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ABSTRACT

The paper develops a new procedure for hypothesis testing in time series models. The
test is based on a series long run variance matrix estimator that involves projecting the
time series onto a set of orthonormal bases and using the sample variance of the projection
vectors as the variance estimator. The series long run variance estimator is asymptotically
invariant to model parameters and thus does not su�er from the usual estimation bias that
hurts the performance of conventional kernel estimators. The number of basis functions
K, the underlying smoothing parameter, plays a key role in determining the asymptotic
properties of the series long run variance estimator and the associated semiparametric test.
When K is �xed, the (modi�ed) Wald statistic converges to an F-distribution while when
K grows with the sample size, the Wald statistic converges to a chi-square distribution. We
show that critical values from the �xed-K asymptotics are second order correct under the
large-K asymptotics. We propose a new approach to select K which minimizes the type
II error hence maximizes the power of the test while controlling for the type I error. This
testing-oriented selection rule is fundamentally di�erent from the conventional rule based
on the mean square error criterion. A plug-in procedure for implementing the new rule is
suggested and simulations show that the new plug-in procedure works remarkably well in
�nite samples.

JEL Classi�cation: C13; C14; C32; C51

Keywords: Asymptotic expansion, F-distribution, Hotelling's T-squared distribution, long-
run variance, robust standard error, series method, testing-optimal smoothing parameter
choice, type I and type II errors.



1 Introduction

One objective of time series analysis is to estimate some unknown characteristic or param-
eter of the system being studied. We often want not only an estimate of this parameter
value, but also some measure of the estimator's precision in order to conduct inference.
Hypothesis testing is widely used for this purpose. In this paper, we �rst consider a mul-
tivariate time series whose mean value is the parameter of interest. We use this simple
model to illustrate our ideas and then discuss how the basic ideas can be extended to more
general settings. Nevertheless, the mean inference problem includes a large number of situ-
ations. For example, the data might consist of a multivariate time series of forecasting loss
that are produced by di�erent forecasting methods. We can test equal predictive accuracy
of these forecasting methods by examining whether the loss di�erential series has mean
zero. Diebold and Mariano (1995) consider the case with two forecasts while Christensen,
Diebold, Rudebusch and Strasser (2008) extend it to general multivariate scenarios. There
is also a large and active literature on inference for the mean of simulated time series. Vari-
ous variance estimation methods have been proposed in the �elds of operation research and
industrial engineering. Some methods are familiar to statisticians and econometricians, for
example, the spectrum method of Heidelberger and Welch (1981) and the autoregression
approximation method of Fishman (1978). Some methods are less familiar, for example,
the batch mean method, discussed as early as Conway (1963). These procedures all rely on
central limit theorems that describe the asymptotic behavior of the parameter estimator.
The methods di�er in the manner of estimating the standard deviation of this estimator. A
major di�culty in performing hypothesis testing for dependent stationary time series comes
in estimating the value of this unknown scaling constant. In the econometrics literature,
this scaling constant is also referred to as the long run variance (LRV).

In this paper, we follow Phillips (2005) and consider estimating the LRV using a non-
parametric series method. The basic idea is to project the time series onto a set of basis
functions designed to represent the long-run behavior directly. The outer-product of each
projection coe�cient is a direct and asymptotically unbiased estimator of the LRV. The
series LRV estimator is simply an average of these direct estimators. By construction,
the series LRV estimator is automatically positive semide�nite, a desirable property for
practical use of the LRV estimator.

The smoothing parameter in the series LRV estimator is the number of basis functions
employed. When the number of basis functions K is �xed, the Wald statistic converges
to a nonstandard distribution rather than the standard chi-square distribution. This type
of asymptotics captures the randomness of the LRV estimator and delivers a test that is
more accurate in size than the conventional chi-square test. The �xed-K asymptotics has
been widely used in the literature on computer simulations, see, for example, Foley and
Goldman (1999). It is also in the spirit of the �xed-b asymptotics of Kiefer and Vogelsang
(2005).

The novelty here is that we design a set of basis functions so that the nonstandard
limiting distribution becomes a standard F distribution. We require the basis functions
to be orthonormal and have zero mean in that they integrate to zero on [0,1]. These two
conditions ensure that the direct LRV estimators are asymptotically independent and the
series LRV estimator converges to a scaled Wishart distribution. As a result, a modi�ed
Wald statistic converges to an F -distribution. So a great advantage of using the series LRV
estimator is that the critical values from the �xed-K asymptotics are readily available from
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statistical tables and software programs. The computational burden of simulating critical
values from nonstandard distributions is completely removed. The zero mean condition
ensures that the series LRV estimator is asymptotically invariant to the model parameters
of interest. As a result, it does not su�er from the bias due to the estimation uncertainty of
these model parameters. This is in contrast with the conventional kernel LRV estimators
where this type of bias is often present. See for example, Hannan (1957) and Ng and
Perron (1994). Although carefully crafted polynomials meet the orthonormality and zero
mean conditions, it is more convenient to use cosine and sine functions. In this paper, we
use the sine bases as they do not su�er from the bias due to the edge e�ect.

The challenge is how to select the number of basis terms, an important tuning parameter
that determines the asymptotic properties of the series LRV estimator. It turns out that
the �xed-K asymptotics does not provide an internally consistent framework for selecting
the optimal number of bases. For a �xed value of K; the series LRV estimator has a bias of
order O(1=T ) while its variance is O (1) and decreases with K: To minimize the variance,
we should select the value of K that is as large as possible. However, the (absolute)
asymptotics bias also increases with K. The fundamental problem is that the bias order of
O(1=T ) obtained under the �xed-K asymptotics is not uniform across K: To overcome this
problem, we consider the asymptotic behavior of the series LRV estimator when K grows
with the sample size at a certain rate. Following the conventional approach (e.g., Andrews,
1991, and Newey and West, 1987, 1994), Phillips (2005) chooses the smoothing parameter
K to minimize the asymptotic MSE of the LRV estimator. However, the MSE-optimal
choice is not necessarily best suited for semiparametric testing.

To develop an optimal choice of K for semiparametric testing, we �rst have to decide on
which test to use. There are two choices. One is the traditional Wald test which is based
the Wald statistic and uses critical values from a chi-square distribution. The other is the
new F � test given in this paper, which is based on a modi�ed Wald statistic and uses critical
values from an F distribution. The modi�cation involves multiplying the Wald statistic by
a �nite sample correction factor (K � p+1)=K where p is the number of restrictions being
tested. The correction factor can be large when K is small or when p is large. One of main
contributions of the paper is to show that critical values from the �xed-K asymptotics are
higher order correct under the conventional large-K asymptotics. This implies that the F �

test generally is more accurate in size than the traditional Wald test. On the basis of this
theoretical result and the emphasis on the size control in the statistics and econometrics
literature, we employ the F � test to conduct inference on the mean of the time series.

Another main contribution of the paper is to develop a testing-optimal procedure for
selecting the smoothing parameter K. For testing problems, we do not care about the LRV
estimator per se. Instead, we are interested in the LRV estimator only to use it to construct
the F � statistic. The ultimate goal of any testing problem is to minimize the type II error
hence maximize the power while controlling for the type I error. It is thus desirable to
choose the smoothing parameter to achieve this goal. We propose choosing K to minimize
the type II error subject to the constraint that the type I error is bounded. The resulting
optimal K is said to be testing-optimal for the given bound. The bound is de�ned to be
��; where � is the nominal type I error and � � 1 is the parameter that captures the user's
tolerance on the discrepancy between the nominal and true type I errors. The parameter
� is allowed to be sample size dependent. For a smaller sample size, we may have a higher
tolerance while for the larger sample size we may have a lower tolerance. The introduction
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of the tolerance parameter into the optimal K selection is a conceptually new idea, which
does not seem to appear elsewhere in the literature.

To select the testing-optimal K, we use high order asymptotic expansions to obtain
approximate measures of type I and type II errors of the F � test. We show that the type
I error depends on the nonparametric bias of the LRV estimator. The type II error of the
F � test depends on the local alternative hypothesis through the noncentrality parameter
k~ck2, where ~c is a vector that characterizes the local departure of the alternative hypothesis
from the null. To the �rst order, the type II error depends on ~c only through its squared
length k~ck2. So it is reasonable to assume that ~c is uniformly distributed on a sphere.
This assumption greatly facilitates the higher order expansion under the local alternative
hypothesis. In a transformed space, the null hypothesis is a �xed point while the alternative
hypothesis is a random point uniformly distributed on a sphere centered at the �xed null.
We choose the radius of the sphere so that the power of the test is 50% under the �rst
order asymptotics. This strategy is similar to that used in the optimal testing literature,
see for example, Elliott, Rothenberg and Stock (1996).

The paper contributes to a large literature on semiparametric testing for time series
models. In particular, we provide a rigorous framework for optimal smoothing parameter
choice for mean inference. In the �elds of operation research, industrial engineering, sim-
ulation, statistics and econometrics, various methods have been proposed for robust mean
inference. See, for examples, Conway (1963), Albers (1978), Fishman (1978), Heidelberger
and Welch (1981), Kabaila and Nelson (1985), Foley and Goldman (1999), Alexopoulos
(2007) and references therein. The fundamental problem is how to select the smoothing
parameter in the nonparametric variance estimator so that the associated test has good
size and power properties. Existing proposals are either ad hoc or based on the MSE cri-
terion. The present paper proposes a new practical procedure for selecting the smoothing
parameter that addresses the central concern of hypothesis testing.

Some discussions of this paper's contributions relative to the author's other work are in
order. Sun (2011a) employs the series LRV estimator and investigates the testing-optimal
smoothing parameter choice for autocorrelation-robust trend inference, while the focus here
is on stationary time series. The idea of testing-optimal smoothing parameter choice �rst
appears in Sun, Phillips and Jin (2008) where a simple univariate Gaussian location model is
considered. Subsequently, Sun and Phillips (2008) extends Sun, Phillips, and Jin (2008) to
linear IV regressions and relaxes the Gaussian assumption but considers optimal bandwidth
that minimizes the coverage error of con�dence intervals for a single parameter or a single
linear parameter combination. Sun (2011b) employs the idea of the F approximation in
this paper to tackle autocorrelation robust inference based on kernel LRV estimators.

