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Abstract

We develop and extend the asymptotic F and t test theory in linear regression models

where the regressors could be deterministic trends, unit-root processes, and near-unit-root

processes, among others. We consider both the exogenous case where the regressors and

the regression error are independent and the endogenous case where they are correlated. In

the former case, we design a new set of basis functions that are invariant to the parameter

estimation uncertainty and use them to construct a new series long run variance estimator.

We show that the F-test version of the Wald statistic and the t statistic are asymptotically

F and t distributed, respectively. In the latter case, we show that the asymptotic F and

t theory is still possible, but we have to develop it in a pseudo-frequency domain. The

F and t approximations are more accurate than the more commonly used chi-squared and

normal approximations. The resulting F and t tests are also easy to implement — they can

be implemented in exactly the same way as the F and t tests in a classical normal linear

regression.
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1 Introduction

The paper considers time series regressions in a nonstationary framework. The regressors can be

deterministic trends, unit-root processes, or near-unit-root processes while the regression error is

stationary but with an unknown autocorrelation function. The regressions we consider include

trend regressions, cointegration regressions, and predictive regressions as special cases. For all

these regressions, a main challenge for statistical inference is to account for the nonparametric

autocorrelation in the regression error and the possible nonparametric correlation between the

innovation of the regressor process and the regressor error. Standard practice is to estimate

the unknown autocorrelation and correlation using a nonparametric kernel method but ignore

the nonparametric estimation error for the convenience of statistical inference. However, by its

nonparametric nature, the nonparametric estimation error can be large in finite samples. As a

result, ignoring the estimation error can lead to highly unreliable inferences.

Recent literature has developed the fixed-smoothing asymptotics, an alternative type of

asymptotics, to capture the nonparametric estimation error. The fixed-smoothing asymptotic

theory, which includes, as a special case, the fixed-b asymptotic theory of Kiefer and Vogelsang

(2002a,b, 2005), was originally developed in the time series setting. It has been extended to

accommodate spatial data, spatial and temporal data, panel data, and clustered data. See Sun

(2018) for a recent discussion. However, the fixed-smoothing asymptotic distributions are often

nonstandard and thus not very convenient to use.

To obtain more accurate but at the same time more convenient fixed-smoothing approxima-

tions, we can use the series approach to correct the potential endogenous bias and robustify the

inference. The underlying series variance estimator has a long history. A classical example is

the average periodograms estimator, which involves taking a simple average of the first few peri-

odograms. An appealing feature of the series approach is that we have the freedom to choose and

design the basis functions so that the fixed-smoothing asymptotic distributions become standard

F and t distributions. See, for example, Sun (2011) for trend regression, Müller (2007), Sun

(2013), Sun (2014a), Lazarus et al. (2021) in the first-step GMM/OLS setting, and Sun (2014b),

Hwang and Sun (2017), Mart́ınez-Iriarte et al. (2020) in the two-step GMM setting, Sun and

Kim (2015) and Liu and Sun (2019) for spatial and panel data settings (difference-in-differences

regressions). More recently, adopting the framework of Chang et al. (2018), Pellatt and Sun

(2020) develops the asymptotic F theory in a continuous-time setting. Earlier papers along this

line of research include Phillips (2005) and Sun (2006).
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The aim of the present paper is to review the asymptotic F and t theory in the nonstationary

framework and extend it to cover the nonstationary cases that the theory is currently lacking.

Section 2 considers the exogeneous case where the regressors follow either a deterministic trend

function or a stochastic trend. It introduces a new idea to design the bases for series variance

estimation. This approach involves projecting any given candidate bases onto the orthogonal

complement of the column space spanned by the regressors. The projection ensures that the new

series variance estimator is invariant to the parameter estimation error. After proper normaliza-

tion, the projected bases are orthonormal. This enables us to establish that the associated Wald

and t statistics are asymptotically F and t distributed, respectively. Section 3 examines the case

with endogenous stochastic trends. The regressors can be unit-root or near-unit-root processes

but are correlated with the regression error. Here we follow Phillips (2014) and Hwang and Sun

(2018) and cast the regression as a low-frequency instrumental variable regression. Effectively,

we convert a highly nonstandard inference problem into a standard inference problem in a clas-

sical normal linear regression. The asymptotic F and t theory then follows naturally. Section 4

presents a simulation study that demonstrates the higher size-accuracy of the proposed F test

in a cointegration regression with exogenous regressors similar to that considered in Phillips and

Park (1988). The last section concludes.

2 Deterministic and exogenous cases

Consider the regression model:

Yt = X ′
tβ0 + ut, t = 1, 2, . . . , T,

where Xt ∈ Rd for d ≥ 1 is either a deterministic trend process, a unit-root process, or a near-

unit-root process, and {ut} is a stationary zero-mean process that is independent of {Xt} . An

intercept can be included as the first element of Xt.

For some p× d matrix R = (R (i, j)) and p× 1 vector r, we are interested in testing

H0 : Rβ0 = r against H1 : Rβ0 ̸= r.

When p = 1, we may be interested in testing the null against a one-sided alternative, say, testing

H0 : Rβ0 = r against H1 : Rβ0 > r.

Based on the observations {Xt, Yt}Tt=1, we estimate β0 by the OLS estimator:

β̂ =

(
T∑
t=1

XtX
′
t

)−1 T∑
t=1

XtYt.
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For many regression models we consider here, the OLS estimator is asymptotically as efficient

as the GLS estimator. These include polynomial trend regressions and cointegration regressions.

For the former case, see Grenander and Rosenblatt (1957), and for the latter case, see Phillips and

Park (1988), which also provides general discussions on the reason for the asymptotic equivalence

between OLS and GLS.

Assumption 1 (i) For some diagonal matrix DT , we have 1√
T

∑[Tr]
t=1 ut

D−1
T X[Tr]

⇒

 Bu (r)

Bx(r)

 :=

 ωuWu (r)

Bx(r)

 ,

where Bx (·) is either a deterministic function or a stochastic process and Wu (·) is a standard

Brownian motion that is independent of Bx (·) . (ii)
∫ 1
0 Bx (r)Bx (r)

′ dr is of full rank d almost

surely.

Assumption 1 requires that Bx(r) and Wu(r) be independent. When Bx (r) is not random,

this holds trivially. When Bx (r) is random, this assumption amounts to assuming that the long

run correlation between {ut} and {
√
TD−1

T ∆Xt} converges to zero. The latter condition holds if

Xt is strictly exogenous in the sense that {Xt : t = 1, . . . , T} is independent of {ut : t = 1, . . . , T} .

We consider the strictly exogenous case in this section and defer the endogenous case to the next

section.

We now provide a few examples where Assumption 1 holds. These examples also show that

our framework accommodates different types of regressions.

Example 1 Deterministic trend. Let Xt = (1, t, t2)′, in which case DT = diag(1, T, T 2) and

Bx (r) =
(
1, r, r2

)′
. One can also consider other types of trend functions.

Example 2 Unit-root process. Let Xt = (1, X̃ ′
t)
′ and X̃t be a unit-root process:

X̃t = X̃t−1 + ux,t for t = 1, 2, . . . , T,

where X̃0 = op(
√
T ) and ux,t is a stationary zero-mean process. In this case,

DT = diag(1,
√
T , . . . ,

√
T ) and Bx (r) =

 1

Ω
1/2
xx Wx (r)

 ,

where Wx (·) is a standard Brownian motion process, Ωxx is the long run variance of {ux,t :=

∆X̃t} and Ω
1/2
xx is the unique and symmetric matrix square root of Ωxx such that Ω

1/2
xx (Ω

1/2
xx )′ =

Ωxx.
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Example 3 Near-unit-root process. Let Xt = (1, X̃ ′
t)
′ and X̃t be a near-unit-root process:

X̃t =
(
1− c

T

)
X̃t−1 + ux,t for t = 1, 2, . . . , T,

where c > 0, X̃0 = op(
√
T ), and ux,t is a stationary zero-mean process. In this case,

DT = diag(1,
√
T , . . . ,

√
T ) and Bx (r) =

 1

Ω
1/2
xx Jc,x (r)

 ,

where Jc,x (·) is the Ornstein-Uhlenbeck (OU) process defined by

dJc,x (r) = −cJc,x (r) dr + dWx(r)

with Jc,x(0) = 0. That is, Jc,x(r) =
∫ r
0 e−c(r−s)dWx (s) .

