized kernel function KG(r; s): For regular kernel estimators, the kernel function satis�es
K(r; s) = K(r � s). Here for any �nite K; KG(r; s) 6= KG(r � s) in general. Sun (2011a)
provides additional motivation for the series LRV estimator.

Under some conditions, it is not hard to show that each of the direct LRV estimator 
̂k
is an asymptotically unbiased but inconsistent estimator of 
: As a result, 
̂ is inconsistent
when K is �xed. However, the asymptotic variance of 
̂ decreases as K increases. So as
K !1, 
̂ becomes consistent. These properties of the series LRV estimator are analogous
to those of kernel LRV estimators.

3 Fixed-smoothing Asymptotics

The usual Wald statistic FT for testing linear hypothesis H0 against H1 is given by

FT =
p
T
�
R�̂T � r

�0

̂�1

p
T
�
R�̂T � r

�
: (1)

When p = 1; we can construct the usual t-statistic

tT =

p
T
�
R�̂T � r

�
p

̂

:

Our results extend straightforwardly to nonlinear hypotheses.
Let �0 (x) = 1 be the constant function. To establish the large sample asymptotic

distributions of FT and tT ; we maintain the following assumption.

Assumption 1 (i) �(�; Zt) is twice continuously di�erentiable, �̂T = �0 + op (1) ; and �0
is an interior point of �:

(ii) Uniformly in r  1T
[rT ]X
t=1

@st

�
~�T

�
@�0

� rH

!p 0

for nonsingular matrix H = EHT (�0) where k�k is the Frobenius norm.
(iii) The following CLT holds:

RH�1 1p
T

TX
t=1

�k

�
t

T

�
st (�0)

d! ��k

jointly for k = 0; :::;K where �k s iidN(0; Ip):
(iv) f�k (x)gKk=1 is a sequence of continuously di�erentiable and orthonormal basis func-

tions on L2[0; 1] satisfying
R 1
0 �k (x) dx = 0:

The consistency result in Assumption 1(i) can be veri�ed under more primitive assump-
tions and using standard textbook arguments. Assumption 1(ii) is standard in the literature
on the �xed-smoothing asymptotics, e.g. see Kiefer and Vogelsang (2005, Assumption 3).
Assumption 1(iii) is a multivariate CLT. It is much weaker than the functional CLT (FCLT)
assumption that

1p
T

[Tr]X
t=1

st (�0)
d!Wd (r)
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whereWd (r) is a Brownian motion process. The above FCLT is often assumed for deriving
the �xed-smoothing asymptotics. See for example Kiefer and Vogelsang (2005, Assumption
2) and Sun and Kim (2012, Assumption 3). It is easy to see that the FCLT and Assumption
1(iv) imply Assumption 1(iii).

There are many basis functions that satisfy Assumption 1(iv). For example, �k (x) =p
2 sin 2�kx and �k (x) =

p
2 cos 2�kx. However, the function �k (x) =

p
2 sin� (k � 0:5)x

used in Phillips (2005) and M�uller (2007) does not satisfy Assumption 1(iv) as it does
not have zero `mean' in that

R 1
0 �k (x) dx 6= 0: The zero mean condition ensures that

T�1=2
PT
t=1 �k (t=T ) st (�0) and T

�1=2PT
t=1 �k (t=T ) st(�̂T ) have the same limiting distri-

bution. That is, the estimation uncertainty in �̂T can be ignored in large samples. Without
this assumption, the limiting distributions of 
̂ and FT may be nonstandard.

Theorem 1 Let Assumption 1 hold. Then for K � p;

(i) K��1
̂ (�0)�1
d!Wp(Ip;K)

d
=
PK
k=1 �k�

0
k; �k s iidN(0; Ip).

(ii)

(K � p+ 1)
pK

FT
d! Fp;K�p+1 =

�2p=p

�2K�p+1= (K � p+ 1)

where Fp;K�p+1 is the F distribution with degrees of freedom (p;K � p+ 1) :

By de�nition, Wp(Ip;K) is a Wishart distribution. In the scalar case with d = 1,

the limiting distribution of K��1
̂ (�0)�1 reduces to the chi-square distribution �2K . In
addition, for any conforming constant vector z; we have

z0
̂z

z0
z
=
z0�

h
��1
̂ (�0)�1

i
�0z

z0���1
 (�0)�1 �0z

d! ~z0

k~zk

 
1

K

KX
k=1

�k�
0
k

!
~z

k~zk s
d �

2
K

K
;

where ~z = �0z. That is, z0
̂z=z0
z converges weakly to a normalized chi-square distribu-
tion. This result can be used to test hypotheses regarding 
. The resulting test may have
better size properties than the asymptotic chi-square test. See Hashimzade and Vogelsang
(2007) for the same point based on conventional kernel estimators. We do not pursue this
extension here as our main focus is on the inference for �:

The �xed-smoothing asymptotics of FT can be rewritten as

FT
d!

