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Abstract

According to the conventional asymptotic theory, the two-step Generalized Method of
Moments (GMM) estimator and test perform as least as well as the one-step estimator and
test in large samples. The conventional asymptotic theory, as elegant and convenient as it
is, completely ignores the estimation uncertainty in the weighting matrix, and as a result it
may not re�ect �nite sample situations well. In this paper, we employ the �xed-smoothing
asymptotic theory that accounts for the estimation uncertainty, and compare the performance
of the one-step and two-step procedures in this more accurate asymptotic framework. We show
the two-step procedure outperforms the one-step procedure only when the bene�t of using
the optimal weighting matrix outweighs the cost of estimating it. This qualitative message
applies to both the asymptotic variance comparison and power comparison of the associated
tests. A Monte Carlo study lends support to our asymptotic results.
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1 Introduction

E¢ ciency is one of the most important problems in statistics and econometrics. In the widely-
used GMM framework, it is standard practice to employ a two-step procedure to improve the

�For helpful comments and suggestions, we would like to thank Brendan Beare, Graham Elliott, Bruce Hansen,
Jonathan Hill, Min Seong Kim, Oliver Linton, Seunghwa Rho, Peter Robinson, Peter Schmidt, Andres Santos,
Xiaoxia Shi, Valentin Verdier, Tim Vogelsang, Je¤rey Wooldridge and seminar participants at LSU, Madison,
Michigan State, UNC/Duke/NCSU, 2014 Shanghai Jiao Tong University and Singapore Management University
Bi-party Conference, and 2014 Shandong Econometrics Conference, China.

yEmail: j6hwang@ucsd.edu, yisun@ucsd.edu. Correspondence to: Department of Economics, University of
California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0508.

1



e¢ ciency of the GMM estimator and the power of the associated tests. The two-step procedure
requires the estimation of a weighting matrix. According to the Hansen (1982), the optimal
weighting matrix is the asymptotic variance of the (scaled) sample moment conditions. For time
series data, which is our focus here, the optimal weighting matrix is usually referred to as the
long run variance (LRV) of the moment conditions. To be completely general, we often estimate
the LRV using the nonparametric kernel or series method.

Under the conventional asymptotics, both the one-step and two-step GMM estimators are
asymptotically normal1. In general, the two-step GMM estimator has a smaller asymptotic vari-
ance. Statistical tests based on the two-step estimator are also asymptotically more powerful than
those based on the one-step estimator. A driving force behind these results is that the two-step
estimator and the associated tests have the same asymptotic properties as the corresponding ones
when the optimal weighting matrix is known. However, given that the optimal weighting matrix
is estimated nonparametrically in the time series setting, there is large estimation uncertainty. A
good approximation to the distributions of the two-step estimator and the associated tests should
re�ect this relatively high estimation uncertainty.

One of the goals of this paper is to compare the asymptotic properties of the one-step and two-
step procedures when the estimation uncertainty in the weighing matrix is accounted for. There
are two ways to capture the estimation uncertainty. One is to use the high order conventional
asymptotic theory under which the amount of nonparametric smoothing in the LRV estimator
increases with the sample size but at a slower rate. While the estimation uncertainty vanishes in
the �rst order asymptotics, we expect it to remain in high order asymptotics. The second way
is to use an alternative asymptotic approximation that can capture the estimation uncertainty
even with just a �rst-order asymptotics. To this end, we consider a limiting thought experiment
in which the amount of nonparametric smoothing is held �xed as the sample size increases. This
leads to the so-called �xed-smoothing asymptotics in the recent literature.

In this paper, we employ the �xed-smoothing asymptotics to compare the one-step and two-
step procedures. For the one-step procedure, the LRV estimator is used in computing the standard
errors, leading to the popular heteroskedasticity and autocorrelation robust (HAR) standard er-
rors. See, for example, Newey and West (1987) and Andrews (1991). For the two-step procedure,
the LRV estimator not only appears in the standard error estimation but also plays the role of the
optimal weighting matrix in the second-step GMM criterion function. Under the �xed-smoothing
asymptotics, the weighting matrix converges to a random matrix. As a result, the second-step
GMM estimator is not asymptotically normal but rather asymptotically mixed normal. The as-
ymptotic mixed normality re�ects the estimation uncertainty of the GMM weighting matrix and
is expected to be closer to the �nite sample distribution of the second-step GMM estimator. In
a recent paper, Sun (2014b) shows that both the one-step and two-step test statistics are asymp-
totically pivotal under this new asymptotic theory. So a nuisance-parameter-free comparison of
the one-step and two-step tests is possible.

Comparing the one-step and two-step procedures under the new asymptotics is fundamentally
di¤erent from that under the conventional asymptotics. Under the new asymptotics, the two-
step procedure outperforms the one-step procedure only when the bene�t of using the optimal
weighting matrix outweighs the cost of estimating it. This qualitative message applies to both
the asymptotic variance comparison and the local asymptotic power comparison of the associated

1 In this paper, the one-step estimator refers to the �rst-step estimator in a typical two-step GMM framework.
This is not to be confused with the continuous updating GMM estimator that involves only one step. We use the
terms �one-step�and ��rst-step� interchangingly. Our use of �one-step�and �two-step� is the same as what are
used in the Stata �gmm�command.
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tests. This is in sharp contrast with the conventional asymptotics where the cost of estimating the
optimal weighting matrix is completely ignored. Since the new asymptotic approximation is more
accurate than the conventional asymptotic approximation, comparing the two procedures under
this new asymptotics will give an honest assessment of their relative merits. This is con�rmed
by a Monte Carlo study.

There is a large and growing literature on the �xed-smoothing asymptotics. For kernel LRV
estimators, the �xed-smoothing asymptotics is the so-called the �xed-b asymptotics �rst studied
by Kiefer, Vogelsang and Bunzel (2002) and Kiefer and Vogelsang (2002a, 2002b, 2005) in the
econometrics literature. For other studies, see, for example, Jansson (2004), Sun, Phillips and Jin
(2008), Sun and Phillips (2009), Gonçlaves and Vogelsang (2011), and Zhang and Shao (2013)
in the time series setting; Bester, Conley, Hansen and Vogelsang (2014) in the spatial setting;
and Gonçalves (2011), Kim and Sun (2013), and Vogelsang (2012) in the panel data setting.
For orthonormal series LRV estimators, the �xed-smoothing asymptotics is the so-called �xed-K
asymptotics. For its theoretical development and related simulation evidence, see, for example,
Phillips (2005), Müller (2007), Sun (2011, 2013) and Sun and Kim (2015). The approximation
approaches in some other papers can also be regarded as special cases of the �xed-smoothing
asymptotics. This includes, among others, Ibragimov and Müller (2010), Shao (2010) and Bester,
Conley, and Hansen (2011). The �xed-smoothing asymptotics can be regarded as a convenient
device to obtain some high order terms under the conventional increasing-smoothing asymptotics.

The rest of the paper is organized as follows. The next section presents a simple overiden-
ti�ed GMM framework. Section 3 compares the two procedures from the perspective of point
estimation. Section 4 compares them from the testing perspective. Section 5 extends the ideas
to a general GMM framework. Section 6 reports simulation evidence and provides some practical
guidance. The last section concludes. Proofs are provided in the Appendix.

A word on notation: for a symmetric matrix A; A1=2 (or A1=2) is a matrix square root of

A such that A1=2
�
A1=2

�0
= A: Note that A1=2 does not have to be symmetric. We will specify

A1=2 explicitly when it is not symmetric. If not speci�ed, A1=2 is a symmetric matrix square root
of A based on its eigen-decomposition. For matrices A and B; we use �A � B�to signify that
A�B is positive (semi)de�nite. We use �0�and �O�interchangeably to denote a matrix of zeros
whose dimension may be di¤erent at di¤erent occurrences. For two random variables X and Y;
we use X ? Y to indicate that X and Y are independent. For a matrix A; we use � (A) ; �min (A)
and �max (A) to denote the set of all singular values, the smallest singular value, and the largest
singular value of A, respectively. For an estimator �̂; we use avar(�̂) to denote the asymptotic
variance of the limiting distribution of

p
T (�̂� plimT!1 �̂) where T is the sample size.

