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Abstract

This paper proposes a convergent t-statistic for spurious regressions. The t-
statistic is based on the heteroscedasiticity and autocorrelation consistent (HAC)
standard error estimate with the bandwidth proportional to the sample size. Using
autocovariances of large lags, the so-defined HAC estimator is capable of capturing
the high persistence of the regressor and regression residuals. It is shown that the
resulting t-statistic converges to a non-degenerate limiting distribution for all cases of
spurious regressions considered in the literature. This finding suggests that inferences
based on the new asymptotic theory developed in this paper will not result in the
finding of a significant relationship that does not actually exist.
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1 Introduction

Since the first Monte Carlo study by Granger and Newbold (1974), much effort has
been taken to understand the nature of spurious regressions. Phillips (1986) devel-
oped an asymptotic theory for a regression between I(1) processes, showing that the
usual t-statistic does not have a limiting distribution but diverges at the rate of /T
as the sample size T increases. Extending Phillips’ (1986) approach, Durlauf and
Phillips (1988) and Marmol (1995, 1998) found that the usual t-statistic diverges at
the same rate in a regression between an I(1) process and a linear trend and between
two nonstationary I(d) processes. More recently, Tsay and Chung (2000) found that
the usual t-statistic diverges, albeit at a slower rate, in a regression between two
stationary I(d) processes, as long as their memory parameters sum up to a value
greater than 0.5. The divergence of the usual t-statistic seems to be a defining char-
acteristic of a spurious regression. In this paper, we show that the divergence of the
usual t-statistic arises from the use of a standard error that underestimates the true
variation of the OLS estimator. We propose an alternative estimator of the standard
error and use it to construct the t-statistic. We show that the resulting t-statistic no
longer diverges.

The standard error estimator we used is the heteroscedasiticity and autocorre-
lation consistent (HAC) standard error estimator with bandwidth (M) proportional
to the sample size. Specifically, we set M = bT" for some b € (0,1]. This sharply
contrasts with the usual HAC estimator in that the bandwidth is usually taken to
grow at a slower rate than the sample size. The optimal rate of growth depends on
the shape of the underlying spectral density. In a linear regression model in which
the regressors and errors are independent AR(1) processes with the same autore-
gressive parameter v, Andrews (1991) showed that the optimal bandwidth increases
with . This result suggests that the bandwidth should be larger for more persistent
processes. In a spurious regression, both the regressors and the regression residuals
are highly persistent. It turns out that the bandwidth needs to grow at the same
rate as the sample size to capture the high autocorrelation. In other words, for the
t-statistic to converge, it is necessary to include autocovariances of large lags (up to
lag [bT]) in the construction of the HAC estimator.

We show that when the OLS estimator is scaled by the new standard error, the
resulting t-statistic converges to a well-defined distribution. This is true for regres-
sions between two independent fractional processes, stationary or nonstationary, and
between a fractional process and a linear trend. For all the cases considered, the lim-
iting distributions depend on the kernel used and the persistence of the underlying
processes. They are nonstandard and their probability densities can be estimated
by simulations. Our findings suggest that inferences based on the new asymptotic
theory and critical values obtained via simulations will not lead to the finding of a
spurious relationship. This result sheds some new light on spurious regressions. The
inevitable significance of the usual t-ratio can be attributed to the use of a small
bandwidth (M = o(T)) in the HAC estimation.

The results of this paper are related to those of Kiefer and Vogelsang (2003). They
considered the specification of M = bT in hypothesis testing when the time series



are weakly dependent. In their framework, different specifications (M = bT or M =
o(T)) simply give arise different approximations. In finite samples, any observed value
of the pair (M,T) may be regarded as compatible with M = bT or M = o(T). We
can thus use the approximation that appears to be more accurate. These discussions
apply to spurious regressions as well. In the case of spurious regression, we can go
one step further by arguing that it is natural to set M = b1'. In other words, the
specification of M = 0T should not be viewed as just another way to approximating
the true distribution. Instead, we think it is natural to choose a large bandwidth from
the beginning and then invoke the ‘M = b1’ asymptotics to make inferences. First,
the motivation for the conventional choice of M = o(T) is lost when the time series
are strongly dependent. The specification M = o(T') is used in order to ensure the
consistency of the HAC estimator. In the presence of strongly dependent processes,
the HAC matrix is not well defined (the spectral density is unbounded at zero).
Hence, it is not meaningful to use consistency as a criterion to choose the growth
rate of M. Second, under the rate condition M = bT, the standard error estimate
captures the variability of the coefficient estimate whereas under M = o(T), the
standard error estimate under-estimates the variability by an order of magnitude. A
more natural standard estimate error should be the one that reflects the uncertainty
in the parameter estimate.

Other related papers include Kiefer and Vogelsang (2002a, 2002b) who set M =
T. Their motivation is to develop asymptotically valid tests that are free from the
bandwidth selection and have good size and power properties. Other papers that use
or investigate the HAC estimator without truncation include Jansson (2002), Phillips,
Sun and Jin (2003) and Sun (2002).

The rest of the paper is organized as follows. Section 2 considers the spurious
regressions with nonstationary fractional processes and linear trends. It establishes
the asymptotic distributions when M = bT" for some positive b. Section 3 extends
the results in Section 2 to stationary fractional processes. Section 4 provides kernel
estimates of the probability densities of the limiting t-statistics in Sections 2 and 3.
Section 5 concludes. All proofs are given in the appendix.

Throughout the paper, “ =" signifies convergence in the DI0, 1]’€ space endowed
with the Skorohod topology. 1{\ = p} is the indicator function. [-] signifies the
integer part.