�2p
�2K�p+1= (K � p+ 1)

K

K � p+ 1

where �2p and �2K�p+1 are independent �
2 variates. As K ! 1; the �xed-smoothing

asymptotic distribution approaches the usual chi-square distribution �2p. However, when
K is �xed, critical values based on the �xed-smoothing asymptotics are larger than those
based on the usual chi-square approximation. This is because both the random denominator
�2K�p+1= (K � p+ 1) and the proportional factor K=(K � p+1) shift the probability mass
to the right. More rigorously, let Gp (�) be the CDF of a �2 random variable with degrees
of freedom p and X�p be the �-level critical value such that 1 � Gp

�
X�p
�
= �: Then for
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typical � used in empirical applications:

P

 
�2p

�2K�p+1= (K � p+ 1)
K

K � p+ 1 > X
�
p

!

= 1� EGp

 
X�p

K � p+ 1
K

�2K�p+1
(K � p+ 1)

!

> 1�Gp
�
X�p

K � p+ 1
K

�
> 1�Gp

�
X�p
�
= �;

where we have used the concavity of Gp (�) at the right tail and Jensen's inequality. So crit-
ical values from the �xed-smoothing asymptotics are indeed larger than the corresponding
standard chi-square critical values.

When p = 1; the above result reduces to tT
d! tK : That is, the t-statistic converges

to the t distribution with K degrees of freedom. The asymptotic t-distribution theory has
appeared in the literature. Ibragimov and M�uller (2010) employ a closely related method
and establish the robustness of t-approximation to variance heterogeneity.

In the special case when �(�; Zt) = kZt � �k2, we have �0 = EZt. By selecting R and r
appropriately, we can obtain the null hypothesis H0 : �01 = �02 = ::: = �0d: So the problem
reduces to testing whether the means are the same across di�erent time series. Our result
can be viewed as an extension of Hotelling's T 2 test for iid data to the time series setting.
We recover the asymptotic T 2 distribution but with di�erent degrees of freedom that reect
the time series dependence. An application of multivariate mean comparison is the equal
predictability test. The data might consist of a multivariate time series of forecasting loss
that are produced by di�erent forecasting methods. We can test equal predictive accuracy
of these forecasting methods by examining whether the mean of the loss series are the
same. Diebold and Mariano (1995) consider the case with two forecasts while Christensen,
Diebold, Rudebusch and Strasser (2008) extend it to general multivariate scenarios.

Under the local alternative hypothesis,

H1
�
�2
�
: R� = r + c=

�p
T
�
where c = 
1=2~c (2)

for some p� 1 vector ~c; we have

(K � p+ 1)
pK

FT
d! (K � p+ 1)

p
(�0 + ~c)

0
 

KX
k=1

�k�
0
k

!�1
(�0 + ~c)

=d Fp;K�p+1
�
�2
�
;

a noncentral F distribution with degrees of freedom (p;K � p+ 1) and noncentrality pa-
rameter

�2 = (~c)0 ~c = c0
�1=2
�1=2c = c0
�1c:

Similarly, the t-statistic converges to the noncentral t distribution with degrees of freedom
K and noncentrality parameter � = c=
1=2 = ~c:
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4 High Order Expansion under Increasing-smoothing Asymp-

totics

In this section, we establish a high order expansion of theWald statistic under the increasing-
smoothing asymptotics under which K ! 1 and K=T ! 0: Using the high order expan-
sion, we show that the �xed-smoothing approximation is second-order correct under the
increasing-smoothing asymptotics.

To simplify the presentation and for the sake of clarity, we consider the special case when
R is the identity matrix Ip with p = d. That is, we are interested in the hypothesis about
the whole parameter vector. Since Est(�) = 0 if and only if � = �0; the null hypothesis
H0 : � = �0 is equivalent to the hypothesis that the multivariate process st(�0) has mean
zero. In view of this equivalence, we can construct the ~FT statistic as follows

~FT =

"
1p
T

TX
t=1

st(�0)

#0
~
�1

"
1p
T

TX
t=1

st(�0)

#
(3)

where ~
 = K�1PK
k=1

~�k ~�
0
k for

~�k =
1p
T

TX
t=1

�k(
t

T
)st(�0):

The above test statistic ~FT is the same as FT introduced before except that we do not need
to estimate the Hessian matrix under the null. De�ne the �nite sample corrected statistic

~F �T =
K � p+ 1

K
~FT :

Theorem 2 Assume that (i) st(�0) is a stationary Gaussian process; (ii) For any � 2 Rd;
the spectral density of �0st(�0) is twice continuously di�erentiable and is bounded above and
away from zero in a neighborhood around the origin. If K !1 such that K=T ! 0, then