Example 4 Structural break. Let X ′
t = [X◦′

t 1 (t ≤ λT ) , X◦′
t 1 (t > λT )] and β0 = (β′

10, β
′
20)

′ so

that

Y = X ′
tβ0 + ut = X◦′

t 1 (t ≤ λT )β10 +X◦′
t 1 (t > λT )β20 + ut.

This model allows for a structural break in the linear relationship between Yt and X◦
t . The

possible break takes place at time t = λT , where, for convenience, λT is assumed to be an integer.

Assuming that  1√
T

∑[Tr]
t=1 ut

D−1
T X◦

[Tr]

⇒

 ωuWu (r)

B◦
x(r)


for some DT and stochastic processes Wu (·) and B◦

x(·), we have 1√
T

∑[Tr]
t=1 ut

D−1
T X[Tr]

⇒

 ωuWu (r)

Bx (r)

 ,

where

Bx (r) =

 B◦
x(r)1 {r ≤ λ}

B◦
x(r)1 {r > λ}

 .

Example 5 High-order integrated process. Let Xt = (1, X̃ ′
t)
′ and X̃t be an I(2) process:

(1− L)2 X̃t = ux,t for t = 1, 2, . . . , T,

where L is the lag operator, X̃0 = op(
√
T ), and ux,t is a stationary zero-mean process. In this

case,

DT = diag(1, T 3/2, . . . , T 3/2) and Bx (r) =

 1

Ω
1/2
xx

∫ r
0 Wx (s) ds

 ,

where Wx (·) is a standard Brownian motion process.
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In the above examples, the nonstationary regressors are of the same type. In principle,

our setting can also accommodate regressors of different types given in these examples. The

asymptotic F and t theory holds as long as Assumption 1 is satisfied.

Under Assumption 1, we have

√
TDT (β̂ − β) =

(
1

T

T∑
t=1

(
D−1

T Xt

) (
D−1

T Xt

)′)−1( T∑
t=1

(
D−1

T Xt

) ut√
T

)

⇒ ωu

[∫ 1

0
Bx (r)Bx (r)

′ dr

]−1 ∫ 1

0
Bx (r) dWu (r) .

Different elements of β̂ may have different rates of convergence. To find the asymptotic

distribution of R(β̂ − β0), we need to find the slowest rate of convergence among the elements

of β̂ that are involved in each restriction. More specifically, for the i-th restriction R (i, ·)β = ri

where R (i, ·) is the i-th row of R and ri is the i-th element of r, we define the set

Si := {j : for j ∈ {1, 2, . . . , d} such that R (i, j) ̸= 0},

which consists of the indices of the coefficients that appear in the i-th restriction. The rate of

convergence of R (i, ·) β̂ is given by
√
T minj∈Si DT (j, j) . Let

D̃T = diag

(
min
j∈S1

DT (j, j) , . . . ,min
j∈Sp

DT (j, j)

)
,

which is a p × p diagonal matrix. Then limT→∞ D̃TRD−1
T = A for a matrix A ∈ Rp×d whose

(i, j)-th element A (i, j) is equal to

A (i, j) = lim
T→∞

D̃T (i, i)R (i, j) /DT (j, j) = R (i, j) 1 {j ∈ Si} .

That is, A is the same as R after we zero out the elements in each row for which the corresponding

coefficients can be estimated at a faster rate. So, under the null H0,

D̃T

√
T
(
Rβ̂ − r

)
= D̃T

√
TR

(
β̂ − β0

)
=
(
D̃TRD−1

T

)( 1

T

T∑
t=1

(
D−1

T Xt

) (
D−1

T Xt

)′)−1( T∑
t=1

(
D−1

T Xt

) ut√
T

)

⇒ ωuA

[∫ 1

0
Bx (r)Bx (r)

′ dr

]−1 ∫ 1

0
Bx (r) dWu (r)

:= ωu

∫ 1

0
B∗

x (r) dWu (r) , (1)

where

B∗
x (r) = A

[∫ 1

0
Bx (r)Bx (r)

′ dr

]−1

Bx (r) .
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The above asymptotic theory forms the basis for testing H0 against H1, but we still have to es-

timate the long run variance ω2
u. Here we employ the series approach. Let {ϕi (·) , i = 1, 2, . . . ,K}

be some basis functions on L2 [0, 1] . The series estimator of ω2
u is

ω̂2
u =

1

K

K∑
i=1

[
1√
T

T∑
i=1

ϕi

(
t

T

)
ût

]2
(2)

where ût = Yt −X ′
tβ̂. As a rule of thumb, we can use the formula developed by Phillips (2005)

to choose K. See Section 4 for more details.

Based on ω̂2
u, we construct the Wald statistic

FT =

(
Rβ̂ − r

)′ [
R
(∑T

t=1XtX
′
t

)−1
R

]−1 (
Rβ̂ − r

)
pω̂2

u

. (3)

When p = 1, we construct the t statistic

tT =
Rβ̂ − r

ω̂u

√
R
(∑T

t=1XtX ′
t

)−1
R

.

Let

ϕ̃i (r) = ϕi (r)−
[∫ 1

0
ϕi (s)Bx(s)

′ds

] [∫ 1

0
Bx(τ)Bx(τ)

′dτ

]−1

Bx(r), (4)

which is the projection of ϕi (r) onto the orthogonal complement of the space spanned by Bx (r) .

By construction,
∫ 1
0 ϕ̃i (r)B

′
x (r) dr = 0.1

Denote ϕ̃ (r) = (ϕ̃1 (r) , . . . , ϕ̃K (r))′. To obtain the weak limits of ω̂2
u, FT , and tT , we make

the following assumption on the basis functions.

Assumption 2 (i) For each i = 1, . . . ,K, ϕi (·) is continuously differentiable. (ii)
∫ 1
0 ϕ̃ (r) ϕ̃ (r)′ dr

is of rank K almost surely.

Using Assumption 1, we have

1√
T

[Tr]∑
t=1

ût

=
1√
T

[Tr]∑
t=1

(
Yt −X ′

tβ̂
)
=

1√
T

[Tr]∑
t=1

(
Yt −X ′

tβ0 −X ′
t(β̂ − β0)

)

=
1√
T

[Tr]∑
t=1

ut −
1

T

[Tr]∑
t=1

D−1
T X ′

t

(
1

T

T∑
t=1

(
D−1

T Xt

) (
D−1

T Xt

)′)−1( T∑
t=1

(
D−1

T Xt

) ut√
T

)

⇒ Bu(r)−
(∫ r

0
Bx(s)

′ds

)[∫ 1

0
Bx(τ)Bx(τ)

′dτ

]−1 ∫ 1

0
Bx(τ)dBu(τ).

1Here ‘0’ stands for a vector of zeros, and its dimension may be different at different occurrences.
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Combining this with Assumption 2(i), we have

1√
T

T∑
t=1

ϕi

(
t

T

)
ût

⇒
∫ 1

0
ϕi (r) dBu(r)−

[∫ 1

0
ϕi (s)Bx(s)

′ds

] [∫ 1

0
Bx(τ)Bx(τ)

′dτ

]−1 ∫ 1

0
Bx(τ)dBu(τ)

=

∫ 1

0

{
ϕi (r)−

[∫ 1

0
ϕi (s)Bx(s)

′ds

] [∫ 1

0
Bx(τ)Bx(τ)

′dτ

]−1

Bx(r)

}
dBu(r)

= ωu

∫ 1

0
ϕ̃i (r) dWu(r).