2 Spurious Regressions with Nonstationary Fractional
Processes

Consider the following data generating process:
y=a+xf+u, t=1,2,.,T, (1)
where x; and u; are nonstationary I(d) processes such that

(1 — L)%=y = ey 1{t > 0}, (1 — L)%u; = eu¢1{t > 0} (2)



where dy, d,, > 1/2 and e,; and &, are two weakly dependent processes.
We further assume that x; and wu; satisfy the following functional central limit
theorem (FCLT):

T—(2dz—1)/2 0 L7y Va(r)
(P ) ()= ()

L TT._Sdz—l T T:L TT_Sdu—l U g
o | B ) = s [ =9t aBe), @)

where
Va(r) =

B(s) = (B*(s), B*(s)) is a bivariate Brownian motion with positive definite long run

variance )
w w
_ z TU
W = ( w w2 ) . (5)
ru

u

The FCLT holds under a wide range of primitive conditions (e.g. Akonom and
Gourieroux 1987; Marinucci and Robinson 2000). When z; and u; are unit root
processes, the limiting process V(1) = (V,(r), Vi (r))" reduces to a scaled Brownian
motion. For a general nonstationary fractional process, the limiting process is a type
IT fractional Brownian motion (Marinucci and Robinson 1999).

When d, > d,, there is no cointegrating relationship between y; and x;, and we
have a spurious linear model. When d,, < d,, y; and z; are fractionally cointegrated
with cointegrating vector (1, —(). However, since the long run equilibrium error wu; is
nonstationary, Marmol (1998) referred to the second situation as a partially spurious
case. For convenience, we will refer to both cases as spurious cases.

It is worth noting that in the above FCLT we implicitly define a nonstationary
I(d) process z; as

- N Td+k
z=(1-1) Yy = Z mwt—k, (6)

k=0

for some weakly dependent process wy. This definition was used in Robinson (1994a),
Phillips (1999), Marmol and Velasco (2002), among others. There is another often-
used definition, in which a nonstationary I(d) process is defined as the partial sum of
an I(d — 1) process and a stationary fractional process is defined as an infinite order

moving average:
o

I(d + k)
=Y T g

The second definition was used in a number of papers including Hurvich and Ray
(1995) and Velasco (1999). Different definitions imply different functional central
limit theorems (Marinucci and Robinson 2000). In this section we use the first def-
inition. Our results hold with obvious modifications if the second definition were
used.



Consider regressing y; on a constant and x,
yt:a—i—gxt—kﬂt,t:l,...,T. (8)
The ordinary least squares estimate of 3 is given by

S (2 —3) (g — §)
Sty (e — 7)?2

where T = Zt 1 2¢/Tand g = Zt 1 Y¢/T. The heteoscedasiticity and autocorrelation
consistent t-statistic is 75 = (B-73)/5 03, where o3 is the HAC estimator defined as

T -1 T -1
52 = (Z(xt - 9-0)2> 70 (Z(xt - 9-0)2> , (10)

B = ) (9)

t=1 t=1
where
R T-1 J
Q = =—)I'(j
Jj=-T+1
fony - ]SS ey~ D) gt (v - 7) forj 20 5
) = ST et - ) Bty (20— 7) for § (12)
T 2ote—ji1 (Teag — T) Uiy (2 — T)  for j <0

and k(-) is a kernel function and M is the bandwidth parameter.

In order get a consistent estimate of the long run variance of (z; — &) uy, con-
ventional asymptotic theory assumes that M — oo such that M = o(T"). However,
(x¢ — &) uy is nonstationary and the variance of Z:{ L (x; — ) Uy /T does not con-
verge. In other words, the sum 7° IIT()|| is infinite with the probability ap-
proaching one as T — oo. The infiniteness of this sum invalidates the usual truncation
argument. As it becomes clear later on, when M is taken to grow at a slower rate
than 7T, the estimate Q underestimates the variability of Zthl (x¢y — ) Uy /T by an
order of magnitude. The resulting t-statistic will diverge, leading to the spurious
rejection. A natural question is: what if M grows at the same rate as 7. In the
rest of the paper, we set M = 0T for some b € (0, 1] and provide an answer to this
question. For convenience, we call the asymptotics under the assumption of M = bT'
the large M asymptotics.

To ensure the positive definiteness of Q, we assume that the kernel function be-
longs to the following class:

K={k(-):[-1,1] — [0,1] | k(z) = k(—x), k(0) =1, and K (A) >0, VA e R}, (13)

where

[ee]
K\ = / k() exp(—iz)dz. (14)
For a kernel function k(z) € K, we have [*, [1 k(r — s)f(r)f(s)drds > 0 for any
square integrable function f(z). In other words, the functions in I are positive
semi-definite.



The following theorem establishes the asymptotic distributions of B, o and the
resulting t-statistic ¢3. The theorem uses the following notation:

Vo(r) = Va(r) — /0 V(r)dr, (15)

1
Va(r) = Vaa(r) — /0 Vi(r)dr, (16)

and

Vaalr) = Vatr) — 1 V.iTa(r)ir) N (/ 1 L) T a7

Theorem 1 Assume that x; and u; satisfy the functional central limit theorem in
(3) and y; is generated by (1). Let k(x) be a continuous function in K and M = bT
for b e (0,1]. Then, as T — oo,

e (5-5) > ([ mr)%(r)dr) ( / o)
722053 = ( / ) / / k(r—;s)%,x(s)%(s)drds,
0= ( /0 RAC ) ( / / (r—;S)Vu,x(S)Vz(s)drd8> o

(18)

Theorem 1 shows that when M = 0T, the variance estimate 8% captures the vari-

ability of 3 in the sense that both B — (3 and 73 are of the same order Op (T~ datdu),
In contrast, the conventional variance estimator (also called the OLS variance esti-

-1
mator), which is 7-' 37 @ (Zt 1 (e — $)2) , is not only inconsistent but also

underestimates var(ﬁ) by an order of magnitude. This is because both the regres-
sor and the regression residuals are highly persistent in a spurious regression while
the OLS variance estimator ignores this autocorrelation structure. When the OLS
estimator is normalized by the conventional standard error estimate, the resulting
t-statistic is bound to diverge. The rate of divergence is v/T, as shown by Phillips
(1986) and Marmol (1998). In contrast, the HAC estimator with M = bT" incorpo-
rates autocovariances of large lags and delivers a standard error estimate that is of
the same stochastic order as 3 — (3. Based on such a HAC estimate, the t-statistic is
stochastically bounded and converges to a well-defined distribution.