The rest of the paper is organized as follows. Section 2 describes the problem at hand.
Section 3 discusses the series LRV estimator and its relationship with other popular esti-
mators. The section also establishes the asymptotic properties of the series LRV estimator
under the �xed-K and large-K asymptotics. Section 4 investigates the Wald test under
both the �xed-K and large-K asymptotics. Section 5 gives a higher order expansion of the
�nite sample distribution of the modi�ed Wald statistic. On the basis of this expansion,
the next section proposes a selection rule for K that is most suitable for implementation in
semiparametric testing. Section 7 discusses the applicability of our procedure for location
tests to more general testing problems. The subsequent section reports simulation evi-
dence on the performance of the new procedure. The last section provides some concluding
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discussion. Proofs of the main results and their extensions are given in the Appendix.

2 The Model and Preliminaries

Assume that n-dimensional time series yt follows the process:

yt = � + ut; t = 1; 2; :::; T (1)

where yt = (y1t; :::; ynt)
0, � = (�1; :::; �n)

0, ut = (u1t; :::; unt)
0 is a weakly dependent process

with zero mean. Our focus of interest is on inference about the mean �:

Assumption 1 We assume that

ut = C(L)"t =
1X
j=0

Cj"t�j ;

where "t s iid(0;�); E k"tkv <1 for some v � 4,
1X
j=0

ja kCjk <1 for a > 3; C(1)�C (1)0 > 0 (2)

and k�k is the matrix Euclidean norm.

The summability assumption in (2) ensures that

1X
h=�1

jhj3 k�u (h)k <1

where �u (h) = Eutu
0
t+h: The convergence result, which is helpful in some technical deriva-

tions below, means that the spectral density matrix of ut has continuous second order
derivatives.

Under Assumption 1, we can prove that

1p
T

[Tr]X
t=1

ut !d �Wn(r); as T !1; (3)

where Wn(r) is an n � 1 vector of standard Wiener processes and � = 
1=2 is the matrix
square root of the long run variance matrix 
 of ut :


 = ��0 =
1X

j=�1
Eutu

0
t�j =

1X
j=�1

�u (j) :

The OLS estimator of � is the average of fytg ; viz. �̂OLS = T�1
PT
t=1 yt: It follows from

(3) that p
T
�
�̂OLS � �

�
!d �Wn(1) :=

d N(0;
):
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Let �̂GLS be the GLS estimator of � given by

�̂GLS =
�
(`T 
 In)0
�1u (`T 
 In)

��1
(`T 
 In)0
�1u y;

where 
u = var([u01; u
0
2; :::; u

0
T ]
0), y = [y01; y

0
2; :::; y

0
T ]
0 and `T is a vector of ones. Under

Assumption 1, the OLS estimator �̂OLS is asymptotically equivalent to the GLS estimator
�̂GLS . To see this, let c be any vector in Rn; then xt = c0yt is a univariate time series
with mean � = c0�. According to Grenander and Rosenblatt (1957), the OLS estimator
�̂OLS of � is asymptotically equivalent to the GLS �̂GLS of �: In addition, var(�̂OLS) =
var(�̂GLS) +O (1=T ) : Note that �̂OLS = c0�̂OLS , �̂GLS = c0�̂GLS ; so

var(c0�̂OLS) = var(c0�̂GLS) +O (1=T ) for any c 2 Rn:

This is to say, �̂OLS and �̂GLS are asymptotically equivalent. Thus, the simple OLS esti-
mator has a nice optimality property. We note in passing that the GLS estimator �̂GLS
will be employed as a technical device in later developments.

The hypotheses of interest in this paper are

H0 : R� = r against H1 : R� 6= r;

where R is a p � n matrix and r is a p � 1 vector. For example, we may want to test
whether the means are jointly zero. In this case, R is an identity matrix and r is a vector
of zeros. The problem is the same as that considered by Hotelling (1931) except that we
allow for time series dependence. As a second example, in the equal predictability test of
Christensen, Diebold, Rudebusch and Strasser (2008), the null hypothesis is that the means
of forecasting loss are the same across di�erent forecasts.

3 Series LRV Estimator and its Asymptotic Properties

3.1 Series LRV Estimator

To conduct inference regarding �; we need to �rst estimate the long run variance matrix

: Many nonparametric estimation methods are available in both statistics and economet-
rics literature. Most LRV estimators use kernel-smoothing methods that involve taking a
weighted sum of sample autocovariances. In this paper, we consider a nonparametric series
method which involves projecting the time series onto orthogonal functions.

Let f�kg1k=1 be a sequence of basis functions in L2[0; 1] and ût = yt � �̂OLS . De�ne the
inner product

�̂k =
1p
T

TX
t=1

�k(
t

T
)ût

and construct the direct LRV estimator:


̂k = �̂k�̂
0
k

for each k = 1; 2; :::;K: Taking a simple average of these direct estimators yields our series
estimator:


̂ =
1

K

KX
k=1


̂k
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where K is the number of basis functions used.
The series estimator has di�erent interpretations. First, it can be regarded as a multiple-

window estimator with window function �k(t=T ), see Thomson (1982). Depending on the
choice of �k; the estimator 
̂ includes many existing estimators as special cases. Per-
cival and Walden (1993, page 353) point out that all quadratic estimators with a real
valued, symmetric, positive semide�nite matrix of weights can be written in the form of

̂: Examples of such quadratic estimators are the kernel LRV estimators, which are used
widely in the econometric literature (e.g. Andrews (1991) and Newey and West (1987)).
Quadratic estimators that cannot be written in the kernel form have been considered by
Phillips (2005), M�uller (2007) and Sun (2006) in the econometric literature. Second, when
�k(1� x) = �k(x); we can write �̂k = (1=

p
T )
PT�1
�=0 �k(�=T )ûT�� ; which is a linear �lter

of the residual process ût: The transfer function of the linear �lter for each k is

Hk(!) =
1p
T

T�1X
�=0

�k(
�

T
) exp(i�!):

To capture the long run behavior of the process, we require that Hk(!) be concentrated
around the origin. That is, Hk(!) resembles a band pass �lter that passes low frequencies
within a certain range and rejects (attenuates) frequencies outside that range. Hence, 
̂k
can also be regarded as a �lter-bank estimator and 
̂ is a simple average of these �lter-bank
estimators. For more discussions on �lter-bank estimators, see Stoica and Moses (2005).
Finally, when �k(�) are orthonormal in �nite samples so that T�1

PT
t=1 �k(t=T )�k0(t=T ) =

�k;k0 , �̂k is the vector of projection coe�cients of projecting ût onto the basis function

�k. There exist basis functions such that T
�1PT

t=1 �k(t=T )�k0(t=t) =
R 1
0 �k(r)�k0(r)dr =

�k;k0 : Following and extending Phillips (2005), we can cast our estimator in the seemingly
unrelated regression system below:

ût1 =
KX
k=1

1p
T
�k(

t

T
)�k1 + et1;

:::

ûtn =

KX
k=1

1p
T
�k(

t

T
)�kn + etn:

In the vector form, the system becomes

ût =

KX
k=1

1p
T
�k(

t

T
)�k + et:

�̂k is simply the OLS estimator of �k and 
̂ is the sample variance of �̂k: 
̂k is part of
`the total sum of squares'

PT
t=1 ûtû

0
t that is explained by the basis function �k(�): This

explained sum of squares may be regarded as another ways of thinking about the long run
variance matrix| the contributions to the variation of ût that are due to low frequency
variation in the series. A closely related paper along this line is Phillips (2006), which
discusses relations of basis function series projection estimators to kernel procedures, and
how the series projections can be used to optimally estimate cointegration systems.

6



The series estimator 
̂ can also be written as the so-called area estimator in industrial
and system engineering. Let S0 = 0 and

St =
1p
T

tX
�=1

û� =
1p
T

tX
�=1

(u� � �u) for t = 1; 2; :::; T

then using summation by parts, we have

1p
T

TX
t=1

�k

�
t

T

�
ût :=

1

T

TX
t=1

wk

�
t

T

�
St (4)

where

wk

�
t

T

�
= T

�
�k

�
t

T

�
� �k

�
t+ 1

T

��
s �0k

�
t

T

�
and �k ([T + 1]=T ) can be arbitrarily de�ned as ST = 0: So


̂ =
1

K

KX
k=1

"
1

T

TX
t=1

wk

�
t

T

�
St

#"
1

T

TX
t=1

wk

�
t

T

�
St

#0
:

For a given weighting function, the estimator formulated as above is called the weighted area
estimator (Foley and Goldsman (1999)). This terminology originates from the observation
that

1

T

TX
t=1

wk

�
t

T

�
St !d

Z 1

0
wk (r)Vn(r)dr

which is the weighted area of the Brownian bridge Vn(r) =Wn (r)� rWn (1) :
Finally, the series estimator can be written as


̂ =
1

T

TX
t=1

TX
s=1

ûtKG(
t

T
;
s

T
)û0s

where

KG(r; s) =
1

K

KX
k=1

�k (r)�k (s) :

So the series estimator 
̂ can be regarded as a kernel LRV estimator with the generalized
kernel function KG(r; s): For regular kernel estimators, the kernel function satis�es K(r; s) =
K(r � s). Here for any �nite K; KG(r; s) 6= KG(r � s) in general.

By selecting di�erent basis functions, we can obtain many series LRV estimators. How-
ever, in nonparametric series estimation, it is the conventional wisdom that the choice of
basis functions is often less important than the choice of the smoothing parameter. For
this reason, we employ the basis functions that are most convenient for practical use and
focus on the problem of selecting the smoothing parameter K:
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3.2 Fixed-K Asymptotics

To obtain the asymptotic distribution 
̂ for a �xedK; we assume that �k (r) is continuously
di�erentiable. Under this assumption and Assumption 1, we can prove Theorem 1.