2 A Simple Overidenti�ed GMM Framework

To illustrate the basic ideas of this paper, we consider a simple overidenti�ed time series model
of the form:

y1t = �0 + u1t; y1t 2 Rd;
y2t = u2t; y2t 2 Rq (1)

for t = 1; :::; T where �0 2 Rd is the parameter of interest and the vector process ut := (u01t; u02t)0
is stationary with mean zero. We allow ut to have autocorrelation of unknown forms so that the
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long run variance 
 of ut :


 = lrvar(ut) =

1X
j=�1

Eutu
0
t�j

takes a general form. However, for simplicity, we assume that var(ut) = �2Id+q for the moment2.
Our model is just a location model. We initially consider a general GMM framework but later �nd
out that our points can be made more clearly in the simple location model. From the asymptotic
point of view, we show later that a general GMM framework can be reduced to the above simple
location model.

Embedding the location model in a GMM framework, the moment conditions are

E(yt)�
�

�0
0q�1

�
= 0;

where yt = (y01t; y
0
2t)

0. Let

gT (�) =

 
1p
T

PT
t=1 (y1t � �)

1p
T

PT
t=1 y2t

!
:

Then a GMM estimator of �0 can be de�ned as

�̂GMM = argmin
�
gT (�)

0W�1
T gT (�)

for some positive de�nite weighting matrix WT : Writing

WT =

�
W11 W12

W21 W22

�
;

where W11 is a d� d matrix and W22 is a q � q matrix, then it is easy to show that

�̂GMM =
1

T

TX
t=1

(y1t � �W y2t) for �W =W12W
�1
22 :

There are at least two di¤erent choices of WT . First, we can take WT to be the identity
matrix WT = Im for m = d+ q: In this case, �W = 0 and the GMM estimator �̂1T is simply

�̂1T =
1

T

TX
t=1

y1t:

Second, we can take WT to be the �optimal�weighting matrix WT = 
. With this choice, we
obtain the GMM estimator:

~�2T =
1

T

TX
t=1

(y1t � �y2t) ;

2 If

var (ut) =

�
V11 V12
V21 V22

�
6= �2Id+q

for any �2 > 0; we can let

V1=2 =

 
(V1�2)1=2 V12 (V22)�1=2

0 (V22)1=2

!
where V1�2 = V11 � V12V�122 V21: Then V�11=2 (y

0
1t; y

0
2t)

0 can be written as a location model whose error variance is
the identity matrix Id+q: The estimation uncertainty in estimating V will not a¤ect our asymptotic results.
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where � = 
12

�1
22 is the long run regression coe¢ cient matrix. While �̂1T completely ignores

the information in fy2tg ; ~�2T takes advantage of this source of information.
Under some moment and mixing conditions, we have

p
T
�
�̂1T � �0

�
d
=) N(0;
11) and

p
T
�
~�2T � �0

�
d
=) N (0;
1�2) ;

where

1�2 = 
11 � 
12
�122 
21:

So avar(~�2T ) < avar(�̂1T ) unless 
12 = 0. This is a well known result in the literature. Since we
do not know 
 in practice, ~�2T is infeasible. However, given the feasible estimator �̂1T ; we can
estimate 
 and construct a feasible version of ~�2T : The common two-step estimation strategy is
as follows.

i) Estimate the long run covariance matrix by


̂ := 
̂ (û) =
1

T

TX
s=1

TX
t=1

Qh(
s

T
;
t

T
)

 
ût �

1

T

TX
�=1

û�

! 
ûs �

1

T

TX
�=1

û�

!0

where ût = (y01t � �̂
0
1T ; y

0
2t)

0.

ii) Obtain the feasible two-step estimator �̂2T = T�1
PT

t=1(y1t � �̂y2t) where �̂ = 
̂12
̂
�1
22 .

In the above de�nition of 
̂, Qh (r; s) is a symmetric weighting function that depends on the
smoothing parameter h: For conventional kernel LRV estimators, Qh (r; s) = k ((r � s) =b) and we
take h = 1=b: For the orthonormal series (OS) LRV estimators, Qh (r; s) = K�1PK

j=1 �j (r)�j (s)

and we take h = K; where
�
�j (r)

	
are orthonormal basis functions on L2[0; 1] satisfyingR 1

0 �j (r) dr = 0: We parametrize h in such a way so that h indicates the level or amount of
smoothing for both types of LRV estimators.

Note that we use the demeaned process fût � T�1
PT

�=1 û�g in constructing 
̂ (û) : For the
location model, 
̂ (û) is numerically identical to 
̂ (u) where the unknown error process futg is
used. The moment estimation uncertainty is re�ected in the demeaning operation. Had we known
the true value of �0 and hence the true moment process futg ; we would not need to demean futg.

While ~�2T is asymptotically more e¢ cient than �̂1T ; is �̂2T necessarily more e¢ cient than �̂1T
and in what sense? Is the Wald test based on �̂2T necessary more powerful than that based on
�̂1T ? One of the objectives of this paper is to address these questions.

3 A Tale of Two Asymptotics: Point Estimation

We �rst consider the conventional asymptotics where h ! 1 as T ! 1 but at a slower rate,
i.e., h=T ! 0: Sun (2014a, 2014b) calls this type of asymptotics the �Increasing-smoothing
Asymptotics,� as h increases with the sample size. Under this type of asymptotics and some
regularity conditions, we have 
̂

p! 
: It can then be shown that �̂2T is asymptotically equivalent
to ~�2T , i.e.,

p
T (~�2T � �̂2T ) = op (1). As a direct consequence, we have

p
T
�
�̂1T � �0

�
d
=) N(0;
11);

p
T
�
�̂2T � �0

�
d
=) N

�
0;
11 � 
12
�122 
21

�
:
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So �̂2T is still asymptotically more e¢ cient than �̂1T :
The conventional asymptotics, as elegant and convenient as it is, does not re�ect the �nite

sample situations well. Under this type of asymptotics, we essentially approximate the distribu-
tion of 
̂ by the degenerate distribution concentrating on 
. That is, we completely ignore the
estimation uncertainty in 
̂: The degenerate approximation is too optimistic, as 
̂ is a nonpara-
metric estimator, which by de�nition can have high variation in �nite samples.

To obtain a more accurate distributional approximation of
p
T (�̂2T � �0); we could develop a

high order increasing-smoothing asymptotics that re�ects the estimation uncertainty in 
̂. This
is possible but requires strong assumptions that cannot be easily veri�ed. In addition, it is
also technically challenging and tedious to rigorously justify the high order asymptotic theory.
Instead of high order asymptotic theory under the conventional asymptotics, we adopt the type
of asymptotics that holds h �xed (at a positive value) as T !1: Given that h is �xed, we follow
Sun (2014a, 2014b) and call this type of asymptotics the �Fixed-smoothing Asymptotics.�This
type of asymptotics takes the sampling variability of 
̂ into consideration.

Sun (2013, 2014a) has shown that critical values from the �xed-smoothing asymptotic distri-
bution are higher order correct under the conventional increasing-smoothing asymptotics. So the
�xed-smoothing asymptotics can be regarded as a convenient device to obtain some higher order
terms under the conventional increasing-smoothing asymptotics.

To establish the �xed-smoothing asymptotics, we maintain Assumption 1 on the kernel func-
tion and basis functions.

Assumption 1 (i) For kernel LRV estimators, the kernel function k (�) satis�es the following
conditions: for any b 2 (0; 1], kb (x) = k (x=b) is symmetric, continuous, piecewise monotonic,
and piecewise continuously di¤erentiable on [�1; 1]. (ii) For the OS LRV variance estimator,
the basis functions �j (�) are piecewise monotonic, continuously di¤erentiable and orthonormal in
L2[0; 1] and

R 1
0 �j (x) dx = 0:

Assumption 1 on the kernel function is very mild. It includes many commonly used kernel
functions such as the Bartlett kernel, Parzen kernel, and Quadratic Spectral (QS) kernel.

