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Abstract

A new approach to robust testing in cointegrated systems is proposed using non-
parametric HAC estimators without truncation. While such HAC estimates are incon-
sistent, they still produce asymptotically pivotal tests and, as in conventional regression
settings, can improve testing and inference.
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1 Introduction

Recent research by Kiefer and Vogelsang (2002a, 2002b, 2005, hereafter KV) and the present

authors (2005a, 2005b, hereafter PSJa, PSJb) has shown that there are certain advantages

to constructing robust tests in regression models with inconsistent rather than consistent

estimates of the relevant variance matrices. Such �inconsistent HAC�estimates can be based

on standard kernels with the bandwidth parameter set to the sample size (or possibly some

�xed proportion of the sample size) or on power kernels which exponentiate traditional

kernels. Such variance estimates are inconsistent and tend to random matrices instead of

the true variance matrix, but this randomness in the limit succeeds in bringing the �nite

sample distribution of test statistics based on them closer to the limit distribution, thereby

improving the �nite sample size properties of the resulting tests. Some formal results of this

type have been proved recently by Jansson (2004) and the present authors (2005, hereafter

PSJc). Using this approach, asymptotically similar tests can be constructed for which the

limit distribution is nonstandard but easily computed and easily approximated by series

expansions (PSJc).

The contribution of the present paper is to apply these methods in the context of

cointegrated regression equations. Making use of steep origin kernels, as in PSJb; we provide

a limit theory for the corresponding cointegrating regression test statistics based on these

inconsistent HAC estimates. Simulations show that these alternative robust tests have

greater accuracy in size, but also experience some loss of power, including local asymptotic

power, in relation to conventional tests. In this sense, the results mirror the earlier �ndings

for regression models in KV and PSJb. Steep origin kernels seem to have the best properties

in the class of tests considered here.

The plan of the rest of paper is as follows. The test statistics, limit distributions and

local asymptotic powers are given in Section 2. Finite sample simulations are presented in

Section 3. Some discussion and concluding remarks are given in Section 4.

2 Tests and Limit Theory

We consider the cointegrated regression model

yt = �+ x
0
t� + u0t; (1)

where xt is an m-dimensional vector of full rank integrated regressors generated by

�xt = uxt; (2)
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where t = 1; :::; T: The error vector ut = (u0t; u0xt)
0 is jointly stationary with zero mean and

long run covariance matrix 
 > 0:

The following high level condition for which su¢ cient conditions are well known (e.g.,

Phillips and Solo, 1992) facilitates the asymptotic development:

T�1=2
[Tr]X
l=1

ul !d B(r) =

"
B0(r)

Bx(r)

#
� BM(
); r 2 [0; 1] ; (3)

with


 =

"
!20 
0x


x0 
xx

#
; (4)

where B0(�) and Bx(�) are Brownian motions corresponding to u0t and uxt respectively, and
where the partition of 
 is conformable with that of ut. De�ning u0:xt = u0t �
0x
�1xxuxt;
it follows that T�1=2

P[Tr]
t=1 u0:xt ! B0:x(r); and

T�1=2

 P[Tr]
t=1 u0:xtP[Tr]
t=1 uxt

!
!d

"
B0:x(r)

Bx(r)

#
� BM

"
!20:x 0

0 
xx

#
; (5)

where B0:x(r) = B0(r) � 
0x
�1xxBx(r) = BM(!20:x) = !0:xW0, and is independent of

Bx = 

1=2
xx Wx, with !20:x = !20 � 
0x
�1xx
x0. W0 and Wx are independent standard

Brownian motions of dimensions 1 and m; respectively.

Let b�+ be the fully modi�ed ordinary least squares (FM-OLS) estimator of � in (1),
Mxx =

PT
t=1(xt � x)(xt � x)0)�1; where x = T�1

PT
t=1 xt, and b!�20:x be constructed by

introducing kernel based estimators of !0:x where the bandwidth parameter is set equal to

the sample size:

b!�20:x = T�1X
h=�T+1

k

�
h

T

� b�(h); (6)

with b�(h) = ( 1
T

PT�j
t=1 bu0:xt+hbu00:xt for j � 0

1
T

PT
t=�j+1 bu0:xt+hbu00:xt for j < 0

(7)

and bu0:xt is the FM-OLS regression residual. The class of kernels we consider contains
most conventional kernels k (x), as well as steep origin kernels, k�(x) = (kquad (x))