Hence, for a fixed K,

ω̂2
u ⇒ ω2

u

1

K

K∑
i=1

[∫ 1

0
ϕ̃i (r) dWu (r)

]2
.

Under the fixed-K asymptotics, ω̂2
u converges weakly to a random variable that is proportional

to ω2
u. This is sufficient for asymptotically pivotal inference.

For the variance term in the test statistic FT , we have

D̃TR

(
T∑
t=1

XtX
′
t

)−1

RD̃T

= D̃TRD−1
T

(
1

T

T∑
t=1

(
D−1

T Xt

) (
D−1

T Xt

)′)−1 (
D̃TRD−1

T

)′
⇒ A

[∫ 1

0
Bx (r)Bx (r)

′
]−1

A′ =

∫ 1

0
B∗

x (r)B
∗
x (r)

′ dr.

Using the above weak convergence results and that for Rβ̂ − r in (1), we obtain, for a fixed

K,

FT =
1

pω̂2
u

{
D̃T

√
TR

(
β̂ − β0

)}′
D̃TR

(
T∑
t=1

XtX
′
t

)−1

RD̃T

−1 {
D̃T

√
TR

(
β̂ − β0

)}

⇒

{∫ 1
0 B∗

x (r) dWu (r)
}′ {∫ 1

0 B∗
x (r)B

∗
x (r)

′ dr
}−1 {∫ 1

0 B∗
x (r) dWu (r)

}
/p∑K

i=1

[∫ 1
0 ϕ̃i (r) dWu (r)

]2
/K

:=
η′0η0/p∑K
i=1 η

2
i /K

:= F∞, (5)

where

η0 =

{∫ 1

0
B∗

x (r)B
∗
x (r)

′ dr

}−1/2 ∫ 1

0
B∗

x (r) dWu (r) ,

ηi =

∫ 1

0
ϕ̃i (r) dWu (r) for i = 1, 2, . . . ,K.
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In general,
∫ 1
0 B∗

x (r)B
∗
x (r)

′ dr may not be invertible. Here we assume that A = limT→∞ D̃TRD−1
T

is of full (row) rank p so that
∫ 1
0 B∗

x (r)B
∗
x (r)

′ dr is invertible almost surely. The above asymptotic

theory allows us to make asymptotically valid inferences, but the limiting distribution F∞ is

nonstandard, and so critical values have to be simulated.

We proceed to study how we may obtain a standard fixed-K asymptotic distribution. Note

that B∗
x is a function of Bx. Conditional on Bx, η0 is a standard normal vector. So η′0η0 ∼ χ2

p

conditional on Bx. Moreover, conditional on Bx, both η0 and ηi are normal, and their conditional

covariance given Bx is

cov (η0, ηi) =

{∫ 1

0
B∗

x (r)B
∗
x (r)

′ dr

}−1/2(∫ 1

0
B∗

x (r) ϕ̃i (r) dr

)
= 0 for i = 1, . . . ,K.

Here, the second equality holds because∫ 1

0
B∗

x (r) ϕ̃i (r) dr = A

[∫ 1

0
Bx (r)Bx (r)

′ dr

]−1 ∫ 1

0
Bx (r) ϕ̃i (r) dr = 0,

where we have used
∫ 1
0 Bx (r) ϕ̃i (r) dr = 0. Therefore, conditional onBx, η0 and {ηi, i = 1, . . . ,K}

are independent.

To reduce the asymptotic distribution F∞ to a standard F distribution, we hope that ηi is

i.i.d. N(0, 1) conditional on Bx. For this, we require ϕ̃i (r) to be orthonormal (conditional on

Bx). But∫ 1

0
ϕ̃i1 (r) ϕ̃i2 (r) dr

=

∫ 1

0
ϕi1 (r)ϕi2 (r) dr −

[∫ 1

0
ϕi1 (r)Bx(r)

′dr

] [∫ 1

0
Bx(τ)Bx(τ)

′dτ

]−1 ∫ 1

0
Bx(s)ϕi2 (s) ds

=

∫ 1

0

∫ 1

0
ϕi1 (r)

{
δ(r − s)−Bx(r)

′
[∫ 1

0
Bx(τ)Bx(τ)

′dτ

]−1

Bx(s)

}
ϕi2 (s) drds

:=

∫ 1

0

∫ 1

0
ϕi1 (r)C (r, s)ϕi2 (s) drds,

where

C (r, s) = δ(r − s)−Bx(s)
′
[∫ 1

0
Bx(τ)Bx(τ)

′dτ

]−1

Bx(r),

and δ (·) is the Dirac delta function such that∫ 1

0

∫ 1

0
ϕi1 (s) δ (r − s)ϕi2 (r) drds =

∫ 1

0
ϕi1 (r)ϕi2 (r) dr.

To design the basis functions {ϕi (r)} such that {ϕ̃i (r)} are orthonormal on L2[0, 1], we require

that {ϕi (r)} be orthonormal with respect to the weighting function C(r, s), that is,∫ 1

0

∫ 1

0
C(r, s)ϕi1 (r)ϕi2 (s) drds = 1 {i1 = i2} (6)
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almost surely. Because of the general form of C (r, s) and its randomness, commonly-used basis

functions do not satisfy the above condition.

Instead of searching for the basis functions that satisfy (6), we search for their discrete versions:

the basis vectors. For each basis function ϕi (r) , the corresponding basis vector is defined as

ϕi =

(
ϕi

(
1

T

)
, ϕi

(
2

T

)
, . . . , ϕi

(
T

T

))′
.

We note that it is the basis vectors that are used in the variance estimator. Basis functions only

appear in the limiting distribution when T → ∞.

Let

CT = T ·MX for MX = IT −X
(
X ′X

)−1
X ′,

where X = (X1, ..., XT )
′ ∈ RT×d. By definition, CT is symmetric and positive semidefinite. It is

the discrete version of C(r, s). For any two vectors r1, r2 ∈ RT , we define their inner product as

⟨r1, r2⟩ = r′1CT r2/T
2. (7)

The discrete analogue of (6) is

〈
ϕi1 ,ϕi2

〉
= 1 {i1 = i2} for i1, i2 = 1, . . . ,K. (8)

Given any set of basis vectors ϕ1, . . . ,ϕK , let ϕ = (ϕ1, . . .,ϕK) be the T ×K matrix of these

basis vectors. Define

ϕM =
√
T (MXϕ)

[
(MXϕ)′MXϕ

]−1/2
,

where the superscript ‘M ’ signifies that the basis vectors in ϕM are obtained via a transformation

involving MX . We have

T−2(ϕM )′CTϕ
M

= TT−2
[
(MXϕ)′MXϕ

]−1/2
ϕ′MX ·CT ·MXϕ

[
(MXϕ)′MXϕ

]−1/2

=
[
ϕ′MXϕ

]−1/2 (
ϕ′MXϕ

) [
ϕ′MXϕ

]−1/2
= IK .

That is, the columns of the matrix ϕM satisfy the conditions in (8).