P
�
~F �T < z

�
= Gp (z) +

K2

T 2
G0p (z) z �B +

1

K
G00p (z) z

2 + o

�
1

K

�
+ o

�
K2

T 2

�
+O

�
1

T

�
(4)

where B = E ~
� 
, �B = tr
�
B
�1

�
=p; and 
 is the LRV of st(�0):

In the above theorem, we have followed SPJ (2008) and made the simpli�cation assump-
tion that st(�0) is normal. The normality assumption allows us to decompose (1=

p
T )
PT
t=1 st(�0)

into two parts: one part that is independent of ~
 and the other part that is stochastically
small. The main terms in the high order expansion are driven by the �rst part. The
normality assumption could be relaxed but at the cost of much greater complexity and
tedious calculations. The expansion under non-normality is also much hard to understand.
It contains high order terms that cannot be reliably estimated in �nite samples. See, for
example, Velasco and Robinson (2001) and Sun and Phillips (2008).

The high order expansion in Theorem 2 has the same form as the expansion in Sun
(2011a). The �rst term in (4) comes from the standard chi-square approximation of the
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Wald statistic. The second term captures the nonparametric bias of the LRV estimator.
While B is the bias of ~
; �B can be regarded as the relative bias as it summarizes the bias
matrix relative to the true matrix 
: When p = 1; �B = B=
, which is the percentage of
the bias. The third term in (4) reects the variance of the LRV estimator. It decreases as
K increases.

With some abuse of notation, we use Fp;K�p+1 to denote a random variable with the
distribution Fp;K�p+1: It is straightforward to show that

P (pFp;K�p+1 < z) = EGp

 
z
�2K�p+1
K � p+ 1

!
= Gp (z) +

1

K
G00p (z) z

2 + o

�
1

K

�
: (5)

So the �xed-smoothing asymptotics agrees with the higher-order increasing-smoothing
asymptotics up to the order of O (1=K) : This implies that pF�p;K�p+1 is high order correct
under the conventional increasing-smoothing asymptotics.

Let F�p;K�p+1 be the �-level critical value of the Fp;K�p+1 distribution, i.e.

P
�
pFp;K�p+1 < pF�p;K�p+1

�
= 1� �:

In view of (5), we have

Gp
�
pF�p;K�p+1

�
+
1

K
G00p
�
pF�p;K�p+1

� �
pF�p;K�p+1

�2
= 1� �+ o

�
1

K

�
;

as K !1: It then follows that

P
�
~F �T < pF�p;K�p+1

�
= Gp

�
pF�p;K�p+1

�
+
K2

T 2
G0p
�
pF�p;K�p+1

�
pF�p;K�p+1 �B +

1

K
G00p
�
pF�p;K�p+1

� �
pF�p;K�p+1

�2
+ o

�
1

K

�
+ o

�
K2

T 2

�
+O

�
1

T

�
= 1� �+ K2

T 2
G0p
�
X�p
�
X�p �B + o

�
1

K

�
+ o

�
K2

T 2

�
+O

�
1

T

�
(6)

where we have used pF�p;K�p+1 = X�p +o(1) asK !1: So using the critical value pF�p;K�p+1
instead of the chi-square critical value X�p removes the variance term in the high order
expansion given by Theorem 2. When K is not too large, using the F critical value should
lead to a test with more accurate size.

Theorem 2 gives an expansion of the distribution of K�1 (K � p+ 1) ~FT : The factor
K�1 (K � p+ 1) is a �nite sample correction that can be interpreted as a Bartlett type
correction. See Sun (2011b) for more details. Alternatively, we can regard ~FT as the
standard Wald statistic but using the following estimator for 
 :

�
 =
1

K � p+ 1

KX
k=1

~�k ~�
0
k:

So the �nite sample correction factor (K � p+ 1) =K can be viewed as a degree-of-freedom
adjustment. This adjustment is small when p is small but it can be large when p is large
or K is relatively small.
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Theorem 2 applies to statistical inference that involves the whole parameter vector �0:
Suppose we go back to the general testing problem with the null H0 : R�0 = r and the
alternative H1 : R�0 6= r: A conservative approach to inference is to project the con�dence
region for the whole parameter vector �0 onto the subspace R�0 to obtain

��R =
�
R�0 : for �0 such that F

�
T � pF�p;K�p+1

	
and reject the null if the con�dence set ��R does not contain r: Here we follow the more
conventional approach by constructing the FT statistic as in (1). It is easy to see that

FT =

 
1p
T

TX
t=1

ut(~�T ; �0)

!0

̂�1

 
1p
T

TX
t=1

ut(~�T ; �0)

!
:

So the FT statistic can be viewed as a feasible Wald statistic for testing whether the mean
of the multivariate process RH�1st (�0) is zero.

In Appendix B, we show that, under some high level conditions, the high order expansion
in (4) remains valid for

F �T =
K � p+ 1

K
FT

except that there is an additional approximation error of order log T=
p
T that does not

depend on K: So the second-order correctness of the �xed-smoothing approximation holds
in more general settings.