�, which

were introduced in PSJb and involve arbitrary powers � > 1 of a conventional quadratic

kernel kquad (x) with Parzen characteristic exponent 2. For the steep origin kernels, we

focus on the steep Parzen kernel (i.e. kquad (x) is the traditional Parzen kernel) throughout

the paper. The results for other steep origin kernels are similar and will not be reported

here.
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The cointegrating regression F -statistic for the q-dimensional hypothesis R� = r takes

the usual form

F � = (Rb�+ � r)0 �RMxxR
0��1 (Rb�+ � r)=b!�20:x; (8)

or when q = 1; the t-ratio

t� =
�
RMxxR

0��1=2 (Rb�+ � r)=b!�0:x: (9)

Similar arguments to those given in Theorems 1 and 5 of PSJa lead to the following results.

First, the conditional long run variance estimator b!�20:x has the random limit

b!�20:x ) !20:x

Z 1

0

Z 1

0
k(r � s)d�(r)d�(s); (10)

where

�(r) =W0(r)� rW0(1)�
Z r

0
W 0
x(

Z 1

0
W xW

0
x)
�1
Z 1

0
W xdW0; (11)

with W x = Wx �
R 1
0 Wx: Second, the limits of the regression F -statistic and t-statistic

under the null are

F � )

�R 1
0 W 1:2dW0

�0 �R 1
0 W 1:2W

0
1:2

��1 �R 1
0 W 1:2dW0

�
R 1
0

R 1
0 k(r � s)d�(r)d�(s)

; (12)

t� )

�R 1
0 W 1:2W

0
1:2

��1=2 �R 1
0 W 1:2dW0

�
qR 1

0

R 1
0 k(r � s)d�(r)d�(s)

; (13)

where W 1:2 =W 1�
R 1
0 W 1W

0
2(
R 1
0 W 2W

0
2)
�1W 2 is the L2 regression residual of W 1 on W 2,

W 1 is the vector of the �rst q coordinates of W x, and W 2 is the last (m� q) coordinates.
Third, under the local alternative R� = r + c=T; the F and t statistics have the following

limit distributions:

F � )

��R 1
0 W 1:2W

0
1:2

��1 R 1
0 W 1:2dW0 + �

�0 �R 1
0 W 1:2W

0
1:2

���R 1
0 W 1:2W

0
1:2

��1 R 1
0 W 1:2dW0 + �

�
R 1
0

R 1
0 k(r � s)d�(r)d�(s)

;

t� )

�R 1
0 W 1:2W

0
1:2

��1=2 R 1
0 W 1:2dW0 + �

�R 1
0 W 1:2W

0
1:2

�1=2
qR 1

0

R 1
0 k(r � s)d�(r)d�(s)

;

where � =
�
R
�1xxR

0��1=2 c=!0:x:
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Remarks

(a) While b!�20:x is inconsistent for !20:x, its limit distribution is scale dependent on !20:x;
which explains why it is possible to construct asymptotically pivotal tests using b!�20:x:

(b) The limit distributions of the F -statistic and t-statistic are nonstandard in view of the

random limit of the inconsistent HAC estimates.

(c) Under the null, the numerator in the limit distribution follows �2q or standard normal

distribution. It can be shown that the numerator is independent of the denominator

in the limit distribution. These are the same as in the stationary case. However,

the �(r) process is not a Brownian bridge process and depends on the number of

regressors in the model, which is di¤erent from the stationary case.

(d) When the steep origin kernel of the form k(x) = (kquad(x))
� is used in the tests,

consistency of b!�20:x requires the following rate condition
T 6=�5 + �=T 2 ! 0 as T !1, and �!1 (14)

(see PSJb for details), in which case the limit distributions for F � and t� (denoted

as F �� and t
�
� to emphasize their dependence on �) under the null are F

�
� ) �2q , and

t�� ) N(0; 1): The corresponding limit distributions under the local alternative are