Theorem 1 Let Assumption 1 hold. If �k (r) is continuously di�erentiable, then for a
�xed K;


̂!d �

 
1

K

KX
k=1

�k�
0
k

!
�0; (5)

where

�k =

Z 1

0

�
�k (r)�

Z 1

0
�k(s)ds

�
dWn(r):

Assumption 1 is su�cient but not necessary for Theorem 1 to hold. All we need is the
FCLT in (3).

In general, the limiting distribution is nonstandard, which is not very convenient for
practical use. To simplify the asymptotic distribution, we make the following assumption:

Assumption 2 (i)
R 1
0 �k (r) dr = 0; (ii)

R 1
0 �k1(r)�k2(r)dr = �k1;k2 := 1 fk1 = k2g :

The \zero mean" assumption
R 1
0 �k (r) dr = 0 removes the second part in the de�nition

of �k so that �k =
R 1
0 �k (r) dWn(r): Note that the second part in �k reects the estimation

error in �̂: So the zero mean assumption ensures that our LRV estimator is not a�ected
by the estimation error in the mean. This is an important point. For conventional LRV
estimators, Hannan (1957) points out that mean correction can lead to large bias in LRV
estimation. Based on the MSE criterion, this bias is of smaller order than the nonparametric
smoothing bias. However for robust testing, this type of bias is of the same order of
magnitude as the asymptotic variance; see SPJ (2008). Ignoring this type of bias can lead
to severe size distortion in �nite samples.

The orthonormality assumption ensures that �k is iid N(0; In); where In is the n � n
identity matrix. That is, each of 
̂k is asymptotically unbiased and 
̂k1 and 
̂k2 for k1 6= k2
are asymptotically independent. This property is analogous to the well-known property for
periodogram of a stationary time series. Under this assumption and for a �xed K; 
̂
converges to a Wishart type distribution as shown below.

Corollary 2 Let Assumptions 1 and 2 hold. If �k (r) is continuously di�erentiable, then
for a �xed K;

K��1
̂
�
�0
��1 !d Wn(In;K) a Wishart distribution.

In the scalar case with n = 1, the limiting distribution reduces to the chi-square distri-
bution �2K . In addition, for any conforming constant vector z; we have

z0
̂z

z0
z
=
z0�

h
��1
̂ (�0)�1

i
�0z

z0���1
 (�0)�1 �0z
!d ~z0

k~zk

 
1

K

KX
k=1

�k�
0
k

!
~z

k~zk s
d �

2
K

K
;

where ~z = �0z and �k s iidN(0; In): That is, z0
̂z=z0
z converges to a scaled chi-square
distribution. This result can be used to test hypotheses regarding 
. The resulting test
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may have better size properties than the asymptotic chi-square test. See Phillips, Sun
and Jin (2006, 2007) and Hashimzade and Vogelsang (2007) for the same point based on
conventional kernel estimators. We do not pursue this extension here as our main focus is
on the inference for �:

For convenience, we call the above asymptotics the �xed-K asymptotics. This type of
asymptotics has been used widely in the operation research and simulation literature. See
for example, Foley and Goldman (1999), Alexopoulos (2007). In fact, it is the only type of
asymptotics considered in that literature. The �xed-K asymptotics is similar in spirit to
the �xed-b asymptotics of Kiefer and Vogelsang (2005) who consider conventional kernel
LRV estimators and assume that the bandwidth is equal to a �xed proportion of the sample
size. The �xed-b asymptotics can be traced back to Neave (1970).

3.3 Large-K Asymptotics

In this section, we consider the asymptotic properties of 
̂ when bothK and T go to in�nity
such that K=T ! 0: We focus the special case �k (r) =

p
2 sin 2�kr as the results for other

cases can be proved analogously. More importantly, this series of basis functions satis�es
�k (0) = �k (1) = 0; a condition that ensures that the LRV estimator puts relatively less
weight on the boundary points and is highly e�ective in removing the edge e�ect. As a
result, the asymptotic bias of order O (1=T ) vanishes. �k (r) =

p
2 sin 2�kr is also consistent

with the weight function wk (r) =
p
8� cos (2�kr) used in the weighted area estimator of

Foley and Goldsman (1999). According to the relationship between wk (x) in that paper
and �k(x) in the present setting, we have

�k (r) =

Z r

0
wk (s) ds =

p
8�

Z r

0
cos (2�s) ds =

p
2 sin 2�kr;

which is exactly the sine function. We use the sine bases throughout the rest of the paper.

Theorem 3 Let Assumption 1 hold. If �k (r) =
p
2 sin 2�kr; then

(a) The bias of 
̂ is

E
̂� 
 = K2

T 2
B + o

�
K2

T 2

�
+ o

�
1

T

�
for B = �2�

2

3

1X
h=�1

h2�u (h) : (6)

(b) The variance of 
̂ is

var
�
vec(
̂)

�
=
1

K
(In2 +Knn) (

 
) +O

�
1

T

�
where Knn is the n2 � n2 commutation matrix.

The theorem can be proved using the same arguments in Phillips (2005, Theorem 1).
We omit the details to conserve space.

Let
MSE(
̂;W) = Evec(
̂� 
)0Wvec(
̂� 
)
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be the mean squared error of vec(
̂) with weighting matrix W: It follows from Theorem 3
that, up to smaller order terms:

MSE(
̂;W) = tr
h
WEvec(
̂� 
)vec(
̂� 
)0

i
= vec(B)0Wvec(B)

K4

T 4
+ tr [W (In2 +Knn) (

 
)]

1

K
:

So the MSE optimal K is given by

K =

�
tr [W (In2 +Knn) (

 
)]

4vec(B)0Wvec(B)

�1=5
T 4=5:

This formula is analogous to the conventional MSE optimal formula for bandwidth choice
in kernel LRV estimators, e.g. Andrews (1991).

4 Autocorrelation Robust Inference

The usual Wald statistic FT;OLS for testing H0 against H1 is given by

FT;OLS =
hp

T (R�̂OLS � r)
i0 �

R
̂R0
��1 hp

T (R�̂OLS � r)
i
: (7)

When p = 1; we can construct the usual t-statistic

tT;OLS =

p
T (R�̂OLS � r)�
R
̂R0

�1=2 :

4.1 Fixed-K Asymptotics

Under the �xed-K asymptotics and the null hypothesis

FT;OLS =

"
R
1p
T

TX
t=1

ut

#0 �
R
̂R0

��1 "
R
1p
T

TX
t=1

ut

#

!d (R�Wn (1))
0
(
R�

1

K

KX
k=1

�Z 1

0
�k(r)dWn(r)

� �Z 1

0
�k(s)dW

0
n(s)

�
�0R0

)�1
� (R�Wn (1)) :

Let R�Wn(r) = R�W �
p (r) for some p � p matrix R� and p-dimensional Brownian motion

W �
p (r); then for a �xed K; we have

FT;OLS !d W �
p (1)

0
(
1

K

KX
k=1

�Z 1

0
�k (r) dW

�
p (r)

� �Z 1

0
�k (s) dW

�
p (s)

0
�)�1

W �
p (1)

:= �0

 
1

K

KX
k=1

�k�
0
k

!�1
�;
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where

� =W �
p (1) and �k =

Z 1

0
�k (r) dW

�
p (r):

Since

cov

�
W �
p (1) ;

Z 1

0
�k (r) dW

�
p (r)

�
=

Z 1

0
�k (r) dr = 0 for all k;

� and �k are independent as both are normal random variables. In addition, �k s iidN(0; Ip)
and

PK
k=1 �k�

0
k follows a Wishart distribution Wp(Ip;K): Hence the limiting distribution

of FT;OLS is the same as Hotelling's T-squared distribution (Hotelling (1931)):

FT;OLS !d T 2(p;K):

Using the well-known relationship between the T-squared distribution and the F-distribution,
we have

(K � p+ 1)
pK

FT;OLS !d K � p+ 1
pK

T 2(p;K) s Fp;K�p+1:

In other words,

(K � p+ 1)
pK

FT;OLS !d Fp;K�p+1 :=
�2p=p

�2K�p+1= (K � p+ 1) ;

where �2p and �
2
K�p+1 denote independent �

2 random variables. Of course, for the above
distribution to be well de�ned, we need to assume that K � p; a necessary condition to
ensure that R
̂R0 is invertible. In general, we need to assume K � n, a necessary condition
for the positive semi-de�niteness of 
̂:

When p = 1; the above result reduces to tT !d tK : That is, the t-statistic converges to
the t-distribution with K degrees of freedom. The asymptotic t-distribution theory is not
new in the literature. For the batch mean method, when the number of batches is �xed, the
t-statistic also converges to a t-distribution, see Alexopoulos (2007). Ibragimov and M�uller
(2010) employ a closely related method and establish the robustness of t-approximation to
variance heterogeneity.

We have therefore shown that when K is held �xed, the t-statistic converges to the t
distribution with degrees of freedom K and the scaled Wald statistic converges to the F
distribution with degrees of freedom p and K � p+1. These results are very convenient in
practical situations as critical values from the t distribution or the F distribution can be
easily obtained from statistical tables and packages.

Under the local alternative hypothesis,

H1
�
�2
�
: R� = r + c=

�p
T
�
where c =

�
R
R0

�1=2
~c (8)

for some p� 1 vector ~c; we have

(K � p+ 1)
pK

FT;OLS !d (K � p+ 1)
p

(� + ~c)0
 

KX
k=1

�k�
0
k

!�1
(� + ~c)

=d Fp;K�p+1
�
�2
�
;
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a noncentral F distribution with degrees of freedom (p;K � p+ 1) and noncentrality pa-
rameter

�2 = (~c)0 ~c = c0
�
R
R0

��1=2 �
R
R0

��1=2
c = c0

�
R
R0

��1
c:

Similarly, the t-statistic converges to the noncentral t distribution with degrees of freedom
K and noncentrality parameter � = c= (R
R0)1=2 = ~c:

The local alternative power depends on c only through the noncentrality parameter
�2 = k~ck2 ; the squared length of ~c: The power is invariant to the direction of ~c. Hence,
for the �rst order asymptotics given here, it is innocuous to assume that ~c is uniformly
distributed on the sphere Sp (�) = fx 2 Rp : kxk2 = �2g. As we show later, this assumption
greatly simpli�es the development of the higher order expansion in Section 5.