We may use Theorem 1 to do hypothesis testing. Consider testlng Hy : 5= By
against H; : = ;. Under the null hypothesis, the t-statistic tﬁ (ﬂ Bo)/0 s
converges to the limiting distribution given by (18). Under the alternative hypothesis
tAgo = Op(T%=~4u) which is easily seen by writing tAgo as (B—p1)/og+ (81 — Bo) /og.
Therefore, when d, > d,, ?ﬂo diverges under H; and the test is consistent. When



dy < dy, %\50 converges under both Hy and H; and the test is inconsistent. In the
latter case, the signal-noise ratio Zle x?/ Zle u? is stochastically bounded in large
samples. As a result, we can not consistently estimate the slope coefficient even in
large samples.

Now we consider the spurious regression between a nonstationary I(d) process
and a linear trend. The data generating process for u; is the same as before so that
the invariance principle in (3) holds for T QRdu—1)/ 2u[TT]. The data generating process
for x; is replaced by x; = t so that T_(2dz_1)/2x[Tﬂ — r for d, = 3/2. We regress
Yy on a constant and x; and construct the t-statistic as before. Using the arguments
similar to the proof of Theorem 1, we can prove the following theorem immediately.
The details are omitted.

Theorem 2 Assume x; = t, u; satisfies the functional central limit theorem in (3),
and y¢ = a + [t + ug. Let k(x) be a continuous function in K and M = bT for
b€ (0,1]. Then

T (B . ﬁ) = 12 (/01 H~/u(7‘)dr> ,
252 144 ( /0 1 /0 12Tk )W) 1/2)drds> ,

B> </01rvu(r)dr> </01 /01(7‘ 12V Waa5)(s - 1/2)drds> e
(19)

where
~ ~ 1 ~
dy = 3/2 and Vs (r) = Vi(r) — ( /O Tvu(f)d7> (12 — 6). (20)

Theorem 2 shows that when M = 0T, the t-statistic is convergent, as in the
case of a regression between two nonstationary fractional processes. In contrast,
the usual t-statistic diverges at the rate of v/T (see Durlauf and Phillips (1988) and
Marmol and Velasco (2002)). Our finding is consistent with a result by Phillips (1998),
who considered regressing a unit root process on a complete orthonormal system in
L,[0,1]. He showed that the t-statistic based the usual HAC standard error with
bandwidth M is of order O, ((T'/M 2 2). From this, one may deduce heuristically
that when M = bT, the t-statistic is stochastically bounded whereas when M = o(T),
the t-statistic diverges at the rate of \/1'/M.

As before, Theorem 2 permits us to make inference on the trend coefficient. When
dy, is less than 3/2, the t-test is consistent. When d,, > 3/2, the t-test is inconsistent,
reflecting the difficulty in distinguishing the signal from the noise. Similar results
have also been obtained by Marmol and Velasco (2002) who analyzed the effects of
spuriously detrending a nonstationary fractional process. Put in out context, they
used the long run variance estimate of the form:



where Tyy(j) = T Z;‘F:_lm Tyq)5) Tt Taa(j) = T71 Z;‘F:_lm Giy4 15T Due to the dif-
ference in the construction of the variance estimate, their limiting distributions are
different from ours. Nevertheless, the basic message is the same: it is necessary to
let M = bT to deliver a convergent t-statistic.

Together with Theorem 1, Theorem 2 shows that when M = bT, the t-statistic
converges in distribution in the spurious regression with nonstationary fractional
processes. This finding implies that the t-test based on the large M asymptotics will
not point to a significant relationship between two independent processes.

3 Spurious Regressions with Stationary Fractional Pro-
cesses

In this section, we consider the regression between two stationary I(d) processes and
that between a stationary I(d) process and a linear trend.
Consider the following data generating process

Yr = a4+ 18+ ug (22)

where x; and u; are linear Gaussian processes defined by

o0 o0
Ty = g ajezi—j and uy = g bj€ut—j- (23)
§=0 3=0

We assume the spectral density matrix of (x¢,us)" is of the form

FoO) fouN) ) L ATMep, () ATy (V)
<fux(A) falN) >‘<A-<dz+du>som@> A2 (3) > @

where 0 < d,d, < 0.5 and the ¢(-)'s are continuous functions. Let ¢,(0) = w2,

©0u(0) = W2, ©,.,(0) = wyy. We assume that the matrix w as defined in (5) is positive
definite.
Given the above spectral density matrix, x; and u; have spectral representations:

= / exp(itA) [A "% dIW,(\) and u; — / exp(ith) A% dIW,(),  (25)

—Tr —T

t = 1,2,...,T, where W,(-) and W,(:) are complex-valued, orthogonal-increment
Gaussian processes satisfying

W,(d\) = Wy(—dN), for z = z,u (26)
EW,(d\We(dX) = @y (A)dA, EW, (dNW,(dX) = o, (A)dA, (27)

and
EWq(dNWu(dpt) = @5y (M)A = p}dA. (28)