De�ne

Q�h(r; s) = Qh(r; s)�
Z 1

0
Qh(� ; s)d� �

Z 1

0
Qh(r; �)d� +

Z 1

0

Z 1

0
Qh(�1; �2)d�1d�2;

which is a centered version of Qh(r; s); and

~
 =
1

T

TX
s=1

TX
t=1

Q�h(
s

T
;
t

T
)ûtû

0
s:

Assumption 1 ensures that ~
 and 
̂ are asymptotically equivalent. Furthermore, under this
assumption, Sun (2014a) shows that, for both kernel LRV and OS LRV estimation, the centered
weighting function Q�h(r; s) satis�es :

Q�h(r; s) =
1X
j=1

�j�j(r)�j(s)

where f�j(r)g is a sequence of continuously di¤erentiable functions satisfying
R 1
0 �j(r)dr = 0

and the series on the right hand side converges to Q�h(r; s) absolutely and uniformly over (r; s) 2
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[0; 1] � [0; 1]. The representation can be regarded as a spectral decomposition of the compact
Fredholm operator with kernel Q�h (r; s) : See Sun (2014a) for more discussion.

Now, letting �0(�) := 1 and using the basis functions f�j(�)g1j=1 in the series representation
of the weighting function, we make the following assumptions.

Assumption 2 The vector process futgTt=1 satis�es:

(i) T�1=2
PT

t=1�j(t=T )ut converges weakly to a continuous distribution, jointly over j = 0; 1; : : : ; J
for every �xed J ;

(ii) For every �xed J and x 2 Rm,

P

 
1p
T

TX
t=1

�j(
t

T
)ut � x for j = 0; 1; : : : ; J

!

= P

 

1=2

1p
T

TX
t=1

�j(
t

T
)et � x for j = 0; 1; : : : ; J

!
+ o(1) as T !1

where


1=2 =

 


1=2
1�2 
12


�1=2
22

0 

1=2
22

!
> 0

is a matrix square root of the nonsingular LRV matrix 
 =
P1

j=�1Eutu
0
t�j and et s iid

N(0; Im):

Assumption 3
P1

j=�1 k Eutu0t�j k<1:

Proposition 1 Let Assumptions 1�3 hold. As T !1 for a �xed h > 0, we have:

(a) 
̂
d
=) 
1 where


1 = 
1=2 ~
1

0
1=2 :=

�

1;11 
1;12


1;21 
1;22

�
~
1 =

Z 1

0

Z 1

0
Q�h(r; s)dBm(r)dBm(s)

0 :=

�
~
1;11

~
1;12
~
1;21

~
1;22

�
and Bm(�) is a standard Brownian motion of dimension m = d+ q;

(b)
p
T
�
�̂2T � �0

�
d
=)

�
Id; ��1

�

1=2Bm(1) where �1 = �1(h; d; q) := 
1;12


�1
1;22 is

independent of Bm (1) :

Conditional on �1, the asymptotic distribution of
p
T (�̂2T ��0) is a normal distribution with

variance

V2 =
�
Id; ��1

�� 
11 
12

21 
22

��
Id
��01

�
= 
11 � 
12�01 � �1
21 + �1
22�01:

Given that V2 is random,
p
T (�̂2T��0) is asymptotically mixed-normal rather than normal. Since

avar(�̂2T )� avar(~�2T ) = EV2 �
�

11 � 
12
�122 
21

�
= E

�

12


�1
22 
21 � 
12�01 � �1
21 + �1
22�01

�
= E

�

12


�1
22 � �1

�

22

�

12


�1
22 � �1

�0 � 0;
7



the feasible estimator �̂2T has a large variation than the infeasible estimator ~�2T : This is con-
sistent with our intuition. The di¤erence avar(�̂2T ) � avar(~�2T ) can be regarded as the cost of
implementing the two-step estimator, i.e., the cost of having to estimate the weighting matrix.

Under the �xed-smoothing asymptotics, we still have
p
T (�̂1T � �0)

d
=) N(0;
11), as �̂1T

does not depend on the smoothing parameter h: So

avar(�̂1T )� avar(~�2T ) := 
11 �
�

11 � 
12
�122 
21

�
= 
12


�1
22 
21 � 0;

which can be regarded as the bene�t of going to the second step.
To compare the asymptotic variances of

p
T (�̂1T � �0) and

p
T (�̂2T � �0); we need to evaluate

the relative magnitudes of the cost and the bene�t. De�ne

~�1 := ~�1 (h; d; q) := ~
1;12
~
�11;22; (2)

which does not depend on any nuisance parameter but depends on h; d; q: For notational economy,
we sometimes suppress this dependence. Direct calculations show that

�1 = 

1=2
1�2
~�1


�1=2
22 +
12


�1
22 : (3)

Using this, we have:

avar(�̂2T )� avar(�̂1T ) = avar(�̂2T )� avar(~�2T )| {z }
cost

� [avar(�̂1T )� avar(~�2T )]| {z }
bene�t

= 

1=2
1�2E

~�1~�
0
1(


1=2
1�2 )

0 � 
12
�122 
21: (4)

If the cost is larger than the bene�t, i.e., 
1=21�2E~�1~�
0
1(


1=2
1�2 )

0 > 
12

�1
22 
21; then the asymptotic

variance of �̂2T is larger than that of �̂1T .
The following lemma gives a characterization of E~�1 (h; d; q) ~�1 (h; d; q)

0 :

Lemma 2 For any d � 1; we have E~�1 (h; d; q) ~�1 (h; d; q)0 =
�
Ejj~�1 (h; 1; q) jj2

�
� Id:

Using the lemma, we can prove that

avar(�̂2T )� avar(�̂1T ) = (1 + Ejj~�1 (h; 1; q) jj2)

1=2
11

�
g(h; q)Id � ��0

�
(


1=2
11 )

0;

where

g(h; q) :=
Ejj~�1(h; 1; q)jj2

1 + Ejj~�1(h; 1; q)jj2
2 (0; 1);

and
� = 


�1=2
11 
12


�1=2
22 2 Rd�q;

which is the long run correlation matrix between u1t and u2t. The proposition below then follows
immediately.

Proposition 3 Let Assumptions 1�3 hold. Consider the �xed-smoothing asymptotics.
(a) If �max (��0) < g(h; q); then �̂2T has a larger asymptotic variance than �̂1T .
(b) If �min (��0) > g(h; q); then �̂2T has a smaller asymptotic variance than �̂1T .
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To compute the eigenvalues of ��0; we can use the fact that � (��0) = �
�

12


�1
22 
21


�1
11

�
:

The eigenvalues of ��0 are the squared long run correlation coe¢ cients between c01u1t and c
0
2u2t

for some c1 and c2; i.e., the squared long run canonical correlation coe¢ cients between u1t and
u2t: So the conditions in the proposition can be presented in terms of the smallest and largest
square long run canonical correlation coe¢ cients.

If � = 0; then �max (��0) < g(h; q) holds trivially. In this case, the asymptotic variance of
�̂2T is larger than the asymptotic variance of �̂1T : Intuitively, when the long run correlation is
zero, there is no information that can be explored to improve e¢ ciency. If we insist on using
the long run correlation matrix in attempt to improve the e¢ ciency, we may end up with a less
e¢ cient estimator, due to the noise in estimating the zero long run correlation matrix. On the
other hand, if ��0 = Id after some possible rotation, which holds when the long run variation of
u1t is perfectly predicted by u2t; then �min (��0) = 1 and we have �min (��0) > g(h; q). In this
case, it is worthwhile estimating the long run variance and using it to improve the e¢ ciency of
the two-step GMM estimator.

The two conditions �min (��0) > g(h; q) and �max (��0) < g(h; q) in the proposition may appear
to be strong. However, the conclusions are also very strong. For example, �̂2T has a smaller
asymptotic variance than �̂1T means that avar(R�̂2T ) � avar(R�̂1T ) for any matrix R 2 Rp�d
and for all 1 � p � d: In fact, in the proof of the proposition, we show that the conditions are
both necessary and su¢ cient.