4.2 Large-K Asymptotics

When K ! 1 such that K=T ! 0; the LRV estimator 
̂ is consistent. In this case, we
obtain the standard results:

FT;OLS !d �2p under H0 and FT;OLS !d �2p
�
�2
�
under H1

�
�2
�
:

When p = 1; the above results reduce to

tT;OLS !d N(0; 1) under H0 and tT;OLS !d N (�; 1) under H1
�
�2
�
:

Under the null hypothesis, the �xed-K asymptotics can be rewritten as

FT;OLS !d
�2p

�2K�p+1= (K � p+ 1)
K

K � p+ 1 =
d (pFp;K�p+1)

K

K � p+ 1 :

Comparing it with the �xed-K asymptotics above, we �nd that the large-K asymptotics
uses the fact that both �2K�p+1= (K � p+ 1) and K=(K�p+1) converge to one as K !1:
To the �rst order, the large-K asymptotics can be regarded as a sequential asymptotics
where T !1 for a �xed K and then K !1:

Since both the random denominator �2K�p+1= (K � p+ 1) and the proportional factor
K=(K � p+ 1) shift the probability mass to the right, critical values based on the �xed-K
asymptotics are larger than those based on the large-K asymptotics. More rigorously, let
Gp (�) be the CDF of a �2 random variable with degrees of freedom p and ��p be the �-level
critical value such that 1�Gp

�
��p
�
= �: Then for typical � used in empirical applications:

P

 
�2p

�2K�p+1= (K � p+ 1)
K

K � p+ 1 > ��p

!

= 1� EGp

 
��p
K � p+ 1

K

�2K�p+1
(K � p+ 1)

!

> 1�Gp
�
��p
K � p+ 1

K

�
> 1�Gp

�
��p
�
= �;

where we have used the concavity of Gp (�) at the right tail and Jensen's inequality. So crit-
ical values from the �xed-K asymptotics are indeed larger than the corresponding standard
chi-square critical values.
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5 High Order Expansion of the Finite Sample Distribution

In this section, we consider a high order expansion of the Wald statistic in order to design a
procedure to select K: We follow SPJ (2008) and make the simpli�cation assumption that
ut is normal. The assumption could be relaxed but at the cost of much greater complexity.
See, for example, Velasco and Robinson (2001) and Sun and Phillips (2008).

Let FT;GLS be the Wald statistic based on the GLS estimator:

FT;GLS =
h
R
p
T (�̂GLS � �)

i0 �
R
̂R0

��1 h
R
p
T (�̂GLS � �)

i
:

De�ne
� = �̂OLS � � � (�̂GLS � �);

Then it can be shown that �̂GLS is independent of � and û: Using this independence result
and the asymptotic equivalence of the OLS and GLS estimators, we can prove the following
Lemma.

Lemma 1 Let Assumption 1 hold and assume that "t s iidN(0;�): Then
(a) P (FT;GLS < z) = EGp

�
z��1

�
+O

�
1
T

�
;

(b) P (FT;OLS < z) = P (FT;GLS < z) +O
�
1
T

�
;

where

� =

�
e0�
�
R
R0

�1=2 �
R
̂R0

��1 �
R
R0

�1=2
e�

�
;

e� =
(R
T;GLSR

0)�1=2R
p
T (�̂GLS � �)(R
T;GLSR0)�1=2RpT (�̂GLS � �) :

When p = 1; Lemma 1 reduces to a result in SPJ (2008). The lemma shows that the
estimation uncertainty of 
̂ a�ects the distribution of the Wald statistic only through �:
Taking a Taylor expansion, we have

��1 = 1 + L+Q+ op

�
1

K
+
1

T
+
K2

T 2

�
;

where L is linear in 
̂�
 and Q is quadratic in 
̂�
: The exact expressions for L and Q are
not important here but are given in the proof of Theorem 4. Using this stochastic expansion
and Lemma 1, we can establish a higher order expansion of the �nite sample distribution
of FT;OLS under the conventional asymptotics where K !1 such that K=T ! 0.

Theorem 4 Let Assumption 1 hold and assume that "t s iidN(0;�). If K ! 1 such
that K=T ! 0, then

P

�
(K � p+ 1)

K
FT;OLS < z

�
= Gp (z) +

K2

T 2
G0p (z) z �B +

1

K
G00p (z) z

2 + o

�
1

K

�
+ o

�
K2

T 2

�
+O

�
1

T

�
(9)

where

�B = �B (R;B;
) =
tr
n
(RBR0) (R
R0)�1

o
p

:
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The �rst term in (9) comes from the standard chi-square approximation of the Wald
statistic. The second term captures the nonparametric bias of the LRV estimator while the
third term reects the variance of the LRV estimator.

Consider p = 1 and the kernel LRV estimator 
̂D :


̂D =
1

T

TX
s=1

TX
t=1

kD(
t� s
M

)ûtû
0
s (10)

where

kD(x) =
sin�x

�x
(11)

and M = T=K: If 
̂D is used in constructing FT;OLS ; SPJ establish that, up to smaller
order terms:

P

�
(K � p+ 1)

K
FT;OLS(
̂D) < z

�
= Gp (z) +

K2

T 2
G0p (z) z �B

� +
1

K
G00p (z) z

2 � 1

K
G0p (z) z

Z 1

�1
kD(x)dx:

This expansion is of the same form as (9) except that the SPJ expansion has an additional
term:

� 1
K
G0p (z) z

Z 1

�1
kD(x)dx = �

1

2K
G0p (z) z:

This term reects the bias due to the estimation error of the model parameters. Such
a term does not appear in (9) because the basis functions we employ are asymptotically
orthogonal to the regressor, which is the column of ones in our model.

To understand the relationship between the �xed-K and large-K asymptotics, we de-
velop an expansion of the limiting Fp;K�p+1 distribution as follows:

P (pFp;K�p+1 < z) = P

 
�2p < z

�2K�p+1
K � p+ 1

!
= EGp

 
z
�2K�p+1
K � p+ 1

!

= Gp (z) +
1

K
G00p (z) z

2 + o

�
1

K

�
:

Comparing this with Theorem 4, we �nd that the �xed-K asymptotics captures one of
the higher order terms in the high order expansion of the large-K asymptotics. A direct
implication is that

P

�
(K � p+ 1)

K
FT;OLS < pF�p;K�p+1

�
= 1� �+ K2

T 2
G0p
�
pF�p;K�p+1

�
pF�p;K�p+1 �B + o

�
1

K

�
+ o

�
K2

T 2

�
+O

�
1

T

�
: (12)

Therefore, use of critical value pF�p;K�p+1 removes the variance term K�1G00p (z) z
2 in the

higher order expansion. The size distortion is then of order O
�
K2=T 2

�
: In contrast, if the

critical value from the conventional �2p distribution is used, the size distortion is of order
O
�
K2=T 2

�
+O (1=K) : So when K3=T 2 ! 0; using critical value pF�p;K�p+1 should lead to
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size improvement. We have thus shown that critical values from the �xed-K asymptotics
are second order correct under the large-K asymptotics.

Theorem 4 gives an expansion of the distribution of K�1 (K � p+ 1)FT;OLS : The factor
K�1 (K � p+ 1) is a �nite sample correction factor that can be interpreted as a Bartlett
type correction. See Sun (2011b) for more details. Without this correction, we can show
that, up to smaller order terms

P
�
FT;OLS < ��p

�
= Gp

�
��p
�
+
K2

T 2
G0p
�
��p
�
��p �B �

1

K
G0p
�
��p
�
��p (p� 1) +

1

K
G00p
�
��p
� �
��p
�2
:

Comparing this with (9), we �nd that the above expansion has an additional term
�K�1G0p

�
��p
�
��p (p� 1) : For any given critical value ��p ; this term is negative and grows

with p; the number of restrictions in the hypothesis. As a result, the error in rejection prob-
ability or the error in coverage probability tends to be larger for larger p: This explains why
con�dence regions tend to have large under-coverage when the number of joint hypotheses
is large.

In the rest of the paper, we employ the �nite sample corrected Wald statistic

F �T;OLS =
(K � p+ 1)

K
FT;OLS (13)

and use critical value pF�p;K�p+1 to perform our test. For convenience, we refer to F �T;OLS
as the F � statistic and the test as the F � test. The following theorem gives the size and
power properties of the F � test.

Theorem 5 Let Assumption 1 hold and assume that "t s iidN(0;�). If K ! 1 such
that K=T ! 0, then

(a) The size distortion of the F � test is

P
�
F �T;OLS > pF�p;K�p+1

�
� �

= �K
2 �B

T 2
G0p
�
��p
�
��p + o

�
1

K

�
+ o

�
K2

T 2

�
+O

�
1

T

�
: (14)

(b) Under the local alternative H1
�
�2
�
: R� = r+(R
R0)1=2 ~c=

p
T where ~c is uniformly

distributed on the sphere Sp (�) = fx 2 Rp : kxk = �g; the power of the F � test is

P
�
F �T;OLS > pF�p;K�p+1

�
= 1�Gp;�2

�
��p
�
� K2

T 2
G0
p;�2
�
��p
�
��p �B

� 1

K

��p �
2

2
G0
(p+2);�2

�
��p
�
+ o

�
1

K

�
+ o

�
K2

T 2

�
+O

�
1

T

�
; (15)

where G0
p;�2

(z) is the pdf of noncentral �2 distribution with degrees of freedom p and non-

centrality parameter �2.

Theorem 5(a) follows from Theorem 4. The uniformity of ~c on a sphere enables us to
use a similar argument to prove Theorem 5(b). A key point in the proof of Theorem 4 is
that e� is uniformly distributed on the unit sphere Sp (1) ; which follows from the rotation
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invariance of the multivariate standard normal distribution. The uniformity of ~c ensures
that the same property holds for the corresponding statistic

e�� =
(R
T;GLSR

0)�1=2R
p
T (�̂GLS � �) + ~c(R
T;GLSR0)�1=2RpT (�̂GLS � �) + ~c

under the local alternative hypothesis.