5 CPE-Optimal K Choice

Suppose we are interested in the whole parameter vector. If we construct the con�dence
region of the form

�
�0 : F

�
T � X�p

	
; then up to small order terms its (absolute) coverage

probability error (CPE) is

CPE =
��P �F �T � X�p �� (1� �)��

=

����K2

T 2
G0p
�
X�p
�
X�p �B +

1

K
G00p
�
X�p
� �
X�p
�2����

� K2

T 2
G0p
�
X�p
�
X�p
�� �B��+ 1

K

��G00p �X�p ��� �X�p �2 :
To control the coverage probability error, we can choose K to minimize the above upper
bound for the CPE, leading to

K�
CPE =

2666
 ��G00p �X�p ���X�p
2G0p

�
X�p
� �� �B��

!1=3
T 2=3

3777 =
&��p�X�p � 2��

4
�� �B��

1=3

T 2=3

'
; (7)

where d�e is the ceiling function. This rate is slower than the MSE-optimal rate as derived
in Phillips (2005):

K�
MSE =

2666
 
tr
�
W
�
Ip2 +Kpp

�
(

 
)

�
4vec(B)0Wvec(B)

!1=5
T 4=5

3777
9



where Kpp is the p2 � p2 commutation matrix, Ip2 is the p2 � p2 identity matrix, and W
is a p2 � p2 weighting matrix. The constants in the optimal K formulae are also clearly
di�erent.

In the special case when p = 1; � = 5%; we have

K�
CPE =

l
0:42293

�� �B���1=3 T 2=3m ; (8)

and
K�
MSE =

l
1:1487

�� �B���2=5 T 4=5m :
Hence K�

CPE=K
�
MSE =

15

q�� �B��T� 2
15 : So unless the relative bias �B is very large, we expect

K�
CPE to be smaller than K

�
MSE in �nite samples. However, this qualitative result does

not hold for p > 1; in which case the �nite sample comparison hinges on the speci�c values
of B and 
:

Since the high order expansion in (4) remains valid for testing a subvector of �0; the
CPE-optimal K formula in (7) is applicable more generally.

To operationalize the CPE-optimal K formula, we can estimate the unknown parameter
�B nonparametrically (e.g. Newey and West (1994)) or by a standard plug-in procedure
based on a simple parametric model like a VAR (e.g. Andrews (1991)). Both methods
achieve a valid order of magnitude and the procedure is analogous to conventional data-
driven methods for kernel LRV estimation. We focus the discussion on the plug-in procedure
in the more general setting. It involves the following three steps. First, we obtain the
estimator �̂T and estimate the transformed score by ût = RH�1

T (�̂T )st(�̂T ): Second, we
specify a multivariate approximating parametric model and �t the model to fûtg by the
standard OLS method. Third, we treat the �tted model as if it were the true model for
the unobserved process ut = RH�1st (�0) and compute �B as a function of the parameters
of the parametric model. Plugging the estimate �B into (7) gives the data-driven choice
K̂�
CPE :
Suppose we use a VAR(1) as the approximating parametric model for ût and use the

following basis functions �2k�1(x) =
p
2 cos 2k�x, �2k(x) =

p
2 sin 2k�x for k = 1; :::;K=2

in constructing 
̂: Let Â be the estimated autoregressive parameter matrix and �̂ be the
estimated innovation covariance matrix, then the plug-in estimates of 
 and B are


̂ = (Ip � Â)�1�̂(Ip � Â0)�1; (9)

B̂ = ��
2

6
(Ip � Â)�3

�
Â�̂ + Â2�̂Â0 + Â2�̂� 6Â�̂Â0

+�̂(Â0)2 + Â�̂(Â0)2 + �̂Â0
�
(Ip � Â0)�3: (10)

Here the constant �2=6 in B̂ is the same as that in Phillips (2005). We use the above basis
functions and formulae in our simulation study. For the plug-in estimates under a general
VAR(p) model, we refer to Andrews (1991) for the corresponding formulae.

It should be pointed out that the computational cost involved in this automatic smooth-
ing parameter selection is the same as that of the conventional plug-in bandwidth based
on the MSE criterion.
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6 Simulation Evidence

This section provides some simulation evidence on the �nite sample performance of the F
approximation. We �rst consider the location model

Zt = � + et

where Zt 2 R6 i.e. dz = d = 6: The error et follows either a VAR(1) or VMA(1) process:

et = Aet�1 +

q
1�  2"t

et = A"t�1 +

q
1�  2"t

where A =  Id; "t = (v1t + ft; v2t + ft; :::; v6t + ft)
0 =
p
1 + 2 and (vt; ft)

0 is a multi-
variate Gaussian white noise process with unit variance. Under this speci�cation, the six
time series all follow the same VAR(1) or VMA(1) process with "t s iidN(0;�) for