The two conditions �min (��0) > g(h; q) and �max (��0) � g(h; q) are not mutually exclusive
unless d = 1: When d > 1; it is possible that neither of two conditions is satis�ed, in which case
avar(�̂2T )�avar(�̂1T ) is inde�nite. So, as a whole vector, the relative asymptotic e¢ ciency of �̂2T
to �̂1T cannot be compared. However, there exist two matrices R+ 2 Rd+�d and R� 2 Rd��d with
d+ + d� = d, d+ < d; and d� < d such that avar(R+�̂2T ) � avar(R+�̂1T ) and avar(R��̂2T ) �
avar(R��̂1T ): An example of the inde�nite case is when q < d and �max (��

0) > g(h; q): In
this case, �min (��0) = 0 and �min (��0) > g(h; q) does not hold. A direct implication is that
avar(R��̂2T ) > avar(R��̂1T ) for some R�: So when the degree of overidenti�cation is not large
enough, there are some directions characterized by R� along which the two-step estimator is less
e¢ cient than the one-step estimator.

When d = 1; ��0 is a scalar, and the two conditions �min (��0) > g(h; q) and �max (��0) � g(h; q)
become mutually exclusive. So if ��0 > g(h; q); then �̂2T is asymptotically more e¢ cient than
�̂1T : Otherwise, it is asymptotically less e¢ cient.

In the case of kernel LRV estimation, it is hard to obtain an analytical expression for
Ejj~�1(h; 1; q)jj2 and hence g(h; q), although we can always simulate g(h; q) numerically. The
threshold g(h; q) depends on the smoothing parameter h = 1=b and the degree of overidenti�ca-
tion q: Tables 1�3 report the simulated values of g(h; q) for b = 0:00 : 0:01 : 0:20 and q = 1 � 5.
These values are nontrivial in that they are close to neither zero nor one. It is clear that g(h; q)
increases with q and decreases with the smoothing parameter h = 1=b.

When the OS LRV estimation is used, we do not need to simulate g(h; q), as we can obtain
a closed-form expression.

Corollary 4 Let Assumptions 1�3 hold. In the case of OS LRV estimation, we have

g(h; q) =
q

K � 1 :

So if �max (��0) <
q

K�1 (or �min (��
0) > q

K�1), then �̂2T has a larger (or smaller) asymptotic

variance than �̂1T under the �xed-smoothing asymptotics.

9



Since �̂2T is not asymptotically normal, asymptotic variance comparison does not paint the
whole picture. To compare the asymptotic distributions of �̂1T and �̂2T , we consider the case of
OS LRV estimation with d = q = 1 and K = 4 as an example. We use the sine and cosine basis
functions as given in (??) later in Section 6. Figure 1 reports the shapes of probability density
functions when (
11;
212;
22) = (1; 0:10; 1). In this case, 
1�2 = 
11 � 
12
�122 
21 = 0:9. The
�rst graph shows

p
T (�̂1T � �0)

a� N(0; 1) and
p
T (�̂2T � �0)

a� N(0; 0:9) under the conventional
asymptotics. The conventional limiting distributions for

p
T (�̂1T � �0) and

p
T (�̂2T � �0) are

both normal but the latter has a smaller variance, so the asymptotic e¢ ciency of �̂2T is always
guaranteed. However, this is not true in the second graph of Figure 1, which represents the
limiting distributions under the �xed-smoothing asymptotics. While we still have

p
T (�̂1T��0)

a�
N(0; 1),

p
T (�̂2T � �0)

a�MN [0; 0:9(1 + ~�
2
1)]. The mixed normality can be obtained by using a

conditional version of (4): More speci�cally, the conditional asymptotic variance of �̂2T is

avar(�̂2T j~�1) = V2 = 

1=2
1�2
~�1~�

0
1(


1=2
1�2 )

0 +
1�2 = 0:9(1 + ~�
2
1): (5)

Comparing these two di¤erent families of distributions, we �nd that the asymptotic distribution
of �̂2T has fatter tail than that of �̂1T : The asymptotic variance of �̂2T is

avar(�̂2T ) = EV2 = 
1�2f1 + E[jj~�1(h; 1; q)jj2]g = 
1�2
K � 1

K � q � 1 = 0:9�
3

2
= 1:35;

which is larger than the asymptotic variance of �̂1T .

4 A Tale of Two Asymptotics: Hypothesis Testing

We are interested in testing the null hypothesis H0 : R�0 = r against the local alternative
H1 : R�0 = r + �0=

p
T for some p� d full rank matrix R and p� 1 vectors r and �0: Nonlinear

restrictions can be converted into linear ones using the Delta method. We construct the following
two Wald statistics:

W1T := T (R�̂1T � r)0
�
R
̂11R

0
��1

(R�̂1T � r)

W2T := T (R�̂2T � r)0
�
R
̂1�2R

0
��1

(R�̂2T � r)

where 
̂1�2 = 
̂11 � 
̂12
̂�122 
̂21: When p = 1 and the alternative is one sided, we can construct
the following two t statistics:

T1T : =

p
T
�
R�̂1T � r

�
p
R
̂11R0

(6)

T2T : =

p
T
�
R�̂2T � r

�
p
R
̂1�2R0

: (7)

No matter whether the test is based on �̂1T or �̂2T ; we have to employ the long run covariance
estimator 
̂. De�ne the p� p matrices �1 and �2 according to

�1�
0
1 = R
11R

0 and �2�02 = R
1�2R
0:

10
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Figure 1: Limiting distributions of �̂1T and �̂2T based on the OS LRV estimator with K = 4:

In other words, �1 and �2 are matrix square roots of R
11R0 and R
1�2R0 respectively.
Under the conventional increasing-smoothing asymptotics, it is straightforward to show that

under H1 : R�0 = r + �0=
p
T :

W1T
d
=) �2p(

��11 �0
2), W2T

d
=) �2p(

��12 �0
2),

T1T
d
=) N(��11 �0; 1), T2T

d
=) N(��12 �0; 1);

where �2p
�
�2
�
is the noncentral chi-square distribution with noncentrality parameter �2: When

�0 = 0; we obtain the null distributions:

W1T ;W2T
d
=) �2p and T1T ;T2T

d
=) N(0; 1):

So under the conventional increasing-smoothing asymptotics, the null limiting distributions of
W1T and W2T are identical. Since

��11 �0
2 � ��12 �0

2, under the conventional asymptotics,
the local asymptotic power function of the test based on W2T is higher than that based on W1T :
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The key driving force behind the conventional asymptotics is that we approximate the dis-
tribution of 
̂ by the degenerate distribution concentrating on 
: The degenerate approximation
does not re�ect the �nite sample distribution well. As in the previous section, we employ the
�xed-smoothing asymptotics to derive more accurate distributional approximations. Let

Cpp =

Z 1

0

Z 1

0
Q�h(r; s)dBp(r)dBp(s)

0; Cpq =

Z 1

0

Z 1

0
Q�h(r; s)dBp(r)dBq(s)

0

Cqq =

Z 1

0

Z 1

0
Q�h(r; s)dBq(r)dBq(s)

0; Cqp = C 0pq

and
Dpp = Cpp � CpqC�1qq C 0pq

where Bp(�) 2 Rp and Bq(�) 2 Rq are independent standard Brownian motion processes.