The spectral representations help establish the following lemma, which will be
used extensively in proving the asymptotic properties of the OLS estimator and the
t-statistic. Before stating the lemma, we introduce some notation. Let

Ozu = Ouz = Exiuy, O'i = E:v%, (29)
and define the random vector element

Sr(r) = (S7(r), S7(r), 57 (1))
(Tr] [Tr] [Tr]

dz+1/2) Z:v T (dut1/2) Zu T o= Z Tpup — Ozy) | (30)

Note that Sr(r) € D[0,1]3, the product space of all real valued functions on [0, 1]
that are right continuous and possess finite left limits. We endow the product space
with the product o-algebra, which is generated by the open sets with respect to the
metric that induces the Skorohod topology on the component space. The so-defined
product o-algebra makes D0, 1]* complete and separable.

Lemma 3 Let x; and u; be the time series defined by (25). If dg, d,, € (0,1/2) and
dy + dy > 1/2, then

Sr(r) = (Ba, (r), Ba, (r), Z(r)) (31)

where
/ oD ’57“ L aw (o), (32)
Ba,(r =/°°QXPZ”T I~ AW (), (33)

and

exp(i(E+mr) =1 a4, —ds
/ / §_|_ 77) ’5‘ ’77’ dWx(&)qu(n)- (34)

Note that By, (r) and By, (r) are spectral representations of type I fractional
Brownian motions (Samorodnitsky and Taqqu 1994; Marinucci and Robinson 1999).
Lemma 3 shows that the partial sum of a fractional process converges to fractional
Brownian motion. This result is not new and has been proved by several authors
including Davydov (1970, Theorem 2), Avram and Taqqu (1987, Theorem 2 with
n = 1), Chan and Terrin (1995, Theorem 3), and Davidson and de Jong (2000).
Lemma 3 also shows that the partial sum of the product process x;u; converges to
the non-Gaussian process Z(r). This result was obtained by Fox and Taqqu (1987)
and Chung (2002) but under the stronger assumption that both d, and d,, are greater
than 0.25 and less than 0.5. The aforementioned papers considered either the partial
sums of fractional processes or that of the product process, but not both (the only
exception is Chung (2002)). Lemma 3 fills in this gap by considering them jointly
and develops unified representations of the limiting processes.

Using Lemma 3 and following the same steps as the proof of Theorem 1, we can
establish the asymptotic distributions of 3 and 8% (defined in (9) and (10)) and the
t-statistic in the following theorem.



Theorem 4 Let x; and u; be the time series defined by (25) and yy = o+ x5 + wy.

Assume that k(x) is a twice continuously differentiable function in K and M = bT
for b€ (0,1]. If dg,dy € (0,1/2) and dy + dy, > 1/2, then

Tl_dz_du(B - ﬂ - O'a:u0'1‘_2) = 0-1‘_2/ / 1/](57777 1) |€|_dI |77|_du dWw(f)qu(n)’

2—2dg —2d —4
T / / b2 k”

By 0y 55" Q“/1M%>m-mrwwwmwﬂ

1/2

( / / Ll )U(r)U(s)drds) , (35)
_exp(i(§+m)r) =1  exp(ifr) — Lexp(inr) — 1

i(§+n) 13 in ’

/ / (G, 7) — rb(Em, 1) |75 [0~ AW (©)dWa(n).  (37)

YU(r)U(s)drds,

where

The theorem shows when z; and u; are correlated, the OLS estimate of 3 will
be inconsistent. To facilitate the comparison with the existing literature on spurious
regression between stationary long memory processes, we assume o,, = 0 in the
discussion below. It should be noted that when d, > d,, § can be consistently
estimated using the frequency domain approach even if o,, # 0 (c.f. Robinson
1994Db).

When o,, = 0, Theorem 4 reveals the convergence of the t-statistics when
M = bT. In contrast, Tsay and Chung (2000) showed that the t-statistic based
on the OLS standard error diverges at the rate of T%t4=05 Ag a consequence, the
slope coeflicient in the regression between two independent stationary long memory
processes can be spuriously significant. The convergence of the t-statistic under the
new asymptotics has profound implications. Note that the OLS estimator g is con-
sistent, the R? converges to zero, and the DW statistic does not approach zero (Tsay
and Chung 2000). The behaviors of 3, R? and DW are thus the same as in the case
of no spurious effect. The only qualitative difference is the divergence of the usual
t-statistic. Therefore, under the large M asymptotics, all of the statistics behave as
in the case of usual regression. Hence, inferences based on the large M asymptotics
will not result in the finding of a significant relationship that does not actually exist.
We may conclude that there is no spurious effect between two independent stationary
long memory processes, as long as M is allowed to grow at the same rate as T" and
correct critical values are employed.

The above theorem assumes that the kernel function is twice continuously dif-
ferentiable. This excludes the widely used Bartlett kernel and the sharp kernels
studied by Phillips, Sun and Jin (2003). The sharp kernels are defined by k(x) =
(1 — |z[)P1{]z| < 1}, where p is the sharpness index. These kernels, as so defined,



exhibit a sharp peak at the origin and include the Bartlett kernel as a special case. It
can be shown that the sharp kernels are positive semi-definite. In the I(0) framework,
Kiefer and Vogelsang (2002a,b) showed that the Bartlett kernel delivers a class of test
with the highest powers within a group of popular kernels. Subsequently, Phillips,
Sun and Jin (2003) showed that the sharp kernels can deliver more powerful tests
than the Bartlett kernel. Thus, it is of interest to consider the sharp kernels in the
present context.