� =
1

1 + 2
Id +

2

1 + 2
Jd;

where Jd is the d�d matrix of ones. The parameter  determines the degree of dependence
among the time series considered. When  = 0; the six time series are uncorrelated with
each other. When  = 1; the six time series have the same pairwise correlation coe�cient
0.5. The variance-covariance matrix of et is normalized so that the variance of each series
eit is equal to one for all values of j j < 1: For the VAR(1) process, the long run variance
of et is

�
1�  2

�
(Id �A)�1� (Id �A0)�1 : For the VMA(1) process, the long run variance

of et is
�
1�  2

�
(Id +A=

p
1�  2)�(Id +A=

p
1�  2)0:

For the model parameters, we take  = 0; 0:25; 0:50; 0:75 and set  = 0 or 1: We set
the intercepts to zero as the tests we consider are invariant to them. For each test, we
consider two signi�cance levels � = 5% and � = 10%; and three di�erent sample sizes
T = 100; 200; 500: The number of simulation replications is 10000.

We consider the following null hypotheses:

H01 : �1 = 0;
H02 : �1 = �2 = 0;

H03 : �1 = �2 = �3 = 0;

H04 : �1 = �2 = ::: = �6 = 0;

where p = 1; 2; 3; 6; respectively. The corresponding matrix R is the �rst p rows of the
identity matrix I6: To explore the �nite sample size of the tests, we generate data under
these null hypotheses. To compare the power of the tests, we generate data under the local
alternative hypothesis H1

�
�2
�
with ~c distributed uniformly over the sphere in Rp with

radius �:
We examine the �nite sample performance of seven di�erent tests. The �rst four tests

are based on the modi�ed statistic F �T : They di�er in terms of the bandwidth selection rule
(CPE or MSE withW = I) and the critical value used (pF�p;K�p+1 or X�p ). These four tests
are labelled as F-CPE, �2-CPE, F-MSE, �2-MSE. The labels should be self-explanatory.
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The �fth test is the conventional �2 test based on the unmodi�ed Wald statistic FT , MSE-
based smoothing parameter, and critical value X�p : We refer to the test as the �2c-MSE
test with the subscript `c' signifying a conventional test. The next test is the `F-MIN' test
which is the same the F-CPE or F-MSE test except that K is set close to the minimal value
which ensures that the series LRV estimator is not ill conditioned. In the simulation we
use K = p+ 4 in the F-MIN test. We also impose K = p+ 4 to be the lower bound for all
data-driven choices of K: The last test is the test proposed by Kiefer and Vogelsang (2002)
and is based on the Bartlett kernel LRV estimator with bandwidth equal to the sample size
and uses the nonstandard asymptotic theory.

The F-MIN test and �2c-MSE test can be regarded as the two ends of the power and
size tradeo�. While the F-MIN test employs a small K in order to achieve size accuracy,
the �2c-MSE test uses a relatively large K for power improvement. Many other tests are
available in the literature. We do not include all of them here as their performances are
likely to be between the F-MIN test and the �2c-MSE test.

Table 1: Empirical size of di�erent 5% tests in a location model with VAR(1) error and
sample size T = 100

F-CPE �2-CPE �2c-MSE �2-MSE F-MSE F-MIN KV

p = 1
 = 0 0:0504 0:0584 0:0548 0:0548 0:0489 0:0610 0:0513
 = 0:25 0:0549 0:0712 0:0760 0:0760 0:0646 0:0609 0:0557
 = 0:50 0:0618 0:0871 0:0921 0:0921 0:0706 0:0618 0:0637
 = 0:75 0:0736 0:1279 0:1286 0:1286 0:0813 0:0687 0:0807

p = 2
 = 0 0:0528 0:0638 0:0652 0:0621 0:0530 0:0501 0:0524
 = 0:25 0:0629 0:0861 0:0940 0:0875 0:0690 0:0509 0:0611
 = 0:50 0:0680 0:1118 0:1270 0:1128 0:0755 0:0540 0:0744
 = 0:75 0:0879 0:1784 0:2103 0:1765 0:0876 0:0695 0:1140

p = 3
 = 0 0:0542 0:0680 0:0747 0:0677 0:0534 0:0778 0:0551
 = 0:25 0:0677 0:1003 0:1202 0:1015 0:0753 0:0775 0:0684
 = 0:50 0:0751 0:1363 0:1778 0:1367 0:0808 0:0818 0:0917
 = 0:75 0:1020 0:2391 0:3286 0:2379 0:0995 0:0994 0:1613

p = 6
 = 0 0:0544 0:0799 0:1186 0:0822 0:0551 0:0517 0:0536
 = 0:25 0:0837 0:1401 0:2216 0:1321 0:0753 0:0533 0:0874
 = 0:50 0:1057 0:2131 0:4024 0:2130 0:0910 0:0597 0:1508
 = 0:75 0:1737 0:4040 0:6531 0:3563 0:1022 0:0988 0:3452

