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Abstract

Because of the incidental parameters problem, the �xed e¤ects maximum likelihood esti-

mator in a nonlinear panel data model is in general inconsistent when the time series length

T is short and �xed. Even if T approaches in�nity but at a rate not faster than the cross

sectional sample size n, the �xed e¤ects estimator is still asymptotically biased. This paper

proposes using the standard bootstrap and k-step bootstrap to correct the bias. We estab-

lish the asymptotic validity of the bootstrap bias corrections for both model parameters and

average marginal e¤ects. Our results apply to static models as well as some dynamic Markov

models. Monte Carlo simulations show that our procedures are e¤ective in reducing the bias

of the �xed e¤ects estimator and improving the coverage accuracy of the associated con�dence

interval.

� Running head: Bootstrap Bias Correction for the Fixed E¤ects Estimator

� Corresponding Author: Yixiao Sun (yisun@ucsd.edu)



1 Introduction

Panel data consists of repeated observations from di¤erent individuals across time. One virtue of

this data structure is that we can control for unobserved time-invariant individual heterogeneity

in an econometric model. When individual e¤ects are correlated with explanatory variables, we

may use the �xed e¤ects estimator, which treats each unobserved individual e¤ect as a parameter

to be estimated. However, this approach usually su¤ers from inconsistency when the time series

sample size (T ) is short. This is known as the incidental parameters problem, �rst noted by

Neyman and Scott (1948). Furthermore, even if T approaches 1, the �xed e¤ects estimator can

still have an asymptotic bias that is comparable to the asymptotic standard error. Statistical

inference that ignores the asymptotic bias may give misleading results.

This paper proposes using the standard parametric bootstrap and the k-step parametric

bootstrap to correct for the asymptotic bias. We consider a nonlinear �xed e¤ects panel data

model with each time series following a �nite order Markov process. We allow for static panel

data models as well as some dynamic panel data models. We employ the maximum likelihood

(ML) approach. Under some rate conditions on the time series and cross sectional sample sizes,

we show that the standard bootstrap-bias-corrected (BBC) estimators are asymptotically normal

and centered at the true parameter. The regularity conditions for BBC estimators are essentially

the same as those for the analytic bias corrections in the literature. We also establish the

asymptotic equivalence of the k-step BBC estimator to the standard BBC estimator. Like other

bias correction procedures, bootstrap bias correction reduces the asymptotic bias without in�ating

the �rst order asymptotic variance1. So inferences based on the BBC estimators are expected to

be more accurate and reliable than the ones based on the original �xed e¤ects estimators.

An advantage of the standard bootstrap bias correction is that the method is automatic to

a great extent. There is no need to derive the analytic bias correction formulae, which can

be quite complicated. The automatic nature is especially appealing in applied research. A

drawback of the standard bootstrap method is that it is computationally intensive, as it involves

solving R nonlinear optimization problems to obtain R bootstrap estimates. R usually needs

to be fairly large for the bootstrap method to be reliable. Unless the optimization problem is

simple, this would be a very time consuming task. Particularly, as the �xed e¤ects approach

treats the individual e¤ects as parameters, there are many parameters to be estimated, and the

computational cost can be excessive. For example, in our empirical application (not reported
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here), there are 1461 individuals, which means that there are more than 1461 parameters to be

estimated.

We propose using the k-step bootstrap method to alleviate the computational cost of the

standard bootstrap. In the k-step bootstrap we approximate the standard bootstrap estimator

by taking k-steps of a Newton-Raphson (NR) iterative scheme. We employ the original estimate

as the starting point for the NR steps. Compared to the standard bootstrap method, the k-step

bootstrap procedure is computationally attractive because it involves only closed-form expres-

sions. The main computational cost of the k-step bootstrap is to compute the score and Hessian

functions, which is a relatively easy computing task. We show that when k � 2; the stochastic

di¤erence between the standard and k-step bootstrap estimators is of smaller order than the bias

term we intend to remove. As a result, we can use the k-step bootstrap in place of the standard

bootstrap to achieve bias reduction.

In addition to model parameters, we apply the standard and k-step parametric bootstrap

bias corrections to the average marginal e¤ect estimation. We also develop a double bootstrap

procedure for con�dence interval (CI) construction. To rigorously justify our bootstrap proce-

dures, we use the following strategy repeatedly. For an asymptotic result of interest, we �rst show

that it holds uniformly over an open set in the parameter space. Using the fact that the ML

estimator, which is the true parameter in the bootstrap world, lies in this set with probability

approaching one uniformly, we show that the asymptotic result also holds in the bootstrap world

with probability approaching one uniformly. More details of this type of argument are given in

the appendix of proofs.

Several papers have discussed the di¢ culties involved in controlling for the incidental para-

meters problem in nonlinear panel data models, and have suggested bias correction methods.

Lancaster (2000) and Arellano and Hahn (2006) give an overview on the subject. Anderson

(1970) and Honoré and Kyriazidou (2000) propose estimators which do not depend on individual

e¤ects in some speci�c cases. However, their approaches do not provide guidance in general cases

to eliminate the bias. More generally, Hahn and Newey (2004, denoted HN hereinafter) propose

jackknife and analytic procedures for nonlinear static models, and Hahn and Kuersteiner (2011,

denoted HK hereinafter) propose analytic estimators in nonlinear dynamic models. Both expand

the estimator in orders of T and estimate the leading bias term using the sample analogue. Bester

and Hansen (2009) propose a penalized objective function approach and Fernández-Val (2009)
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develops bias correction for parametric panel binary choice models. Dhaene and Jochmans (2012)

consider split-panel jackknife estimation for the dynamic case. Compared to the analytic and

jackknife methods, the bootstrap procedure has gained relatively little attention in this setting

even though the latter is a natural method to bias estimation. From this point of view, this paper

makes an important contribution to the literature, providing the BBC estimators for nonlinear

panel models and establishing their validity.2

Hall (1992) introduces general bootstrap algorithms for bias correction and for the construc-

tion of CI�s, which we adapt in this paper. Hahn, Kuersteiner and Newey (2004) examine the

asymptotic properties of a bootstrap bias corrected ML estimator with cross sectional data and

show that it is higher order e¢ cient. The k-step bootstrap procedure �rst appears in Davidson

and MacKinnon (1999) and Andrews (2002, 2005), who prove its higher order equivalence to

the standard bootstrap. Our paper in particular builds on Andrews (2005), who considers the

standard and k-step parametric bootstrap methods for Markov processes. For papers that aim to

reduce the computational cost of bootstrap procedures and simulation experiments that involve

bootstrap estimators, see, for example, the fast double bootstrap by Davidson and MacKinnon

(2002, 2007) and the warp-speed bootstrap by Giacomini, Politis, and White (2013).

The rest of the paper is organized as follows. Section 2 discusses the incidental parameters

problem in a nonlinear panel data model with �xed e¤ects. Section 3 describes the standard

bootstrap bias correction procedure and the k-step bootstrap bias correction procedure. Section

4 establishes the asymptotic properties of our estimators. Some extensions are given in Section

5. Section 5.1 discusses bias correction for average marginal e¤ect estimation, and Section 5.2

introduces the double bootstrap procedure for CI construction. Monte Carlo simulation results

are reported in Section 6. The last section concludes. For easy reference, we provide a list of

selected notations before presenting technical proofs.

2 Incidental Parameters Problem

In this section, we introduce the incidental parameters problem and discuss the asymptotic bias

of the �xed e¤ects estimator in a nonlinear panel data model.

Throughout the paper, we maintain the assumption of cross sectional independence. To

specify the nonlinear panel data model, we only need to describe the data generating process for

each time series fWi :Wi1; : : : ;WiT g where Wit 2 RdW , i = 1; 2; : : : ; n and dW is the dimension
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of W: We partition Wit into Wit = (Y
0
it; X

0
it)
0 where fXitg are strictly exogenous, and hence can

be conditioned on or taken as �xed, and fYitg form a �-th order Markov process for some �nite

integer �: To simplify the presentation, we ignore Xit so that Wit = Yit: In the presence of fXitg ;

our results hold conditional on fXitg.

We assume that the density and distribution functions of Yit given Yit�1; : : : ; Yi1 are

f(�jYit�1; : : : ; Yit��; �; �i) and F (�jYit�1; : : : ; Yit��; �; �i)

respectively, where � 2 Rd� is a vector of parameters of interest and �i is a scalar capturing

individual heterogeneity. We assume that the initial observations fYi0; : : : ; Yi1��g are available

in which case there are T + � time series observations. But our inference will be conditioned on

the initial observations, so the e¤ective time series sample size is T:

Let i =
�
�0; �i

�0 be the parameter that governs individual time series, and denote the para-
meter space for i by � � �� � ��.3 The true parameter i0 =

�
�00; �i0

�0 belongs to a subset �0
of �: Let Zit = (Yit; Yit�1; : : : ; Yit��)

0 and l(�; �i;Zit) � log f(YitjYit�1; : : : Yit��; �; �i). When we

need to emphasize the dependence of Zit on the true parameter i0, we write Zit = Zit (i0) : The

objective function for the �xed e¤ects estimator, �̂nT , is the concentrated log-likelihood function

based on �̂i(�). That is, we obtain �̂nT by solving

�̂nT = argmax
�2��

nX
i=1

TX
t=1

l(�; �̂i(�);Zit); (1)

where

�̂i(�) = arg max
�i2��

TX
t=1

l(�; �i;Zit); (2)

and �� and �� are assumed to be compact. We denote �̂ (�) � (�̂1(�); : : : ; �̂i(�); : : : ; �̂n(�))
0,

�0 � (�10; : : : ; �i0; : : : ; �n0)0 and �̂ � �̂(�̂nT ):

It follows from equation (2) that �̂i(�) is based on only T time series observations (Zi1; : : : ; ZiT ).

Therefore, if T is �xed, �̂i does not converge to �i0 even though n ! 1. The estimation error

in �̂i leads to the inconsistency of �̂nT , i.e. plimn!1 �̂nT 6= �0. This is known as the incidental

parameters problem �rst noted by Neyman and Scott (1948). From the standard asymptotic

theory for extremum estimators (e.g. Amemiya, 1985), we have �̂nT !p �T as n ! 1 with T
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�xed, where �T � argmax� E
hPT

t=1 l(�; �̂i(�);Zit)
i
and4

E

"
TX
t=1

l(�; �̂i(�);Zit)

#
� lim
n!1

1

n

nX
i=1

E

"
TX
t=1

l(�; �̂i(�);Zit)

#
: (3)

Since �0 maximizes E[
PT
t=1 l(�; �i0;Zit)], which is di¤erent from E

hPT
t=1 l(�; �̂i(�);Zit)

i
; it is

usually the case that �T 6= �0. As a result, �̂nT is inconsistent as n!1 for a �xed T:

As T !1; we can show by stochastic expansion that

�T = �0 +
B(�0; �0)

T
+ o

�
1

T

�
(4)

for some B(�0; �0) that is not zero in general. So the asymptotic bias is of order O(1=T ) and

approaches zero as T increases.

The above asymptotic analysis, which is �rst discussed in HN, is conducted under the sequen-

tial asymptotics under which n!1 for a �xed T followed by letting T !1: This approach is

also employed by Hahn and Kuersteiner (2002) who consider dynamic linear panel data models.

The basic intuition on the incidental parameters bias holds under the joint asymptotics where

n and T go to 1 simultaneously. When n and T grow at the same rate, the asymptotic bias is

of the same order of magnitude as the asymptotic standard error, which is of order O(1=
p
nT ):

In this case, the asymptotic distribution of
p
nT (�̂nT � �0) will not be centered at zero. More

speci�cally, when n!1 and T !1 simultaneously such that n=T ! � 2 (0;1), we can write:

p
nT (�̂nT � �0) = AnT (�0; �0) +

r
n

T
BnT (�0; �0) + op (1) (5)

for some AnT (�0; �0) and BnT (�0; �0) that satisfy

AnT (�0; �0)
d�! N(0;
) and BnT (�0; �0)!p B(�0; �0) (6)

where 
 � 
 (�0; �0) is the asymptotic variance matrix. The expressions for AnT and BnT are

given in Section 4. So the asymptotic distribution of
p
nT (�̂nT � �0) is centered at

p
�B(�0; �0);

which is in general not zero. Statistical inference that ignores the nonzero center may result in

misleading conclusions.

Since the mean of
p
nT (�̂nT � �0) may not exist,

p
n=TBnT (�0; �0) is not necessarily equal
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to E[
p
nT (�̂nT � �0)]. For any M > 0; de�ne the truncation function ~gM (x) on R by

~gM (x) =

8>>><>>>:
M; if x > M ;

x; if jxj �M ;

�M; if x < �M:

(7)

Then ~gM (x) is bounded and Lipschitz-continuous. With some abuse of notation, for any x 2 Rdx ;

let gM (x) = (~gM (x1) ; : : : ; ~gM (xdx))
0 2 Rdx : By construction, EgM [

p
nT (�̂nT ��0)] always exists.