If we use {ϕM
i = (ϕM

i,1, . . . , ϕ
M
i,T )

′, i = 1, ...,M} , the columns of ϕM , in constructing the

variance estimator, that is, we estimate ω2
u by

ω̂2
u,M =

1

K

K∑
i=1

[
1√
T

T∑
t=1

ϕM
i,t ût

]2
,

10



then

ω̂2
u,M =

1

TK
û′ϕM

(
ϕM
)′
û

=
1

K

(
û′MXϕ

) (
ϕ′MXϕ

)−1 (
ϕ′MX û

)
=

1

K

(
û′ϕ
) (

ϕ′MXϕ
)−1 (

ϕ′û
)

⇒ ω2
u

1

K

[∫ 1

0
ϕ̃ (r)′ dWu (r)

] [∫ 1

0
ϕ̃ (r) ϕ̃ (r)′ dr

]−1 [∫ 1

0
ϕ̃ (r) dWu (r)

]
. (9)

In the above, the third equality holds because û = MXu and so û′MXϕ = u′M ′
XMXϕ =

u′MXMXϕ = u′MXϕ = û′ϕ. As a result,

F ∗
T :=

(
Rβ̂ − r

)′ [
R (X ′X)−1R

]−1 (
Rβ̂ − r

)
/p

(û′MXϕ)
(
ϕ′MXϕ

)−1 (
ϕ′MX û

)
/K

⇒ η′0η0/p

η′η/K
,

where, as before

η0 =

{∫ 1

0
B∗

x (r)B
∗
x (r)

′ dr

}−1/2 ∫ 1

0
B∗

x (r) dWu (r) ,

but now

η := (η1, η2, . . . , ηK)′ =

[∫ 1

0
ϕ̃ (r) ϕ̃ (r)′ dr

]−1/2 [∫ 1

0
ϕ̃ (r) dWu (r)

]
.

Under Assumption 2(ii), η ∼ N(0, IK) conditional on Bx. Also, as we have shown before, η is

independent of η0 conditional on Bx. So, conditional on Bx,

η′0η0/p

η′η/K
∼ Fp,K .

Given that the conditional distribution Fp,K does not depend on the conditioning variable (i.e.,

Bx),
η′0η0/p
η′η/K ∼ Fp,K unconditionally. Therefore, F ∗

T ⇒ Fp,K . We formalize this result and a similar

result for a t statistic in the theorem below.

Theorem 1 Let Assumptions 1 and 2 hold. Assume further that limT→∞ D̃TRD−1
T is of full row

rank p. Then, for a fixed K as T → ∞,

F ∗
T :=

(
Rβ̂ − r

)′ [
R (X ′X)−1R

]−1 (
Rβ̂ − r

)
/p

(û′MXϕ)
(
ϕ′MXϕ

)−1 (
ϕ′MX û

)
/K

→ Fp,K

t∗T :=
Rβ̂ − r√

(û′MXϕ)
(
ϕ′MXϕ

)−1 (
ϕ′MX û

)
/K

√
R
(∑T

t=1XtX ′
t

)−1
R′

→ tK ,

where MX = IT − X (X ′X)−1X ′, Fp,K is the standard F distribution with degrees of freedom

(p,K), and tK is the standard t distribution with degrees of freedom K.
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Remark 1 In order to develop the asymptotic F and t theory, we use the novel series variance es-

timator (TK)−1 û′ϕM
(
ϕM
)′
û instead of the usual series variance estimator (TK)−1 (û′ϕ)

(
ϕ′û
)
.

To obtain ϕM , we first project ϕ on the orthogonal complement of the column space of X to obtain

MXϕ and then orthonormalize it into ϕM =
√
T (MXϕ)

[
(MXϕ)′MXϕ

]−1/2
. Note that

(TK)−1 û′ϕM
(
ϕM
)′
û = (TK)−1 u′ϕM

(
ϕM
)′
u.

The series variance estimator is the same regardless of whether û or the true u is used. The pro-

jection, therefore, ensures that the series variance estimator (TK)−1 û′ϕM
(
ϕM
)′
û is invariant

to the parameter estimation error. When X is random, the projection is onto a random subspace.

For series variance estimation, the idea of using data-dependent and randomly orthonormalized

basis functions is new in the literature.

Remark 2 From a theoretical point of view, the implied basis functions we use in the series

variance estimation are the elements of the following vector:

ϕ̃
∗
(r) =

[∫ 1

0
ϕ̃ (τ) ϕ̃ (τ)′ dτ

]−1/2

ϕ̃ (r) .

From any given vector of basis functions ϕ (r) = (ϕ1 (r) , . . . , ϕK (r))′ , we first use the projection

operation given in (4) to obtain ϕ̃ (r) = (ϕ̃1 (r) , . . . , ϕ̃K (r))′ and then use the orthonormalization

(i.e., premultiplying ϕ̃ (r) by [
∫ 1
0 ϕ̃ (τ) ϕ̃ (τ)′ dτ ]−1/2) to obtain ϕ̃

∗
(r) := [

∫ 1
0 ϕ̃ (τ) ϕ̃ (τ)′ dτ ]−1/2ϕ̃ (r) .

For practical implementation, we do not need to find the implied basis functions, as we only need

to use the corresponding basis vectors
(
ϕ′MXϕ

)−1/2 (
ϕ′MX

)
to compute ω̂2

u. The basis functions

in ϕ̃
∗
(r) appear only in the asymptotic distributions of the long run variance estimator ω̂2

u and

the test statistics F ∗
T and t∗T . More specifically, we can rewrite (9) as

ω̂2
u,M ⇒ ω2

u

1

K

[∫ 1

0
ϕ̃
∗
(r) dWu (r)

]′ [∫ 1

0
ϕ̃
∗
(r) dWu (r)

]
.

The basis functions in ϕ̃
∗
(r) appear in our asymptotic distributions only via the above weak limit

of ω̂2
u,M .

Remark 3 Theorem 1 extends Sun (2011) to allow for more general trend functions. For trend

regressions, Sun (2011) considers a linear trend with Xt = (1, t)′ so that Bx (r) = (1, r)′ and

employs the cosine basis functions ϕi (r) =
√
2 cos 2πir for i = 1, 2, . . . ,K. These functions are

special in that they are orthonormal on L2[0, 1] and satisfy∫ 1

0
ϕi (s)Bx (s) ds =

 ∫ 1
0

√
2 cos (2πs) ds∫ 1

0 s
√
2 cos (2πs) ds

 =

 0

0

 .
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As a result, ϕ̃i (r) = ϕi (r) −
[∫ 1

0 ϕi (s)Bx(s)
′ds
] [∫ 1

0 Bx(τ)Bx(τ)
′dτ
]−1

Bx(r) = ϕi (r) for all i.

That is, the projection does not change the original basis functions. Hence, ηi :=
∫ 1
0 ϕ̃i (r) dWu (r) =∫ 1

0 ϕi (r) dWu (r) is i.i.d. N(0, 1). The asymptotic F and t theory can then be established directly

with the cosine basis functions. However, the requirements that ϕ̃i (r) = ϕi (r) for all i and

{ϕi (r)} are orthonormal on L2[0, 1] severely limit the set of basis functions we can use. For

example, Sun (2011) has to rule out the sine functions {
√
2 sin 2πir} with consequential adverse

effect on the power of the resulting test. In contrast, Theorem 1 allows us to use any basis func-

tions that satisfy Assumption 2. We can do so because the projection step preemptively purges

the effect of the parameter estimation uncertainty and the orthonormalization step ensures the

orthonormality of the implied basis functions {ϕ̃∗
i (r)}.

Remark 4 For regressions with strictly exogenous integrated regressors, Theorem 1 can be re-

garded as an F test version of Park and Phillips (1988) (Theorem 5.4) where the asymptotic

chi-square test theory was developed. We note that an asymptotic F theory can not be established

for the usual test statistic constructed based on a kernel (long-run) variance estimator. A series

variance estimator with carefully crafted basis functions/vectors appears to be indispensable for

the asymptotic F theory.

Remark 5 For cointegration regressions,Bunzel (2006) and Jin et al. (2006) develop the fixed-b

asymptotic theory for studentized test statistics. The asymptotic distributions in these two papers

are nonstandard. In contrast, the asymptotic distributions in Theorem 1 are standard F and t

distributions and are thus more convenient for practical use. In the presence of endogeneity,

the case considered in the next section, we may employ the series long run and half long run

variance estimators to obtain the fully-modified OLS estimator of Phillips and Hansen (1990).