6 Optimal Smoothing Parameter Selection

We have shown that the optimal K that minimizes the asymptotic mean squared error
in LRV estimation has the form K = O

�
T 4=5

�
: However, there is no reason to expect

that such a choice is the most appropriate in statistical testing using nonparametrically
scaled statistics. This section attempts to provide a new approach for optimal K selection
that addresses the central concern of classical hypothesis testing, which can be expressed
as minimizing type II error subject to controlling the type I error. The approach is also
used in Sun, Phillips and Jin (2010) who consider univariate Gaussian location models and
employ the method of exponentiated kernels.

6.1 Test-Optimal K

In view of the asymptotic expansion in (14) and ignoring the higher order terms, the type
I error for the F � test can be measured by

eI = �� K2 �B

T 2
G0p
�
��p
�
��p :

Similarly, from (15), the type II error of the F � test can be measured by

eII = Gp;�2
�
��p
�
+
K2

T 2
G0
p;�2
�
��p
�
��p �B +

1

K

��p
2
�2G0

(p+2);�2
�
��p
�
:

We choose K to minimize the type II error while controlling for the type I error. More
speci�cally, we solve

min eII ; s:t: eI � ��

where � is a constant greater than 1. The optimal K value for the case � = 1 can be
obtained by letting �! 1 + : Ideally, the type I error is less than or equal to the nominal
type I error �: In �nite samples, approximation errors are unavoidable and we allow for
some discrepancy by introducing the tolerance factor �: For example, when � = 10% and
� = 1:2; we aim to control the type I error such that it is not greater than 12%. Note that
� may depend on the sample size T: For a larger sample size, we may require � to take
smaller values.

The solution to the minimization problem depends on the sign of �B: When �B > 0; the
constraint eI � �� is not binding and we have the unconstrained minimization problem:
minK eII : The optimal K is

Kopt =

 
�2G0

(p+2);�2

�
��p
�

4 �BG0
p;�2

�
��p
� !1=3 T 2=3: (16)
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When �B < 0; it can be shown that the constraint eI � �� is binding and we have to form
the expanded objective function as follows:

L(K;�) = Gp;�2
�
��p
�
+
K2

T 2
G0
p;�2
�
��p
�
��p
�B +

1

K

��p
2
�2G0

(p+2);�2
�
��p
�

(17)

+ �

��
�� K2 �B

T 2
G0p
�
��p
�
��p

�
� ��

�
:

where � is the Lagrange multiplier. Using the Kuhn-Tucker theorem, we �nd the optimal
K is

Kopt =

 
(�� 1)��� �B��G0p ���p ���p

!1=2
T; (18)

and the corresponding Lagrange multiplier is

�opt =
G0
p;�2

�
��p
�

G0p
�
��p
� + �2

�� �B��1=2G0
(p+2);�2

�
��p
� �
��p
�3=2 �

G0p
�
��p
��1=2

4 [(�� 1)�]3=2 T
:

Formulae (16) and (18) can be written collectively as

Kopt =

24 �2G0
(p+2);�2

�
��p
�

4 �B
h
G0
p;�2

�
��p
�
� �optG0p

�
��p
�i
351=3 T 2=3; (19)

where

�opt =

8<:
0; if �B > 0

G0
p;�2
(��p )

G0p(��p )
+ �2

j �Bj1=2G0
(p+2);�2

(��p )[��p ]
3=2
[G0p(��p )]

1=2

4[(��1)�]3=2T
; if �B < 0

(20)

Since K is an integer greater than or equal to n; in practice, we take max(int(Kopt); n) as
the selected K value, where int (�) is the nearest integer function.

When the Lagrange multiplier �opt is �nite, the optimal Kopt has an expansion rate
of O(T 2=3): This rate contrasts with the optimal rate O

�
T 4=5

�
for minimizing the mean

squared error of the corresponding LRV estimator. Thus, the MSE optimal values of K for
LRV estimation are much larger as T !1 than those that are most suited for statistical
testing. On the other hand, when the Lagrange multiplier �opt grows with T such that
�opt s T 2; which holds if � � 1 s 1=T 2; the optimal K is bounded. Fixed-K rules may
then be interpreted as allowing for increasingly smaller deviation from the nominal type I
error. This gives us a practical interpretation of �xed-K rules in terms of the permitted
tolerance of the type I error.

The tolerance parameter � a�ects the choice of Kopt only when �B < 0: As the tolerance
parameter � decreases toward 1, the weight to the type I error increases and the optimal
Kopt decreases. The case of � = 1 can be obtained by letting �! 1 from the right. When
�B < 0 and � ! 1+; the multiplicative constant in (19) approaches zero. As a result, the
theoretically optimal Kopt will be smaller than n; the lower bound that ensures the positive
semi-de�niteness of the LRV estimator 
̂: In this case, we use the lower bound as the data-
driven choice of K: This is a reasonable choice. When �B < 0; the LRV estimator has a
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downward bias and the associated test tends to be oversized. To alleviate the problem, we
choose K as small as possible in order to reduce the bias. On the other hand, the variance
ination from using a small K can be accommodated by using the F approximation rather
than the standard �2 approximation.

The formula for Kopt depends on the noncentrality parameter �
2: For practical im-

plementations, we recommend choosing �2 such that the �rst order power of the test, as
measured by 1 � Gp;�2(�

�
p ); is 50%. That is, we solve 1 � Gp;�2(�

�
p ) = 50% for a given p

and a given signi�cance level �: The marginal e�ect of �2 on Kopt when the corresponding
power is in the middle range, say [0.35, 0.75], is small. More speci�cally, compared to the
Kopt value obtained under the recommended power of 50%, the Kopt values for other power
requirements in the range [0.35, 0.75] di�er by less than 10%. In the simulation study, we
have experimented with 50% and 75% as the power levels to choose �2: The simulation
results are very close to each other.

To sum up, the testing-optimal K that minimizes the type II error while controlling
the type I error in large samples is fundamentally di�erent from the MSE-optimal K: The
testing-optimal K depends on the sign of the nonparametric bias, the hypothesis under
consideration and the permitted tolerance for the type I error while the MSE-optimal K
does not. When the permitted tolerance becomes su�ciently small, the testing-optimal K
is of smaller order than the MSE-optimal K:

6.2 Data Driven Implementation

The optimal bandwidth in (20) can be written as Kopt = Kopt( �B): It involves unknown
parameter �B; which can be estimated nonparametrically (e.g. Newey and West (1994))
or by a standard plug-in procedure based on a simple parametric model like a VAR (e.g.
Andrews (1991)). Both methods achieve a valid order of magnitude and the procedure is
analogous to conventional data-driven methods for kernel LRV estimation.

We focus the discussion on the plug-in procedure, which involves the following steps.
First, we estimate the model using the OLS estimator and compute the residuals fûtg :
Second, we specify a multivariate approximating parametric model and �t the model to
fûtg by the standard OLS method. Third, we treat the �tted model as if it were the true
model for the process futg and compute �B as a function of the parameters of the parametric
model. Plugging the estimate �B into (20) gives the automatic bandwidth K̂:

As in the case of MSE-optimal bandwidth choice, the automatic bandwidth considered
here deviates from the �nite sample optimal one due to the error introduced by estimation,
the use of approximating parametric models, and the approximation inherent in the asymp-
totic formula employed. It is hoped that in practical work the deviation is not large so that
the test based on the automatic bandwidth still has good performance. Some simulation
evidence reported in Section 8 supports this argument.

Suppose we use a VAR(1) as the approximating parametric model for ut: Let Â be the
estimated parameter matrix and �̂ be the estimated innovation covariance matrix, then
the plug-in estimates of 
 and B are


̂ = (In � Â)�1�̂(In � Â0)�1; (21)
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B̂ = �2�
2

3
(In � Â)�3

�
Â�̂ + Â2�̂Â0 + Â2�̂� 6Â�̂Â0

+�̂(Â0)2 + Â�̂(Â0)2 + �̂Â0
�
(In � Â0)�3: (22)

For the plug-in estimates under a general VAR(p) model, we refer to Andrews (1991) for the
corresponding formulae. Given the plug-in estimates of 
 and B; the data-driven automatic
K can be computed as

K̂ = max
n
int
h
K̂opt( �B(R; B̂; 
̂)

i
; n
o
: (23)

It should be pointed out that the computational cost involved in this automatic smooth-
ing parameter selection is the same as that of the conventional plug-in bandwidth based
on the MSE criterion.

7 Extension to General Settings

In the previous sections, we use the simple multivariate location model to highlight the
importance of smoothing parameter choice in semiparametric testing. Hypothesis testing
in location models, as simple as it seems, includes more general testing problems as special
cases.

Consider an M-estimator, �̂T , of a n� 1 parameter vector �0 that satis�es

�̂T = argmin
�2�

QT (�) = argmin
�2�

1

T

TX
t=1

�(�; Zt)

where T is the sample size, � is a compact parameter space, and �(�; Zt) is the criterion
function based on observation Zt. M-estimators are a broad class of estimators and include,
for example, maximum likelihood estimator (MLE), ordinary least squares (OLS) estimator,
quantile regression estimator as special cases.