Under some rate conditions on M; we can show that

EgM
hp

nT (�̂nT � �0)
i
=
p
n=TBnT (�0; �0) + o (1) : (8)

To correct the asymptotic bias of �̂nT , we need to estimate EgM [
p
nT (�̂nT � �0)]:

3 Bootstrap Bias Correction

In this section, we introduce the parametric bootstrap bias correction procedures. We maintain

cross sectional independence in the bootstrap world and generate each time series fY �itgTt=1��
according to the conditional probability density function f(�jY �it�1; : : : ; Y �it��; �̂nT ; �̂i), which is

the same as the conditional probability density function for the original sample but with i0 =�
�00; �i0

�0 replaced by ̂i = (�̂
0
nT ; �̂i)

0: For the bootstrap sample, we use the same initial values

and other conditioning variables, if any, as for the original sample.

Let Z�it =
�
Y �it ; Y

�
it�1; : : : ; Y

�
it��

�0
: Based on fZ�i1; : : : ; Z�iT gni=1, we can obtain the bootstrap

estimators �̂
�
nT and �̂

�
i (�̂

�
nT ) by conditional ML estimation. That is,

�̂
�
nT = argmax

�2��

nX
i=1

TX
t=1

l(�; �̂�i (�);Z
�
it); (9)

where

�̂�i (�) = arg max
�i2��

TX
t=1

l(�; �i;Z
�
it): (10)

Under some regularity conditions, as n ! 1 and T ! 1 such that n=T ! � 2 (0;1) ; we

have
p
nT (�̂

�
nT � �̂nT ) = A�nT (�̂nT ; �̂) +

r
n

T
B�nT (�̂nT ; �̂) + op� (1) (11)
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conditional on a set with probability approaching 1 (see Lemma A.4). Here A�nT (�; �) and

B�nT (�; �) are de�ned in the same manner as AnT (�; �) and BnT (�; �) but the former are based

on the bootstrap sample rather than the original sample. We have

r
n

T
B�nT (�̂nT ; �̂) = E�gM

hp
nT (�̂

�
nT � �̂nT )

i
+ op (1) ; (12)

where E� is the expectation operator under the bootstrap probability distribution P � conditional

on the original sample.

Using
p
n=TB�nT (�̂nT ; �̂) or its asymptotically equivalent form E�gM

hp
nT (�̂

�
nT � �̂nT )

i
as

an estimator of
p
n=TBnT (�0; �0), we can de�ne the BBC estimator ~�nT by

p
nT (~�nT � �0) =

p
nT (�̂nT � �0)� E�gM

hp
nT (�̂

�
nT � �̂nT )

i
: (13)

Equivalently,

~�nT = �̂nT �
1p
nT
E�gM

hp
nT (�̂

�
nT � �̂nT )

i
: (14)

To compute E�gM [
p
nT (�̂

�
nT � �̂nT )]; we generate R bootstrap samples and obtain R bootstrap

estimates f�̂�(r)nT , r = 1; : : : ; Rg and then let

~E�gM
hp

nT (�̂
�
nT � �̂nT )

i
=
1

R

RX
r=1

gM

�p
nT (�̂

�(r)
nT � �̂nT )

�
: (15)

We choose a large enough R so that the di¤erence between ~E�gM [�] and E�gM [�] can be made as

small as possible.

To reduce the computational cost, we use the k-step NR iterative procedure to approximate

�̂
�
nT . Let �̂

�
nT;k and �̂

�
k =

�
�̂�1;k; : : : ; �̂

�
n;k

�0 denote the k-step bootstrap estimators. We de�ne
�̂
�
nT;k and �̂

�
k recursively in the following way:0@ �̂

�
nT;k

�̂�k

1A =

0@ �̂
�
nT;k�1

�̂�k�1

1A� (Hk�1)�1 Sk�1 (16)

where5

Hk�1 =
1

nT

nX
i=1

TX
t=1

@2l (�; �i;Z
�
it)

@
�
�0; �0

�0
@
�
�0; �0

������
�=�̂

�
nT;k�1;�=�̂

�
k�1

(17)
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Sk�1 =
1

nT

nX
i=1

TX
t=1

@l (�; �i;Z
�
it)

@
�
�0; �0

�0
�����
�=�̂

�
nT;k�1;�=�̂

�
k�1

(18)

and the start-up estimators are given by �̂
�
nT;0 = �̂nT ; �̂

�
0 = �̂:

De�ne the k-step BBC estimator as

~�nT;k � �̂nT �
1p
nT
E�gM

hp
nT
�
�̂
�
nT;k � �̂nT

�i
; (19)

which is analogous to the BBC estimator de�ned in (14). We will show that the k-step BBC

estimator is asymptotically equivalent to the standard BBC estimator when k � 2:

4 Asymptotic Properties

In this section, we show that the standard and k-step bootstrap bias corrections remove the

nonzero center of the asymptotic distribution of
p
nT (�̂nT � �0):

Let  =
�
�0; �1; : : : ; �n

�0 and 0 = ��00; �10; : : : ; �n0�0 : To emphasize their dependence on the
parameter value, we may use P0 and E0 to denote the probability measure and its expectation

under 0: Similarly, we use �̂nT (0) and �̂i (0) to highlight their dependence on the observations

fZit (i0) ; t = 1; : : : ; Tgni=1 generated under the parameter value 0:When needed, we use similar

notations in the bootstrap world, for example, E�̂ ; fZ�it (̂i)g, etc.

Following HN (2004), we de�ne

uit(i) �
@

@�
l(�; �i;Zit) and vit(i) �

@

@�i
l(�; �i;Zit) (20)

and let additional subscripts denote partial derivatives, e.g., vit�i(i) � @2

@�2i
l(�; �i;Zit). Let

Uit(i) = uit (i)� �i0vit (i) (21)

where

�i0 =
E
PT
t=1 uit�i (i0)

E
PT
t=1 vit�i (i0)

: (22)

De�ne

 it (i0) = �
vit (i0)

E
h
T�1

PT
t=1 vit�i (i0)

i : (23)

8



We suppress the arguments of the functions such as uit; vit; and  it when they are evaluated at

the true value i0. For any function h(�;Zit) and p = 1; 2; we let @ph(i;Zit) be the matrix of

p-th order derivatives of h(i;Zit) with respect to i: Denote

G(i0; i) � lim
T!1

1

T

TX
t=1

Ei0 l(i;Zit); (24)

assuming that the limit exists for each i0 and i 2 �:

Let Ait(i0) = � (Zit(i0); Zit�1 (i0) ; : : :) and Bit(i0) = � (Zit(i0); Zit+1 (i0) ; : : :) be the

�-algebras generated by the respective sequences. De�ne the strong mixing coe¢ cients

�i (i0;m) = sup
t

sup
A2Ait(i0)

sup
B2Bit+m(i0)

��Pi0 (A \ B)�Pi0 (A)Pi0(B)�� : (25)

For some � > 0; let �1 = int fi 2 � : ki � �0k � �g be a slightly larger set than �0; where

ki � �0k is the usual Euclidean distance between a point and a set, and int (S) is the interior

of set S:

To establish the consistency of �̂i and �̂nT ; we maintain the following assumptions:

Assumption 1 (i) l(i;Zit) is continuous in i 2 �; (ii) � is compact.

Assumption 2 For each i; fZit (i0)g is a strong mixing sequence with strong mixing coe¢ cients

satisfying

sup
i

sup
i02�1

�i (i0;m) � C1 exp (�C2m)

for some constants C1 2 (0;1) and C2 2 (0;1) :

Assumption 3 (i) As a function of i; l(i;Zit) is four-times continuously di¤erentiable;

(ii) There exists some function M(Zit) �M(Zit (i0)) such that�����@m1+m2 l(i;Zit)

@m1
i;�1

@m2
i;�2

����� �M(Zit);

for all i 2 �; �1; �2 = 1; 2; : : : ; d and for m1;m2 = 0; : : : ; 4; and m1 +m2 � 4 where i;�1 and

i;�2 are the �1-th and �2-th elements of i; respectively.

(iii) For some Q > d� + 12; supi;t supi02�1 Ei0f[M(Zit (i0))]
Qg <1.
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(iv) As T ! 1; T�1
PT
t=1 Ei0M(Zit) converges to limT!1 T�1

PT
t=1 Ei0M(Zit) uniformly

over i = 1; 2; : : : ; n and i0 2 �1:

Assumption 4 For each � > 0, there exists � > 0 such that

inf
i

inf
i02�1

"
G (i0; i0)� sup

fi:ki�i0k>�g
G(i0; i)

#
� �:

Assumption 5 n!1 and T !1 jointly such that n=T ! � 2 (0;1) :

Assumption 1 ensures that the maximization problem is well de�ned. The mixing and moment

conditions in Assumptions 2 and 3 ensure that the ULLN and/or CLT hold for l(i;Zit) and its

derivatives: These conditions are similar to Conditions 3 and 4 in HK who have veri�ed them for

some nonlinear panel data models. Assumption 3(iii) maintains that M (Zit (i0)) has enough

moments. We note that the existence of higher moments of M (Zit (i0)) is typically assumed in

the literature. For example, HN assume that Ei0f[M (Zit (i0))]
64g < 1 and HK assume that

Ei0
�
f[M (Zit (i0))]gQ

�
<1 for Q > 42 in the case when di = 2: The minimum value of Q in

HK grows with the dimension of i with 42 as the lower bound. Assumption 4 is the identi�cation

assumption for extremum estimators. It is similar to Condition 3 in HN and Condition 1 in HK.

Assumption 5 speci�es the asymptotic sequence we consider.

In Assumptions 2�4, we have assumed that the conditions hold uniformly over i0 2 �1 and

i: The reason for the uniformity requirement over i0 2 �1 is that in the bootstrap world the

true parameter value is ̂i, which is random but falls in a shrinking neighborhood around �0 with

probability approaching one at a certain rate. So ̂i 2 �1 with probability approaching one at this

rate. We use the uniformity assumption to ensure that the approximation errors in the bootstrap

world are small. For more discussion on the uniformity requirement, see Andrews (2005). The

uniformity requirement over i = 1; 2; : : : ; n controls the degree of cross sectional heterogeneity.

If there is no heterogeneity beyond what is re�ected in i0; then this uniformity requirement is

satis�ed trivially.

Theorem 1 Let Assumptions 1�5 hold. Then for any � > 0;

sup
02�



1

P0

��̂nT (0)� �0 > �
�
= o

�
1

T

�
and sup

02�


1

P0

�
max
i
j�̂i (0)� �i0j > �

�
= o

�
1

T

�
;
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where �
1 �
n
 =

�
�0; �1; : : : ; �n

�0
:
�
�0; �i

�0 2 �1o :
The proof of the theorem is based on a modi�cation of standard arguments for the consistency

of extremum estimators. The modi�cation is needed as the dimension of the parameter space

increases with the cross sectional sample size n. We also need the uniform consistency of �̂i:

Pointwise consistency of �̂i for each i is not su¢ cient for our stochastic expansion. It is clear

from the proof that the theorem still holds if Q > d� + 12 in Assumption 3(iii) is replaced by

Q > d� +5 but we require the stronger condition to control the remainder term in the stochastic

expansion given in Theorem 2.

Let �ui��; �vi�� and �vi��i be the time series averages of uit�; vit� and vit�i ; respectively. We make

additional assumptions to establish a stochastic expansion of our estimator.

Assumption 6 0 = (�
0
0; �

0
0)
0 is an interior point in �
 =

n
 =

�
�0; �1; : : : ; �n

�0
: � 2 ��; �i 2 ��

o
.

Assumption 7 There exist constants � > 0 and C > 0 such that when n and T are large enough:

(i) infi;i02�1 jE�vi��i(i0)j � � and supi;i02�1 kE�vi�� (i0)k � C;

(ii) sup02�


1
�min

n
n�1

Pn
i=1

�
E�ui��(i0)� [E�vi�� (i0)]0 [E�vi��i(i0)]

�1 [E�vi�� (i0)]
�o

� � where

�min (A) denotes the smallest eigenvalue of A.

Assumption 6 is standard. Assumption 7 maintains the full rank condition on the information

matrix. Under Assumption 7, we can obtain a rate of convergence result for �̂nT and �̂:

To simplify the presentation, we introduce some new terms and notations. For a random

variable enT (0) ; we say that enT (0) is of order o
U
p (1) and write enT (0) = oUp (1) if for any

� > 0; sup02�


1
P0 (kenT (0)k > �) = o (1) : We say that enT (0) is of order O

U
p (1) and write

enT (0) = OUp (1) if for any " > 0; there exists aK > 0 such that sup02�
1 P0 (kenT (0)k > K) �

" when n and T are large enough.