Suppose we ignore the estimation error in the half long run variance estimator, which effectively

reduces the problem back to the exogenous case, then we can use the F and t approximations for

inference. This may not be completely satisfactory, because the F and t distributions are not the

exact asymptotic distributions of the F and t statistics under the fixed-K asymptotics. We use the

F and t approximations only because they are expected to be more accurate than the chi-square

and normal approximations. For the endogenous case, exact and asymptotically valid F and t

tests are developed in the next section.

Remark 6 Theorem 1 allows for near-unit-root processes. It appears to be the first time that

an asymptotic F and t theory is established in this setting. However, see Sun (2014c) for the F
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and t limit theory in a different setting where the regressor error is a near-unit-root process and

Guo et al. (2018) for the asymptotic t theory in an autoregression where the process is moderately

explosive. Theorem 1 also allows for I(2) processes. To the best of our knowledge, this has not

been considered in the literature before.

Remark 7 The asymptotic F and t theory in the structural break setting given above appears to

be new. Sun and Wang (2021) establish the asymptotic F and t theory in a structural break model,

but they consider only the case when X◦
t is stationary. Here we allow X◦

t to be nonstationary.

Remark 8 Theorem 1 provides a unified framework that accommodates various nonstationary

regressors. The idea may be extended under suitable conditions to allow for fractionally integrated

processes, slowing-varying trend regressors, and nonlinear trends. See Phillips (2007) for slowing-

varying trend regressions.

To conclude this section, we outline the steps in conducting the asymptotic F and t tests:

(i) Estimate β0 by the OLS estimator β̂ and calculate the residual û = Y −Xβ̂.

(ii) Construct the T ×K matrix ϕ = (ϕ1, . . .,ϕK) of the basis vectors. We recommend using

the following Fourier series as the basis vectors:

ϕ2i−1 = (
√
2 cos 2πi

t

T
)Tt=1 =

√
2(cos 2πi

1

T
, cos 2πi

2

T
, ..., cos 2πi

T

T
)′

ϕ2i = (
√
2 sin 2πi

t

T
)Tt=1 =

√
2(sin 2πi

1

T
, sin 2πi

2

T
, ..., sin 2πi

T

T
)′ (10)

for i = 1, 2, ...,K/2 assuming that K is even.

(iii) For MX = IT −X (X ′X)−1X ′, compute the test statistics F ∗
T and t∗T defined in Theorem

1.

(iv) For the F test, compare F ∗
T with critical values from the standard F distribution Fp,K .

For the t test, compare t∗T with critical values from the standard t distribution tK .

3 Endogenous case

3.1 Cointegration regression

We consider the model

Yt = α0 +X ′
tβ0 + u0t (11)

Xt =
(
1− c

T

)
Xt−1 + uxt
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for t = 1, . . . , T, where Yt is a scalar time series and Xt is a dx × 1 vector of time series with

X0 = op(
√
T ). Here we single out the intercept because we allow the rest of the regressors Xt

to be endogenous: {uxt} and {u0t} can be arbitrarily correlated. We assume that c ≥ 0 so that

both unit-root and near-unit-root processes can be accommodated.

We are interested in constructing a confidence interval for Rβ0. The confidence interval can

then be used in testing whether Rβ0 = r for some r ∈ Rp.

We maintain the following assumption on ut = (u0t, u
′
xt)

′ . Note that the definition of ut is

different from that in the previous section.

Assumption 3 The functional central limit theorem holds:

T−1/2

[T ·]∑
t=1

ut ⇒ B(·) = Ω1/2W (·), (12)

where W (·) := (W0(·),W ′
x(·))′ is a (dx + 1)-dimensional standard Brownian process,

Ω =

∞∑
j=−∞

Eutu
′
t−j =

 ω2
0

1×1
ω0x
1×dx

ωx0
dx×1

Ωxx
dx×dx

 , (13)

and Ω is positive definite.

Using the Cholesky form of Ω1/2, we can write B(·) as

B (·) =

 B0(·)

Bx(·)

 =

 ω0·xW0(·) + ω0xΩ
−1/2
xx Wx(·)

Ω
1/2
xx Wx(·)

 , (14)

where ω2
0·x = ω2

0 −ω0xΩ
−1
xxωx0 and Ω

1/2
xx is the symmetric and positive-definite matrix square root

of Ωxx.

In the presence of endogeneity, B0(·) and Bx(·) will be dependent, and the OLS estimator

β̂ of β0 will have a second-order endogeneity bias and a complicated asymptotic distribution.

To remove the endogeneity bias and restore the asymptotic (mixed) normality of β̂, we may

use the fully modified OLS estimator of Phillips and Hansen (1990). This estimator involves

using a long run variance and a half long run variance to remove the dependence between B0(·)

and Bx(·) and the endogeneity bias. Both the long run variance and the half long run variance

are estimated nonparametrically. However, the estimation uncertainty, which is potentially very

high, is ignored in the asymptotic chi-square and normal approximations. For this reason, the

chi-square and normal tests often have large size distortion; see, for example, Vogelsang and

Wagner (2014).
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To confront the size distortion problem, we follow Hwang and Sun (2018)2 and consider a

different estimation approach. We assume that c is known. If Xt is a unit-root process, we know

that c = 0. So the assumption is not restrictive. However, when Xt is a near-unit-root process,

we do not know c in general, and the assumption becomes restrictive. In this case, we can first

construct a confidence interval for c and then use Bonferroni’s method to construct the confidence

bound for Rβ0. In this case, our asymptotic theory below forms the basis for the Bonferroni’s

method. For more details, see, for example, Phillips (2015) for such a practice in predictive

regressions. The same method can be used here.

Define the quasi-differenced process ∆cXt as

∆cXt = Xt −
(
1− c

T

)
Xt−1.

Obviously, ∆cXt = ux,t. Let δ0 = Ω−1
xxωx0 be the long run regression coefficient when u0t is

regressed on uxt and

u0·x,t = u0t − (∆cXt)
′δ0 = u0t − u′x,tδ0

be the corresponding long run regression error. Then, we obtain the augmented regression

Yt = α0 +X ′
tβ0 + (∆cXt)

′δ0 + u0·x,t, (15)

where, by definition, the long run correlation between u0·x,t and ux,t is zero. The augmentation

is designed to purge the dependence between B0(·) and Bx(·).

Note that the zero long run correlation between u0·x,t and ux,t does not rule out that u0·x,t

may be still correlated with Xt and ∆cXt. Hence, the (augmented) OLS estimator (denoted by

β̂AOLS) of β0 based on the augmented regression can still have a second-order endogeneity bias.

More precisely, the mean of the asymptotic distribution of T (β̂AOLS − β0) may not be zero.

Ignoring the nonzero mean leads to invalid and unreliable statistical inferences.

To remove the endogeneity bias, we follow Phillips (2014) and Hwang and Sun (2018) and

run the regression in a different domain, which resembles the frequency domain, but any set of

orthonormal basis functions in L2 [0, 1] can be used. For convenience, we refer to this domain as

the pseudo-frequency domain. Let {ϕi}Ki=1 be a set of K such basis functions on L2 [0, 1]. For

2Hwang and Sun (2018) tackle the size distortion problem in a cointegration regression where {Xt} are unit-root

processes. Here we generalize their asymptotic theory to allow {Xt} to be near-unit-root processes. We employ

the same argument as in Hwang and Sun (2018). To make the paper self-contained, we outline the main steps of

the argument here
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each i = 1, . . . ,K, we transform all variables in the augmented regression into

Wα
i =

1√
T

T∑
t=1

ϕi(
t

T
),

Wy
i =

1√
T

T∑
t=1

Ytϕi(
t

T
), Wx

i =
1√
T

T∑
t=1

Xtϕi(
t

T
), (16)

W∆cx
i =

1√
T

T∑
t=1

(∆cXt)ϕi(
t

T
), W0·x

i =
1√
T

T∑
t=1

u0·x,tϕi(
t

T
).