Table 1 gives the empirical size of the seven tests for the VAR(1) error with sample
size T = 100 and  = 0: The signi�cance level is 5%, which is also the nominal size. We
can make the following observations. First, as it is clear from the table, the conventional
�2c-MSE test has large size distortion. The size distortion increases with both the error
dependence and the number of restrictions being tested. This result is consistent with our
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theoretical analysis. The size distortion can be very severe. For example, when  = 0:75
and p = 6, the empirical size of the test is 0:6531, which is far from 0.05, the nominal
size. Second, comparing the F-MSE test with the �2c-MSE test, we �nd that using critical
values from the F approximation eliminates the size distortion of the conventional Wald
test to a great extent. This is especially true when the size distortion is large. Intuitively,
larger size distortion occurs when K is smaller so that the LRV estimator has a larger
variation. This is the scenario where the di�erence between the F approximation and chi-
square approximation is large. Note that the hybrid F-MSE test is rigorously justi�ed as
the critical value from the F distribution is second order correct under the conventional
increasing-smoothing asymptotics. Third, comparing the �2-MSE test with the �2c-MSE
test, we �nd that the �nite sample scale correction is helpful in reducing the size distortion.
However, the correction alone is not enough. The remaining size distortion calls for the use
of an F approximation. Fourth, comparing the �2-CPE test with the �2-MSE tests, we �nd
that the CPE-optimal K choice is a viable competitor to the MSE-optimal K choice. It is
important to point out that unlike the standard practice, the MSE criterion we employ is the
asymptotic MSE of 
̂, which estimates the long run variance of RH�1st (�0) : So our MSE
criterion is tailored toward the null hypothesis under consideration. Fifth, the size distortion
of the F-CPE, F-MIN, and KV tests is substantially smaller than the conventional �2c-MSE
test. This is because these three tests employ asymptotic approximations that capture
the estimation uncertainty of the LRV estimator. Finally, compared with the F-MIN and
KV tests, the F-CPE test has only slightly larger size distortion. Since the bandwidth is
set equal to the sample size, the KV test is designed to achieve the smallest possible size
distortion. Similarly, the F-MIN test uses a small K value in order to achieve size accuracy.
Given these observations, we can conclude that the F-CPE test succeeds in reducing the
size distortion.

Table 2 presents the empirical size for the VMA(1) error process. The qualitative
observations for the VAR(1) error remain valid. In fact, these qualitative observations hold
for other parameter con�gurations such as di�erent sample sizes, di�erent values of  and
di�erent error distributions.

Figures 1-4 present the �nite sample power under the VAR(1) error for di�erent values
of p: We compute the power using the 5% empirical �nite sample critical values obtained
from the (simulated) null distribution. So the �nite sample power is size-adjusted and
power comparisons are meaningful. It should be pointed out that the size-adjustment is
not feasible in practice. The parameter con�guration is the same as those for Table 1 except
the DGP is generated under the local alternatives. Note that the F-CPE and the �2-CPE
tests have the same size-adjusted power, as they are based on the same test statistic. For
the same reason, the �2c-MSE, �

2-MSE and F-MSE tests have the same size-adjusted power.
So we only report the power curves for the F-CPE, �2-MSE, F-MIN, and KV tests. Three
observations can be drawn from these �gures. First, the power of the F-CPE test is very
close to the conventional Wald test. In some scenarios, the F-CPE test is more powerful.
Second, the F-CPE test has higher power than the KV test in almost all cases. An exception
is when the error dependence is very high and the number of restrictions is large. In this
case, the two tests have almost the same power. When the error dependence is low, the
selected K value is relatively large and the variance of the associated LRV estimator is
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Table 2: Empirical size of di�erent 5% tests in a location model with VMA(1) error and
sample size T = 100

F-CPE �2-CPE �2c-MSE �2-MSE F-MSE F-MIN KV

p = 1
 = 0 0:0504 0:0584 0:0548 0:0548 0:0489 0:0610 0:0513
 = 0:25 0:0500 0:0639 0:0645 0:0645 0:0525 0:0616 0:0545
 = 0:50 0:0504 0:0706 0:0657 0:0657 0:0501 0:0612 0:0554
 = 0:75 0:0503 0:0745 0:0703 0:0703 0:0493 0:0606 0:0557

p = 2
 = 0 0:0528 0:0638 0:0652 0:0621 0:0530 0:0501 0:0524
 = 0:25 0:0570 0:0769 0:0819 0:0766 0:0584 0:0492 0:0576
 = 0:50 0:0528 0:0870 0:0905 0:0815 0:0551 0:0499 0:0603
 = 0:75 0:0534 0:0887 0:0929 0:0829 0:0536 0:0497 0:0609