Let

HnT � HnT (0) =
1

nT

nX
i=1

TX
t=1

EUit;� (0) ;

SnT � SnT (0) =
1p
nT

nX
i=1

TX
t=1

Uit (0) ; (26)

11



and

bnT � bnT (0) =
1

nT

nX
i=1

TX
t=1

tX
s=1

E isUit�i +
1

2n

nX
i=1

 
1

T

TX
t=1

EUit�i�i

! 
1

T

TX
t=1

E 2it

!
: (27)

De�ne

AnT (0) = �H�1
nT (0)SnT (0) and BnT (0) = �H

�1
nT (0) bnT (0) : (28)

Theorem 2 Let Assumptions 1�7 hold. Then

�̂nT � �0 =
1p
nT

AnT (0) +
1

T
BnT (0) +

1

T
e�nT (0) ;

�̂i � �i0 =
1p
nT

Ci (0) +
1p
T
Di (0) +

1

T
Ei (0) +

1

T
e�inT (0)

where e�nT (0) and maxi
��e�inT (0)�� are of order oUp (1) and AnT (0) ; BnT (0) ; Ci (0) ; Di (0)

and Ei (0) are of order O
U
p (1).

The expressions for Ci (0) ; Di (0) and Ei (0) are not important here. They are given in

the appendix of proofs. See (A.21). In the special case when fZitg are iid across t, we have

bnT =
1

n

nX
i=1

�
E ( itUit�i) +

1

2
(EUit�i�i)

�
E 2it

��
: (29)

Let V2it � v2it+vit�:Using the Bartlett identities, we can show that bnT = � 1
2n

Pn
i=1 E (V2itUit) =E(v2it);

which is the same as what HN obtain for iid data.

Theorem 3 Let Assumptions 1�7 hold. Assume that M !1 such that M = O (T ) : Then

(i) sup02�


1

E0gM [pnT (�̂nT � �0)]�pn=TBnT (0) = o(1);

(ii)
E�̂gM [pnT (�̂�nT � �̂nT )]�pn=TBnT (̂) = op(1) uniformly over 0 2 �
0 ;

(iii)
p
nT (~�nT � �0)

d�! N [0;
 (0)] for each 0 2 �
0 where

�
0 :=
n
 =

�
�0; �1; : : : ; �n

�0
:
�
�0; �i

�0 2 �0o and 
 (0) = �
�

lim
(n;T )!1

HnT (0)

��1
.

Theorem 3(iii) gives the pointwise normal approximation for each 0 2 �
0 : In the proof, we

obtain the following stronger and uniform result: for any c 2 Rd� and � 2 R,

sup
02�



0

���P0(c0pnT (~�nT � �0)=pc0
 (0) c < �)� � (�)
��� = o (1)
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where �(�) is the standard normal CDF. The above result implies that the asymptotic size of a

normal or chi-square test is well controlled.

Theorem 4 Let the assumptions in Theorem 3 hold. Then for all k � 2;

E�̂
n
gM [

p
nT (�̂

�
nT;k � �̂nT )]� gM [

p
nT (�̂

�
nT � �̂nT )]

o
= op (1)

uniformly over 0 2 �
0 :

When k = 1; E�̂
n
gM [

p
nT (�̂

�
nT;k � �̂nT )]� gM [

p
nT (�̂

�
nT � �̂nT )]

o
= Op (1) : In this case, the

di¤erence between the two bias estimators is large enough to a¤ect the asymptotic distribution.

Therefore, condition k � 2 is necessary for the k-step bootstrap method to achieve e¤ective bias

reduction.

Combining Theorems 3 and 4, we get the following theorem immediately.

Theorem 5 Let the assumptions in Theorem 3 hold. Then for all k � 2;

p
nT (~�nT;k � �0)

d�! N [0;
 (0)] :

As in Theorem 3(iii), Theorem 5 holds uniformly over 0 2 �
0 : It provides the usual basis

for asymptotic inference. Both asymptotic normal and chi-square inferences can be conducted.

As an example, suppose that we are interested in testing H0 : c0�0 = r against H1 : c0�0 6= r for

some c 2 Rd� : We construct the t-statistic as follows:

tnT � tnT (0) =

p
nT
�
c0~�nT;k � r

�
p
c0
̂nT c

=

p
nTc0

�
~�nT;k � �0

�
p
c0
̂nT c

(30)

where


̂nT � 
̂nT
�
~�nT;k; ~�i;k

�
=

 
� 1

nT

nX
i=1

TX
t=1

Uit�(~�nT;k; ~�i;k)

!�1
and

~�k � �̂� 1p
T
E�gM

hp
T (�̂�k � �̂)

i
(31)

is the k-step BBC estimator of �0: The consistency of ~�k is proved in Lemma A.5 in the Appendix.

Using the standard arguments, we can show that 
̂nT is a consistent estimator of 
 (0) under

Assumptions 2 and 3. So tnT
d! N (0; 1) under H0:

13



5 Some Extensions

5.1 Bias Correction for Average Marginal E¤ects

In this subsection, we suggest bias correction for the estimator of an average marginal e¤ect

using the k-step bootstrap procedure. In nonlinear models, the average marginal e¤ect may be as

interesting as a model parameter because it summarizes the e¤ect over a certain sub-population,

which is often the quantity of interest in empirical studies.

There are several di¤erent average marginal e¤ects. The �rst average marginal e¤ect, which

we refer to as �the �xed e¤ect average� or simply the average marginal e¤ect, is the marginal

e¤ect averaged over �i0: It is de�ned as6 �1(w) = n�1
Pn
i=1�(w; �0; �i0); where w is the value

of the covariate vector where the average e¤ect is desired. For example, in a probit model,

�(w; �0; �i0) = �0(j)�(w
0�0 + �i0) where �0(j) and �(�) are the coe¢ cient on the j-th regressor

of interest and the standard normal density function respectively. The second average marginal

e¤ect, which we refer to as �the overall average marginal e¤ect�, is the marginal e¤ect averaged

over both �i and the covariates. It is de�ned as �2 = (nT )
�1Pn

i=1

PT
t=1�(Zit; �0; �i0): See also

Fernández-Val (2009). The third average marginal e¤ect, which bridges the �rst two de�nitions,

can be de�ned by

�(w) =
1

nT

nX
i=1

TX
t=1

�(w; ~Zit; �0; �i0); (32)

where we set some covariates at the �xed value w and take an average over the rest of covariates

~Zit and the �xed e¤ects. The third de�nition includes the �rst two as special cases. So without

loss of generality, we can focus on the third de�nition.

A natural estimator of �(w) is

�̂(w) =
1

nT

nX
i=1

TX
t=1

�(w; ~Zit; �̂nT ; �̂i): (33)

As in the case for the estimation of model parameters, we construct a BBC estimator of �(w) as

follows

~�(w) = �̂(w)� 1p
nT
E�gM

hp
nT (�̂�(w)� �̂(w))

i
(34)

where

�̂�(w) =
1

nT

nX
i=1

TX
t=1

�(w; ~Z�it; �̂
�
nT ; �̂

�
i ) (35)

14



and the expectation E�gM (�) can be computed by simulation. Similarly, our k-step BBC estimator

of �(w) is

~�k(w) = �̂(w)� 1p
nT
E�gM

hp
nT (�̂�k(w)� �̂(w))

i
(36)

where

�̂�k(w) =
1

nT

nX
i=1

TX
t=1

�(w; ~Z�it; �̂
�
nT;k; �̂

�
i;k): (37)

Let

LnT (0) =
1

nT

nX
i=1

TX
t=1

E
h
��(w; ~Zit; i0)� �i0��i(w; ~Zit; i0)

i
: (38)

De�ne

A�nT (0) = L0nT (0)AnT (0) (39)

and

B�nT (0) =
1

nT

nX
i=1

TX
t=1

E�0�(w; ~Zit; i0)BnT (0) +
1

nT

nX
i=1

TX
t=1

E
h
��i(w;

~Zit; i0)Ei (0)
i

+
1

nT

nX
i=1

X
t;s

E
h
��i(w;

~Zit; i0) is

i
+

1

2nT

nX
i=1

TX
t=1

E
h
��i�i(w;

~Zit; i0)D
2
i (0)

i
(40)

where �� (�) ;��i (�) and ��i�i (�) are the partial derivatives of �(�) :

Theorem 6 Let the assumptions in Theorem 3 hold. In addition, assume that (i) �(w; ~Zit; i)

is a twice continuously di¤erentiable function in i; (ii) there exists some function M�(Zit) such

that
���@m1+m2�(w; ~Zit; i)=@

m1
i;�1

@m2
i;�2

��� �M�(Zit); for m1;m2 = 0; : : : ; 3 and m1+m2 � 3; (iii)

supi;t supi02�1 Ei0f[M�(Zit (i0))]
6g <1. Then

(i)
p
nT [�̂(w)� �(w)] d�! N

�p
�B� (0) ;


� (0)
�
;

(ii)
p
nT [~�(w)� �(w)] d�! N [0;
� (0)] ;

(iii)
p
nT [~�k(w)� �(w)]

d�! N [0;
� (0)] for k � 2;

where B� (0) = lim(n;T )!1B�nT (0) and 

� (0) = � lim(n;T )!1 L0nT (0)H

�1
nT (0)LnT (0) :

The asymptotic bias of �̂(w) comes from three di¤erent sources. The �rst term in (40) comes

from the asymptotic bias of �̂nT : The second term in (40) comes from the asymptotic bias of

�̂i: The last two terms in (40) capture the nonlinear bias originated from the fact that �̂(w) is

nonlinear in �̂ and that �̂ is random.
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5.2 Distributional Approximation by Double Bootstrap

The normal approximations in Theorems 5 and 6 may not work very well in �nite samples. As an

alternative, we can approximate the distributions of
p
nT (~�nT;k � �0) and

p
nT [~�k(w)� �(w)]

using double bootstrap. We focus on
p
nT (~�nT;k � �0) and the results can be easily extended to

p
nT [~�k(w)� �(w)] :

The double bootstrap sample is generated under the same DGP but using ̂� = (�̂
�0
nT ; �̂

�0)0 as

the model parameter. De�ne

~�
�
nT;k = �̂

�
nT �

1p
nT
E��̂�gM

hp
nT
�
�̂
��
nT;k � �̂

�
nT

�i
(41)

where �̂
��
nT;k is the k-step estimator based on the double bootstrap sample and using ̂

� as the

starting point, and E��̂� is the expectation operator with respect to the randomness in the double

bootstrap sample, conditional on ̂�: The above de�nition is entirely analogous to the k-step

BBC estimator given in (19). The mechanics behind ~�nT;k and ~�
�
nT;k can be illustrated by the

following chart:

�0 7! �̂nT 7! �̂
�
nT;k � ~�nT;k � �̂nT �

1p
nT
E�̂gM

hp
nT
�
�̂
�
nT;k � �̂nT

�i
;

�̂nT 7! �̂
�
nT 7! �̂

��
nT;k � ~�

�
nT;k � �̂

�
nT �

1p
nT
E��̂�gM

hp
nT
�
�̂
��
nT;k � �̂

�
nT

�i
: (42)

where, for example, ��0 7! �̂nT�signi�es that �̂nT is the MLE based on the sample governed by

the model parameter �0 (and �0). We will show in Theorem 7 below that the distribution of
p
nT (~�

�
nT;k � �̂nT ) is consistent for that of

p
nT (~�nT;k � �0):

While ~�
�
nT;k is the bootstrap analogue of ~�nT;k; it involves the standard bootstrap estimator

̂� which is computationally intensive. To alleviate the computational burden, we use the k-step

estimate ̂�k = (�̂
�
nT;k; �̂

�
k) as the model parameter to generate the double bootstrap sample. We

call this sample the double k-step bootstrap sample. We de�ne our double k-step BBC estimator

as

~�
�
nT;kk = �̂

�
nT;k �

1p
nT
E��̂�kgM

hp
nT
�
�̂
��
nT;kk � �̂

�
nT;k

�i
(43)

where �̂
��
nT;kk is the k-step estimator based on the double k-step bootstrap sample and using ̂

�
k

as the starting point. Similar to the chart in (42), we can use the chart below to illustrate the
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mechanics behind ~�
�
nT;kk and the corresponding quantity ~�nT;kk :

�0 7! �̂nT;k 7! �̂
�
nT;kk � ~�nT;kk � �̂nT;k �

1p
nT
E�̂kgM

hp
nT
�
�̂
�
nT;kk � �̂nT;k

�i
;

�̂nT ! �̂
�
nT;k ! �̂

��
nT;kk � ~�

�
nT;kk � �̂

�
nT;kk �

1p
nT
E��̂�kgM

hp
nT
�
�̂
��
nT;kk � �̂

�
nT;k

�i
:

Here �̂nT;k is the k-step �estimator� starting with �0 and �0: It is a theoretical and infeasible

object. For this reason, �̂
�
nT;kk and hence ~�nT;kk are infeasible, but they are useful in analyzing

the asymptotic properties of ~�
�
nT;kk:

The following theorem establishes the consistency of the bootstrap approximation.