The basis transformation is designed to extract the long run component in the time series data.

Based on the augmented regression and the transformed data, we have

Wy
i = α0Wα

i +Wx′
i β0 +W∆cx′

i δ0 +W0·x
i for i = 1, . . . ,K. (17)

Under the assumption that each function ϕi (·) is continuously differentiable and satisfies
∫ 1
0 ϕi (r) dr =

0, which we will maintain, we have

Wα
i =

√
T

∫ 1

0
ϕi(r)dr +

√
TO(1/T ) = O(1/

√
T ) = o(1). (18)

So

Wy
i = Wx′

i β0 +W∆cx′
i δ0 +W0·x

α,i for i = 1, . . . ,K, (19)

where

W0·x
α,i = W0·x

i +Wα
i = W0·x

i + o (1) .

Our estimation and inference will be based on equation (19), which can be regarded as a low-

frequency regression.

Putting (19) in a vector form, we have

Wy = Wxβ0 +W∆cxδ0 +W0·x
α , (20)

where Wy = (Wy
1, . . . ,W

y
K)′ and Wx, W∆x, and W0·x

α are defined similarly. Running OLS based

on the above equation leads to the transformed and augmented OLS (TAOLS) estimator of

γ0 = (β′
0, δ

′
0)

′ :

γ̂TAOLS = (W̃′W̃)−1W̃′Wy,

where W̃ =
(
Wx,W∆x

)
. See Hwang and Sun (2018) for discussions on the efficiency and robust-

ness of this estimator. The TAOLS estimator can be regarded as an IV estimator based on the

augmented equation in (15) using the basis vectors ϕ1, . . . ,ϕK as the instruments. See Phillips

(2014) for more details.
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Let

Px = Wx(Wx′Wx)−1Wx′, P∆cx = W∆cx(W∆cx′W∆cx)−1W∆cx′,

and Mx = IK − Px, M∆cx = IK − P∆cx. Then we can represent γ̂TAOLS as

γ̂TAOLS =

 β̂TAOLS

δ̂TAOLS

 =

 (Wx′M∆cxWx)−1(Wx′M∆cxWy)

(W∆cx′MxW∆cx)−1(W∆cx′MxWy)

 . (21)

To establish the asymptotic properties of γ̂TAOLS , we make the following assumption.

Assumption 4 (i) For every i = 1, . . . ,K, ϕi (·) is continuously differentiable; (ii) for every

i = 1, . . . ,K, ϕi (·) satisfies
∫ 1
0 ϕi (r) dr = 0; (iii) the functions {ϕi (·)}Ki=1 are orthonormal in

L2[0, 1].

Under Assumptions 3 and 4(i&ii), we can use summation by parts, the continuous mapping

theorem, and integration by parts to obtain

W0·x
α,i =

1√
T

T∑
t=1

ϕi(
t

T
)u0·xt +Wα

i

=
1√
T

T∑
t=1

ϕi(
t

T
)
(
u0t − u′xtδ0

)
+ o (1)

⇒
∫ 1

0
ϕi (r) d

[
B0(r)−Bx(r)

′δ0
]

= ω0·x

∫ 1

0
ϕi (r) dW0(r) := ω0·xνi.

Similarly,

Wx
i

T
=

1

T 3/2

T∑
t=1

ϕi

(
t

T

)
Xt ⇒ Ω1/2

xx

∫ 1

0
ϕi (r) Jc,x(r)dr := ξi,

and

W∆cx
i ⇒

∫ 1

0
ϕi (r) dBx(r) = Ω1/2

xx

∫ 1

0
ϕi (r) dWx(r) := ηi.

Let

ν ≡ (ν1, ν2, . . . , νK)′ ∈ RK×1,

ξ ≡ (ξ1, ξ2, . . . , ξK)′ ∈ RK×dx ,

η ≡ (η1, η2, . . . , ηK)′ ∈ RK×dx ,

and ζ = (ξ, η) . Then (
Wx/T,W∆x,W0·x

α

)
⇒ (ξ, η, ω0·xν) , (22)

18



where ζ ⊥ ν. Also, it follows from Assumption 4(iii) that ν ∼ N(0, IK). In particular, for

ΥT =

 T · Idx O
dx×dx

O
dx×dx

Idx

 ,

where O is a matrix of zeros whose dimension may be different at different occurrences, we have

W̃Υ−1
T ⇒ ζ. It then follows that

ΥT (γ̂TAOLS − γ0) = (Υ−1
T W̃′W̃Υ−1

T )−1(W̃Υ−1
T )′W0·x

α

⇒ ω0·x(ζ
′ζ)−1ζ ′ν = ω0·x

 (ξ′Mηξ)
−1 ξ′Mην

(η′Mξη)
−1 η′Mξν

 ,

where

Mη = Idx − η
(
η′η
)−1

η′ and Mξ = Idx − ξ
(
ξ′ξ
)−1

ξ′.

We formalize the above asymptotic result in the theorem below.

Theorem 2 Let Assumptions 3 and 4 hold. Then under the fixed-K asymptotics where K is

held fixed as T → ∞, we have

T (β̂TAOLS − β0) ⇒ ω0·x
(
ξ′Mηξ

)−1
ξ′Mην, (23)

δ̂TAOLS − δ0 ⇒ ω0·x
(
η′Mξη

)−1
η′Mξν, (24)

jointly.

Except for the difference in the definitions and the distributions of ζ = (ξ, η) , Theorem 2 is

identical to Theorem 1 of Hwang and Sun (2018).

Conditional on (ξ, η) , both limiting distributions in Theorem 2 are normal with mean zero.

There is no second-order endogeneity bias in the TAOLS estimator. As in Hwang and Sun (2018),

the TAOLS approach successfully removes the two problems that plague the usual OLS estimator.

It paves the way for developing standard inference procedures.

To make inferences on Rβ0, we estimate ω2
0·x by

ω̂2
0·x =

1

K

K∑
i=1

(
Wy

i −Wx′
i β̂TAOLS −W∆cx′

i δ̂TAOLS

)2
=

1

K
W0·x′

α

[
IK − W̃(W̃′W̃)

−1W̃′
]
W0·x

α .

We can then construct the test statistic

F (β̂TAOLS) =
1

ω̂2
0·x

[
R
(
β̂TAOLS − β0

)]′ [
R(Wx′M∆cxWx)−1R′]−1

[
R
(
β̂TAOLS − β0

)]
/p, (25)
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and for p = 1,

t(β̂TAOLS) =
R
(
β̂TAOLS − β0

)
√

ω̂2
0·xR(Wx′M∆cxWx)−1R′

.

Using (22), we have

F (β̂TAOLS) ⇒

[
R (ξ′Mηξ)

−1 ξ′Mην
]′ [

R (ξ′Mηξ)
−1R

]−1 [
R (ξ′Mηξ)

−1 ξ′Mην
]
/p

K−1ν ′
[
IK − ζ(ζ ′ζ)−1ζ

]
ν

=

∥∥∥∥[R (ξ′Mηξ)
−1R

]−1/2
R (ξ′Mηξ)

−1 ξ′Mην

∥∥∥∥2 /p∥∥∥[IK − ζ(ζ ′ζ)−1ζ
]
ν
∥∥∥2 /K .

Conditional on ζ = (ξ, η) , we have∥∥∥∥[R (ξ′Mηξ
)−1

R
]−1/2

R
(
ξ′Mηξ

)−1
ξ′Mην

∥∥∥∥2 ∼ χ2
p∥∥∥[IK − ζ(ζ ′ζ)−1ζ

]
ν
∥∥∥2 ∼ χ2

K−2dx

and conditional on ζ,

cov
(
R
(
ξ′Mηξ

)−1
ξ′Mην,

[
IK − ζ(ζ ′ζ)−1ζ

]
ν
)

= R
(
ξ′Mηξ

)−1
ξ′Mη

[
IK − ζ(ζ ′ζ)−1ζ

]
= R

(
ξ′Mηξ

)−1
ξ′Mη −R

(
ξ′Mηξ

)−1
ξ′ [Mηξ,O] (ζ ′ζ)−1ζ

= R
(
ξ′Mηξ

)−1
ξ′Mη − [R,O]

 (ξ′Mηξ)
−1 ξ′Mη

(η′Mξη)
−1 η′Mξ

 = O.