p = 3
 = 0 0:0542 0:0680 0:0747 0:0677 0:0534 0:0778 0:0551
 = 0:25 0:0602 0:0875 0:1029 0:0876 0:0631 0:0777 0:0614
 = 0:50 0:0581 0:0971 0:1226 0:0944 0:0596 0:0780 0:0663
 = 0:75 0:0572 0:1009 0:1302 0:0978 0:0605 0:0787 0:0673

p = 6
 = 0 0:0544 0:0799 0:1186 0:0822 0:0551 0:0517 0:0536
 = 0:25 0:0678 0:1105 0:1878 0:1123 0:0621 0:0515 0:0741
 = 0:50 0:0669 0:1272 0:2571 0:1365 0:0639 0:0528 0:0860
 = 0:75 0:0668 0:1307 0:2953 0:1497 0:0657 0:0523 0:0884
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small. In contrast, the LRV estimator used in the KV test has a large variance. As a
result, the F-CPE test is more powerful than the KV test. On the other hand, when the
error dependence is very large, the selected K value is very small. In this case, both the
KV test and the F-CPE test employ LRV estimators with large variance. The two tests
can have comparable power. Finally, the F-CPE test is consistently more powerful than
the F-MIN test. The power improvement is substantial in most of the cases. This is not
surprising as the F-MIN test, like the KV test, is designed to have good size properties but
often at the cost of power loss.

To save space, we do not report the �gures for the power curves under the VMA(1)
error but make a brief comment. We �nd that the �gures reinforce and strengthen the
observations for the VAR(1) error. It is clear under the VMA(1) error that the F-CPE
test is as powerful as and sometimes more powerful than the conventional Wald test, the
nonstandard KV test and the F-MIN test. This is true for all parameter combinations for
the location model we considered.

We have also considered linear regression models as in Sun (2011b) in our simulation
study:

yt = �0 + xt;1�1 + xt;2�2 + xt;3�3 + xt;4�4 + xt;0

where the regressors xt;j ; j = 1; 2; 3; 4 and regression error xt;0 follow mutually indepen-
dent AR(1), MA(1) or MA(m) processes. For brevity, we only report the simulation re-

sults for the AR(1) case where xt;j = ut;j=
p
1�  2, j = 0; :::; 4 for ut;j =  ut�1;j + et;j ,

et;j s iidN(0; 1): Results for other DGP's are qualitatively similar. We estimate � =
(�0; �1; :::; �4)

0 by OLS and consider the null hypotheses H0p : �1 = ::: = �p = 0 for
p = 1; 2; 3; 4: Table 3 gives the empirical size of di�erent 5% tests for sample size 200 and
di�erent values of  : It is clear that the qualitative observations for Table 1 remain valid.
The qualitative conclusions for power comparisons in Figures 1-4 continue to apply in the
regression case. For brevity, we omit the power �gures.

7 Conclusion

Using the series LRV estimator, the paper proposes a new approach to autocorrelation
robust inference in a time series setting. A great advantage of the series LRV estimator is
that the associated (modi�ed) Wald statistic converges to a standard distribution regard-
less of the asymptotic speci�cations of the smoothing parameter. This property releases
practitioners from the computational burden of having to simulate nonstandard critical
values. Monte Carlo simulations show that our proposed F test has much more accurate
size than the conventional Wald test. The size accuracy is achieved without power loss.

There are many extensions to the current paper. One possibility is to optimally select
the smoothing parameter to minimize the type II error after controlling for the type I error.
This is done in the working paper version of the present paper. See also Sun (2011a). We can
also select the smoothing parameter to minimize the volume of a con�dence region subject
to the constraint that the coverage probability is at least at some level. The volume can
be the physical volume or an indirect measure such as the probability of including the false
values (see Neyman (1937)). It is straightforward to generalize of the series LRV estimation
and inference to a �rst step GMM framework. It is more challenging to account for the
estimation uncertainty of the optimal weighting matrix in a second-step e�cient GMM
framework.
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Table 3: Empirical size of di�erent 5% tests for linear regression models with AR(1) re-
gressors and error with T = 200

F-CPE �2-CPE �2-MSE �2-MSE F-MSE K-MIN KV

p = 1
 = �0:5 0.0675 0.0782 0.0807 0.0807 0.0750 0.0709 0.0618
 = 0 0.0574 0.0624 0.0615 0.0615 0.0580 0.0654 0.0534
 = 0:3 0.0621 0.0674 0.0687 0.0687 0.0651 0.0733 0.0565
 = 0:5 0.0679 0.0785 0.0815 0.0815 0.0746 0.0712 0.0603
 = 0:7 0.0815 0.0974 0.0989 0.0989 0.0893 0.0781 0.0691
 = 0:7 0.1400 0.1799 0.1851 0.1851 0.1544 0.1226 0.1200