The following theorem establishes the asymptotic distributions of B, o and the
t-statistic when the sharp kernels are employed.

Theorem 5 Let x; and u; be the time series defined by (25) and yr = o + x4 + uy.
If k(x) = (1 — |z|)P1{|z| < 1}, M =bT forb e (0,1], dy,dy € (0,1/2) and dy + dy, >
1/2, then the results of Theorem 4 hold with —1/b? fol fol E'((r —s) /b)U(r)U(s)drds
replaced by

1 1-b
Bl / U?(r)dr — 2 U(r)U(r + b)dr
b Jo b Jo

plo=1) [ [! r—s[\"7*
_T/o /O Ur) <1_T> 1{0 < |r — 8| < b} U(s)drds (38)

where (38) is defined to be zero when p = 1.

Tsay and Chung (2000) showed that when a stationary I(d,,) process is regressed
on a linear trend, the usual t-statistic diverges at the rate of T%. We proceed to
investigate whether this is the case when M = bT. To this end, we assume that u;
satisfies the functional central limit theorem as before:

(1]
T~ (A2 N "0y = By, (). (39)
t=1

Using sum by parts and the continuous mapping theorem, we have

[Tr]

t=1 0

Let

G(r) = (r=3)Ba(r) = [ Bu(9)ds = Ba,(1) ( /OT<s—1/2>ds)

_ <6Bdu(1) _ 12/01 Bdu(s)ds> /0 <s _ %>2ds. (41)

Then we can prove the following theorem using (39) and (40) and the arguments
similar to the proof of Theorem 4. Details are omitted.
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Theorem 6 Let u; be the time series defined by (25) with d,, € (0,1/2), x¢ be the
linear trend x; = t, and y = a+ Bri+ue. If k(x) is a twice continuously differentiable
function in K and M = bT for b € (0,1], then

T34 (3 — B) = 6B, (1) — 12 /1Bdu< )ds, (42)
T3 20ug? = _14 / / K'(E—2)G(r)G(s)drds, (43)

= <§Bdu(1) / )( / / ——k” )G(T)G(s)drds>_1/2(.44)

If k(x ) (1 — |z|)P1{|z| < 1} for some integer p > 1, then (42), (43), and (44) hold
with fo fo w k" (%52)G(r)G(s)drds replaced by

2 / G2r oG+ by (45)

= / / ( : 8|>p-21{0 <|r—s| < b} G(s)drds (46)

where (46) is defined to be zero when p = 1.

Theorem 6 shows that the OLS estimator is consistent and the t-statistic converges
as in other cases. Therefore, detrending a stationary fractionally integrated process
will not lead to the spurious effect of finding a significant trend, as long as critical
values from the large M asymptotics are used.

4 Kernel Estimates of Asymptotic Distributions

The limiting distributions of %\B are nonstandard. In this section, we use Monte Carlo
simulations to approximate their probability densities.

For simplicity, we assume that there is no correlation between {x;} and {u;}. In
this case, it suffices to simulate simple fractionally integrated processes. Specifically,
we generate the fractional processes z; and u; according to (1 — L)dl‘mt = &4 and
(1 — L)%y = e44, where e4¢ ~ i9dN(0,1), €4 ~ iidN(0,1) for t > 0, €46 = €yt =
0 for t < 0, and {e4} is independent of {e,:}. Without loss of generality, we let
B = 0. For spurious regressions between nonstationary I(d) processes, we consider
(dg,dy) = (0.6,0.6), (0.6,1), (1,0.6), or (1,1); and for those between stationary ones,
we let (dy,dy) = (0.3,0.3),(0.4,0.2) or (0.2,0.4). We let k(-) be the Bartlett kernel
and consider the following values of b = 0,0.025,0.05, ..., 1. When b = 0, {2 becomes
T3 02 (2 — 7)*>. We use 5000 replications and a sample size of 1000. For the
results reported below, 10000 replications are employed.

We first exam spurious regressions with nonstationary fractional processes. Figure
1 reports the kernel estimates of the probability densities for the case z; ~ I(dy),
ug ~ I(dy) with d, = d,, = 0.6. The qualitative results for other (d, d,,) combinations

11



are similar. The probability densities appear to be symmetric and are apparently
more dispersed than the standard normal density. For example, when b = 0.1, the
95% quantile of the limiting distribution is 3.1012, which is larger than 1.645, the
95% quantile of the standard normal distribution. The quantile is not a monotonic
function of b. When b is small, the quantile is decreasing in b whereas when b is large,
the quantile is increasing in b. In other words, when b moves closer to zero or one, the
limiting distribution becomes more dispersed. This result is well expected when b is
very close to zero. In this case, the behavior of the t-statistic may be better described
by the conventional limit theory. However, when b is very close to one, one may think
that the limiting distribution should becomes less dispersed as the variance estimate
with a large bandwidth captures the strong autocorrelation in x;u;. This is not what
is happening. In fact, as b becomes close to one, the variance estimate 2 does not
capture the strong autocorrelation very well. This is because u; is not observed and
has to be replaced by the estimated residual u;. As a consequence, when k(z) = 1
andb=1,Q; = Zf_ L 1 [(j) is zero by construction. Of course, this is an extreme
case. But for other kernels, when b is close to one, the effect of increasing b is similar.
The estimate © tends to bias toward zero when () incorporates autocovariances of
almost all lags.

For all the cases considered, the simulation results indicate that the limiting
distribution is least dispersed or close to be least dispersed when b = 0.1. When
dy = dy = 0.6 and b = 0.1, the probability of |tAﬁ| > 1.96 is 28.39%. Therefore, when
M = 0.1T, we will erroneously reject the null 28.39% of the times when the wrong
critical value is used. In contrast, when M = o(T), the rejection probability goes
to one as the sample size increases. When 7' = 1000 and the OLS standard error is
used, the rejection probability is 75.9%, as shown by simulations. Hence, the use of
M = 0.1T reduces the spurious effect substantially.