So, conditional on ζ, the numerator and the denominator of the limiting distribution of F (β̂TAOLS)

follow independent chi-square distributions. Hence,∥∥∥∥[R (ξ′Mηξ)
−1R

]−1/2
R (ξ′Mηξ)

−1 ξ′Mην

∥∥∥∥2 /p∥∥∥[IK − ζ(ζ ′ζ)−1ζ
]
ν
∥∥∥2 / (K − 2dx)

∼ Fp,K−2dx .

But Fp,K−2dx does not depend on the conditioning variable ζ, thus, it is also the unconditional

distribution. We have, therefore, shown that F (β̂TAOLS) ⇒ K
K−2dx

·Fp,K−2dx . We collect this and

the result on the t statistic in the theorem below.
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Theorem 3 Let Assumptions 3 and 4 hold. Assume that K > 2dx. Under the fixed-K asymp-

totics, we have

F ∗(β̂TAOLS) :=
K − 2dx

K
F (β̂TAOLS) ⇒ Fp,K−2dx and

t∗(β̂TAOLS) :=

√
K − 2dx

K
t(β̂TAOLS) ⇒ tK−2dx for p = 1,

where Fp,K−2dx is the standard F distribution with degrees of freedom p and K−2dx, and tK−2dx

is the standard t distribution with degrees of freedom K − 2dx.

Remark 9 If we pretend that all variables in the regression (20) are distributed exactly as their

respective asymptotic normal distributions, then we obtain a classical normal linear regression

model (CNLRM). The asymptotic F and t theory in Theorem 3 is the same as the exact F and t

theory in a CNLRM. The test statistic F ∗(β̂TAOLS) can be equivalently computed by the classical

formula that compares the sums of squared residuals for restricted and unrestricted regressions.

Remark 10 To establish the asymptotic F and t theory, we employ a conditioning argument by

conditioning on ζ. The exact form of the distribution of ζ is not essential. The asymptotic F and

t theory holds regardless of the distribution of ζ. While the distribution of ζ in Hwang and Sun

(2018) is different from what we have here, the asymptotic F and t distributions in Theorem 3 are

the same as those in Theorem 3 of Hwang and Sun (2018). There is an opportunity to extend the

asymptotic F and t theory further to allow for other distributions of ζ; see, for example, Pellatt

and Sun (2020).

3.2 Predictive regression

As a variant of the model in the previous subsection, we consider the predictive regression:

Yt = α0 +X ′
t−1β0 + u0t, (26)

Xt =
(
1− c

T

)
Xt−1 + uxt.

To describe the information filtration, we let (u′0t, ε
′
xt)

′ be a martingale difference sequence. We

assume that uxt = g(εxt, εx,t−1, . . .) for some measurable function g.

There is a large econometric and finance literature on this type of regression; see Phillips

(2015) for a recent review. Here we do not restrict {uxt} to be a martingale difference sequence,

but we still maintain Assumption 3. Our assumption is less restrictive than most of the existing
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literature where the martingale difference assumption is maintained. However, see Hjalmarsson

(2007), which allows uxt to be a linear process driven by {εxt}.

Define Wα
i ,W

y
i ,W

∆cx
i ,W0·x

i in the same way as before, but define Wx
i,−1 as

Wx
i,−1 =

1√
T

T∑
t=1

Xt−1ϕi(
t

T
).

The transformed and augmented regression model becomes

Wy
i = Wx′

i,−1β0 +W∆cx′
i δ0 +W0·x

α,i for i = 1, . . . ,K, (27)

which is the same as (19) but with Wx
i,−1 replacing Wx

i . Noting that

Wx
i,−1

T
=

1

T 3/2

T∑
s=1

ϕi

( s

T

)
Xs−1 ⇒ Ω1/2

xx

∫ 1

0
ϕi (r) Jc,x(r)dr = ξi,

the asymptotic distribution of Wx
i,−1/T is the same as that of Wx

i /T. Therefore, all variables in

(27) have the same asymptotic distributions as those in (19). It then follows that the asymptotic

F and t theory in Theorem 3 continues to hold for the predictive regression.

To conclude this section, we outline the steps in conducting the asymptotic F and t tests3:

(i) Choose a sequence of orthonormal basis functions on L2[0, 1]. For example, we can use{√
2 cos 2πri,

√
2 sin 2πri

}
for i = 1, 2, . . . ,K/2.

(ii) Project the time series data Yt, Xt, and ∆cXt onto the space spanned by the basis vectors

to obtain Wy
i ,Wx

i , and W∆cx
i .

(iii) Estimate

Wy
i = Wx′

i β0 +W∆cx′
i δ0 +W0·x

α,i for i = 1, . . . ,K. (28)

by OLS with W0·x
α,i as the regression error.

(iv) Conduct inferences in the usual way, treating the above as the CNLRM. More specifically,

use the F and t distributions to construct confidence intervals and perform hypothesis testing.

4 A Simulation Study

In this section, we compare the finite sample performances of the proposed F test with those of

the conventional chi-squared tests. There has already been some simulation evidence that the F

test (or the t test) has more accurate size than the chi-squared tests (or the normal tests) in some

3We consider the cointegration regression here. For the predictive regression, we only need to change Xt into

Xt−1.
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nonstationary regressions, such as the linear trend regression in Sun (2011) and the cointegration

regression with endogeneity in Hwang and Sun (2018). We have covered a few other nonstationary

regressions in this paper. In light of the space constraint and given that this paper is a tribute to

Joon Park’s seminal contributions to econometrics, we consider only the cointegration regression

of Phillips and Park (1988) where the regressors are strictly exogeneous. More specifically, we

consider the following data generating process with three regressors Xt = (1, X̃ ′
t)
′ ∈ R3 and

X̃t =
(
X̃t1, X̃t2

)′
∈ R2 :

Yt = X ′
tβ0 + ut,

X̃t = X̃t−1 + ux,t,

ut = ρut−1 + ϵyt,

ux,t = ρux,t−1 + ϵxt,

where (ϵyt, ϵ
′
xt)

′ is i.i.d. N(0, I3).
4 Since {ϵyt}Tt=1 and {ϵxt}Tt=1 are independent, X̃t is strictly

exogeneous. The parameter ρ controls the persistence of ut and each component of uxt. We

consider the following values of ρ :

ρ ∈ {0.05, 0.20, 0.35, 0.50, 0.75, 0.90}.

Without loss of generality, we set the true coefficient vector to be β0 = (β10, β20, β30)
′ = (1, 1, 1)′.

We test H0 : Rβ0 = r against H1 : Rβ0 ̸= r where

R =

 0 1 0

0 0 1

 and r =

 1

1


so that p = 2. That is, we perform a test on whether the coefficients β20 and β30 on the noncon-

stant regressors are jointly one. We consider two sample sizes T = 100 and 200. The number of

simulation replications is 10000.

In Phillips and Park (1988), {ut} is known to follow an AR process with a known AR order,

and hence the long run variance of {ut} can be estimated by running an AR regression based on

the OLS residuals. In contrast, here we assume that we do not know the true data generating

process for {ut}, and we estimate the long run variance of {ut} nonparametrically.