Theorem 7 Let the assumptions in Theorem 3 hold. Let # be a vector in Rd� ; then for any

� > 0;

(i) sup02�


0
P0

n
sup#

���P �̂ hpnT (~��nT;k � �̂nT ) < #
i
� P0

hp
nT (~�nT;k � �0) < #

i��� � �
o
= o(1);

(ii) sup02�


0
P0

n
sup#

���P �̂ hpnT (~��nT;kk � �̂nT ) < #
i
� P0

hp
nT (~�nT;kk � �0) < #

i��� � �
o
= o(1):

The proof of the theorem shows that
p
nT (~�nT;k � �0) and

p
nT (~�nT;kk � �0) have the same

limiting distribution. Therefore the distribution of
p
nT (~�nT;k � �0) can be approximated by the

distribution of either
p
nT (~�

�
nT;k � �̂nT ) or

p
nT (~�

�
nT;kk � �̂nT ):

Theorem 7 can be used to construct con�dence intervals or regions. As an example, let c be

a vector in Rd� and suppose that c0�0 is the parameter of interest. Let qc;1�� be 1�� quantile of
p
nTc0(~�

�
nT;k � �̂nT ); i.e., P �̂

hp
nTc0(~�

�
nT;k � �̂nT ) � qc;1��

i
= �: In the appendix, we show that

sup
02�



0

P0

hp
nTc0(~�nT;k � �0) � qc;1��

i
� � = o(1): (44)

Similar results hold for the approximation based on the distribution of
p
nT (~�

�
nT;kk � �̂nT ):

We can also approximate the distribution of tnT de�ned in (30) using double bootstrap. We

de�ne

t�nT;k =

p
nTc0

�
~�
�
nT;kk � �̂nT

�
r
c0
̂�nT

�
~�
�
nT;kk; ~�

�
kk

�
c

: (45)

Then under the assumptions in Theorem 3, we have for � 2 R,

sup
02�



0

P0

�
sup
�2R

��P �̂ �t�nT;k (̂) < �
�
� P0 (tnT (0) < �)

�� � �

�
= o(1):
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The proof is similar to Theorem 7 and is omitted.

6 Monte Carlo Study

In this section, we report our Monte Carlo results. We consider both the static model and

dynamic model. The number of simulation replications is 1000.

6.1 Static Model

We consider the following probit model:

Yit = 1fXit�0 + �i � �it � 0g; �it�N(0; 1); �i�N(0; 1=102);

Xit = �t+Xi;t�1=2 + �it; Xi0 = �i0; �it�U(�1=2; 1=2);

n = 100; T = 4; 8; 12; �0 = 1:

This design is based on the DGP used in Heckman (1981), Greene (2004), HN, and Fernández-Val

(2009). The only di¤erence is that we simulate �i using N(0; 1=102) instead of N(0; 1) to reduce

the chance of each time series Yit (t = 1; : : : ; T ) being constant over time.

If there is no trend component in Xit; i.e., � = 0; the above probit model �ts within our

framework. While Xit is correlated over time, our framework accommodates the conditional

MLE with strictly exogenous regressors. On the contrary, even if � = 0; it does not �t within

the theoretical framework employed by HN where (Xit; Yit) is assumed to be independent across

i and t. As we discuss in Section 4, the bias expression in the presence of serial dependence is

di¤erent from that with iid data. Thus, their analytic bias corrections are not valid in this case.

However, we still employ their estimators here for the purpose of comparison. We note that there

is no correlation between Xit and �i in the model, and this is di¤erent from the usual condition

under which the �xed e¤ects estimator is used. However, the incidental parameters problem is

still present, as it has nothing to do with whether there is a correlation between Xit and �i or

not. As an empirical model, Heckman (1981), Greene (2004), HN, and Fernández-Val (2009)

consider � = 1=10: For comparison purposes, we consider � = 1=10 as well as � = 0: We report

the results for � = 1=10 only as the results for � = 0 are qualitatively similar.
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The original ML estimator of model parameters is

(�̂nT ; �̂) = argmax
�;�

1

nT

nX
i=1

TX
t=1

[Yit log �(Xit� + �i) + (1� Yit) log(1� �(Xit� + �i)] ;

and the estimators of the average marginal e¤ect and overall average marginal e¤ect are

�̂1( �X) =
1

n

nX
i=1

�̂nT�( �X�̂nT + �̂i); �̂2 =
1

nT

nX
i=1

TX
t=1

�̂nT�(Xit�̂nT + �̂i);

where �X is the sample mean of fXitg.

For the k-step bootstrap, we use the �xed regressor bootstrap and use �̂nT and f�̂igni=1 as

the true parameters to generate bootstrap samples. We obtain �̂
�
nT;k using the NR iterative

procedure given in (16). We repeat this procedure 999 times (R = 999). Then, we construct the

bias corrected k-step bootstrap estimator using (19). To implement the bias correction, we need

to choose the truncation parameter M . While the rate M = O(T ) is theoretically interesting,

it does not give us any practical guidance. In practice, we suggest selecting a large M to avoid

imposing a too tight restriction on bias estimation. For example, we can set M equal to C
p
nT

with C being an integer multiple of the typical value of the individual model parameters. The

multiple can be set equal to the (rounded) average standard error of �̂nT : In the simulations, we

set M = 1000: We examine the sensitivity of bootstrap bias estimation to the choice of M . The

simulation results, which are not reported for brevity, show that the performances of the BBC

estimators do not change across the values of M = 50; 100; 500; 1000; 2000 in all cases.

We compare the performance of our bias corrected estimator with four alternative bias cor-

rected estimators: the jackknife and analytic bias corrected estimators by HN and the analytic

bias corrected estimator by Fernández-Val (2009). The jackknife bias corrected estimator is de-

noted �JK�. For the analytic estimators by HN, there are two versions: the analytic bias corrected

estimator using Bartlett equalities, denoted �BC1�; the analytic bias corrected estimator based

on general estimating equations, denoted �BC2�. Fernández-Val�s estimator is denoted �BC3�.

In this static setting, we ignore the serial dependence and choose the bandwidth to be zero in

implementing BC3.

For each estimator, we report its mean, median, standard deviation, root mean squared error,

and the empirical size of two-sided nominal 5% and 10% tests. The tests are based on symmetric
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CI�s, that is, we reject the null hypothesis if the parameter value under the null falls outside

the CI�s. For the jackknife and analytic bias correction procedures, the interval estimators or

the testing methods are based on normal approximation using the standard errors evaluated at

the bias corrected parameter estimators as those given in the respective papers. For the k-step

procedure, the CI�s are constructed based on the double bootstrap approximation as well as the

normal approximation. The double bootstrap CI�s are

�
~�nT;k � T �1��=2

1p
nT

̂(~�nT;k; ~�k); ~�nT;k + T

�
1��=2

1p
nT

̂(~�nT;k; ~�k)

�

where T �1��=2 is the (1� �=2) � 100% percentile of jt�nT;kj de�ned in (45). We also employ the

double bootstrap procedure to construct CI�s for the average marginal e¤ects. The standard

errors for the bias corrected estimators of the average marginal e¤ects and the corresponding

bias corrected estimators in the bootstrap world are evaluated at the bias uncorrected parameter

estimator (�̂nT ; �̂) and its bootstrap version (�̂
�
nT;k; �̂

�
k) respectively. In the simulation experiment,

we set the number of double bootstrap iterations to be 100. We do so in order to reduce the

computational burden. In empirical applications, we should use a larger number.

Table 1 reports the performance of the standard and k-step BBC estimators. From this table,

we see that there is no sacri�ce of accuracy by using the k-step bootstrap procedure in this

setting. When k � 2; the k-step bootstrap bias correction tends to reduce the bias signi�cantly

as the standard bootstrap does. Results not reported here show that the one-step procedure is

not e¤ective in bias reduction. This result is consistent with our Theorem 5, which shows that

the order of bias is reduced from O (1=T ) to o (1=T ) when k � 2. As discussed before, for each

k value, we can use either the observed Hessian or expected Hessian in the NR steps, leading to

two versions of the k-step procedure. In terms of the MSE, the 2-step bootstrap estimators with

expected and observed Hessians are the best when T = 4. When T = 8 and 12, there is little

di¤erence in performances among the standard and k-step BBC estimators.

Table 2 compares di¤erent bias correction methods. We choose the 2-step bootstrap with

observed Hessian as our benchmark. First, we see that the original estimator without bias

correction is severely biased when T is small. As T gets larger, the bias gets smaller, but there

is still no improvement in the coverage accuracy of CI�s. When T = 4, the bias of the original

estimator is 35%. When T = 12, the bias is reduced to 14%. But the empirical null rejection

probability is 35:5% for the two-sided 5% test, which is even more inaccurate than the one
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with T = 4. Second, the k-step bootstrap performs well in �nite samples compared to the other

methods. In particular, when T = 4, the bias of our estimator is 9% and RMSE is 0.213, while the

bias of the jackknife method is 24% and its RMSE is 0.319. The analytic method by Fernández-

Val (2009) has a bias of 4%; but its RMSE is 0.240, which implies that its variance is larger

than ours. As T becomes large, all the bias corrected estimators we consider tend to have similar

RMSEs. Third, in terms of coverage accuracy, we see that our bootstrap bias corrections (double

k-step bootstrap approximation and normal approximation) and BC3 yield more accurate CI�s

than the other methods.

Table 3 presents the ratio of the estimators of the average marginal e¤ect to the true value.

As HN and Fernández-Val (2009) show, the bias of the original estimator is negligible, even

when T = 4. Its bias is less than 1%, and in terms of RMSE, it performs as well as the bias

corrected ones. However, the CI�s based on the bias uncorrected estimator are inaccurate when

we have a small T . When T = 4, its error in coverage probability for the 95% CI is about

5%. Inaccurate CI�s are not just the problem of the bias uncorrected estimator. The CI�s using

normal approximations with the bias corrected estimators still su¤er from large coverage errors.

When T = 4, the errors in coverage probability for the 95% CI from jackknife and analytic

estimators are 13% and 4�7% respectively. It is 4:6% for the k-step BBC estimator with normal

approximation. In contrast, the coverage error of the 95% CI constructed using the double k-step

bootstrap is 2:7%. Compared with the normal approximation, the improvement from the double

k-step bootstrap approximation is not large but exceeds the margin of simulation error.

To save space, we do not report the table for the overall average marginal e¤ect, but we note

that the qualitative observations for Table 3 remain valid.

6.2 Dynamic Model

We consider panel logit and probit models for the dynamic case, but we report only the results

for the panel logit model here. Using the simulation design of HK, we have

Yi0 = 1f�i +X 0
i0�X � �it � 0g; Yit = 1f�i +X 0

it�X + Yit�1�Y � �it � 0g;

Xit � N
�
0; (�2=3) � Idim(Xit)

�
, �it

iid� L(0; �2=3);

dim (Xit) = 1; 2; �i = (X
(1)
i0 +X

(1)
i1 +X

(1)
i2 +X

(1)
i3 )=4;

i = 1; : : : ; n; t = 1; : : : ; T � 1; n = 250; T = 8; 16; �Y = 0:5; �X = 1; [1; 1]
0;
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where L denotes the standardized logistic distribution and X(1)
it is the �rst component of Xit.

We report the bias and RMSE of �Y and �X for each estimator.

Table 4 presents the simulation results. Here we employ the analytic bias corrections by Hahn

and Kuersteiner (2011, HK) and Fernández-Val (2009), which are denoted by �BC1�and �BC3�

respectively. We also consider the bias correction by Honoré-Kyriazidou (2000). For BC1 and

Honoré-Kyriazidou, we replicate the Monte Carlo results in Hahn and Kuersteiner (2011). In

contrast to our bootstrap bias correction, the alternative methods depend on bandwidth choices.

HK use the bandwidth 8 for Honoré-Kyriazidou, and use a bandwidth around 1 for BC1. In our

simulations, we set the bandwidth to 1 to implement BC3. Table 4 shows that our bias correction

performs best in an overall sense. Honoré-Kyriazidou performs well only when the dimension of

Xit is low. The performance of BC3 is comparable to our approach for the two sample sizes given

in the table. Simulations results not reported here show that BC3 does not perform as well as

our approach when the time series sample size reduces to T = 4:

7 Conclusion

In this paper, we establish the asymptotic validity of parametric bootstrap bias correction for

�xed e¤ects estimators in nonlinear panel data models. In particular, we propose using the k-step

bootstrap procedure to alleviate the computational cost of implementing the standard bootstrap

and show that it is asymptotically equivalent to the standard parametric BBC estimator when

k � 2. We also apply the k-step bootstrap procedure to average marginal e¤ect estimation and to

the double bootstrap for CI construction. In the simulation, we show that the k-step bootstrap

bias correction achieves substantial bias reduction. The CI�s based on the double k-step bootstrap

tend to have smaller coverage errors than the other CI�s especially when T is small.