Suppose we want to test the null hypothesis that H0 : � = �0 against H1 : � 6= �0: Then
by the usual identi�cation assumption for the M-estimator, under the null hypothesis and
additional regularity assumptions, � = �0 is the unique minimizer of

Q(�) = E�(�; Zt):

De�ne st(�) = @�(�; Zt)=@�: Then
Est(�) = 0,

if and only if � = �0: So the null hypothesis H0 : � = �0 is equivalent to the hypothesis
that the multivariate process st(�0) has mean zero. We have therefore converted a general
testing problem into testing for zero mean of a multivariate process. The latter problem is
exactly the testing problem we consider in the previous sections. All results there remain
valid if the multivariate process st(�0) satis�es the assumptions imposed on yt:

The above extension applies to hypothesis testing that involves the whole parameter
vector �: Suppose we are only interested in some linear combinations of � such that the
null hypothesis is H0 : R� = r and the alternative hypothesis is H1 : R� 6= r; where R is a
p� n matrix. We can construct F �-statistic as before:

F �T =
(K � p+ 1)

K
FT
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where FT is usual Wald statistic:

FT =
hp

T
�
R�̂T � r

�i0 �
RĤ�1

T 
̂Ĥ�1
T R0

��1p
T
�
R�̂T � r

�
;


̂ =
1

K

KX
k=1

 
1p
T

TX
t=1

�k(
t

T
)ŝt

! 
1p
T

TX
t=1

�k(
t

T
)ŝt

!0
;

and

ŝt = st

�
�̂T

�
, ĤT = HT (�̂T ) and HT (�) =

1

T

TX
t=1

@st (�)

@�
:

Here 
̂ is the series estimator of the LRV 
 of st (�0) :
If st (�0) satis�es a FCLT:

1p
T

[rT ]X
t=1

st (�0)!d �Wn(r) (24)

and a uniform law of large numbers:

sup
�2�

 1T
[rT ]X
t=1

@st (�)

@�
� rH1(�)

!p 0

uniformly in r, for a nonsingular Hessian matrix H1(�): Then both the �xed-K asymptotics
and the large-K asymptotics in Section 4 hold for F �T : As a result, we can employ the critical
value pF�p;K�p+1 from the Fp;K�p+1 distribution and perform the F � test as before.

The question is how to select the testing-optimal smoothing parameter K: Let

st(�1; �2) = RH�1
T (�1) st (�2)

be the transformed score type of process, then under standard assumptions we can write
FT as

FT =

 
1p
T

TX
t=1

s(~�T ; �0)

!0
~
�1

 
1p
T

TX
t=1

s(~�T ; �0)

!0
where ~�T is between �̂T and �0 and

~
 =
1

K

KX
k=1

 
1p
T

TX
t=1

�k(
t

T
)st(�̂T ; �̂T )

! 
1p
T

TX
t=1

�k(
t

T
)st(�̂T ; �̂T )

!0
:

It follows that the FT statistic can be viewed as a Wald statistic for testing whether the
mean of the multivariate process st(~�T ; �0) is zero. In principle, we can use formulae in
(19) and (20) to compute the testing-optimal K: However, st(~�T ; �0) is not observable and
a plug-in estimator of �B is not feasible. As an empirical and practical procedure, we may
replace s(~�T ; �0) by st(�̂T ; �̂T ) and �t an approximating parametric model to the observed
process st(�̂T ; �̂T ): In other words, we implement (19) and (20) using the standard plug-in
procedure based on the process st(�̂T ; �̂T ): We can then perform the F � test using the
plug-in implementation of Kopt: A rigorous study of this testing procedure is reported in
Appendix B.
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8 Simulation Evidence

This section provides some simulation evidence on the �nite sample performance of the new
F � test based on the plug-in procedure that minimizes the type II error while controlling
for the type I error.

We consider the case with 6 time series, i.e. n = 6: The error follows either a VAR(1)
or VMA(1) process:

ut = Aut�1 +
p
1� �2"t

ut = A"t�1 +
p
1� �2"t

where A = �In; "t = (v1t + �ft; v2t + �ft; :::; vnt + �ft)
0 =
p
1 + �2 and (vt; ft)

0 is a multi-
variate Gaussian white noise process with unit variance. Under this speci�cation, the six
time series all follow the same VAR(1) or VMA(1) process with "t s iidN(0;�) for

� =
1

1 + �2
In +

�2

1 + �2
Jn;

where Jn is a matrix of ones. The parameter � determines the degree of dependence among
the time series considered. When � = 0; the six series are uncorrelated with each other.
When � = 1; the six series have the same pairwise correlation coe�cient 0.5. The variance-
covariance matrix of ut is normalized so that the variance of each series uit is equal to one
for all values of j�j < 1: For the VAR(1) process, 
 =

�
1� �2

�
(In �A)�1� (I�A0)�1 : For

the VMA(1) process 
 =
�
1� �2

�
(In +A=

p
1� �2)�(In +A=

p
1� �2)0:

For the model parameters, we take � = 0; 0:25; 0:50; 0:75 and set � = 0 and 1: We set
the intercepts to zero as the tests we consider are invariant to them. For each test, we
consider two signi�cance levels � = 5% and � = 10%; two di�erent choices of the tolerance
parameter: � = 1:1 and 1:2; and three di�erent sample sizes T = 100; 200; 500:

We consider the following null hypotheses:

H01 : �1 = 0;

H02 : �1 = �2 = 0;

H03 : �1 = �2 = �3 = 0;

H04 : �1 = �2 = ::: = �6 = 0;

where p = 1; 2; 3; 6; respectively. The corresponding matrix R is the �rst p rows of the
identity matrix I6: To explore the �nite sample size of the tests, we generate data under
these null hypotheses. To compare the power of the tests, we generate data under the local
alternative hypothesis H1

�
�2
�
:

We examine the �nite sample performance of four di�erent testing methods. The �rst
one is the new F � test, which is based on the modi�ed Wald statistic and uses the testing-
optimal K and critical values from the F -distribution. The second one is the conventional
Wald test, which is based on the unmodi�ed Wald statistic and uses the MSE-optimal K
and critical values from the �2 distribution. The third one is the same as the new F � test
but with K = n: The last one is the test proposed by Kiefer and Vogelsang (2002) and
is based on the Bartlett kernel LRV estimator with bandwidth equal to the sample size
and uses the nonstandard asymptotic theory. The four methods are referred as `K-OPT',
`K-MSE', `K-n' and `KV' respectively in the tables and �gures below.
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Table 1: Empirical Type I error of di�erent 5% tests for VAR(1) error with T = 100; � = 1:1

K-OPT K-MSE K-n K-MSE
� KV K-OPT K-MSE K-n K-MSE

� KV

p = 1 p = 2
� = 0 :0540 :0617 :0471 :0499 :0485 :0506 :0685 :0460 :0453 :0452
� = :25 :0839 :0820 0:0489 :0609 :0520 :0949 :1128 :0474 :0632 :0522
� = :50 :0923 :1038 :0544 :0643 :0586 :0993 :1687 :0542 :0657 :0656
� = :75 :1079 :1525 :0908 :0908 :0798 :1175 :2778 :0899 :0900 :1059

p = 3 p = 6
� = 0 :0567 :0900 :0449 :0489 :0526 :0539 :1698 :0462 :0498 :0512
� = :25 :1122 :1631 :0467 :0675 :0663 :1539 :3673 :0483 :0755 :0857
� = :50 :1160 :2660 :0597 :0709 :0888 :1586 :5788 :0706 :0747 :1485
� = :75 :1521 :4272 :1227 :1227 :1575 :2677 :8017 :2109 :2109 :3342

The K-n test and K-MSE test can be regarded as the two ends of the power and size
tradeo�. While the K-n test aims at controlling the size, the K-MSE test puts more weights
on power maximization. Many other testing methods are available in the literature. We
do not include all of them here as their performances are likely to be between the K-n test
and the K-MSE test.

Table 1 gives the type I error of the four testing methods for the VAR(1) error with
sample size T = 100, tolerance parameter � = 1:1 and � = 0: The table also includes a
hybrid procedure denoted `K-MSE�' which employs the MSE-optimal K and critical values
from the �xed-K asymptotics. The only di�erence between the conventional method and
the hybrid method lies in the critical value used. The signi�cance level is 5%, which is
also the nominal type I error. Several patterns emerge. First, as it is clear from the table,
the conventional method has large size distortion. The size distortion increases with both
the error dependence and the number of restrictions being tested. This result is consistent
with our theoretical analysis. The size distortion can be very severe. For example, when
� = 0:75 and p = 6, the empirical type I error of the test is 0.8017, which is far from 0.05,
the nominal type I error. Second, comparing the K-MSE test with the K-MSE� test, we
�nd that using critical values from the �xed-K asymptotics eliminates the size distortion
of the conventional Wald test to a great extent. This is especially true when the size
distortion is large. Intuitively, larger size distortion occurs when K is smaller so that the
LRV estimator has a larger variation. This is the scenario where the di�erence between the
�xed-K asymptotics and large-K asymptotics is larger. Note that the hybrid procedure is
rigorously justi�ed as the critical value from the �xed-K asymptotics is second order correct
under the conventional large-K asymptotics. Third, the size distortion of the K-OPT, K-n,
and KV tests is substantially smaller than the conventional method. This is because these
three tests employ asymptotic approximations that capture the estimation uncertainty of
the LRV estimator. Finally, compared with the K-n and KV methods, the K-OPT test has
slightly larger size distortion. Since the bandwidth is set equal to the sample size, the KV
method is designed to achieve the smallest possible size distortion. Similarly, the K-n test
uses the smallest possible K value in order to achieve the best size accuracy. Given these
observations, we can conclude that the K-OPT test succeeds in controlling the type I error.

Table 2 presents the simulated type I errors for the VMA(1) error process. The qualita-
tive observations for the VAR(1) error remain valid. In fact, these qualitative observations
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Table 2: Empirical Type I error of di�erent 5% tests based on VMA(1) error with T =
100; � = 1:1

K-OPT K-MSE K-n K-MSE
� KV K-OPT K-MSE K-n K-MSE

� KV

p = 1 p = 2
� = 0 :0540 :0617 :0471 :0499 :0485 :0506 :0685 :0460 :0453 :0452
� = :25 :0729 :0733 :0484 :0554 :0505 :0775 :0982 :0455 :0532 :0493
� = :50 :0660 :0784 :0495 :0522 :0527 :0681 :1155 :0459 :0512 :0517
� = :75 :0616 :0807 :0492 :0500 :0523 :0634 :1271 :0465 :0480 :0503

p = 3 p = 6
� = 0 :0567 :0900 :0449 :0489 :0526 :0539 :1698 :0462 :0498 :0512
� = :25 :0893 :1378 :0447 :0580 :0610 :1208 :3156 :0452 :0632 :0716
� = :50 :0774 :1749 :0454 :0540 :0646 :1032 :4417 :0468 :0597 :0818
� = :75 :0741 :1994 :0459 :0529 :0646 :0999 :4783 :0457 :0509 :0834

hold for other parameter con�gurations such as di�erent sample sizes and di�erent values
of �: All else being equal, the size distortion of the K-OPT test for � = 1:2 is slightly larger
than that for � = 1:1: This is expected as we allow for higher tolerance for the type I error
when the value of � is larger.

