A New Approach to Robust Inference in Cointegration

Sainan Jin* Guanghua School of Management, Peking University

Peter C. B. Phillips Cowles Foundation, Yale University, University of Auckland & University of York

> Yixiao Sun Department of Economics University of California, San Diego

> > October 2005

Abstract

A new approach to robust testing in cointegrated systems is proposed using nonparametric HAC estimators without truncation. While such HAC estimates are inconsistent, they still produce asymptotically pivotal tests and, as in conventional regression settings, can improve testing and inference.

JEL Classification: C12; C14; C22 Keywords: Cointegration, HAC estimation, robust inference, steep origin kernel, fully modified estimation.

*Corresponding author. Guanghua School of Management, Peking University, Beijing, 100871, PR. China. Tel: 86-10-62756274, fax: 86-10-62753820, email: sainan.jin@gsm.pku.edu.cn

1 Introduction

Recent research by Kiefer and Vogelsang (2002a, 2002b, 2005, hereafter KV) and the present authors (2005a, 2005b, hereafter PSJ_a , PSJ_b) has shown that there are certain advantages to constructing robust tests in regression models with inconsistent rather than consistent estimates of the relevant variance matrices. Such 'inconsistent HAC' estimates can be based on standard kernels with the bandwidth parameter set to the sample size (or possibly some fixed proportion of the sample size) or on power kernels which exponentiate traditional kernels. Such variance estimates are inconsistent and tend to random matrices instead of the true variance matrix, but this randomness in the limit succeeds in bringing the finite sample distribution of test statistics based on them closer to the limit distribution, thereby improving the finite sample size properties of the resulting tests. Some formal results of this type have been proved recently by Jansson (2004) and the present authors (2005, hereafter PSJ_c). Using this approach, asymptotically similar tests can be constructed for which the limit distribution is nonstandard but easily computed and easily approximated by series expansions (PSJ_c).

The contribution of the present paper is to apply these methods in the context of cointegrated regression equations. Making use of steep origin kernels, as in PSJ_b , we provide a limit theory for the corresponding cointegrating regression test statistics based on these inconsistent HAC estimates. Simulations show that these alternative robust tests have greater accuracy in size, but also experience some loss of power, including local asymptotic power, in relation to conventional tests. In this sense, the results mirror the earlier findings for regression models in KV and PSJ_b . Steep origin kernels seem to have the best properties in the class of tests considered here.

The plan of the rest of paper is as follows. The test statistics, limit distributions and local asymptotic powers are given in Section 2. Finite sample simulations are presented in Section 3. Some discussion and concluding remarks are given in Section 4.

2 Tests and Limit Theory

We consider the cointegrated regression model

$$y_t = \alpha + x_t'\beta + u_{0t},\tag{1}$$

where x_t is an *m*-dimensional vector of full rank integrated regressors generated by

$$\Delta x_t = u_{xt},\tag{2}$$

where t = 1, ..., T. The error vector $u_t = (u_{0t}, u'_{xt})'$ is jointly stationary with zero mean and long run covariance matrix $\Omega > 0$.

The following high level condition for which sufficient conditions are well known (e.g., Phillips and Solo, 1992) facilitates the asymptotic development:

$$T^{-1/2} \sum_{l=1}^{[Tr]} u_l \to_d B(r) = \begin{bmatrix} B_0(r) \\ B_x(r) \end{bmatrix} \equiv BM(\Omega), \ r \in [0,1],$$
(3)

with

$$\Omega = \begin{bmatrix} \omega_0^2 & \Omega_{0x} \\ \Omega_{x0} & \Omega_{xx} \end{bmatrix},\tag{4}$$

where $B_0(\cdot)$ and $B_x(\cdot)$ are Brownian motions corresponding to u_{0t} and u_{xt} respectively, and where the partition of Ω is conformable with that of u_t . Defining $u_{0,xt} = u_{0t} - \Omega_{0x}\Omega_{xx}^{-1}u_{xt}$, it follows that $T^{-1/2}\sum_{t=1}^{[Tr]} u_{0,xt} \to B_{0,x}(r)$, and

$$T^{-1/2} \left(\begin{array}{c} \sum_{t=1}^{[Tr]} u_{0.xt} \\ \sum_{t=1}^{[Tr]} u_{xt} \end{array} \right) \rightarrow_d \left[\begin{array}{c} B_{0.x}(r) \\ B_x(r) \end{array} \right] \equiv BM \left[\begin{array}{c} \omega_{0.x}^2 & 0 \\ 0 & \Omega_{xx} \end{array} \right], \tag{5}$$

where $B_{0,x}(r) = B_0(r) - \Omega_{0x}\Omega_{xx}^{-1}B_x(r) = BM(\omega_{0,x}^2) = \omega_{0,x}W_0$, and is independent of $B_x = \Omega_{xx}^{1/2}W_x$, with $\omega_{0,x}^2 = \omega_0^2 - \Omega_{0x}\Omega_{xx}^{-1}\Omega_{x0}$. W_0 and W_x are independent standard Brownian motions of dimensions 1 and m, respectively.