p = 2
 = �0:5 0.0742 0.0900 0.0963 0.0924 0.0821 0.0626 0.0667
 = 0 0.0587 0.0644 0.0638 0.0620 0.0580 0.0534 0.0517
 = 0:3 0.0659 0.0750 0.0798 0.0768 0.0709 0.0603 0.0589
 = 0:5 0.0761 0.0933 0.0982 0.0944 0.0849 0.0643 0.0642
 = 0:7 0.1009 0.1291 0.1420 0.1339 0.1115 0.0745 0.0828
 = 0:9 0.1933 0.2642 0.2883 0.2668 0.2023 0.1311 0.1693

p = 3
 = �0:5 0.0827 0.1055 0.1177 0.1088 0.0903 0.0918 0.0775
 = 0 0.0647 0.0726 0.0771 0.0724 0.0641 0.0870 0.0609
 = 0:3 0.0748 0.0873 0.0960 0.0899 0.0777 0.0891 0.0653
 = 0:5 0.0903 0.1121 0.1268 0.1171 0.1014 0.0914 0.0770
 = 0:7 0.1193 0.1596 0.1840 0.1630 0.1307 0.1039 0.1020
 = 0:9 0.2444 0.3365 0.3936 0.3366 0.2327 0.1812 0.2222

p = 4
 = �0:5 0.0897 0.1176 0.1427 0.1222 0.1000 0.0652 0.0827
 = 0 0.0659 0.0769 0.0836 0.0749 0.0647 0.0575 0.0609
 = 0:3 0.0791 0.0938 0.1067 0.0938 0.0818 0.0593 0.0704
 = 0:5 0.0989 0.1256 0.1494 0.1285 0.1061 0.0632 0.0813
 = 0:7 0.1346 0.1884 0.2269 0.1935 0.1472 0.0817 0.1188
 = 0:9 0.2907 0.4112 0.5049 0.3963 0.2501 0.1637 0.2735
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Figure 1: Size-adjusted Power of Di�erent Testing Procedures for VAR(1) Error with T =
100 and p = 1:
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Figure 2: Size-adjusted Power of Di�erent Testing Procedures for VAR(1) Error with T =
100 and p = 2:
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Figure 3: Size-adjusted Power of Di�erent Testing Procedures for VAR(1) Error with T =
100 and p = 3:
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Figure 4: Size-adjusted Power of Di�erent Testing Procedures for VAR(1) Error with T =
100 and p = 6:
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8 Appendix of Proofs

8.1 Appendix A: Proof of Main Results

Proof of Theorem 1. Let

St (�) =

tX
�=1

s� (�) and S0 (�) = 0;

then under Assumption 1 (ii), we have

1p
T
St

�
�̂T

�
=

1p
T
St (�0) +

0@ 1
T

tX
�=1

@s�

�
~�T

�
@�0

1ApT ��̂T � �0�

=
1p
T
St (�0)�

0@ 1
T
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The limiting distribution of FT is exactly the same as Hotelling's T-squared distribution
(Hotelling (1931)). Using the well-known relationship between the T-squared distribution
and the F-distribution, we have

(K � p+ 1)
K

FT
d! Fp;K�p+1

as desired.
Proof of Theorem 2. To prove the theorem, we cast the problem in a location model

st = �+ vt
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Using the same argument as the proof of Lemma 3 in Sun (2011a), we can show that
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It is not di�cult to show that
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where the op (�) terms are also small in the root mean-square sense.
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8.2 Appendix B: Expansion for General Wald Statistic

In this appendix, we make some simplifying and high-level assumptions and show that high
order terms in Theorem 2 remain valid for a general hypothesis testing problem.

We consider the conventional increasing-smoothing asymptotics under which K ! 1
and K=T ! 0: We �rst assume that
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Here �T does not depend on K:
Note that FLT is the Wald statistic for testing whether the mean of the process ~Yt =

RH�1st (�0) is 0: In other words, FLT is in exactly the same form as the statistic FT
de�ned in (3) but with a transformed score process. Therefore, if the transformed score
RH�1st (�0) satis�es the Assumptions in theorem 2, we can establish the following theorem.
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where the last equality follows from Theorem 2 and the continuous di�erentiability of
Gp (�) ; G0p (�) ; and G00p (�) and boundedness of Gp (z) ; zG0p (z) and z2G00p (z) :
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Theorem 3 shows that, if we ignore the terms that do not depend on K; the approxi-
mate CPE for the Wald con�dence region based on the statistic F �T for a subvector of the
parameter is exactly the same as that for the whole parameter vector. Hence the optimal
K formula in (7) remains valid for inference on a subvector of the true parameter.

Assumption (iii) is a crucial high-level assumption. Given the probability orders in (16)
and (17), the assumption holds under su�cient moment and mixing conditions. With more
sophisticate arguments as in Sun and Phillips (2008), we can drop the logarithm factor in
the expansion. Here we are content with the weaker result as our main interest is to capture
the e�ect of K on the CPE.
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