The possible higher order re�nement of double bootstrap CI is not studied here, which is an

interesting topic for future research. Also, the fact that we employ the parametric bootstrap limits

the applicability of our bias correction procedures. It will be interesting in future to consider a

nonparametric approach to bootstrap bias correction.
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List of Some Notations

i =
�
�0; �i

�0 2 � � �� � ��  =
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0
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�
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�0; �i

�0 2 �o �
0 =
n
 =

�
�0; �1; : : : ; �n

�0
:
�
�0; �i

�0 2 �0o

Table 1: Finite Sample Performance of Standard and k-step BBC Estimators (n = 100; �0 = 1)

Estimator Mean Median SD RMSE

T = 4

k=2, E 0.97 0.97 0.206 0.208
k=2, O 0.91 0.91 0.193 0.213
k=3, E 0.84 0.84 0.164 0.232
k=3, O 0.82 0.82 0.158 0.241
Standard 0.81 0.81 0.157 0.249

T = 8

k=3, E 0.96 0.96 0.099 0.106
Standard 0.96 0.96 0.099 0.107
k=2, E 1.00 1.00 0.107 0.107
k=2, O 0.98 0.97 0.106 0.109
k=3, O 0.96 0.95 0.101 0.110

T = 12

Standard 0.98 0.97 0.073 0.076
k=3, O 0.98 0.97 0.073 0.077
k=3, E 0.98 0.98 0.075 0.077
k=2, O 1.00 1.00 0.079 0.079
k=2, E 1.01 1.01 0.078 0.079

Notes: We use �E�to indicate the use of the expected Hessian in the k-step bootstrap while we
use �O�to indicate the use of the observed Hessian in the k-step bootstrap. The estimators are
ordered according to their RMSE.
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Table 2: Finite Sample Performance of Di¤erent Bias Corrected Estimators of � (n = 100; �0 = 1)

Estimator Mean Median SD p;.05 p;.10 RMSE

T = 4

Probit 1.35 1.33 0.311 0.265 0.363 0.468
2-step-BBC 0.91 0.91 0.193 0.038 0.073 0.213

(0.032) (0.071)
JK 0.76 0.76 0.215 0.112 0.195 0.319
BC1 1.09 1.07 0.262 0.054 0.103 0.276
BC2 1.17 1.15 0.284 0.094 0.166 0.331
BC3 1.04 1.03 0.237 0.030 0.068 0.240

T = 8

Probit 1.16 1.15 0.132 0.260 0.357 0.209
2-step-BBC 0.98 0.97 0.106 0.040 0.083 0.109

(0.051) (0.087)
JK 0.95 0.94 0.108 0.059 0.111 0.120
BC1 1.04 1.04 0.121 0.068 0.126 0.129
BC2 1.05 1.04 0.120 0.065 0.118 0.128
BC3 1.01 1.01 0.113 0.040 0.085 0.114

T = 12

Probit 1.14 1.14 0.096 0.355 0.477 0.171
2-step-BBC 1.00 1.00 0.079 0.036 0.078 0.079

(0.040) (0.091)
JK 0.97 0.97 0.080 0.074 0.129 0.086
BC1 1.04 1.04 0.089 0.088 0.148 0.098
BC2 1.03 1.03 0.087 0.063 0.126 0.092
BC3 1.01 1.01 0.083 0.044 0.102 0.084

Notes: �Probit�denotes the bias uncorrected �xed e¤ects MLE based on the probit model; �JK�
denotes HN Jackknife bias corrected estimator; �BC1�denotes HN bias corrected estimator based
on Bartlett equalities; �BC2�denotes HN bias corrected estimator based on general estimating
equations; �BC3� denotes Fernández-Val (2009) bias corrected estimator which uses expected
quantities in the estimation of the bias; p;.05 and p;.10 denote empirical rejection probabilities of
two-sided nominal 5% and 10% tests. The numbers in the parentheses indicate empirical rejection
probabilities of the 2-step bootstrap bias corrected test using the normal approximation.
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Table 3: Finite Sample Performance of Di¤erent Bias Corrected Estimators of the Average Mar-
ginal E¤ect (n = 100; true value = 1)

Estimator Mean Median SD p;.05 p;.10 RMSE

T = 4

Probit 0.99 0.98 0.218 0.103 0.184 0.218
2-step-BBC 0.99 0.98 0.219 0.077 0.132 0.219

(0.096) (0.164)
JK 1.08 1.06 0.273 0.181 0.250 0.283
BC1 0.99 0.99 0.233 0.115 0.184 0.233
BC2 1.03 1.03 0.227 0.104 0.178 0.229
BC3 0.93 0.93 0.202 0.095 0.156 0.214

T = 8

Probit 1.00 1.00 0.105 0.068 0.122 0.105
2-step-BBC 0.99 0.99 0.104 0.051 0.110 0.105

(0.051) (0.103)
JK 1.00 0.99 0.107 0.071 0.126 0.107
BC1 1.01 1.01 0.108 0.073 0.137 0.108
BC2 1.00 1.00 0.105 0.067 0.124 0.105
BC3 0.98 0.98 0.102 0.075 0.122 0.104

T = 12

Probit 1.01 1.01 0.070 0.065 0.121 0.070
2-step-BBC 0.99 0.99 0.069 0.064 0.109 0.069

(0.046) (0.096)
JK 0.99 0.98 0.072 0.065 0.128 0.074
BC1 0.99 0.98 0.070 0.058 0.111 0.072
BC2 0.99 0.99 0.070 0.053 0.106 0.070
BC3 0.98 0.98 0.069 0.060 0.120 0.072

Notes: See notes to table 2.
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Table 4: Finite Sample Performance of Di¤erent Bias Corrected Estimators of the �Y and �X
(n = 250; �Y = 0:5,�X = 1; [1; 1]0)

dim (Xit) = 1 dim (Xit) = 2

�Y �X �Y �
(1)
X

Bias RMSE Bias RMSE Bias RMSE Bias RMSE
T = 8

Logit -0.75 0.77 0.26 0.27 -0.69 0.72 0.33 0.34
2-step-BBC 0.07 0.17 0.01 0.06 0.10 0.20 0.00 0.07

BC1 -0.25 0.29 0.08 0.11 -0.24 0.30 0.09 0.13
BC3 -0.05 0.15 -0.02 0.06 -0.06 0.17 0.10 0.14

Honoré-Kyriazidou -0.07 0.18 0.02 0.08 -0.29 0.32 -1.09 1.10

T = 16

Logit -0.30 0.31 0.10 0.11 -0.28 0.31 0.12 0.13
2-step-BBC 0.02 0.09 0.00 0.04 0.02 0.10 -0.01 0.04

BC1 -0.06 0.11 0.01 0.04 -0.06 0.12 0.02 0.05
BC3 -0.01 0.09 0.00 0.04 -0.02 0.10 0.00 0.04

Honoré-Kyriazidou -0.08 0.13 0.00 0.04 -0.49 0.26 -1.04 1.04

Notes: �Logit�denotes the bias uncorrected �xed e¤ects MLE based on the logit model; �BC1�de-
notes HK bias corrected estimator; �BC3�denotes Fernández-Val (2009) bias corrected estimator;
�Honoré-Kyriazidou� denotes Honoré-Kyriazidou (2000) bias corrected estimator. �

(1)
X denotes

the �rst element of �X :

26



Appendix of Proofs

Proof of Theorem 1. We �rst prove the result that sup02�
1 P0

��̂nT (0)� �0 > �
�
=

o
�
T�1

�
. For � and � given in Assumption 4, we have

P0

��̂nT (0)� �0 � �
�
� P0

�(�̂0nT ; �̂i)0 � (�00; �i0)0 > � for i = 1; 2; : : : ; n
�

= P0 (k̂i � i0k > � for i = 1; 2; : : : ; n)

� P0 (G (i0; i0)�G(i0; ̂i) � � for i = 1; 2; : : : ; n)

� P0

 
1

n

nX
i=1

[G (i0; i0)�G (i0; ̂i)] � �

!
: (A.1)

Under Assumptions 1(ii) and 3, we have

sup
i
sup
i2�

�����G (i0; i)� 1

T

TX
t=1

Ei0 l (i;Zit)

����� = o (1)

as T !1: Using this and the de�nition of ̂i; we have

sup
02�



1

P0

��̂nT � �0 � �
�

� sup
02�



1
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1

nT

X
i;t
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02�


1

P0

 
sup
12�
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����� 1nT
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l(i;Zit)� Ei0 l(i;Zit (i0))
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!
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1
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� sup
02�



1
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sup
i
sup
i2�

����� 1T
TX
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�
l(i;Zit)� Ei0 l(i;Zit (i0)

������ � �
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!
+ o(

1

T
) (A.2)

�
nX
i=1

sup
i02�1

Pi0

 
sup
i2�

����� 1T
TX
t=1

~lit(i0; i)

����� � �

3

!
+ o(

1

T
)

for ~lit(i0; i) � l(i;Zit)� Ei0 l (i;Zit (i0)) : Since � is compact, it can be covered by a union

of balls [j=1;:::;J(�)fB(
(j)
i ; �=

p
T )g where the number of balls is J (�) = O((

p
T )d�+1): We have
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Pi0
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i2�

����� 1T
TX
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~lit(i0; i)
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Under Assumption 3, we have

���~lit(i0; i)� ~lit(i0; (j)i )��� � C [M (Zit(i0)) + EM (Zit(i0))]
i � (j)i 

� C� [M (Zit(i0)) + EM (Zit(i0))] =
p
T ;

and so

max
j

sup
i2B(

(j)
i ;�=

p
T )

����� 1T
TX
t=1

h
~lit(i0; i)� ~lit(i0; 

(j)
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i����� � C�

T
p
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TX
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[M (Zit(i0)) + EM (Zit(i0))] :

As a result,

Pi0

0@max
j
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����� 1T
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h
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Since C�p
T

��� 2T PT
t=1 EM (Zit(i0))

��� is deterministic and approaches zero, the second term in the

above equation goes to zero at an arbitrarily slow rate. For the �rst term, we use Assumptions 2,

3, and the strong mixing moment inequality of Yokoyama (1980) and Doukhan (1995, Theorem
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2 and Remark 2, pp. 25�30) to obtain

Ei0

�����
TX
t=1

[M (Zit(i0))� EM (Zit(i0))]

�����
p

� CT p=2

where C is a constant that does not depend on i0 and p � 2: Invoking the Markov�s inequality,

we have
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Using the strong mixing moment inequality again, we have
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This, combined with (A.3) and (A.5), yields
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Therefore sup02�
1 P0

��̂nT (0)� �0 � �
�
= O(nT�
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Next, we prove the second part of the result. For any i = 1; 2; : : : ; n; we have
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But for ��nT between �0 and �̂nT ;
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If we choose p 2 (d� + 5; Q); then nT�(
p
2
� d�+1

2
) = o(T�1); and as a result
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for any � > 0:
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To prove Theorem 2, we �rst establish a lemma, which employs the convention that

@m1+m2 l(~i;Zit (i0))

@m1
i;�1

@m2
i;�2

=
@m1+m2 l(i;Zit (i0))

@m1
i;�1

@m2
i;�2

ji=~i ;

E
@m1+m2 l(~i;Zit (i0))

@m1
i;�1

@m2
i;�2

=

"
E
@m1+m2 l(i;Zit (i0))

@m1
i;�1

@m2
i;�2

#
i=~i

:

Lemma A.1 Let Assumptions 1�7 hold. In addition, let m1;m2 = 0; : : : ; 4 such that m1+m2 �

4; and let � = (��
0
; ��0)0 satisfy

sup
02�



1

P0

��� � �0 > �
�
= o (1=T ) ; sup

02�


1

P0

�
max
i
j��i � �i0j > �

�
= o (1=T )

for any � > 0. Then

(i) for any � > 0;

sup
02�



1

P0

 �����supi 1

T

TX
t=1

"
@m1+m2 l(�i;Zit (i0))

@m1
i;�1

@m2
i;�2

� E@
m1+m2 l(i0;Zit (i0))

@m1
i;�1

@m2
i;�2

#����� > �

!
= o (1=T ) :

(ii) there exists K <1 such that

sup
02�



1

P0

 
sup
i

1

T

TX
t=1

�����@m1+m2 l(�i;Zit (i0))

@m1
i;�1

@m2
i;�2

����� > K

!
= o (1=T ) :

Proof of Lemma A.1. Part (i). Given the assumptions on �; we have sup02�
1 P (�i =2 �1) =

o (1=T ) : It thus su¢ ces to focus on the event that �i 2 �1: Note that for 
y
i between �i and i0;�����supi 1

T

TX
t=1

"
@m1+m2 l(�i;Zit (i0))

@m1
i;�1

@m2
i;�2

� E@
m1+m2 l(i0;Zit (i0))

@m1
i;�1

@m2
i;�2

#�����
� sup

i
sup
i2�1

����� 1T
TX
t=1

"
@m1+m2 l(i;Zit (i0))

@m1
i;�1

@m2
i;�2

� E@
m1+m2 l(i;Zit (i0))

@m1
i;�1

@m2
i;�2

#�����
+sup

i

1

T

TX
t=1

diX
�3=1

E

�����@m1+m2+1l(i;Zit (i0))

@m1
i;�1

@m2
i;�2

@i;�3

�����
i=

y
i

���i;�3 � i0;�3��
� sup

i
sup
i2�1

����� 1T
TX
t=1

"
@m1+m2 l(i;Zit (i0))

@m1
i;�1

@m2
i;�2

� E@
m1+m2 l(i;Zit (i0))

@m1
i;�1

@m2
i;�2

#�����
+di sup

i;t
sup
i02�1

EM(Zit(i0))max�3
���i;�3 � i0;�3�� � T1 + T2:
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Under Assumption 3, the second term T2 satis�es sup02�
1 P0
�
T2 > �

2

�
= o (1=T ) : It remains

to show that

sup
02�



1

P0

(
max
i

sup
i2�1

jT1j >
�

2

)
= o

�
1

T

�
:

But this can be proved using exactly the same argument in showing

sup
02�



1

P0

 
sup
i
sup
i2�

����� 1T
TX
t=1

[l(i;Zit (i0))� El(i;Zit (i0))]
����� � �

2

!
= o(

1

T
)

in the proof of Theorem 1. See (A.2). The di¤erences are (i) l(i;Zit (i0)) and El(i;Zit (i0)

are now replaced by @m1+m2 l(i;Zit (i0))=@
m1
i;�1

@m2
i;�2

and its expectation (ii) the sup inside the

probability is taken over a smaller set �1 � �: In view of Assumptions 2 and 3, this replacement

does not cause any problem in our argument.