F �� )
"�Z 1

0
W 1:2W

0
1:2

��1�Z 1

0
W 1:2dW0

�
+ �

#0�Z 1

0
W 1:2W

0
1:2

�

�
"�Z 1

0
W 1:2W

0
1:2

��1�Z 1

0
W 1:2dW0

�
+ �

#
; (15)

t�� )
�Z 1

0
W 1:2W

0
1:2

��1=2 Z 1

0
W 1:2dW0 + �

�Z 1

0
W 1:2W

0
1:2

�1=2
: (16)

Following PSJa and PSJb, we perform local asymptotic power simulations using the t��-

statistic as the benchmark. We compute asymptotic power for t� tests with a 5% signi�cance

level for a selection of well known kernels, such as Bartlett, Parzen, Tukey-Hanning, QS,

Normal as well as Steep Parzen kernels (SO) with � = 8; 32; and the asymptotic case which

is represented by �� =1�for � 2 [0; 9:3] with m = 1. Results for m > 1 are similar and are

not presented here. As is apparent in Fig. 1, and similar to KV(2002a), the Bartlett kernel

delivers higher power than other well-known kernels, including Parzen, Normal, Tukey-

Hanning, and QS. However, steep Parzen kernels produce even better power properties
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Figure 1: Asymptotic Local Power Function of the t� Tests with Various Kernels

than the Bartlett kernel, and the power curve moves up uniformly as � increases. Notice

that when � = 32, the power curve is very close to the power envelope. This is expected.

When � is large, it may be regarded as being roughly compatible with the rate condition in

(14) for these sample sizes. In that case, the test statistic is e¤ectively constructed using

a consistent estimate of !20:x, and Remark (d) above applies. In sum, tests based on steep

Parzen kernels appear to dominate those based on other commonly used kernels.

3 Simulations

This section compares the �nite sample performance of the t� tests and the t-test that uses

a HAC estimator, which we denote by tHAC . We use the following simple data generating

process

yt = �+ xt� + u0t; (17)

where � = � = 0, u0t = �1u0t�1 + �2u0t�2 + et, xt = xt�1 + uxt, uxt = 0:8uxt�1 + �t; et and

�t are iid(0; 1) with cov(et; �t) = 0; and x0 = u0 = u�1 = 0: Sample sizes T = 50; 100 and

200 are used and 2000 replications apply in all cases. We want to test one sided hypothesis

H0 : � � 0 v:s: H1 : � > 0. The cointegrating regression (17) is estimated using OLS
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(which is asymptotically equivalent to FM-OLS in this model) and t� tests are constructed

as in (9). For tHAC ; the bandwidth is chosen using the data-driven procedure in Andrews

(1991).

We here compare the null rejection probabilities of tHAC computed with a Bartlett

kernel with those of t� tests for the Bartlett, Parzen, and steep Parzen kernels with di¤erent

values of �. Rejections were determined using the asymptotic 5% critical values (see website

paper for details). Two patterns emerge. First, �nite sample null rejection probabilities

are closer to 0.05 for t� than for tHAC , and the di¤erences become more signi�cant as

�1 approaches 1 when the errors follow an AR(1) process. Second, the power improvement

of the steep Parzen kernels incurs some cost �the size distortion of the t� test increases as

� increases. However, both these patterns diminish with increases in sample size.

Another striking feature of steep Parzen kernels lies in the �nite sample power improve-

ment. The power of the t�-tests increases as � increases. While the power of the tHAC

test is higher than that of the t�-test when the Bartlett and QS kernels are used, mirroring

results for regression models reported in KV, the power of the two tests is almost the same

when steep Parzen kernels with large � are used. In fact, for some cases as when � = 32,

the power of the t�-test dominates that of the tHAC test.

Simulation results are similar when the regressors are allowed to be endogenous in the

cointegration system and cov(et; �t) 6= 0 for various correlation coe¢ cients. The approach
therefore turns out to provide a good alternative to tests based on conventional HAC

estimation.

4 Conclusion and Extension

This paper shows that asymptotically valid cointegrating regression coe¢ cient tests may

be constructed using inconsistent HAC estimates. Simulations and asymptotic local power

comparisons indicate that steep origin kernel methods typically work well in such situations,

improving size properties and having power that is close to tests based on conventional HAC

estimates. As in regression model testing, there remain issues of trade o¤ between power

and size in testing. Recent work by the authors (PSJc) provides one way in which this trade

o¤ may be confronted by using power parameter (or bandwidth) selection to minimise loss

arising from power loss and size distortion.
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