Figure 2 presents the same graph when y; is an 1(0.6) process and z; is a linear
deterministic trend. The graph is representative of other cases. The qualitative
observations made for Figure 1 apply. However, the limiting distributions become
more dispersed than those in Figure 1.

We next consider spurious regressions with stationary fractional processes. Fig-
ure 3 graphs the density estimates when (dg,d,) = (0.4,0.2). The density estimates
for the other two cases turn out to be close to the case (dz,d,) = (0.4,0.2). The
figure shows that the limiting distributions are more concentrated around the ori-
gin than in the nonstationary cases. For example, the 90% quantiles when b =
0,0.1,0.2,0.3,0.4,0.5 are 1.9265,1.5602, 1.6963,1.8440,2.0120, and 2.1654, respec-
tively. The corresponding 95% quantiles are 2.4695, 2.0525, 2.2118, 2.4741, 2.6988,
and 2.9385, respectively. Simulation results show that the limiting distribution be-
comes close to the standard normal when b is close to 0.1. For example, when b = 0.1,
the probability of ‘fg! > 1.96 is 11.70%, which is very close to 10%, the size of the
test when ?g is standard normal. In other words, when M = 0.17 is used to test the
null of 8 = 0, the probability of wrong rejection is only 11.70% even if the critical
value does not come from the true limiting distribution. To a great extent, the new
t-test eliminates the spurious effect.
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Figure 4 graphs the density estimates when y; ~ I(0.3) and z; = ¢. Again, we find
that the densities are more concentrated than in the nonstationary cases and become
most concentrated when b is close to 0.1. Another feature of Figures 3 and 4 is that
the densities appear to be slightly negatively skewed (skewed to the left).

5 Conclusion

This paper proposes a t-statistic that is convergent in all the cases of spurious re-
gressions considered in the literature. This t-statistic is based on the HAC estimator
using a truncation lag or bandwidth proportional to the sample size. It was shown
that the usual t-statistic diverges because the OLS standard error does not take into
account the high persistence of the regressor and regression residuals. This finding
helps to explain why the significant regression coefficients occur in nonsense regres-
sions. Conventional wisdom is that the variables in a nonsense regression share the
common feature of a trending mechanism. But there is no trending mechanism in
a stationary long memory process, yet the usual t-statistic diverges, and, therefore,
ultimately exceeds any finite critical values and indicates a statistically significant
relationship between two independent long memory processes. Our study suggests
that it is the use of a small bandwidth (M = o(T")) in estimating the standard error
that gives arise the spurious effects. If a large bandwidth (M = bT) is used, the
convergence of the t-statistic can be restored and valid inferences can be made.

When the bandwidth is proportional to the sample size, the t-statistic also con-
verges to a well-defined distribution in the usual regressions with weakly dependent
processes (Kiefer and Vogelsang (2003)). Therefore, the specification of M = bT has
the potential to deliver a unified inferential framework. The advantage of setting
M = bT is that the t-statistic converges in distribution without any normalization.
In contrast, when M is chosen to grow at a slower rat than T, the t-statistic may
have to be normalized to be convergent. The normalization factor is typically of the
form T* for some parameter s that depends on unknown memory parameters. In
practice, researchers routinely use the t-statistic without any normalization. This
practice thus runs the risk of over rejection when M is small and the underlying
processes exhibit some persistence. The use of M = b1 has the potential to reduce
this risk.

The paper is a first step towards the large M asymptotics for highly persistent,
possibly nonstationary time series. It can be extended in several directions. First, the
results of the paper are readily extended to the multiple regression with two or more
regressors. Second, the limiting distribution depends on the memory parameters
and the long run covariance matrix. In empirical applications, we may consistently
estimate these quantities and simulate the limiting distribution. Another possible
solution is to investigate the validity of subsampling in this context (Politis, Romano
and Wolf (1999)). Finally, Phillips (1998) argued that there is a valid mathematical
representation underlying the spurious regression between I(1) processes. His argu-
ment relied on the statistical significance of the coefficients manifested in the usual
t-statistic or the t-statistic based on a small bandwidth (1/M + M /T — 0). How-
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ever, when M is allowed to grow at the same rate as 7T, the t-statistic is expected
to converge and statistical significance does not seem to be inevitable. It is an open
question how to interpret the mathematical representation under the specification of
M =bT.
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6 Appendix of Proofs

Proof of Theorem 1. Combine the functional central limit theorem with the
continuous mapping theorem, we have

T 1 » »
Tl Sy — 7 (w0 — ) = / V(1) Vi (r)dr (47)
=1 0
and
~2d i( 7)? = / 2 (48)
T T — T (r)dr.
t=1 0
Hence

T—ddu ST (2 — 7) (up — )
T2 370 (2 — 2)°

N ( /O 1 vx(r)vu(r)dr> ( /0 1 Vg(r)dr) o (49)

TG p) =

As a consequence,

- (2du— 1)/2U[T]

= T2 () — (sz du (G — 6)) ( ~2da=1)/2 (g — ;7;)) = V(7).