Figures 1-4 present the �nite sample power under the VAR(1) error for di�erent values of
p:We compute the power using the 5% empirical �nite sample critical values obtained from
the null distribution. So the �nite sample power is size-adjusted and power comparisons are
meaningful. It should be pointed out that the size-adjustment is not feasible in practice.
The parameter con�guration is the same as those for Table 1 except the DGP is generated
under the local alternatives. Three observations can be drawn from these �gures. First,
the power of the K-OPT test is never lower than the conventional Wald test. This result
demonstrates the advantage of using the criterion that focuses on the testing problem at
hand. Consistent with the asymptotic result, the focused criterion has superior performance
in �nite samples than the MSE criterion which is not suitable for hypothesis testing. Second,
the K-OPT test has higher power than the KV test in most cases except when the error
dependence is very high and the number of restrictions is large. When the error dependence
is low, the selected K value is relatively large and the variance of the associated LRV
estimator is small. In contrast, the LRV estimator used in the KV test has a large variance.
As a result, the K-OPT test is more powerful than the KV test. On the other hand, when
the error dependence is very large, the selected K value is very small. In this case, both the
KV test and the K-OPT test employ LRV estimators with large variance. The KV test can
be more powerful in this scenario. Finally, the K-OPT test is consistently more powerful
than the K-n test. The power improvement is substantial in most of the cases. This is not
surprising as the K-n test, like the KV test and many other nonstandard tests proposed by
Vogelsang and his coauthors, is designed to have good size properties but often at the cost
of power loss.

To save space, we do not report the �gures for the power curves under the VMA(1)
error but make a brief comment. We �nd that the �gures reinforce and strengthen the
observations for the VAR(1) error. It is clear under the VMA(1) error that the K-OPT
test is more powerful than the conventional K-MSE test, the nonstandard KV test and the
K-n test. This is true for all parameter combinations considered.
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In simulations not reported here, we have considered VAR(1) and VMA(1) errors with
negative values of � and hypotheses of the form �1 = �2 = ::: = �j0 for some j0 � 2: For
some of these con�gurations, �B > 0: Regardless of the sign of �B; in terms of the type I
error and size adjusted power, the performance of the new K-OPT test is at least as good
as the conventional Wald test and often much better. It also dominates the KV test and
the K-n test in most scenarios considered. Details are available upon request.

9 Conclusion

Using the series LRV estimator, the paper proposes a new approach to multivariate mean
inference in the presence of nonparametric autocorrelation. The series LRV estimator
is asymptotically invariant to the intercept parameters. This property releases us from
worrying about the estimation uncertainly of those parameters. Another advantage of the
series LRV estimator is that the associated (modi�ed) Wald statistic converges to a standard
distribution regardless of the asymptotic speci�cations of the smoothing parameter. This
property releases practitioners from the computational burden of simulating nonstandard
critical values. We propose a new method to select the smoothing parameter in the series
LRV estimator. The optimal smoothing parameter is selected to minimize the type II error
hence maximize the power of the test while controlling for the type I error. The idea is in
the spirit of the Neyman-Pearson Lemma. Monte Carlo simulations show that our inference
procedure enjoys superior performance in �nite samples. The procedure can be applied to
more general hypothesis testing problems.

There are many extensions to the current paper. One possibility is to optimally select
the smoothing parameter for con�dence region construction. We can minimize the volume
of the region subject to the constraint that the coverage probability is at least at some level.
The volume can be the physical volume or an indirect measure such as the probability of
including the false values (see Neyman (1937)). The idea of optimal smoothing choice and
the inference procedure given here may be also used in general linear and non-linear models
with nonstationary time series. These extensions will be reported in future work.
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Figure 1: Size-adjusted Power of Di�erent Testing Procedures for VAR(1) Error with T =
100; � = 1:1 and p = 1:
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Figure 2: Size-adjusted Power of Di�erent Testing Procedures for VAR(1) Error with T =
100; � = 1:1 and p = 2:
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Figure 3: Size-adjusted Power of Di�erent Testing Procedures for VAR(1) Error with T =
100; � = 1:1 and p = 3:
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Figure 4: Size-adjusted Power of Di�erent Testing Procedures for VAR(1) Error with T =
100; � = 1:1 and p = 6:
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10 Appendix of Proofs

10.1 Appendix A: Proof of Main Results

Proof of Theorem 1. As in (4), we use summation by parts to obtain:

1p
T

TX
t=1

�k

�
t

T

�
ût =

1

T

TX
t=1

[�k (t=T )� �k ((t+ 1) =T )]
1=T

St:

Since
[�k ([Tr] =T )� �k (([Tr] + 1) =T )]

1=T
! ��0k(r)

and
S[Tr] !d �Vn(r);

invoking the continuous mapping theorem, we have

1p
T

TX
t=1

�k

�
t

T

�
ût !d �

Z 1

0
��0k(r)Vn(r)dr:

Using integration by parts, we can show thatZ 1

0
��0k(r)Vn(r)dr =

Z 1

0

�
�k(r)�

Z 1

0
�k(r)dr

�
dWn(r):

Hence

1p
T

TX
t=1

�k

�
t

T

�
ût !d �

Z 1

0

�
�k(r)�

Z 1

0
�k(r)dr

�
dWn(r) := ��k;

and


̂!d �
1

K

KX
k=1

�k�
0
k�

0: (25)

Proof of Lemma 1. Part (a). De�ne


T;GLS = var
h
T 1=2

�
�̂GLS � �

�i
:

We write the statistic FT;GLS as

FT;GLS =
h
RT 1=2(�̂GLS � �)

i0 �
R
T;GLSR

0��1=2 �R
T;GLSR0�1=2 �R
̂R0��1
�
�
R
T;GLSR

0�1=2 �R
T;GLSR0��1=2 hRT 1=2(�̂GLS � �)i
=
�R
T;GLSR0��1=2 hRT 1=2(�̂GLS � �)i2

� e0�
�
R
T;GLSR

0�1=2 �R
̂R0��1 �R
T;GLSR0�1=2 e�
:= �� +Op

�
1

T

�
;
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where

� =
�R
T;GLSR0��1=2 hRT 1=2(�̂GLS � �)i2 ;

and

� = e0�
�
R
R0

�1=2 �
R
̂R0

��1 �
R
R0

�1=2
e�:

Here we have used


T;GLS = 


�
1 +O

�
1

T

��
:

Note that � is independent of � because (i) � is the squared length of a standard normal
vector and e� is the direction of this vector. The length is independent of the direction.
(ii) (�̂GLS � �) is independent of 
̂: To see the second independence result, recall that the
GLS estimator �̂GLS of � satis�es

�̂GLS � � =
�
(`T 
 In)0
�1u (`T 
 In)

��1
(`T 
 In)0
�1u u

and the OLS estimator satis�es
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�
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 In)0 (`T 
 In)

��1
(`T 
 In)0 u =

�
1

T
`0T 
 In

�
u:

As a result,
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�
û01; û

0
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0
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�0
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That is, �̂GLS is independent of û: But 
̂ is a function of û: Hence �̂GLS is independent of

̂:

Hence

P

�
(K � p+ 1)

K
FT;GLS < z

�
= P

�
(K � p+ 1)

K
[��] < z

�
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�
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�
= EGp

�
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�
as stated.
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Part (b). Let

�1T = 2T
1=2(R�)0

�
R
̂R0

��1 �
R
T;GLSR

0�1=2 e�
�2T = T 1=2(R�)0

�
R
̂R0

��1
RT 1=2�

and �T =
p
��1T + �2T : Then FT;OLS = FT;GLS + �T : We �rst show that � is independent

of �1T and �2T . Note that � is independent of 
̂ and e�; it is su�cient to show that
(�̂GLS � �) is independent of � := �̂OLS � � � (�̂GLS � �): This follows because

E(�̂GLS � �)�0

= E
�
(`T 
 In)0
�1u (`T 
 In)

��1
(`T 
 In)0
�1u uu0

�
1

T
`T 
 In

�
�
�
(`T 
 In)0
�1u (`T 
 In)

��1
=

�
(`T 
 In)0
�1u (`T 
 In)

��1
(1
 In)�

�
(`T 
 In)0
�1u (`T 
 In)

��1
= 0:

Given that � is independent of �1T ; �2T and �; we have

P

�
(K � p+ 1)

K
FT;OLS < z

�
= P

�
(K � p+ 1)

K
(FT;GLS + �T ) < z

�
= P

�
(K � p+ 1)

K

�
��+

p
��1T + �2T +Op

�
1

T

��
< z

�
= P

�
(K � p+ 1)

K

h
��+

p
��1T + �2T

i
< z

�
+O

�
1

T

�
:= EF (�1T ; �2T ;�) +O

�
1

T

�
;

where

F (a; b; c) = P

�
(K � p+ 1)

K

h
�c+

p
�a+ b

i
< z

�
:

But

EF (�1T ; �2T ;�)

= EF (0; 0;�) + EF 01 (0; 0;�) �1T +O
�
E�21T

�
+O (E j�1T �2T j) +O (E�2T )

= EF (0; 0;�) + EF 01 (0; 0;�) �1T +O

�
1

T

�
:

where F 01 = @F=@a: Here we have used: O
�
E�21T

�
= O(1=T ) and O (E�2T ) = O(1=T );

which follows from var(c0��0c) = O (1=T ) for any constant c: Next, let fe�(x) be the pdf
of e�: Since e� is independent of 
̂ and �; we have

EF 01 (0; 0;�) �1T

=

Z
E
�
F 01 (0; 0;�) �1T je� = x

�
fe�(x)dx

=

Z
E

�
F 01

�
0; 0; x0

�
R
R0

�1=2 �
R
̂R0

��1 �
R
R0

�1=2
x

�
�2T 1=2(R�)0

�
R
̂R0

��1 �
R
T;GLSR

0�1=2 x� fe�(x)dx:
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Note that 
̂(u) = 
̂(�u) and � = ��(�u), we have

E

�
F 01

�
0; 0; x0

�
R
R0

�1=2 �
R
̂R0

��1 �
R
R0

�1=2
x

�
�2T 1=2(R�)0

�
R
̂R0

��1 �
R
T;GLSR

0�1=2 x�
= 0 for all x:

As a result,
EF 01 (0; 0;�) �1T = 0:

So

EF (�1T ; �2T ;�) = EF (0; 0;�) +O

�
1

T

�
:

We have therefore shown that

P

�
(K � p+ 1)

K
FT;OLS < z

�
= EF (0; 0;�) +O

�
1

T

�
= P

�
(K � p+ 1)

K
[��] < z

�
+O

�
1

T

�
= P

�
(K � p+ 1)

K
FT;GLS < z

�
+O

�
1

T

�
as desired.