Part (ii). Again, we focus on the event that �i 2 �1; which happens with probability

1� o (1=T ) : Observing that

1

T

TX
t=1

�����@m1+m2 l(�i;Zit (i0))

@m1
i;�1

@m2
i;�2

����� � 1

T

TX
t=1

M(Zit (i0));

we have, for K > limT!1maxi T
�1PT

t=1 EM(Zit (i0));

sup
02�



1

P0

 
max
i

1

T

TX
t=1

�����@m1+m2 l(�i;Zit (i0))

@m1
i;�1

@m2
i;�2

����� > K

!

�
nX
i=1

sup
02�



1

P0

 
1

T

TX
t=1

[M(Zit (i0))� EM(Zit (i0))] > K �max
i

1

T

TX
t=1

EM(Zit (i0))

!

�
nX
i=1

sup
02�



1

E
nPT

t=1 [M(Zit (i0))� EM(Zit (i0))]
o6

T 6
h
K �maxi 1T

PT
t=1 EM(Zit (i0)

i6
= O

� n
T 3

�
= O

�
1

T 2

�
= o

�
1

T

�
: (A.10)

Proof of Theorem 2. Following the arguments similar to HK(2011), we can establish the
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following representations

�̂nT � �0 =
1p
nT

~AnT +
1

T
~BnT + o

U
p

�
1

T

�
�̂i � �i0 =

1p
nT

~Ci +
1p
T
~Di +

1

T
~Ei + o

U
p

�
1

T

�
(A.11)

where ~AnT ; ~BnT ; ~Ci; ~Di and ~Ei are matrices of order OUp (1). To determine these matrices, we

�rst take a second order Taylor expansion of
PT
t=1 vit(�̂nT ; �̂i) = 0; leading to

oUp

�
1

T

�
= �vi� + �vi��

�
1p
nT

~AnT +
1

T
~BnT

�
+ �vi��i

�
1p
nT

~Ci +
1p
T
~Di +

1

T
~Ei

�
+
1

2
�vi��i�i

�
1p
nT

~Ci +
1p
T
~Di +

1

T
~Ei

�2
=

hp
T �vi� + ~Di�vi��i

i 1p
T
+
h
�vi�� ~AnT + �vi��i ~Ci

i 1p
nT

+

�
�vi�� ~BnT + �vi��i ~Ei +

1

2
�vi��i�i ~D

2
i

�
1

T
;

where �vi� is the time series average of vit and other notations are similarly de�ned.

Since the above holds for all n and T , the coe¢ cients for 1=
p
T ; 1=

p
nT and 1=T must be zero

or approach zero at a certain rate. So

~Di = �
p
T �vi�
�vi��i

+ oUp

�
1p
T

�
; ~Ci = �

�vi��
�vi��i

~AnT + o
U
p

�r
n

T

�
;

~Ei = �
�vi�� ~BnT +

1
2�vi��i�i

~D2
i

�vi��i
+ oUp (1) : (A.12)

The oUp (�) terms above can be absorbed into the remainder term of order oUp (1=T ) in (A.11). We

drop them from now on without loss of generality and rede�ne ~Di; ~Ci and ~Ei as

~Di = �
p
T �vi�
�vi��i

; ~Ci = �
�vi��
�vi��i

~AnT ; ~Ei = �
�vi�� ~BnT +

1
2�vi��i�i

~D2
i

�vi��i
: (A.13)

We use the above de�nitions hereafter. Let

Di = �
PT
t=1 vitp

TE [�vi��i ]
=

1p
T

TX
t=1

 it:
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We can expand ~Di as follows:

~Di = Di

"
1 +

T�1
PT
t=1 (vit�i � Evit�i)
E [�vi��i ]

#�1
(A.14)

= Di +
1p
T

T�1
hPT

t=1 vit

i hPT
t=1 (vit�i � Evit�i)

i
fE [�vi��i ]g

2 +OUp

�
1

T

�
:

Next, we take a second order Taylor expansion of
Pn
i=1

PT
t=1 uit(�̂nT ; �̂i) = 0; leading to

0 =
1

nT

nX
i=1

TX
t=1

uit +
1

nT

nX
i=1

TX
t=1

uit�(�̂nT � �0)

+
1

nT

nX
i=1

TX
t=1

uit�i [�̂i � �i0] +
1

2nT

nX
i=1

TX
t=1

uit�i�i(
��; ��i) [�̂i � �i0]2

+
1

2nT

nX
i=1

TX
t=1

�it(
��; ��i) +

1

nT

nX
i=1

TX
t=1

[�̂i � �i0]uit��i(��; ��i)(�̂nT � �0); (A.15)

where �it(��; ��i) =
�
�it;1; : : : ; �it;r; : : : ; �it;d�

�0 is a vector with r-th element
�it;r � �it;r(

��; ��i) = (�̂nT � �0)0uit;��r(��; ��i)(�̂nT � �0):

Plugging the de�nitions of ~Ci; ~Di and ~Ei into (A.15), we have

OUp

�
1

T
p
T
+

1p
nT

�
=

1

nT

nX
i=1

TX
t=1

uit +
1

nT

nX
i=1

TX
t=1

uit�

�
1p
nT

~AnT +
1

T
~BnT

�

+
1

nT

nX
i=1

TX
t=1

uit�i

�
1p
nT

~Ci +
1p
T
~Di +

1

T
~Ei

�
+

1

2nT

nX
i=1

TX
t=1

uit�i�i
1

T
~D2
i

=

 
1

nT

nX
i=1

TX
t=1

uit +
1

n

nX
i=1

�ui��i
1p
T
Di

!
+

1p
nT

 
1

n

nX
i=1

�ui�� �
1

n

nX
i=1

�ui��i
�vi��
�vi��i

!
~AnT

+
1

nT

nX
i=1

�
�ui�� ~BnT + �ui��i ~Ei +

1

2
�ui��i�i ~D

2
i

�

+
1

nT

nX
i=1

24 �ui��i
�
T�1

PT
t=1

PT
s=1 vitvis�i

�
[E (�vi��i)]

2 � T�1
PT
t=1

PT
s=1 uit�ivis

E (�vi��i)

35 ;
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where

1

nT

nX
i=1

�
�ui�� ~BnT + �ui��i ~Ei +

1

2
�ui��i�i ~D

2
i

�

=
1

nT

nX
i=1

�
�ui�� �

�ui��i
�vi��i

�vi��

�
~BnT +

1

nT

nX
i=1

�
1

2
�ui��i�i �

1

2

�ui��i�vi��i�i
�vi��i

�
~D2
i

=
1

nT

nX
i=1

�
�ui�� �

�ui��i
�vi��i

�vi��

�
~BnT +

1

2nT

nX
i=1

��
�ui��i�i �

�ui��i�vi��i�i
�vi��i

��
T�1

PT
t=1

PT
s=1 vitvis

(�vi��i)
2 :

De�ne

~HnT =
1

nT

nX
i=1

TX
t=1

�
uit� �

�ui��i
�vi��i

vit�

�
; (A.16)

~SnT =
1p
nT

nX
i=1

TX
t=1

�
uit �

�ui��i
E�vi��i

vit

�
; (A.17)

~bnT;1 =
1

2n

nX
i=1

�
�ui��i�i �

�ui��i�vi��i�i
�vi��i

�
T�1

PT
t=1

PT
s=1 vitvis

(�vi��i)
2 ;

~bnT;2 =
1

n

nX
i=1

8<: �ui��i
�
T�1

PT
t=1

PT
s=1 vitvis�i

�
[E (�vi��i)]

2 � T�1
PT
t=1

PT
s=1 uit�ivis

E (�vi��i)

9=; :

Then ~AnT = � ~H�1
nT
~SnT and ~BnT = � ~H�1

nT

�
~bnT;1 +~bnT;2

�
:

It follows from Lemma A.1 that

~HnT =

 
1

nT

nX
i=1

TX
t=1

EUit�

!�
1 + oUp (1)

�
= HnT + o

U
p (1) ;

~SnT =

 
1p
nT

nX
i=1

TX
t=1

Uit

!�
1 + oUp (1)

�
= SnT + o

U
p (1) :

In addition,

~bnT;1 = �
1

2n

nX
i=1

 
ET�1

PT
t=1 Uit�i�i

ET�1
PT
t=1 vit�i

! 
1

T

TX
t=1

TX
s=1

vit is

!
+ oUp (1) ; (A.18)
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~bnT;2 = � 1
n

nX
i=1

 
�ui��i

E (�vi��i)
1

T

TX
t=1

TX
s=1

 isvit�i +
1

T

TX
t=1

TX
s=1

uit�i is

!

=
1

nT

nX
i=1

TX
t=1

TX
s=1

 is

�
uit�i �

�ui��i
E (�vi��i)

vit�i

�

=
1

nT

nX
i=1

TX
t=1

TX
s=1

Uit�i is + o
U
p (1) ; (A.19)

and so

~bnT;1 +~bnT;2 =
1

nT

nX
i=1

TX
t=1

TX
s=1

Uit�i is + o
U
p (1) ;

� 1

2n

nX
i=1

 
ET�1

PT
t=1 Uit�i�i

ET�1
PT
t=1 vit�i

! 
1

T

TX
t=1

TX
s=1

vit is

!
+ oUp (1)

=
1

nT

nX
i=1

TX
t=1

TX
s=1

E is

"
Uit�i +

 
1

2T
E

TX
�=1

Ui��i�i

!
 it

#
+ oUp (1)

=
1

nT

nX
i=1

TX
t=1

tX
s=1

E isUit�i +
1

2n

nX
i=1

 
1

T

TX
t=1

EUit�i�i

! 
1

T

TX
t=1

E 2it

!
+ oUp (1)

= bnT + o
U
p (1) :

Combining the above approximations, we have

�̂nT � �0 =
1p
nT

AnT +
1

T
BnT + o

U
p

�
1

T

�
(A.20)

for AnT = �H�1
nT SnT and BnT = �H�1

nT bnT : It is easy to see that AnT = OUp (1) and BnT =

OUp (1) :

For the stochastic expansion of �̂i; we can take

Ci (0) = � E�vi��
E�vi��i

AnT ; Di (0) =
1p
T

TX
t=1

 it

Ei (0) = �
(E�vi��)BnT + 1

2 (�vi��i�i)E
�
D2
i (0)

�
E�vi��i

+
T�1

hPT
t=1

PT
s=1 Evit (vis�i � Evis�i)

i
(E�vi��i)

2 :

(A.21)
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Then by Lemma A.1,

�̂i � �i0 =
1p
nT

Ci (0) +
1p
T
Di (0) +

1

T
Ei (0) + o

U
p

�
1

T

�

where all of Ci (0) ; Di (0) and Ei (0) are of order O
U
p (1) : Using the same argument for proving

(A.9), we can show that

max
i

�����̂i � �i0 � � 1p
nT

Ci (0) +
1p
T
Di (0) +

1

T
Ei (0)

����� = oUp (1) : (A.22)

To prove Theorem 3 and other results, we will use the following two lemmas repeatedly.

Lemma A.2 helps translate the asymptotic results for the original sample into the corresponding

ones for the bootstrap sample. Lemma A.3 shows that the e¤ect of nonlinear truncation can be

ignored in large samples.