Let $\hat{\beta}^+$ be the fully modified ordinary least squares (FM-OLS) estimator of β in (1), $M_{xx} = \sum_{t=1}^T (x_t - \overline{x})(x_t - \overline{x})')^{-1}$, where $\overline{x} = T^{-1} \sum_{t=1}^T x_t$, and $\hat{\omega}_{0,x}^{*2}$ be constructed by introducing kernel based estimators of $\omega_{0,x}$ where the bandwidth parameter is set equal to the sample size:

$$\widehat{\omega}_{0.x}^{*2} = \sum_{h=-T+1}^{T-1} k\left(\frac{h}{T}\right) \widehat{\Gamma}(h), \tag{6}$$

with

$$\widehat{\Gamma}(h) = \begin{cases} \frac{1}{T} \sum_{t=1}^{T-j} \widehat{u}_{0.xt+h} \widehat{u}'_{0.xt} & \text{for } j \ge 0\\ \frac{1}{T} \sum_{t=-j+1}^{T} \widehat{u}_{0.xt+h} \widehat{u}'_{0.xt} & \text{for } j < 0 \end{cases}$$
(7)

and $\hat{u}_{0,xt}$ is the FM-OLS regression residual. The class of kernels we consider contains most conventional kernels k(x), as well as steep origin kernels, $k_{\rho}(x) = (k_{quad}(x))^{\rho}$, which were introduced in PSJ_b and involve arbitrary powers $\rho > 1$ of a conventional quadratic kernel $k_{quad}(x)$ with Parzen characteristic exponent 2. For the steep origin kernels, we focus on the steep Parzen kernel (i.e. $k_{quad}(x)$ is the traditional Parzen kernel) throughout the paper. The results for other steep origin kernels are similar and will not be reported here. The cointegrating regression F-statistic for the q-dimensional hypothesis $R\beta = r$ takes the usual form

$$F^* = (R\hat{\beta}^+ - r)' \left[RM_{xx}R' \right]^{-1} (R\hat{\beta}^+ - r) / \hat{\omega}_{0,x}^{*2}, \tag{8}$$

or when q = 1, the *t*-ratio

$$t^* = \left[RM_{xx}R' \right]^{-1/2} (R\hat{\beta}^+ - r) / \hat{\omega}_{0.x}^*.$$
(9)

Similar arguments to those given in Theorems 1 and 5 of PSJ_a lead to the following results. First, the conditional long run variance estimator $\widehat{\omega}_{0,x}^{*2}$ has the random limit

$$\widehat{\omega}_{0,x}^{*2} \Rightarrow \omega_{0,x}^2 \int_0^1 \int_0^1 k(r-s) d\eta(r) d\eta(s), \tag{10}$$

where

$$\eta(r) = W_0(r) - rW_0(1) - \int_0^r \underline{W}'_x (\int_0^1 \underline{W}_x \underline{W}'_x)^{-1} \int_0^1 \underline{W}_x dW_0,$$
(11)

with $\underline{W}_x = W_x - \int_0^1 W_x$. Second, the limits of the regression *F*-statistic and *t*-statistic under the null are

$$F^* \Rightarrow \frac{\left(\int_0^1 \underline{W}_{1.2} dW_0\right)' \left(\int_0^1 \underline{W}_{1.2} \underline{W}'_{1.2}\right)^{-1} \left(\int_0^1 \underline{W}_{1.2} dW_0\right)}{\int_0^1 \int_0^1 k(r-s) d\eta(r) d\eta(s)},$$
(12)

$$t^* \Rightarrow \frac{\left(\int_0^1 \underline{W}_{1.2} \underline{W}_{1.2}'\right)^{-1/2} \left(\int_0^1 \underline{W}_{1.2} dW_0\right)}{\sqrt{\int_0^1 \int_0^1 k(r-s) d\eta(r) d\eta(s)}},$$
(13)

where $\underline{W}_{1,2} = \underline{W}_1 - \int_0^1 \underline{W}_1 \underline{W}_2' (\int_0^1 \underline{W}_2 \underline{W}_2')^{-1} \underline{W}_2$ is the L_2 regression residual of \underline{W}_1 on \underline{W}_2 , \underline{W}_1 is the vector of the first q coordinates of \underline{W}_x , and \underline{W}_2 is the last (m-q) coordinates. Third, under the local alternative $R\beta = r + c/T$, the F and t statistics have the following limit distributions:

$$F^* \Rightarrow \frac{\left[\left(\int_0^1 \underline{W}_{1,2} \underline{W}_{1,2}' \right)^{-1} \int_0^1 \underline{W}_{1,2} dW_0 + \delta \right]' \left(\int_0^1 \underline{W}_{1,2} \underline{W}_{1,2}' \right) \left[\left(\int_0^1 \underline{W}_{1,2} \underline{W}_{1,2}' \right)^{-1} \int_0^1 \underline{W}_{1,2} dW_0 + \delta \right]}{\int_0^1 \int_0^1 k(r-s) d\eta(r) d\eta(s)},$$

$$t^* \Rightarrow \frac{\left(\int_0^1 \underline{W}_{1,2} \underline{W}_{1,2}' \right)^{-1/2} \int_0^1 \underline{W}_{1,2} dW_0 + \delta \left(\int_0^1 \underline{W}_{1,2} \underline{W}_{1,2}' \right)^{1/2}}{\sqrt{\int_0^1 \int_0^1 k(r-s) d\eta(r) d\eta(s)}},$$

where $\delta = \left(R\Omega_{xx}^{-1}R'\right)^{-1/2}c/\omega_{0.x}$.

Remarks

- (a) While $\hat{\omega}_{0.x}^{*2}$ is inconsistent for $\omega_{0.x}^2$, its limit distribution is scale dependent on $\omega_{0.x}^2$, which explains why it is possible to construct asymptotically pivotal tests using $\hat{\omega}_{0.x}^{*2}$.
- (b) The limit distributions of the *F*-statistic and *t*-statistic are nonstandard in view of the random limit of the inconsistent HAC estimates.
- (c) Under the null, the numerator in the limit distribution follows χ_q^2 or standard normal distribution. It can be shown that the numerator is independent of the denominator in the limit distribution. These are the same as in the stationary case. However, the $\eta(r)$ process is not a Brownian bridge process and depends on the number of regressors in the model, which is different from the stationary case.
- (d) When the steep origin kernel of the form $k(x) = (k_{quad}(x))^{\rho}$ is used in the tests, consistency of $\widehat{\omega}_{0,x}^{*2}$ requires the following rate condition

$$T^6/\rho^5 + \rho/T^2 \to 0 \text{ as } T \to \infty, \text{ and } \rho \to \infty$$
 (14)

(see PSJ_b for details), in which case the limit distributions for F^* and t^* (denoted as F_{ρ}^* and t_{ρ}^* to emphasize their dependence on ρ) under the null are $F_{\rho}^* \Rightarrow \chi_q^2$, and $t_{\rho}^* \Rightarrow N(0, 1)$. The corresponding limit distributions under the local alternative are

$$F_{\rho}^{*} \Rightarrow \left[\left(\int_{0}^{1} \underline{W}_{1.2} \underline{W}_{1.2}^{\prime} \right)^{-1} \left(\int_{0}^{1} \underline{W}_{1.2} dW_{0} \right) + \delta \right]^{\prime} \left(\int_{0}^{1} \underline{W}_{1.2} \underline{W}_{1.2}^{\prime} \right) \\ \times \left[\left(\int_{0}^{1} \underline{W}_{1.2} \underline{W}_{1.2}^{\prime} \right)^{-1} \left(\int_{0}^{1} \underline{W}_{1.2} dW_{0} \right) + \delta \right], \qquad (15)$$

$$t_{\rho}^{*} \Rightarrow \left(\int_{0}^{1} \underline{W}_{1,2} \underline{W}_{1,2}'\right)^{-1/2} \int_{0}^{1} \underline{W}_{1,2} dW_{0} + \delta \left(\int_{0}^{1} \underline{W}_{1,2} \underline{W}_{1,2}'\right)^{1/2}.$$
 (16)

Following PSJ_a and PSJ_b , we perform local asymptotic power simulations using the t_{ρ}^* statistic as the benchmark. We compute asymptotic power for t^* tests with a 5% significance level for a selection of well known kernels, such as Bartlett, Parzen, Tukey-Hanning, QS, Normal as well as Steep Parzen kernels (SO) with $\rho = 8, 32$, and the asymptotic case which is represented by " $\rho = \infty$ " for $\delta \in [0, 9.3]$ with m = 1. Results for m > 1 are similar and are not presented here. As is apparent in Fig. 1, and similar to KV(2002a), the Bartlett kernel delivers higher power than other well-known kernels, including Parzen, Normal, Tukey-Hanning, and QS. However, steep Parzen kernels produce even better power properties

Figure 1: Asymptotic Local Power Function of the t^* Tests with Various Kernels

than the Bartlett kernel, and the power curve moves up uniformly as ρ increases. Notice that when $\rho = 32$, the power curve is very close to the power envelope. This is expected. When ρ is large, it may be regarded as being roughly compatible with the rate condition in (14) for these sample sizes. In that case, the test statistic is effectively constructed using a consistent estimate of $\omega_{0,x}^2$, and Remark (d) above applies. In sum, tests based on steep Parzen kernels appear to dominate those based on other commonly used kernels.