Proof of Theorem 4. Writing � = �(
̂) and taking a Taylor expansion of �(
̂) around
�(
) = 1; we have h

�
�

̂
�i�1

= 1 + L+Q+ remainder (26)

where remainder is the remainder term of the expansion,

L = Dvec
�

̂� 


�
Q =

1

2
vec

�

̂� 


�0
(J1 + J2) vec

�

̂� 


�
and

D =
�h
e0�
�
R
R0

��1=2
R
i


h
e0�
�
R
R0

��1=2
R
i�

J1 = 2R0
�
R
R0

��1=2 �
e�e

0
�

� �
R
R0

��1=2
R
R0

�
R
R0

��1=2 �
e�e

0
�

� �
R
R0

��1=2
R

J2 = �
h
R0
�
R
R0

��1=2
e�e

0
�

�
R
R0

��1=2
R
R0

�
R
R0

��1
R
i
Knn (In2 +Knn) :

It is not di�cult to show that

EL =
K2

T 2
tr
h�
R
R0

��1=2 �
RBR0

� �
R
R0

��1=2i 1
p
(1 + o (1)) +O

�
1

T

�
;

EL2 =
2

K
+ o

�
1

K
+
K2

T 2

�
+O

�
1

T

�
;
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and

EQ = � 1
K
(p� 1) + o

�
K2

T 2

�
+O

�
1

T

�
:

Hence h
�
�

̂
�i�1

= 1 + L+Q+ op

�
1

K
+
K2

T 2

�
+ op

�
1

T

�
: (27)

Using the above asymptotic expansion, we have

P

�
(K � p+ 1)

K
FT;GLS < z

�
= P

�
(K � p+ 1)

K
� < z��1

�
= EGp

�
z

K

K � p+ 1 (1 + L+Q)
�
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�
1

K
+
K2

T 2

�
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�
1

T

�
= Gp

�
z

K

K � p+ 1

�
+G0p (z) zE (L+Q) +

1

2
EG00p (z) z

2
�
EL2

�
+ o

�
1

K
+
K2

T 2

�
+O

�
1

T

�
= Gp (z) +

K2

T 2
G0p (z) z �B +

1

K
G00p (z) z

2 + o

�
1

K

�
+ o

�
K2

T 2

�
+O

�
1

T

�
as desired.

Proof of Theorem 5. Part (a). It follows from Theorem 4 that

P
�
F �T ;OLS > pF�p;K�p+1

�
� �

= �K
2

T 2
G0p
�
pF�p;K�p+1

�
pF�p;K�p+1 �B + o

�
1

K

�
+ o

�
K2

T 2

�
+O

�
1

T

�
: (28)

But
pF�p;K�p+1 = ��p + o (1) ;

hence

P
�
F �T ;OLS > pF�p;K�p+1

�
� �

= �K
2 �B

T 2
G0p
�
��p
�
��p + o

�
1

K

�
+ o

�
K2

T 2

�
+O

�
1

T

�
:

Part (b). The FT;GLS statistic can be written as

FT;GLS =
h
RT 1=2(�̂GLS � �) +

�
R
R0

�1=2
~c
i0
�
�
R
̂R0

��1
�
h
RT 1=2(�̂GLS � �) +

�
R
R0

�1=2
~c
i

=
h�
R
T;GLSR

0��1=2RT 1=2(�̂GLS � �) + ~ci0
�
�
R
T;GLSR

0�1=2 �R
̂R0��1 �R
T;GLSR0�1=2
�
h�
R
T;GLSR

0��1=2RT 1=2(�̂GLS � �) + ~ci+O� 1
T

�
;
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where by assumption k~ck2 = �2: Let

e�� =
(R
T;GLSR

0)�1=2RT 1=2(�̂GLS � �) + ~c(R
T;GLSR0)�1=2RT 1=2(�̂GLS � �) + ~c ;
then

FT;GLS = ���� +Op

�
1

T

�
;

where

�� =
�R
T;GLSR0��1=2RT 1=2(�̂GLS � �) + ~c2 ;

�� = e0��
�
R
R0

�1=2 �
R
̂R0

��1 �
R
R0

�1=2
e��;

and �� is independent of ��: In addition, �� s �2p
�
�2
�
and e�� is uniformly distributed on

the unit sphere Sp (1) : Using the same calculation as in the proof of Theorem 4, we have,

P
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K
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����H1 ��2��
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+G0

p;�2
�
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1

2
G00
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�2 2
K
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�
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�
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�
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�
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�
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�
:

Plugging

pF�p;K�p+1 = ��p �
1

K

G00p
�
��p
�

G0p
�
��p
� ���p �2 + o� 1K

�
;

we have
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�
where we have used

Qp;�2
�
��p
�
= G00

p;�2
�
��p
�
�
G00p
�
��p
�

G0p
�
��p
�G0

p;�2
�
��p
�
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�2

2��p
G0
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�
��p
�

and the last equality follows from straightforward calculations.
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10.2 Appendix B: Proof of Extended Results

In this appendix, we make some simplifying assumptions and show that the optimal K
formula remains valid for hypothesis testing based on a general M-estimator.

We consider the conventional large-K asymptotics under which K !1 and K=T ! 0:
We �rst assume that

HT (~�T ) = H1 (�0) +Op

�
1p
T

�
for any ~�T = �0 + Op

�
1=
p
T
�
: This assumption holds if @HT (�)=@�

0 satis�es a uniform

law of large numbers. Under this assumption, we have:

p
TR

�
�̂T � �0

�
= �RH�1

1 (�0)
1p
T

TX
t=1

st (�0) +Op

�
1p
T

�
: (29)

We further assume that

1p
T

[Tr]X
t=1

�
@st (�0)

@�0
� E@st (�0)

@�0

�
= Op (1)

uniformly over r 2 [0; 1]. This assumption holds if the left hand side, as an empirical
process, converges to a continuous time Gaussian process. The assumption can be rewritten
as

1

T

[Tr]X
t=1
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�
1p
T

�
uniformly over r 2 [0; 1]. Let
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tX
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�
��T
�

@�0

!
p
T
�
�̂T � �0

�
=

1p
T
St (�0)�

"
1

T

tX
�=1

@s� (�0)

@�0

# �
H�1
1 (�0)

1p
T
ST (�0) +Op

�
1p
T

��

�
"

dX
i=1

1

T

tX
�=1

@

@�i

"
@s�

�
��T
�

@�0

# �
��Ti � �0i

�# �
H�1
1 (�0)

1p
T
ST (�0) +Op

�
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�=1

 @
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�
��T
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 = Op(1) for any i:
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The preceding equation holds if T�1
PT
�=1

 @
@�i

@s� (�)
@�0

 satis�es a ULLN. As a result,
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�
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�
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�
:

Consequently,
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T

TX
t=1

�k(
t

T
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�
1p
T

�
: = R�k +Op

�
1p
T

�
where

�k = H�1
1 (�0)

1p
T

TX
t=1

�k(
t

T
)

�
st (�0)�
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�
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Let
~Yt = H�1

1 (�0) st (�0) := A0 + ut;

then

FLT =

"
R
1p
T

TX
t=1

ut

#0 n
R~
LR

0
o�1 "

R
1p
T

TX
t=1

ut

#
:

So FLT is the Wald statistic for testing whether the mean of the process ~Yt = H�1
1 (�0) st (�0)

satis�es R
�
E ~Yt

�
= 0: In other words, FLT is in exactly the same form as the statistic FT

de�ned in (7). Its �nite sample corrected version (K � p+ 1) =(pK) � FLT is exactly the
same as the statistic F �T de�ned in (13). Therefore, if ut satis�es Assumption 1, we have,
under the null hypothesis,

P

�
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(pK)

FLT > F�p;K�p+1
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= �� K2 �BL

T 2
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Consequently,
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�
+O

�
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:

where the O
�
1=
p
T
�
term does not depend on K:

Next, we consider the alternative hypothesis
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�
: R� = r +

�
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where ~c is uniformly distributed on the sphere Sp (�) : Using similar arguments, we have
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(30)

where again the O(1=
p
T ) term does not depend on K:

We collect our results in the theorem below.

Theorem 6 Assume (i) � (�; ZT ) is three times continuously di�erentiable in � (ii) plimT!1�̂T =
�0; (iii) for su�ciently large C; P (j T j < C and j �T j < C) = 1 + O (1=T ) ; (iv) Yt =
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1 (�0) st (�0) satis�es Assumption 1, (v) T
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�
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�
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�
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p
T
�
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p
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p
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If K !1 such that K=T ! 0; then
(i) the type I error of the F � test is

eI(K) = �� K2 �BL
T 2

G0p
�
��p
�
��p + o

�
K2

T 2
+
1

K

�
+O

�
1p
T

�
;

where the O(1=
p
T ) term does not depend on K:

(ii) The average type II error of the F � test under H1
�
�2
�
is

eII (K) = Gp;�2
�
��p
�
+
K2

T 2
G0
p;�2
�
��p
�
��p
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1

K

��p �
2

2
G0
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�
��p
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�
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T 2
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K

�
+O

�
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T

�
where the average is over the sphere ~c 2 Sp (�) and the O(1=

p
T ) term does not depend on

K:

Theorem 6 shows that, if we ignore the terms that do not depend onK; the approximate
type I and type II errors are exactly the same as those for Gaussian location models. Hence
the optimal K formula in (19) remains valid in the general setting.
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