Proposition 5 Let Assumptions 1�3 hold. As T !1 for a �xed h, we have, under H1 : R�0 =
r + �0=

p
T :

(a) W1T
d
=)W11(

��11 �0
2) where

W11(k�k2) = [Bp (1) + �]0C�1pp [Bp (1) + �] for � 2 Rp: (8)

(b) W2T
d
=)W21(

��12 �0
2) where

W21(k�k2) =
�
Bp (1)� CpqC�1qq Bq (1) + �

�0
D�1
pp

�
Bp (1)� CpqC�1qq Bq (1) + �

�
: (9)

(c) T1T
d
=) T11

�
��11 �0

�
:=
�
Bp(1)+�

�1
1 �0

�
=
p
Cpp for p = 1:

(d) T2T
d
=) T21

�
��12 �0

�
:=
�
Bp (1)� CpqC�1qq Bq (1) + ��12 �0

�
=
p
Dpp for p = 1:

In Proposition 5, we use the notation W11(k�k2), which implies that the right hand side of
(8) depends on � only through k�k2 : This is true, because for any orthogonal matrix H :

[Bp (1) + �]
0C�1pp [Bp (1) + �] = [HBp (1) +H�]

0HC�1pp H
0 [HBp (1) +H�]

d
= [Bp (1) +H�]

0C�1pp [Bp (1) +H�] :

If we choose H = (�= k�k ; ~H)0 for some ~H such that H is orthogonal, then

[Bp (1) + �]
0C�1pp [Bp (1) + �]

d
= [Bp (1) + k�k ep]0C�1pp [Bp (1) + k�k ep] ;

where ep = (1; 0; :::; 0)0 2 Rp: So the distribution of [Bp (1) + �]0C�1pp [Bp (1) + �] depends on �
only through k�k : Similarly, the distribution of the right hand side of (9) depends only on k�k2 :

When �0 = 0; we obtain the limiting distributions of W1T ;W2T ;T1T and T2T under the null
hypothesis:

W1T
d
=)W11 :=W11(0) = Bp (1)

0C�1pp Bp (1) ;

W2T
d
=)W21 :=W21(0) =

�
Bp (1)� CpqC�1qq Bq (1)

�0
D�1
pp

�
Bp (1)� CpqC�1qq Bq (1)

�
;

T1T
d
=) T11 := T11 (0) = Bp(1)=

p
Cpp;

T2T
d
=) T21 := T21 (0) =

�
Bp(1)�CpqC�1qq Bq (1)

�
=
p
Dpp:

12



These distributions are di¤erent from those under the conventional asymptotics. For W1T and
T1T ; the di¤erence lies in the random scaling factor Cpp or

p
Cpp: The random scaling factor cap-

tures the estimation uncertainty of the LRV estimator. For W2T and T2T ; there is an additional
di¤erence embodied by the random location shift CpqC�1qq Bq (1) with a consequent change in the
random scaling factor.

The proposition below provides some characterization of the two limiting distributions W11
and W21:

Proposition 6 For any x > 0; the following hold:
(a) W21 (0) �rst-order stochastically dominates W11 (0) in that

P [W21 (0) � x] > P [W11 (0) � x] :

(b) P
h
W11(k�k2) � x

i
strictly increases with k�k2 and limk�k!1 P

h
W11(k�k2) � x

i
= 1:

(c) P
h
W21(k�k2) � x

i
strictly increases with k�k2 and limk�k!1 P

h
W21(k�k2) � x

i
= 1:

Proposition 6(a) is intuitive. W21 �rst-order stochastically dominates W11 because W21
�rst-order stochastically dominates Bp (1)

0D�1
pp Bp (1), which in turn �rst-order stochastically

Bp (1)
0C�1pp Bp (1) ; which is just W11. According to a property of the �rst-order stochastic

dominance, we have

W21
d
=W11 +We

for some We > 0: Intuitively, W21 shifts some of the probability mass of W11 to the right. A
direct implication is that the asymptotic critical values forW2T are larger than the corresponding
ones for W1T : The di¤erence in critical values has implications on the power properties of the
two tests.

For x > 0; we have

P (T11 > x) =
1

2
P
�
W11 � x2

�
and P (T21 > x) =

1

2
P
�
W21 � x2

�
.

It then follows from Proposition 6(a) that P (T21 > x) � P (T11 > x) for x > 0: So for a one-
sided test with the alternative H1 : R�0 > r; critical values from T21 are larger than those from
T11: Similarly, we have P (T21 < x) � P (T11 < x) for x < 0: This implies that for a one-sided
test with the alternative H1 : R�0 < r; critical values from T21 are smaller than those from T11:

LetW�
11 andW�

21 be the (1� �) quantile from the distributionsW11 andW21; respectively.
The local asymptotic power functions of the two tests are

�1

���11 �0
2� := �1

���11 �0
2 ;h; p; q; �� = P

h
W11(

��11 �0
2) >W�

11

i
;

�2

���12 �0
2� := �2

���11 �0
2 ;h; p; q; �� = P

h
W21(

��12 �0
2) >W�

21

i
:

While
��12 �0

2 � ��11 �0
2 ; we also haveW�

21 >W�
11: The e¤ects of the critical values and the

noncentrality parameters move in opposite directions. It is not straightforward to compare the
two power functions. However, Proposition 6 suggests that if the di¤erence in the noncentrality
parameters

��12 �0
2 � ��11 �0

2 is large enough to o¤set the increase in critical values, then
the two-step test based on W2T will be more powerful.
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To evaluate
��12 �0

2 � ��11 �0
2 ; we de�ne

�R =
�
R
11R

0��1=2 (R
12) 
�1=222 ; (10)

which is the long run correlation matrix �R between Ru1t and u2t: In terms of �R 2 Rp�q we have��12 �0
2 � ��11 �0

2
= �00

�
R
11R

0 �R
12
�122 
21R0
��1

�0 � �00
�
R
11R

0��1 �0
= �00

�
�01
��1 h

Ip � ��11 R
12

�1
22 
21R

0 ��01��1i�1 ���11 �0
�
� �00

�
�01
��1 �

��11 �0
�

= �00
�
�01
��1 n�

Ip � �R�0R
��1 � Ipo���11 �0

�
:

So the di¤erence in the noncentrality parameters depends on the matrix �R�
0
R:

Let �R�
0
R =

Pp
i=1 �i;Rai;Ra

0
i;R be the eigen decomposition of �R�

0
R; where f�i;Rg are the

eigenvalues of �R�
0
R and fai;Rg are the corresponding eigenvectors. Sorted in the descending

order, f�i;Rg are the (squared) long run canonical correlation coe¢ cients between Ru1t and u2t:
Then ��12 �0

2 � ��11 �0
2 = pX

i=1

�i;R
1� �i;R

�
a0i;R�

�1
1 �0

�2
:

Consider a special case that �p;R := minpi=1 f�i;Rg approaches 1. If a0p;R�
�1
1 �0 6= 0; then

jj��12 �0jj2 �
��11 �0

2 and hence jj��12 �0jj2 approaches 1 as �p;R approaches 1 from below.
This case happens when the second block of moment conditions has very high long run predic-
tion power for the �rst block. In this case, we expect the W2T test to be more powerful, as
lim�p;R!1 �2(

��12 �0
2) = 1: Consider another special case that maxpi=1 f�i;Rg = 0; i.e., �R is

a matrix of zeros. In this case, the second block of moment conditions contains no additional
information, and we have

��12 �0
2 = ��11 �0

2 : In this case, we expect the W2T test to be less
powerful.

It follows from Proposition 6(b) and (c) that for any �, there exists a unique � (�) :=
� (�;h; p; q; �) such that

�2 (�) = �1

�
�

�

�
:

As a function of �; � (�) is de�ned implicitly via the above equation. Then �2(
��12 �0

2) <
�1(
��11 �0

2) if and only if ��12 �0
2 < �(

��12 �0
2) � ��11 �0

2 : Using��12 �0
2 � �(��12 �0

2)��11 �0
2

=

pX
i=1

�
1

1� �i;R
� �(

��12 �0
2)��a0i;R��11 �0

�2
=

pX
i=1

1

1� �i;R

 
�i;R �

�(
��12 �0

2)� 1
�(
��12 �0

2)
!�

a0i;R�
�1
1 �0

�2
�(
��12 �0

2)
=

pX
i=1

1

1� �i;R

�
�i;R � f(

��12 �0
2)� �a0i;R��11 �0

�2
�(
��12 �0

2) (11)
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where f (�) is de�ned according to

f (�) := f(�;h; p; q; �) =
� (�;h; p; q; �)� 1
� (�;h; p; q; �)

;

we can prove the proposition below.