Now write TQdI_QdHE% as

Ty — T 2 T — T t—T1 Ur Tp—1X
(T Z Tdz—1/2 ) T2 ZZ Tde—1/2 Tdu —1/2k( bT )Tdu—1/2 Tde—1/2
t=1 r=1

= ﬁ;?(r)dr o Vo (1) Voo () (=) Vo (5) Vi (8)drrds, (50)
0 0 0 b

where the last line follows from the continuous mapping theorem. In view of (49)
and (50), we have

R T T T t—T —1/2
5= <Z(wt—§:)(ut—ﬂ)> (ZZ 2y — T)igh( = )iir (xT—a_:)>

t=1 t=1 =1

= ([ wemma) ([ [ o Sm,mwﬁm(s)drds) e

This completes the proof of the theorem. m

Proof of Lemma 3. We first prove the tightness of Sp(r). From Lemma A.3
of Phillips and Durlauf (1986), we know that the necessary and sufficient condition
for the tightness of Sp(r) is that each element of Sr(r) is tight in the respective
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component space. But several authors (Davydov (1970, Theorem 2), Avram and
Taqqu (1987, Theorem 2), Davidson and de Jong (1998)) have proved that the partial
sum processes ST(r) and S¥(r) converge weakly to fractional Brownian motions. It
follows from a theorem of Prohorov (Billingsley (1999), Theorem 5.1, p. 59) that,
since D[0,1]® is complete and separable, both {SZ(r)} and {S%(r)} are tight. It
remains to show the tightness of {S7*(r)}. In view of Theorem 13.5 of Billingsley
(1999), it suffices to show that, for almost all sample paths, some constant C' > 0

and 0<ri <r<ry <1,
P (ISF(r) = S (ro)] = A, |85 (r2) — S5(r)] = X) < CA*(r2 —11)?,
where A > 0 and v > 1/2. By the Cauchy and Markov inequalities, we have

P(IS7"(r) = S7*(r)| = A, [S7"(r2) = S7°(r)| = A)

< [P(ISF () = S5l = N2 [P (IS5 (r2) = SF(0)] = M2
9\ 1/2 2\ 1/2
(B(sg() = sg:m))?) " (B (S5(r) = S5(m)°)
<

A A

Note that, for a generic constant C' that may be different across lines,

E (S"(r) — S§"(r1))”

(1]
= T_QdI_Qd“E Z (l‘tut - O'xu)
tZ[T?"l]-i-].
(7] 2
= T 2d-2dup Z Tup | — T‘2dz_2duaiu ([Tr] — [Trl])2
t:[T’I‘l]—Fl
[Tr] (Tr]

(52)

(53)

= T 2d=—2du Z Z Exius u, — T 2" 2ug? (1T7) — [Tr])?.

t=[Tr1]+1 7=[Tr1]+1
Since x; and u; are Gaussian processes, we have

FErowzrru, = By Erru, + Exvie, Bugu, + Bxpur: BEuge,.

Using the above formula, we can rewrite E (SZ¢(r) — S&4(r1))? as I + I, where

(Tr]

[Tr]
L = T2z =26 Z Z Exix: Buiur,
t=[Tr1]+1 7=[Tr1]+1

[T'r] [Tr]

I, = T 26w —2d Z Z FExou,Fuix,.
t:[T’r‘ﬂ—FlT:[T’rﬂ—Fl
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We now consider I; and Is. First,

(Tr] [Tr] [Tr]
no= TRy NN (Br,) (Bugue) + T 2% 200 N (Baf) (Buy)
t—[Trl]-i-l T=t+1 t=[Try]+1
Tr] [Tr]

_ —2d;—2dy, 2d1+2du—2 1—2dy—2d, [Tr] — [T'r4]
= CT Z d o (r +CT (——=—)

t= [T'rﬂ—i—lT =t+1
< C/ </ )22 _2d7> di + O~ 242, ([TT] ;[Tﬁ])
_ e \2de+2dy
= (2dy + 2dy — 1) Gdr2ay) ™ +ol)
<O — )Pt (56)

where we use the fact that Bz, < C|r—t)** 7! and Buwu, < C|r —t]*® L.
Similarly, using Friu, < C|r — t\d”d”_l , we can show that Ip < O(r — ry)2dt2du,
Therefore,

B (S5 (r) — S§(r))? < O(r — )42 57)
Combining (53) with (57) yields
P(IS7(r) = ST (r)| = A, [S7*(r2) = S7*(r)[ =2 A)
< CX%(r— rl)d“'d“ (ro — r)d“'d” < ON (g — ) 2dat2du, (58)

Therefore (52) holds and {S7"(r)} is tight.

It remains to prove the finite dimensional (fidi) convergence of Sy (7). From Theo-
rem 3.3 of Chan and Terrin (1995), we know that the fidi distribution of (S7.(r), S#:(r))
converges to that of (Bg,(r), Bg,(r)). The fidi convergence of S7*(r) follows from
Theorem 7.4 of Giraitis and Taqqu (1999, page 30). We show below that this the-
orem implies that, if x; and wu; follow linear processes with the same iid innovation
sequences, then

(Tr]

T Y (s — o) = / / el iﬂ)) €]l A€ (o)
t=1
(59)

for any r € (0, 1]. Our case differs from that of Giraitis and Taqqu (1999) only in that
we assume that x; and u; have correlated innovation sequences where they assume
that z; and wu; share the same innovation sequences. Nevertheless, their proof goes
through for our case with obvious and minor modifications.