Lemma A.2 Let �nT () be a sequence of real functions on �
1 . If (i) sup02�
1 j�nT (0)j =

o (anT ) for some sequence anT ; (ii) sup02�
0 P0 (k̂ � 0k � �) = o (anT ) ; then for any " > 0;

sup
02�



0

P0 (j�nT (̂)j � anT ") = o(anT ):

Proof of Lemma A.2. In view of condition (ii), we have sup02�
0 P0
�
̂ =2 �
1

�
= o (anT ) :

Now

sup
02�



0

P0 (j�nT (̂)j � anT ")

� sup
02�



0

P0
�
j�nT (̂)j � anT "; ̂ 2 �
1

�
+ sup
02�



0

P0
�
̂ =2 �
1

�
� sup

02�


0

P0

 
sup
2�
1

j�nT ()j � anT "

!
+ o(anT )

= sup
02�



0

P0 (o(anT ) � anT ") + o(anT ) = o(anT ); (A.23)

where the last equality holds because P0 (o(anT ) � anT ") = 0 when n and T are large enough.
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Lemma A.3 Let ĴnT () and ~JnT () be two sequences of random vectors in RdJ indexed by

 2 �
1 . Assume (i) sup02�
1 P0(jjĴnT (0)�
~JnT (0) jj � �) = o (cnT ) for any � > 0 and some

cnT = o(1) as (n; T ) ! 1; (ii) supn;T sup02�
1 (E0 jj
~JnT (0) jj2) < 1: Then as M ! 1 such

that M = O (1=cnT ) ; we have sup02�
1

E0gM [ĴnT (0)]� E0 [ ~JnT (0)] = o(1):

Proof of Lemma A.3. Note that ~gM (�) is Lipschitz continuous. It follows from condition (i)

that

sup
02�



1

P0

�gM (ĴnT (0))� gM � ~JnT (0)� � �
�
= o(cnT ):

Using this result, we have, as M !1 such that M = O (1=cnT ) :

sup
02�



1

E0 hgM (ĴnT (0))� gM ( ~JnT (0))i
� sup

02�


1

E0
gM (ĴnT (0))� gM ( ~JnT (0)) 1ngM (ĴnT (0))� gM ( ~JnT (0)) � �

o
+ sup
02�



1

E0
gM (ĴnT (0))� gM ( ~JnT (0)) 1ngM (ĴnT (0))� gM ( ~JnT (0)) < �

o
� o(McnT ) + � = � + o(1);

for any � > 0. This implies that sup02�
1

E0 hgM (ĴnT (0))� gM ( ~JnT (0))i = o (1) as

(n; T;M)!1 such that M = O (1=cnT ) : But

E0
h
gM

�
~JnT (0)

�i
= E0

h
~JnT (0)

i
+RnT;M (0)

where RnT;M (0) � E0
h
gM

�
~JnT (0)

�
� ~JnT (0)

i
satis�es

sup
02�



1

kRnT;M (0)k � sup
02�



1

E0
 ~JnT (0) 1n ~JnT (0) >pdJMo

� sup
02�



1

�
E0

 ~JnT (0)2�1=2 �P0 n ~JnT (0) >pdJMo�1=2
� sup

02�


1

�
E0

 ~JnT (0)2�1=2�E0  ~JnT (0)2 = �dJM2
��1=2

� sup
n;T

sup
02�



1

�
E0

 ~JnT (0)2� =�pdJM� � C=M (A.24)

for some constant C that does not depend on n; T and 0: Here we have used condition (ii) in the
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lemma. That is, sup02�
1

E0gM [ ~JnT (0)]� E0 [ ~JnT (0)] = o(1); as (n; T;M)!1 such that

M = O (1=cnT ) : Combining this with sup02�
1

E0 hgM (ĴnT (0))� gM ( ~JnT (0))i = o (1)

leads to the desired result.

Lemma A.4 Let the assumptions in Theorem 3 hold. For any � > 0 and " > 0;

sup
02�



0

P0

�
P �̂

�pnT ��̂�nT � �̂nT��A�nT (̂)�rn

T
B�nT (̂)

 � �

�
> "

�
= o

�
1

T

�
:

Proof of Lemma A.4. Let �̂nT () be the estimator of � based on the sample fZit ()g �

fZi1 () ; : : : ; ZiT ()gni=1 generated under the original DGP with parameter value  =
�
�0; �0

�0
:

Similarly let �̂
�
nT () be the estimator of � based on the bootstrap sample fZ�it ()g generated under

the bootstrap DGP with parameter value  = (�; �) : To apply Lemma A.2 with anT = 1=T; we

de�ne

�nT () = P

��̂nT ()� � � 1p
nT

AnT (; fZit ()g)�
1

T
BnT (; fZit ()g)

 � �

T

�
;

and

��nT () = P �

��̂�nT ()� � � 1p
nT

A�nT (; fZ�it ()g)�
1

T
B�nT (; fZ�it ()g)

 � �

T

�
:

Since the original DGP and the bootstrap DGP are the same, we have AnT (; fZit ()g) =

A�nT (; fZit ()g) and BnT (; fZit ()g) = B�nT (; fZit ()g) : That is, AnT and A�nT have the

same function form, so do BnT and B�nT : In addition, �nT () = ��nT () :

It follows from Theorem 2 that sup02�
1 �nT (0) = o (1) for any � > 0: Using the same

arguments as in the proof of Theorem 1 and with additional calculations, we can strengthen the

result to sup02�
1 �nT (0) = o (1=T ) for any � > 0: This stronger result requires Q > d� + 12:

By Theorem 1, sup02�
0 P0 (k̂ � 0k � �) = o (1=T ) : Invoking Lemma A.2 yields:

sup
02�



0

P0 (�
�
nT (̂) � ") = sup

02�


0

P0 (�nT (̂) � ") = o(1=T ):
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Proof of Theorem 3. Part (i). We apply Lemma A.3 with

ĴnT (0) =
p
nT
�
�̂nT (0)� �0

�
; ~JnT (0) = AnT (0) +

p
n=TBnT (0) :

It is not hard to verify the two conditions in the lemma. So
E0gM [ĴnT (0)]� E0 ~JnT (0) =

o(1), and
E0gM [ĴnT (0)]�pn=TBnT (0) = o(1) uniformly over 0 2 �
1 :

Part (ii). Let Ĵ�nT () =
p
nT
�
�̂
�
nT ()� �

�
and de�ne

�nT () = E
�
gM (ĴnT ())�

r
n

T
BnT ()

�
;

��nT () = E�
�
gM (Ĵ

�
nT ())�

r
n

T
B�nT ()

�
:

For the same reason as given in Lemma A.4, �nT () = ��nT () : It follows from Part (i) that

sup02�


1
�nT (0) = o (1) : Hence, by Lemma A.2, sup02�
0 P0 (�

�
nT (̂) � ") = o (1) :

Part (iii). Following the same arguments in HK, we can show that AnT (0)
d�! N [0;
 (0)] :

Under Assumptions 2, 3 and 7, the result can be strengthened to

sup
02�



1

���P0(c0AnT (0)=pc0
 (0) c < �)� � (�)
��� = o (1) (A.25)

for any conformable vector c and � 2 R: In addition, it is easy to see that BnT (̂)� BnT (0) =

op (1) : Using these two results and part (ii), we have

P
np

nT (~�nT � �0) < #
o

= P
np

nT (~�nT � �0) < #; ̂ 2 �
1
o
+ P

np
nT (~�nT � �0) < #; ̂ =2 �
1

o
= P

np
nT
h
�̂nT � �0

i
� E�̂gM

hp
nT
�
�̂
�
nT � �̂nT

�i
< #; ̂ 2 �
1

o
+ o (1)

= P
h
AnT (0)�

p
n=T [BnT (̂)�BnT (0)] < #; ̂ 2 �
1

i
+ o (1)

= P
�
AnT (0) < #; ̂ 2 �
1

�
+ o (1)

= P [AnT (0) < #]� P
�
AnT (0) < #; ̂ =2 �
1

�
+ o (1)

= P [AnT (0) < #] + o(1)
d�! N [0;
 (0)] : (A.26)

Because of (A.25) and that the o(1) terms in the above equation hold uniformly over 0 2 �
0 ;

we have for � 2 R, sup02�
0
���P0(c0pnT (~�nT � �0)=pc0
 (0) c < �)� � (�)

��� = o (1) :
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Proof of Theorem 4. We �rst consider the k-step �estimator�for the original sample:

̂k = ̂k�1 �
�
H
�
̂k�1;Z

���1 S �̂k�1;Z� (A.27)

where Z = fZit; t = 1; : : : ; Tgni=1 ;

H
�
̂k�1;Z

�
=

1

nT

nX
i=1

TX
t=1

@2 (�; �i;Zit)

@
�
�0; �0

�0
@
�
�0; �0

������
�=�̂k�1;�i=�̂i;k�1

(A.28)

S
�
̂k�1;Z

�
=

1

nT

nX
i=1

TX
t=1

@l (�; �i;Zit)

@
�
�0; �0

�0
�����
�=�̂k�1;�i=�̂i;k�1

(A.29)

and ̂0 = 0: While the k-step estimator is feasible for the bootstrap sample, the above k-step

estimator for the original sample is not feasible, as we do not know the true value 0. Nevertheless,

we want to show that there exists a constant K > 0 such that

sup
02�



1

P0

�
T 2

k�1 k̂k � ̂k > K
�
= o (1=T ) :

That is, had we known the true value 0; the infeasible k-step estimator ̂k would be very close

to the MLE ̂ when k is large enough. This result will be used in establishing the convergence

property of the k-step estimator in the bootstrap world.

Using a Taylor expansion and the �rst order condition S (̂;Z) = 0; we have

̂k � ̂ = ̂k�1 �
�
H(̂k�1;Z)

��1 S �̂k�1;Z�� ̂
=
�
H(̂k�1;Z)

��1 �S (̂;Z)� S �̂k�1;Z��H(̂k�1;Z) �̂ � ̂k�1�� (A.30)

=
1

2

�
H(̂k�1;Z)

��1
�
�
̂yk�1;Z

�
where ̂yk�1 lies between ̂ and ̂k�1, �

�
̂yk�1;Z

�
=
�
�1; : : : ; �u; : : : ; �d

�0
is a vector with the

u-th element:

�u � �u

�
̂yk�1;Z

�
=
�
̂k�1 � ̂

�0Hu(̂yk�1;Z) �̂k�1 � ̂�
and

Hu(;Z) =
1

nT

nX
i=1

TX
t=1

@

@u

@2l(;Zit)

@@0
�

0@ H��u (;Z) H��u (;Z)

H��u (;Z) H��u (;Z)

1A : (A.31)
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Now

�u �̂yk�1;Z� � 2��̂k�1 � �̂nT�0H��u �̂yk�1;Z���̂k�1 � �̂nT�
+
2 (�̂k�1 � �̂)0H��u �̂yk�1;Z� (�̂k�1 � �̂)

� 2
H��u �̂yk�1;Z��̂k�1 � �̂nT2

+

 2n
nX
i=1

"
1

T

TX
t=1

H�i�iu
�
̂yk�1;Zit

�#
(�̂i;k�1 � �̂i)2

 ;
where k�k is the Euclidean norm, that is, for a symmetric matrix A; kAk2 = trace(AA0): So

k̂k � ̂k � ��;k�1

�̂k�1 � �̂nT2 + ��;k�1; (A.32)

where

��;k�1 =
�H �̂k�1;Z���1 dX

u=1

H��u(̂yk�1;Z) ;
��;k�1 =

�H �̂k�1;Z���1
������
dX
u=1

1

nT

nX
i=1

TX
t=1

H�i�iu
�
̂yk�1;Zit

�
(�̂i;k�1 � �̂i)2

������ :
For k = 1; we have for any K > 0;

P0 (T k̂k � ̂k � K)

� P0

�
T��;k�1

�̂k�1 � �̂nT2 + T��;k�1 � K

�
� P0

�
T��;k�1

�̂k�1 � �̂nT2 � 0:5K�+ P0 �T��;k�1 � 0:5K�
� P0

�
T
�̂k�1 � �̂nT2 � p0:5K�+ P0 ���;k�1 � p0:5K�+ P0 �T��;k�1 � 0:5K� :

By Lemma A.1, it is not hard to show that sup02�
1 P0

�
��;k�1 �

p
0:5K

�
= o(1=T ) for a large

enough K. Similarly, using the expansions in Theorem 2 and Lemma A.1, we can show that

sup02�


1
P0

�
T��;k�1 � 0:5K

�
= o(1=T ) for a large enough K. Therefore

sup
02�



1

P0 (T k̂k � ̂k � K) � sup
02�



1

P0

�
T
�̂k�1 � �̂nT2 � p0:5K�+ o(1=T ) = o(1=T )
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using sup02�
1 P0

�
T
�0 � �̂nT2 � p0:5K� = o(1=T ) and �̂k�1 = �0 for k = 1:

Using the same steps, we can show that the above holds for k � 2: Hence

sup
02�



1

P0

�
T 2

k�1 k̂k (0)� ̂ (0)k > K
�
= o(1=T ) for all k � 1 (A.33)

where we have written ̂k � ̂k (0) and ̂ � ̂ (0) to emphasize their dependence on the true

parameter 0:

Letting

ĴnT (0) =
p
nT
h
�̂nT;k (0)� �0

i
; ~JnT (0) = AnT (0) +

p
n=TBnT (0)

and invoking Lemma A.3, we have, for k � 2 :

sup
02�



1

E0gM hpnT ��̂nT;k (0)� �0�i�pn=TBnT (0) = o(1):

Combining this with Theorem 3(ii) yields

sup
02�



1

E0gM hpnT ��̂nT;k (0)� �0�i� E0gM hpnT ��̂nT � �0�i = o(1) (A.34)

for k � 2:

De�ne �nT (0) =
E0gM hpnT ��̂nT;k (0)� �0�i� E0gM hpnT ��̂nT � �0�i : Then for

k � 2; sup02�
1 j�nT (0)j = o (1) : It follows from Lemma A.2 that when k � 2;

E�̂
n
gM

hp
nT
�
�̂
�
nT;k � �̂nT

�i
� gM

hp
nT
�
�̂
�
nT � �̂nT

�io
= op (1)

uniformly over 0 2 �
0 :

Proof of Theorem 5. In view of Theorem 4, we have
p
nT (~�nT;k � �0) =

p
nT
�
~�nT � �0

�
+

op (1) : The theorem follows from Theorem 3(iii).