Proposition 7 Let Assumptions 1�3 hold. De�ne

A (�0) = f� : �0
�
R
1�2R

0��1 � = �0g:

Consider the local alternative H1 (�0) : R�0 = r+ �0=
p
T for �0 2 A (�0) and the �xed-smoothing

asymptotics.
(a) If �max (�R�

0
R) < f(�0;h; p; q; �); then the two-step test based on W2T has a lower local

asymptotic power than the one-step test based on W1T for any �0 2 A (�0) :
(b) If �min (�R�

0
R) > f(�0;h; p; q; �); then the two-step test based on W2T has a higher local

asymptotic power than the one-step test based on W1T for any �0 2 A (�0) :

To compute �max (�R�
0
R) and �min (�R�

0
R), we can use the relationship that

�
�
�R�

0
R

�
= �

n�
R
12


�1
22 
21R

0� �R
11R0��1o :
There is no need to compute the matrix square roots (R
11R0)

�1=2 and 
�1=222 :
As in the case of variance comparison, the conditions on the canonical correlation coe¢ -

cients in Proposition 7(a) and (b) are both su¢ cient and necessary. See the proof of the propo-
sition for details. The conditions may appear to be strong but the conclusions are equally
strong � the power comparison results hold regardless the directions of the local departure.
If we have a particular direction in mind so that �0 is �xed and given, then we can evaluate��12 �0

2 � �
�
��12 �0

� ��11 �0
2 directly for the given �0: If ��12 �0

2 � �
�
��12 �0

� ��11 �0
2 is

positive (negative), then the two-step test has a higher (lower) local asymptotic power along the
given direction.

When p = 1; which is of ultimate importance in empirical studies, �R�
0
R is equal to the sum of

the squared long run canonical correlation coe¢ cients. In this case, f(�0;h; p; q; �) is the thresh-
old value of �R�

0
R for assessing the relative e¢ ciency of the two tests. More speci�cally, when

�R�
0
R > f(�0;h; p; q; �), the two-step test is more powerful than the one-step test. Otherwise,

the two-step test is less powerful.
Proposition 7 is in parallel with Proposition 3. The qualitative messages of these two proposi-

tions are the same � when the long run correlation is high enough, we should estimate and exploit
it to reduce the variation of our point estimator and improve the power of the associated tests.
However, the thresholds are di¤erent quantitatively. The two propositions fully characterize the
threshold for each criterion under consideration.

Proposition 8 Consider the case of OS LRV estimation. For any � 2 R+, we have �1 (�) >
�2 (�) and hence � (�;h; p; q; �) > 1 and f(�;h; p; q; �) > 0:

Proposition 8 is intuitive. When there is no long run correlation between Ru1t and u2t; we
have

��12 �0
2 = ��11 �0

2 : In this case, the two-step W2T test is necessarily less powerful. The
proof uses the theory of uniformly most powerful invariant tests and the theory of complete and
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su¢ cient statistics. It is an open question whether the same strategy can be adopted to prove
Proposition 8 in the case of kernel LRV estimation. Our extensive numerical work supports that
� (�;h; p; q; �) > 1 and f(�;h; p; q; �) > 0 continue to hold in the kernel case.

It is not easy to give an analytical expression for f(�;h; p; q; �) but we can compute it numer-
ically without any di¢ culty. In Table 4, we consider the case of OS LRV estimation and compute
the values of f(�;K; p; q; �) for � = 1 � 25;K = 8; 10; 12; 14, p = 1 � 3 and q = 1 � 3: The
values are nontrivial in that they are not close to the bounary value of zero or one. Similar to
the asymptotic variance comparison, we �nd that these threshold values increase as the degree
of overidenti�cation increases and decrease as the smoothing parameter K increases.

For the case of kernel LRV estimation, results not reported here show that f(�;h; p; q; �)
increases with q and decreases with h. This is entirely analogous to the case of OS LRV estimation.

5 General Overidenti�ed GMM Framework

In this section, we consider the general GMM framework. The parameter of interest is a d � 1
vector � 2 � � Rd. Let vt 2 Rdv denote the vector of observations at time t. We assume that �0
is the true value, an interior point of the parameter space �. The moment conditions

E �f(vt; �) = 0; t = 1; 2; :::; T:

hold if and only if � = �0 where �f (vt; �) is an m�1 vector of continuously di¤erentiable functions.
The process �f (vt; �0) may exhibit autocorrelation of unknown forms. We assume that m � d and
that the rank of E[@ �f (vt; �0) =@�0] is equal to d: That is, we consider a model that is possibly
overidenti�ed with the degree of overidenti�cation q = m� d:

5.1 One-step and Two-step Estimation and Inference

De�ne the m�m contemporaneous covariance matrix �� and the LRV matrix �
 as:

�� = E �f(vt; �0) �f(vt; �0)
0 and �
 =

1X
j=�1

�
j where �
j = E �f(vt; �0) �f(vt�j ; �0)
0:

Let

�gt(�) =
1p
T

tX
j=1

�f(vj ; �):

Given a simple positive-de�nite weighting matrix �W0T that does not depend on any unknown
parameter, we can obtain an initial GMM estimator of �0 as

�̂0T = argmin
�2�

�gT (�)
0 �W�1

0T �gT (�):

For example, we may set �W0T equal to Im. In the case of IV regression, we may set �W0T equal
to Z 0TZT =T where ZT is the matrix of the instruments.

Using �� or �
 as the weighting matrix, we obtain the following two (infeasible) GMM estima-
tors:

~�1T : = argmin
�2�

�gT (�)
0 ���1�gT (�); (12)

~�2T : = argmin
�2�

�gT (�)
0 �
�1�gT (�): (13)
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For the estimator ~�1T ; we use the contemporaneous covariance matrix �� as the weighting matrix
and ignore all the serial dependency in the moment vector process f �f(vt; �0)gTt=1. In contrast
to this procedure, the second estimator ~�2T accounts for the long run dependency. The feasible
versions of these two estimators �̂1T and �̂2T can be naturally de�ned by replacing �� and �
 with
their estimates ��est(�̂0T ) and �
est(�̂0T ) where

��est(�) : =
1

T

TX
t=1

�f(vt; �) �f(vt; �)
0; (14)

�
est (�) : =
1

T

TX
s=1

TX
t=1

Q�h(
s

T
;
t

T
) �f(vt; �) �f(vs; �)

0: (15)

To test the null hypothesis H0 : R�0 = r against H1 : R�0 = r + �0=
p
T ; we construct two

di¤erent Wald statistics as follows:

W1T : = T (R�̂1T � r)0
n
RV̂1TR0

o�1
(R�̂1T � r); (16)

W2T : = T (R�̂2T � r)0
n
RV̂2TR0

o�1
(R�̂2T � r);

where

V̂1T =
h
�G01T ��

�1
est(�̂1T )

�G1T

i�1 h
�G01T ��

�1
est(�̂1T )

�
est(�̂1T )��
�1
est(�̂1T )

�G1T

i h
�G01T ��

�1
est(�̂1T )

�G1T

i�1
(17)

V̂2T =
h
�G2T �


�1
est(�̂2T )

�G2T

i�1
and

�G1T =
1

T

TX
t=1

@ �f(vt; �)

@�0

�����
�=�̂1T

; �G2T =
1

T

TX
t=1

@ �f(vt; �)

@�0

�����
�=�̂2T

:

These are the standard Wald test statistics in the GMM framework.
To compare the two estimators �̂1T and �̂2T and associated tests, we maintain the standard

assumptions below.

Assumption 4 As T !1 for a �xed h; �̂0T = �0 + op (1) ; �̂1T = �0 + op (1) ; �̂2T = �0 + op (1)
for an interior point �0 2 �:

Assumption 5 De�ne

�Gt(�) =
1p
T

@�gt
@�0

=
1

T

tX
j=1

@ �f(vt; �)

@�0
for t � 1 and �G0(�) = 0:

For any �T = �0 + op(1); the following hold: (i) plimT!1 �G[rT ](�T ) = r �G uniformly in r where
�G = �G(�0) and �G(�) = E@ �f(vt; �)=@�

0; (ii) ��est (�T )
p! �� > 0; (iii) ��; �
; �G0 ���1 �G, and �G0 �
�1 �G

are all nonsingular.