To show (59), we use the notation in Giraitis and Taqqu (1999), and set i =
L,mg =n; = 1,1 = 2,0 = 2d,, %2 = 2d,, N = T, b(r) = 1{r = 0}. For these
special parameter and function specifications, the partial sum process considered by
Giraitis and Taqqu (1999), viz,

(T'r] [Tr]

Qirr = Z Zb (t — 8) Py, (4, us), (60)

t=1 s=1
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becomes
(Tr]

Q[Tr} = Z (l'tut - Umu) . (61)

t=1
Therefore, (59) is a special case of Theorem 7.4 of Giraitis and Tagqu (1999).
Finally, the joint fidi convergence of (S%.(r), S%(r)) with SF*(r) follows from the
fact that they are defined as stochastic integrals of deterministic functions with re-
spect to the same Gaussian measures Wy (-) and W,(-). =

Proof of Theorem 4. From the definition of {x;}, we have

i = /_ 7; /_ 7; exp(it(A — ) |A| =% || =% AW (\)dW 2 (1) (62)

So

T
1y [1 lzexpm ) I L~ A (AT (). (63
t=1 e

Combining (63) with dominated convergence and the fact that

T
. —1 .
Th_r)réoT tE_l exp(it(A — p)) = L=y, (64)
we have
plimy_, 77! E x? = (N)dX = o2 (65)

Similarly, lim7_., 771 ZtT:1 x; = 0. Therefore

T iy
plimy_ o T "af — () = | fo(NdA =03 (66)

Combining (66) with Lemma 3 yields
T (B = = 02/ 03)

T T -1
=T (Z(:ctut — O~ Tm)) (T‘l >t - <f>2> +0p(1)
t=1 t=1

ot [ wtem el W ©dwn), (67)

We next consider the limiting distribution of




Let vy = (zy — ) Uy and S%(r) = Zﬂ vy, for r > 1/T and S¥(r) =0, for 0 < r <
1/T. Then

[Tr] (Tr]
T_dz —dy, S%(T‘) _ T—dz —dy Z (l‘t _ 57) ( ) T—dl‘ du/B Z T — :L‘
t=1 t=1
(T7] (7]

= T7%RN (1 — 1) (u—u) = T~ (55 > (@ =7

t=1 t=1

[Tr] T
= Tde—du Z vy — &) (up — ) — T~ % %y “(wpuy — T2a)(1+ 0p(1))
t=1
N / / B(E ) — (€, 1, 1) [E]7% [0~ AW (€)dWa(n) (69)
where we have used
T —1[17]
plimg <Z (24 — ;7:)2> S (w—z)P=r (70)
t=1 t=1

Using summation by parts twice, we have

—2d,—2d, _ t—T .
T ZZ Ty — T) bT Vi, (xr — )

t=11=1
T-1T-1
_ p—2dy—2dy T t—7—-1  t—71+1
- T ;;{sTt/T( (D) k(T kT
—/(, T- Wikt
v —2dy—2dy QU = v
XSH(T/T)} + T S Z;(k - T ))ST(T/T)

+T—zdm—zdu{zs;; ) (k) - k(t‘f—;%)%u)w%u)s;%(l)}

T-1T-1
= 3 S Tty T Dy (LT ), m
t=1 =1
where R R
DT( bT ) Qk( bT ) k(T)_k(T) (72)

and the last line follows from the identity that S%(1) = 0. Note that when 7" — oo
such that (t — 7)/T — r — s, we have

T r—s

D) = k(). (73)
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Combining (69), (71), and (73), and invoking the continuous mapping theorem, we
get

t -7
—2d,—2dy _ _
T g E x4 — T) b Vur (xr — )

t=1 =1

3 / / MK (U (s)drds. (74)

Therefore

2—2dg—2d, =2
T Jﬂ

1 - L t—r

(T S @2> 72203 oy~ ) k(D) (s - )

t=1
— / / PR (=20 (s)drds. (75)

Combining (67) with (75) yields the limiting distribution of the t-statistic. This
completes the proof of the theorem. m

Proof of Theorem 5. For the Bartlett kernel, we have, after simple calcula-
tions,

P biT’ iflt—7|=0
Dr( T ) =2 —g, if|t—7|=[bT] (76)
0, otherwise

Hence

t -7
—2d,—2d, _ _ 3
T ZZ x4 — T) bT Yur (xr — )

t=1 1=1
T-1T-1
= T2 S§(t/T)D SH(r/T
S 3 ST 1),
T—1
= ZT‘Qd = =2du §Y. (¢ /T)S%(t/T)
g T-IT1-
—= D T_2dz_2d“5%(T/T)5%((T+[bT])/T)
=1
9 1 9 1-b
o 2 / U2(r)dr — 2 / U(r)U(r + b)dr. (77)
b Jo b Jo
Next, consider other sharp kernels k(z) = (1 — |z|)?{|z|] < 1} for p > 2. Let
limy_oo (t —7) /T =1 —s. When |t — 7| € (0, [bT]), we have
i 2T2Dr(EoT) = oo 1y (12 P8
Jim PT2Dr( ) =t - 1 (1- ) (79
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When |t — 7| = 0, we have

lim (bT) Dr <tb_TT> = 2p. (79)

T—o0

When |t — 7| = [bT], we have

lim (bT) Dr <tb_TT> = —p. (80)

T—o0

Therefore,

T T
9, — N b T _
T 2d; —2d Z Z (.fCt — 113') utl{?(—bTT)uT (377' - 37)

t=11=1

1 T-1 T-1 " -
— —2d;—2dy, QU 22 —
= = > > T Sp(t/T)o*T? Dr(—=
t=1 r=1,7#t,|T—t|<[bT)
1 T-1
o > TGt/ T) (bT) Dr (0) SH(t/T)
t=1

)S7(7/T)

T—[bT]-1
- biT S© 72 gy (4/T) (6T) Dy <%> S((t+ [bT7) /T)
t=1

9 1 1-b
L ¥ / U2(r)dr — 2—b” U (r + b)dr
0

b 0
_7[)(,0— 2 r - —\7‘ — sl " r—s s)ards
b2 //[071]2 u(r) <1 b > 1{0 < | < b} U(s)drds.(81)

The theorem now follows from (77), (81) and the steps in the proof of Theorem 4. m
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