3 Simulations

This section compares the finite sample performance of the t^* tests and the *t*-test that uses a HAC estimator, which we denote by t_{HAC} . We use the following simple data generating process

$$y_t = \alpha + x_t \beta + u_{0t},\tag{17}$$

where $\alpha = \beta = 0$, $u_{0t} = \rho_1 u_{0t-1} + \rho_2 u_{0t-2} + e_t$, $x_t = x_{t-1} + u_{xt}$, $u_{xt} = 0.8u_{xt-1} + \eta_t$, e_t and η_t are iid(0, 1) with $cov(e_t, \eta_t) = 0$, and $x_0 = u_0 = u_{-1} = 0$. Sample sizes T = 50,100 and 200 are used and 2000 replications apply in all cases. We want to test one sided hypothesis $H_0: \beta \leq 0 v.s.$ $H_1: \beta > 0$. The cointegrating regression (17) is estimated using OLS

(which is asymptotically equivalent to FM-OLS in this model) and t^* tests are constructed as in (9). For t_{HAC} , the bandwidth is chosen using the data-driven procedure in Andrews (1991).

We here compare the null rejection probabilities of t_{HAC} computed with a Bartlett kernel with those of t^* tests for the Bartlett, Parzen, and steep Parzen kernels with different values of ρ . Rejections were determined using the asymptotic 5% critical values (see website paper for details). Two patterns emerge. First, finite sample null rejection probabilities are closer to 0.05 for t^* than for t_{HAC} , and the differences become more significant as ρ_1 approaches 1 when the errors follow an AR(1) process. Second, the power improvement of the steep Parzen kernels incurs some cost – the size distortion of the t^* test increases as ρ increases. However, both these patterns diminish with increases in sample size.

Another striking feature of steep Parzen kernels lies in the finite sample power improvement. The power of the t^* -tests increases as ρ increases. While the power of the t_{HAC} test is higher than that of the t^* -test when the Bartlett and QS kernels are used, mirroring results for regression models reported in KV, the power of the two tests is almost the same when steep Parzen kernels with large ρ are used. In fact, for some cases as when $\rho = 32$, the power of the t^* -test dominates that of the t_{HAC} test.

Simulation results are similar when the regressors are allowed to be endogenous in the cointegration system and $cov(e_t, \eta_t) \neq 0$ for various correlation coefficients. The approach therefore turns out to provide a good alternative to tests based on conventional HAC estimation.

4 Conclusion and Extension

This paper shows that asymptotically valid cointegrating regression coefficient tests may be constructed using inconsistent HAC estimates. Simulations and asymptotic local power comparisons indicate that steep origin kernel methods typically work well in such situations, improving size properties and having power that is close to tests based on conventional HAC estimates. As in regression model testing, there remain issues of trade off between power and size in testing. Recent work by the authors (PSJ_c) provides one way in which this trade off may be confronted by using power parameter (or bandwidth) selection to minimise loss arising from power loss and size distortion.

References

- Andrews, D. W. K., 1991, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation, *Econometrica* 59, 817–854.
- Jansson, M., 2004, On the Error of Rejection Probability in Simple Autocorrelation Robust Tests, *Econometrica*, 72, 937-946.
- Kiefer, N. M. and T. J. Vogelsang, 2002a, Heteroskedasticity-autocorrelation Robust Testing Using Bandwidth Equal to Sample Size, *Econometric Theory* 18, 1350–1366.
 - —, 2002b, Heteroskedasticity-autocorrelation Robust Standard Errors Using the Bartlett Kernel without Truncation, *Econometrica* 70, 2093–2095.
- ——, 2005, A New Asymptotic Theory for Heteroskedasiticy-Autocorrelation Robust Tests, *Econometric Theory* 21, 1130-1164.
- Phillips, P. C. B. and V. Solo, 1992, Asymptotics for Linear Processes, Annals of Statistics, 20, 971–1001.
- Phillips, P. C. B., Y. Sun and S. Jin, 2005a, Long Run Variance Estimation and Robust Regression Testing Using Sharp Origin Kernels with No Truncation, forthcoming, *Journal of Statistical Planning and Inference.*
 - —, 2005b, Spectral Density Estimation and Robust Hypothesis Testing using Steep Origin Kernels without Truncation, forthcoming, *International Economic Review*.
 - —, 2005c, Improved HAR Inference Using Power Kernels without Truncation, Yale University, mimeographed.