With these assumptions and some mild conditions, the standard GMM theory gives us

p
T (�̂1T � �0) =

1p
T

TX
t=1

h
�G0 ���1 �G

i�1
�G0 ���1 �f(vt; �0) + op(1):
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Under the �xed-smoothing asymptotics, Sun (2014b) establishes the representation:

p
T (�̂2T � �0) =

1p
T

TX
t=1

h
�G0 �
�11 �G

i�1
�G0 �
�11 �f(vt; �0) + op(1);

where �
1 is de�ned in the similar way as 
1 in Proposition 1: �
1 = �
1=2 ~
1 �

0
1=2:

Due to the complicated structure of two transformed moment vector processes, it is not
straightforward to compare the asymptotic distributions of �̂1T and �̂2T as in Sections 3 and 4.
To confront this challenge, we let

�G = U
m�m

� �
m�d

� V 0
d�d

be a singular value decomposition (SVD) of �G, where

�0 =
�

A
d�d

; O
d�q

�
;

A is a d� d diagonal matrix and O is a matrix of zeros. Also, we de�ne

f�(vt; �0) = (f
�0
1 (vt; �0); f

�0
2 (vt; �0))

0 := U 0 �f(vt; �0) 2 Rm;

where f�1 (vt; �0) 2 Rd and f�2 (vt; �0) 2 Rq are the rotated moment conditions. The variance and
long run variance matrices of ff�(vt; �0)g are

�� := U 0 ��U =

�
��11 ��12
��21 ��22

�
;

and 
� := U 0 �
U , respectively. To convert the variance matrix into an identity matrix, we de�ne
the normalized moment conditions below:

f(vt; �0) =
�
f1(vt; �0)

0; f2(vt; �0)
0�0 := (��1=2)�1f�(vt; �0)

where

��1=2 =

 
(��1�2)

1=2 ��12 (�
�
22)

�1=2

0 (��22)
1=2

!
: (18)

More speci�cally,

f1(vt; �0) : = (��1�2)
�1=2

h
f�1 (vt; �0)� ��12 (��22)

�1 f�2 (vt; �0)
i
2 Rd;

f2(vt; �0) : = (��22)
�1=2 f�2 (vt; �0) 2 Rq:

Then the contemporaneous variance of the time series ff(vt; �0)g is Im and the long run variance
is 
 := (��1=2)

�1
�(��01=2)
�1:

Lemma 9 Let Assumptions 1�5 hold with ut replaced by f(vt; �0) in Assumptions 2 and 3. Then
as T !1 for a �xed h > 0;

(��1�2)
�1=2AV 0

p
T (�̂1T � �0) =

1p
T

TX
t=1

f1(vt; �0) + op(1)
d
=) N(0;
11) (19)

(��1�2)
�1=2AV 0

p
T (�̂2T � �0) =

1p
T

TX
t=1

[f1(vt; �0)� �1f2(vt; �0)] + op(1) (20)

d
=)MN

�
0;
11 � 
12�01 � �1
21 + �1
22�01

�
where �1 := 
1;12


�1
1;22 is the same as in Proposition 1.

18



Lemma 9 casts the stochastic expansions of two estimators in the same form. To the best
of our knowledge, these representations are new in the econometric literature and may be of
independent interest. Lemma 9 enables us to directly compare the asymptotic properties of
one-step and two-step estimators and the associated tests.

It follows from the proof of the lemma that

(��1�2)
�1=2AV 0

p
T (~�2T � �0) =

1p
T

TX
t=1

[f1(vt; �0)� �0f2(vt; �0)] + op(1);

where �0 = 
12

�1
22 as de�ned before. So the di¤erence between the feasible and infeasible two-

step GMM estimators lies in the uncertainty in estimating �0: While the true value of � appears
in the asymptotic distribution of the infeasible estimator ~�2T ; the �xed-smoothing limit of the
implied estimator �̂ := 
̂12
̂

�1
22 appears in that of the feasible estimator �̂2T : It is important

to point out that the estimation uncertainty in the whole weighting matrix �
est matters only
through that in �̂:

If we let (u1t; u2t) = (f1(vt; �0); f2(vt; �0)); then the right hand sides of (19) and (20) are
exactly the same as what we would obtain in the location model. The location model, as simple
as it is, has implications for general settings from an asymptotic point of view. More speci�cally,
de�ne

y1t = (��1�2)
�1=2AV 0�0 + u1t;

y2t = u2t;

where u1t = f1(vt; �0) and u2t = f2(vt; �0). The estimation and inference problems in the GMM
setting are asymptotically equivalent to those in the above simple location model with fy1t; y2tg
as the observations.

To present our next theorem, we transform R into ~R using

~R = RV A�1 (��1�2)
1=2 ; (21)

which has the same dimension as R: We let

~�1 (h; p; q) =

�Z 1

0

Z 1

0
Q�h(r; s)dBp(r)dBq(s)

0
� �Z 1

0

Z 1

0
Q�h(r; s)dBq(r)dBq(s)

0
��1

;

which is compatible with the de�nition in (2). We de�ne

� = 

�1=2
11 
12


�1=2
22 2 Rd�q and �R = ( ~R
11 ~R0)�1=2( ~R
12)


�1=2
22 2 Rp�q:

While � is the long run correlation matrix between f1(vt; �0) and f2(vt; �0), �R is the long run
correlation matrix between ~Rf1(vt; �0) and f2(vt; �0). The corresponding long run canonical
correlation coe¢ cients are

�
�
��0
�
= �

��

12


�1
22 
21

�

�111

	
and �

�
�R�

0
R

�
= �

n
( ~R
12


�1
22 
21

~R0)( ~R
11 ~R
0)�1

o
:

For the location model considered before, �G = (Id; Od�q)0 and so U = Im, A = Id and V = Id:

Given the assumption that �� = �� = Im; which implies that ��1�2 = Id; we have ~R = R: So the
above de�nition of �R is identical to that in (10).
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Theorem 10 Let the assumptions in Lemma 9 hold. De�ne

A (�0) = f� : �0[R( �G0 �
�1 �G)�1R0]�1� = �0g:

Consider the local alternative H1 (�0) : R�0 = r+ �0=
p
T for �0 2 A (�0) and the �xed-smoothing

asymptotics.
(a) If �max (�R�

0
R) < g(h; q); then R�̂2T has a larger asymptotic variance than R�̂1T :

(b) If �min (�R�
0
R) > g(h; q); then R�̂2T has a smaller asymptotic variance than R�̂1T .

(c) If �max (�R�
0
R) < f (�0;h; p; q; �) ; then the two-step test is asymptotically less powerful

than the �rst-step test for any �0 2 A (�0).
(d) If �min (�R�

0
R) > f (�0;h; p; q; �) ; then the two-step test is asymptotically more powerful

than the �rst-step test for any �0 2 A (�0).

If R = Id; then ~R is a square matrix with a full rank. Since the long canonical correlation
coe¢ cient is invariant to a full-rank linear transformation, we have � (�R�

0
R) = � (��0) : It then

follows from Theorem 10(a) (b) that

(i) if �max (��0) < g(h; q); then avar(�̂2T ) > avar(�̂1T ):

(ii) if �min (��0) > g(h; q); then avar(�̂2T ) < avar(�̂1T ):

These results are identical to what we obtain for the location model. The only di¤erence is
that in the general GMM case we need to rotate and standardize the original moment conditions
before computing the long run correlation matrix. Theorem 10 can also be applied to a general
location model with a nonscalar error variance, in which case ~R = R (��1�2)

1=2.