Depending on the long run variance estimator and the critical value used, we consider three

groups of 5% tests. The first group consists of two tests that are based on the series long run

variance estimator. Using the Fourier basis functions given in (10), we compute the test statistic

FT,Fourier =
(
Rβ̂ − r

)′ [
R
(
X ′X

)−1
R
]−1 (

Rβ̂ − r
)
/
(
pω̂2

u

)
,

4Other distributions have been considered, but the simulation results are qualitatively close to what we report

here.
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where ω̂2
u = (KT )−1 (ϕ′û

)′ (
ϕ′û
)
. See equations (2) and (3). Both tests in this group are based on

the test statistic FT,Fourier. The first test uses the simulated critical value from the nonstandard

distribution F∞ given in (5) and is referred to as “Fourier-F∞.” The second test uses the 5%

critical value from χ2
2/2, a (normalized) chi-squared distribution5 and is referred to as “Fourier-

χ2
2”.

The second group of tests is similar to the first group but is based on the transformed Fourier

series. The first test in this group is the F test detailed at the end of Section 2. The second test

in this group uses the same test statistic but employs the 5% critical value from χ2
2/2. We refer

to these two tests as “Transformed-Fourier-F2,K” and “Transformed-Fourier-χ2
2”, respectively.

The third group consists of three chi-squared tests that use kernel estimators of the long run

variance ω2
u of {ut} . We include the Bartlett, Parzen, or Quadratic Spectral (QS) kernels in our

simulation study, but here we focus on the case with the QS kernel, as the results for the other

two cases are qualitatively similar. Given the QS kernel kQS (·) , we first construct

ω̃2
u =

1

T

T∑
t=1

T∑
s=1

ûtûskQS

(
t− s

bT

)
,

where b is a smoothing parameter, and then compare the test statistic

FT,QS =
(
Rβ̂ − r

)′ [
R
(
X ′X

)−1
R
]−1 (

Rβ̂ − r
)
/
(
pω̃2

u

)
with the critical value from χ2

2/2. We refer to the resulting test as “QS-χ2
2”.

For the series-based tests, we need to choose K, and for the kernel-based tests, we need to

choose b. We consider both pre-specified values and data-driven choices. In the former case, we

set K = 8 and 16. Hwang and Sun (2018) consider these two values of K in their simulation

study and provide some justifications. Nevertheless, these two values should be regarded as

rule-of-thumb choices. For each K = 8 or 16, we obtain the following comparable value of b :

b =

(∫ ∞

−∞
k2QS (x) dx ·K

)−1

= 1/K.

Under the above relationship between K and b, the Fourier-series and QS-kernel LRV estimators

have the same asymptotic variance under the conventional asymptotics.

For the data-driven choices of K and b, we use the MSE-based rules developed by Phillips

(2005) and Andrews (1991), respectively. We employ the AR(1) plug-in implementation. After

fitting an AR(1) model to the residual process {ût} by OLS, we compute

K̂ = 0.7134 [α̂ (2)]−1/5 T 4/5 and b̂QS = 1.3221 [α̂ (2)T ]1/5 /T,

5More precisely, χ2
2/2 stands for the distribution of Z2/2 where Z2 ∼ χ2

2.
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where α̂ (2) = 4ρ̂2 (1− ρ̂)−4 and ρ̂ is the estimated AR coefficient. These data-driven choices

of K and b can be justified in the asymptotic framework of Andrews (1991), but they are not

necessarily most suitable for testing problems. It is beyond the scope of this paper to derive a

testing-optimal choice of K or b along the lines of Sun et al. (2008).

Figure 1 reports the empirical type I errors of the five tests when K = 8 and b = 1/8 for

T = 100 and T = 200. The results for the case with K = 16 are qualitatively similar and

are omitted here. The figure shows that the empirical type I errors of the chi-squared tests

are substantially larger than the nominal significance level. Ignoring the estimation error in the

long run variance estimator, each chi-squared test over-rejects the null hypothesis. In contrast,

the proposed F test and the nonstandard F∞ test have very accurate size. The empirical null

rejection probability for both tests is very close to the nominal significance level, except when

ρ is large (i.e., when ρ is larger than 0.75). We note that the F test and the nonstandard F∞

test achieve similar size accuracy. Given that there is no need to simulate critical values, we

recommend the more convenient F test.
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Figure 1: Empirical Type I error of different 5% tests with smoothing parameters K = 8 and

b = 1/K.

In Figure 1, the size distortion of the chi-squared tests does not decrease significantly with the

sample size. The reason is that the smoothing parameter K is fixed at K = 8 and the smoothing

parameter b is fixed at 1/8. Hence, the estimation uncertainty in the LRV estimator remains

more or less the same across the two sample sizes T = 100 and T = 200. As a result, the size

performance of the chi-squared tests does not improve much as the sample size increases.
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Figure 2 reports the empirical type I errors when K and b are data-driven. The F test and

the nonstandard F∞ test still have more accurate size than any of the chi-squared tests, and they

achieve more or less the same size accuracy. However, the F test is more convenient to use and

hence is recommended.

Another observation from Figure 2 is that the size distortion of all tests decreases as the

sample size increases from 100 to 200. This is a feature of data-driven choices of the smoothing

parameters. Unreported results show that as the sample size increases, the average value of the

data-driven K’s increases and the average value of the data-driven b’s decreases. Hence, a larger

sample size leads to LRV estimators with smaller variability. As a result, all tests become less

size-distorted as the sample size increases.
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Figure 2: Empirical Type I error of different 5% tests with data-driven smoothing parameters

We have simulated the size-adjusted power curves. The two tests in the first group “Fourier-

F∞” and “Fourier-χ2
2” have the same size-adjusted power, as they are based on the same test

statistic. Similarly, the two tests in the second group “Transformed-Fourier-F2,K” and “Transformed-

Fourier-χ2
2” have the same size-adjusted power. It suffices to consider only three tests for the size-

adjusted power comparison, and we denote the three tests by “Fourier”, “Transformed-Fourier”,

and “QS” in our power figure.

We consider the same data generating processes as before but now β1 = β10 and

(β2, β3)
′ = (β20, β30)

′ + θ/T

for some θ. For each simulation replication, we draw a different value of θ uniformly over a circle.

We plot the size-adjusted power as a function of the radius ∥θ∥ in Figure 3 when ρ = 0.5 and
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K = 8. The figure shows that “Transformed Fourier” is slightly more powerful than “Fourier” and

“QS”. For other parameter configurations (i.e., different values of ρ) and smoothing parameter

choices, “Transformed Fourier” is as powerful as “Fourier” and “QS”.

To sum up, we have found that for the cointegration regression considered here, the proposed

F test has more accurate size than the commonly used chi-squared tests, and it is as powerful as

and sometimes more powerful than the chi-squared tests.
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Figure 3: Size-adjusted power of different 5% tests with smoothing parameters K = 8 and

b = 1/K.

5 Conclusion

This paper has developed the asymptotic F and t theory for regressions with nonstationary

regressors of general forms. Linear and nonlinear trend functions, unit-root processes, near-unit-

root processes with an additional complication from a structural break are all accommodated.

While our asymptotic theory covers some existing results, it also covers many new cases that

the asymptotic F and t theory is currently lacking in the literature. Depending on whether the

regressors are endogenous or not, we develop the asymptotic F and t theory in different domains:

the time domain or the pseudo-frequency domain. In both cases, statistical inferences are very

easy to implement. In particular, in the latter case, we only need to transform our data using

real matrix multiplications and then conduct the F and t tests as if we have a classical normal

linear regression model. There is no need to use complex exponentials or explicitly estimate the

27



long run variance and half long run variance.

As discussed before, it will be interesting to extend the theory further to allow the regressors to

be fractionally integrated or follow a slow-varying trend. It will also be interesting to extend the

theory to cover regressions with both nonstationary regressors, exogenous or not, and stationary

regressors, such as the regressions considered by Park and Phillips (1989). The idea of using

data-dependent and random basis functions in series variance estimation may be extended to

functional data analysis.
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