Lemma A.5 Let the assumptions in Theorem 3 hold. Then for any � > 0 and k � 1

sup
02�



1

P0

�
max
i
j~�ik � �i0j > �

�
= o(1):
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Proof of Lemma A.5. Note that

max
i
j~�ik � �i0j � max

i
j�̂i � �i0j+max

i

1p
T
E�̂gM

�p
T (�̂�ik � �̂i)

�
:

Using Theorem 1, we have

sup
02�



1

P0

�
max
i
j~�ik � �i0j > �

�
= sup

02�


1

P0

�
1p
T
max
i
E�̂gM

�p
T (�̂�ik � �̂i)

�
> �

�
+ o(

1

T
):

Let �nT (0) = maxi E0gM
�p

T (�̂ik � �̂i)
�
=
p
T ; then for a large enough K; we have,

sup
02�



1

�nT (0) =
1p
T
max
i

sup
02�



1

E0gM
�p

T (�̂ik � �̂i)
�
1

�
T max

i
(j�̂ik � �̂ij) � K

�
+
1p
T
max
i

sup
02�



1

E0gM
�p

T (�̂ik � �̂i)
�
1

�
T max

i
(j�̂ik � �̂ij) � K

�
� Mp

T
max
i

sup
02�



1

P0

�
T max

i
(j�̂ik � �̂ij) � K

�
+

1p
T

Kp
T

= o

�
Mp
T

�
1

T

�
+

1p
T

Kp
T

�
= o

�
1p
T

�
:

where we have used (A.33). Invoking Lemma A.2 with anT = 1; we obtain

sup
02�



1

P0

�
1p
T
max
i
E�gM

�p
T (�̂�ik � �̂i)

�
> �

�
= o (1) :

As a result, sup02�
1 P0 (maxi j~�ik � �i0j > �) = o(1):

Proof of Theorem 6. Part (i). Under the assumptions on �(w; ~Zit; i); we can use the same

argument for proving Lemma A.1 to obtain

sup
02�



1

P0

 
sup
i

1

T

TX
t=1

�����@m1+m2�(w; ~Zit; i)

@m1
i;�1

@m2
i;�2

����� > K

!
= o(

1

T
) (A.35)

for some large enough constant K:
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Now

p
nT [�̂(w)� �(w)]

=

p
nT

nT

nX
i=1

TX
t=1

h
�(w; ~Zit; �̂nT ; �̂i)��(w; ~Zit; �0; �i0)

i

=

"
1

nT

nX
i=1

TX
t=1

��(w; ~Zit; i0)

#0p
nT
�
�̂nT � �0

�
+

p
nT

nT

nX
i=1

TX
t=1

��i(w;
~Zit; i0) (�̂i � �i0)

+

p
nT

2nT

nX
i=1

TX
t=1

��i�i(w;
~Zit; i0) (�̂i � �i0)2 + oUp (1) : (A.36)

Using Theorem 2, we have

p
nT

nT

nX
i=1

TX
t=1

��i(w;
~Zit; i0) (�̂i � �i0)

= �
"
1

nT

nX
i=1

TX
t=1

��i(w;
~Zit; i0)

E�vi��
E�vi��i

#
AnT �
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TX
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+

r
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T
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TX
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U
p (1)

= �
"
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TX
t=1

��i(w;
~Zit; i0)

E�vi��
E�vi��i

#
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r
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1

T

"
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~Zit; i0)

E�vi��i

#"
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#

+

r
n

T

1
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i=1

TX
t=1

��i(w;
~Zit; i0)Ei (0) + o

U
p (1) ;

p
nT

2nT

nX
i=1

TX
t=1

��i�i(w;
~Zit; i0) (�̂i � �i0)2

=

r
n

T

1

2nT

nX
i=1

TX
t=1

��i�i(w;
~Zit; i0)D

2
i (0) + o

U
p (1) ;

and

1

nT

nX
i=1

TX
t=1

�0�(w; ~Zit; i0)
p
nT
�
�̂nT � �0

�
=

"
1

nT

nX
i=1

TX
t=1

�0�(w; ~Zit; i0)

# �
AnT (0) +

r
n

T
BnT (0)

�
+ oUp (1) :
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So
p
nT [�̂(w)� �(w)] = A�nT (0) +

r
n

T
B�nT (0) + e

�
nT

for some e�nT satisfying sup02�
1 P0(
��e�nT �� > �) = o (1=T ) for any � > 0: This holds because

sup02�


1
P0(

��e�nT �� > �) = o (1=T ), sup02�
1 P0(maxi
��e�inT �� > �) = o (1=T ) and (A.35). As

n; T ! 1 such that n=T ! � 2 (0;1); A�nT (0)
d�! N [0;
� (0)] uniformly in the sense of

(A.25) and B�nT (0) = B� (0) + oUp (1) : Hence
p
nT [�̂(w)� �(w)] d�! N

�p
�B� (0) ;


� (0)
�

uniformly over 0 2 �
1 :

Part (ii). Using the same argument for proving Theorem 3(ii), we can show

sup
02�



1

����E0gM hpnT (�̂(w)� �(w))i�rn

T
B�nT (0)

���� = o (1) : (A.37)

This, combined with Lemma A.2, implies that

sup
02�



0

P0

�����E�̂gM hpnT (�̂�(w)� �̂(w))i�rn

T
B��nT (̂)

���� � �

�
= o (1)

where

B��nT (̂) = E�̂
1

nT

nX
i=1

TX
t=1

�0�(w; ~Z
�
it; ̂i)B

�
nT (̂) +

1

nT

nX
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TX
t=1

E�̂
h
��i(w;

~Z�it; ̂i)E
�
i (̂)

i
� 1

nT

nX
i=1

X
t;s

��i(w;
~Z�it; ̂i) 

�
is (̂i) +

1

2nT

nX
i=1

TX
t=1

E�̂��i�i(w; ~Z
�
it; ̂i)D

2
i (̂) :

Since the DGP�s for the original sample and the bootstrap sample di¤er only in terms of parameter

values, we have B��nT (̂) = B�nT (̂) : As a result, B
��
nT (̂) = B�nT (0)+o

U
p (1) : Using this, we have

p
nT [~�(w)� �(w)] =

p
nT [�̂(w)� �(w)]� E�̂gM

hp
nT (�̂�(w)� �̂(w))

i
= A�nT (0) +

r
n

T
B�nT (0)�

r
n

T
B�nT (̂) + op (1)

= A�nT (0) + op (1)
d�! N [0;
� (0)] ; (A.38)

uniformly in that the underlying probability error converges to zero uniformly over 0 2 �
0 :

46



Part (iii). It su¢ ces to show that

sup
02�



0

P0

n���E�̂gM hpnT (�̂�(w)� �̂(w))i� E�̂gM hpnT (�̂�k(w)� �̂(w))i��� � �
o
= o (1) ;

for k � 2. In view of Lemma A.2, this holds if

sup
02�



1

E0gM hpnT (�̂(w)� �(w))i� E0gM hpnT (�̂k(w)� �̂(w))i = o (1) (A.39)

for k � 2, where �̂k(w) = 1
nT

Pn
i=1

PT
t=1�(w;

~Zit; ̂k) and ̂k is the k-step estimator of 0 de�ned

in (A.27). Noting that for some �i between ̂i and ̂i;k;

p
nT (�̂(w)� �(w))�

p
nT (�̂k(w)� �(w)) =

1
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nX
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t=1

h
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p
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�
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�i
;

(A.40)

we have, for any � > 0 and a large enough K > 0 :

sup
02�
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����pnT (�̂(w)� �(w))�pnT (�̂k(w)� �(w))��� � �
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�
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�(w; ~Zit; �i) pnTKT 2
� �
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�
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T

�
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T

�

for k � 2: Given this, (A.39) follows from the same argument for proving (A.34).

Proof of Theorem 7. Part (i). We �rst introduce the notations �1=2 = int fi 2 � : ki � �0k � �=2g

and �
1=2 =
n
 =

�
�0; �1; : : : ; �n

�0
:
�
�0; �i

�0 2 �1=2o : Let � [�; 
] be the CDF of the multivariate
normal distribution with variance matrix 
: De�ne

�nT (0) = sup
#

���P0 hpnT (~�nT;k � �0) < #
i
� � [#; 
(0)]

��� :
It is not hard to show that sup02�
1=2

j�nT (0)j = o (1) and hence sup02�
0 P0 (j�
�
nT (̂)j � �=2) =
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o (1) by an argument similar to Lemma A.2. But
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Combining this with
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= o(1);

we obtain part (i).

Part (ii). We use the same argument as in Part (i). We rede�ne �nT (0) to be

�nT (0) = sup
#

���P0 hpnT (~�nT;kk � �0) < #
i
� � [#; 
(0)]

��� :
Note that

p
nT (~�nT;kk��0) =

p
nT
�
�̂nT;k � �0

�
�E�̂kgM

hp
nT
�
�̂
�
nT;kk � �̂nT;k

�i
: Using exactly

the same argument that leads to Theorem 3(ii), we have

���E�̂kgM hpnT ��̂�nT;kk � �̂nT;k�i�pn=TBnT (̂k)��� = op (1)
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uniformly over 0 2 �
1=2: Using this and (A.33), we have for k � 2

sup
02�



1=2

���P0 hpnT (~�nT;kk � �0) < #
i
� � [#; 
(0)]

���
= sup

02�


1=2

���P0 hpnT (�̂nT;k � �0)�pn=TBnT (̂k) < #
i
� � [#; 
(0)]

���+ o(1)
= sup

02�


1=2

���P0 hpnT (�̂nT � �0)�pn=TBnT (̂k) < #
i
� � [#; 
(0)]

���+ o(1)
= sup

02�


1=2

���P0 hpnT (�̂nT � �0)�pn=TBnT (̂) < #
i
� � [#; 
(0)]

���+ o(1)
= o(1):

Combining this with Poyla�s lemma, we have sup02�
1=2
j�nT (0)j = o (1) : It then follows from

an argument similar to Lemma A.2 that sup02�
0 P0 (j�
�
nT (̂)j � �=2) = o (1). The rest of the

proof is the same as that in the proof of Part (i) and is omitted here.

Proof of Equation (44). It follows from Theorem 7 (i) that

sup
02�



0

P0

�
sup
�

���P �̂ hpnTc0(~��nT;k � �̂nT ) � �
i
� P0

hp
nTc0(~�nT;k � �0) � �

i��� � �

�
= o(1):

So

sup
02�



0

P0

n���P �̂ hpnTc0(~��nT;k � �̂nT ) � qc;1��
i
� P0

hp
nTc0(~�nT;k � �0) � qc;1��

i��� � �
o
= o(1):

By de�nition P �̂
hp

nTc0(~�
�
nT;k � �̂nT ) � qc;1��

i
= �: As a result,

sup
02�



0

P0

n���P0 hpnTc0(~�nT;k � �0) � qc;1��
i
� �

��� � �
o
= o(1):

Since
���P0 hpnTc0(~�nT;k � �0) � qc;1��

i
� �

��� is deterministic, we must have
sup
02�



0

���P0 hpnTc0(~�nT;k � �0) � qc;1��
i
� �

��� = o(1):
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Notes

1For issues on high order e¢ ciency of bias correction, see Hahn, Kuersteiner and Newey (2004).

2One exception is Pace and Salvan (2006). They suggest a bootstrap bias corrected estimator

when there are nuisance parameters. Their algorithm is di¤erent from ours. While we estimate

the asymptotic bias of the �xed e¤ects estimator directly by bootstrap, they use the bootstrap

procedure to adjust the pro�le likelihood function from which they obtain their bias corrected

estimator.

3For notational simplicity, we have implicitly assumed that the parameter spaces for �i�s are

the same across i: When (�; �i) is regarded as a vector, it is understood to be (�0; �0i)
0: For

notational economy, we sometimes omit the transpose notation if confusion is unlikely.

4The expectation in (3) may not exist because it depends on �̂i(�); an estimator that may

not have enough moments. For the purpose of exposition, we assume that it exists for now. We

later explicitly address this issue using a truncation argument.

5The Hessian matrix we used is called the observed Hessian. We note that some terms in
@2 log l(�;�i;Z�it)
@(�0;�0)0@(�0;�0)

have zero expectation. Dropping these terms in equation (17), we obtain the

expected Hessian. Our asymptotic results remain valid for the expected Hessian, as the dropped

terms are of smaller order.

6Strictly speaking, we should de�ne limn!1 1
n

Pn
i=1�(w; �0; �i0) as the population parame-

ter of interest, but the di¤erence between the �nite sample version and the limiting version is

asymptotically negligible.
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