5.2 GMM Estimation and Inference with a Working Weighting Matrix

In the previous subsection, we employ two speci�c weighting matrices � the variance and long
run variance estimators. In this subsection, we consider a general weighting matrix �WT (�̂0T );
which may depend on the initial estimator �̂0T and the sample size T; leading to yet another
GMM estimator:

�̂aT = argmin
�2�

�gT (�)
0
h
�WT (�̂0T )

i�1
�gT (�)

where the subscript �a�signi�es �another�or �alternative�.
An example of �WT (�̂0T ) is the implied LRV matrix when we employ a simple approximating

parametric model to capture the dynamics in the moment process. We could also use the general
LRV estimator but we choose a large h so that the variation in �WT (�̂0T ) is small. In the kernel
LRV estimation, this amounts to including only autocovariances of low orders in constructing
�WT (�̂0T ):We assume that �WT (�̂0T )

p! �W , a positive de�nite nonrandom matrix under the �xed-
smoothing asymptotics. �W may not be equal to the variance or long run variance of the moment
process. We call �WT (�̂0T ) a working weighting matrix. This is in the same spirit of using a
working correlation matrix rather than a true correlation matrix in the generalized estimating
equations (GEE) setting. See, for example, Liang and Zeger (1986).

In parallel to (16), we construct the test statistic

WaT := T (R�̂aT � r)0
n
RV̂aTR0

o�1
(R�̂aT � r);
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where, for �GaT = 1
T

PT
t=1 @

�f(vt; �)=@�
0
���
�=�̂aT

; V̂aT is de�ned according to

V̂aT =
h
�G0aT �W

�1
T (�̂aT ) �GaT

i�1 h
�G0aT �W

�1
T (�̂aT )�
est(�̂aT ) �W

�1
T (�̂aT ) �GaT

i h
�G0aT �W

�1
T (�̂aT ) �GaT

i�1
;

which is a standard variance estimator for �̂aT :
De�ne

W � = U 0 �WU and W = ���11=2W
�(��01=2)

�1 =

�
W11 W12

W21 W22

�
and �a =W12W

�1
22 :

Using the same argument for proving Lemma 9, we can show that

(��1�2)
�1=2AV 0

p
T (�̂aT � �0) =

1p
T

TX
t=1

[f1 (vt; �0)� �af2 (vt; �0)] + op(1): (22)

The above representation is the same as that in (20) except that �1 is now replaced by �a:
Let Va and Va;R be the long run variances of

[f1 (vt; �0)� �af2 (vt; �0)] and ~R [f1 (vt; �0)� �af2 (vt; �0)] ;

respectively. The long run correlation matrices are

�a = V�1=2a (
12 � �a
22) 

�1=2
22 and �a;R = V

�1=2
a;R

h
~R (
12 � �a
22)

i


�1=2
22 .

The corresponding long run canonical correlation coe¢ cients are

�
�
�a�

0
a

�
= �

�
(
12 � �a
22) 
�122 (
12 � �a
22)

0 V�1a
	
and

�
�
�a;R�

0
a;R

�
= �

n
~R (
12 � �a
22) 
�122 (
12 � �a
22)

0 ~R0V�1a;R
o
:

Theorem 11 Let the assumptions in Lemma 9 hold. Assume further that �WT (�̂0T )
p! �W , a

positive de�nite nonrandom matrix. Consider the local alternative H1 (�0) and the �xed-smoothing
asymptotics.

(a) If �max(�a;R�
0
a;R) < g(h; q), then R�̂2T has a larger asymptotic variance than R�̂aT :

(b) If �min(�a;R�
0
a;R) > g(h; q), then R�̂2T has a smaller asymptotic variance than R�̂aT :

(c) If �max(�a;R�
0
a;R) < f (�0;h; p; q; �) ; then the two-step test based on W2 is asymptotically

less powerful than the test based on Wa for any �0 2 A (�0).
(d) If �min(�a;R�

0
a;R) > f (�0;h; p; q; �) ; then the two-step test based on W2 is asymptotically

more powerful than the test based on Wa for any �0 2 A (�0).

Theorem 11 is entirely analogous to Theorem 10. The only di¤erence is that the second block
of moment conditions is removed from the �rst block using the implied matrix coe¢ cient �a
before computing the long run correlation coe¢ cient.

When R = Id; ~R becomes a square matrix, and we have �(�a;R�
0
a;R) = � (�a�

0
a). Theorem

11(a) and (b) gives the conditions under which �̂2T is asymptotically more (or less) e¢ cient than
�̂aT :
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To understand the theorem, we can see that the e¤ective moment conditions behind R�̂aT
are:

Ef1a (vt; �0) = 0 for f1a (vt; �0) = ~R [f1 (vt; �0)� �af2 (vt; �0)] :
R�̂aT uses the information in Ef2 (vt; �0) = 0 to some extent, but it ignores the residual informa-
tion that is still potentially available from Ef2 (vt; �0) = 0: In contrast, R�̂2T attempts to explore
the residual information. If there is no long run correlation between f1a (vt; �0) and f2 (vt; �0) ;
i.e., �a;R = 0; then all the information in Ef2 (vt; �0) = 0 has been fully captured by the e¤ective

moment conditions underlying R�̂aT : As a result, the test based on R�̂aT necessarily outperforms
that based on R�̂2T : If the long run correlation �a;R is large enough in the sense given in Theorem

11(d), the test based on R�̂2T could be more powerful than that based on R�̂aT in large samples.

6 Simulation Evidence and Practical Guidance

This section compares the �nite sample performances of one-step and two-step estimators and
tests using the �xed-smoothing approximations. We consider the location model given in (1)
with the true parameter value �0 = (0; :::; 0) 2 Rd but we allow for a nonscalar error variance.
The error fu�t g follows a VAR(1) process:

u�i1t =  u�i1t�1 +

p
q

qX
j=1

u�j2t�1 + e
�i
1t for i = 1; :::; d (23)

u�i2t =  u�i2t�1 + e
�i
2t for i = 1; :::; q

where e�i1t � iid N(0; 1) across i and t, e�i2t � iid N(0; 1) across i and t; and fe�1t; t = 1; 2; :::; Tg are
independent of fe�2t; t = 1; 2; :::; Tg : Let u�t := ((u�1t)0; (u�2t)0)0 2 Rm 2 Rm, then u�t = ~�u�t�1 + e�t
where

�
m�m

=

 
 Id

p
qJd;q

0  Iq

!
; e�t =

�
e�1t
e�2t

�
� iid N (0; Im) ;

and Jd;q is the d� q matrix of ones. Direct calculations give us the expressions for the long run
and contemporaneous variances of fu�t g as


� =

1X
j=�1

Eu�t (u
�
t�j)

0 = (Im � �)�1(Im � �0)�1

=

0@ 1
(1� )2 Id +

2

(1� )4Jd;d


(1� )3pqJd;q


(1� )3pqJq;d
1

(1� )2 Iq

1A
and

�� = var(u�t ) =

0B@ 1
1� 2 Id +

2(1+ 2)
(1� 2)

3 Jd;d
p
q

 

(1� 2)
2Jd;q

p
q

 

(1� 2)
2Jq;d

1
1� 2 Iq

1CA :

Let u1t = (��1�2)
�1=2 [u�1t � ��12 (��22)

�1 u�2t] and u2t = (�
�
22)

�1=2 u�2t and � be the long run corre-
lation matrix between u1t and u2t: With some algebraic manipulations, we have

��0 =

�
d+

(1�  2)2
2

��1
Jd;d: (24)
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So the maximum eigenvalue of ��0 is given by �max(��0) =
�
1 + (1�  2)2=(d2)

��1
, which is also

the only nonzero eigenvalue.
In addition to the VAR(1) error process, we also consider the following VARMA(1,1) process

for u�t :

u�i1t =  u�i1t�1 + e
�i
1t +


p
q

qX
j=1

e�j2;t�1 for i = 1; :::; d (25)

u�i2t =  u�i2t�1 + e
�i
2t for i = 1; :::; q

where e�t
i:i:d� N (0; Im) : The corresponding long run covariance matrix 
� and contemporaneous

covariance matrix �� are


� =

0@ 1
(1� )2 Id +

2

(1� )2 � Jd;d


(1� )2pq � Jd;q


(1� )2pq � Jq;d
1

(1� )2 � Iq

1A
and

�� =

 
1

1� 2 Id +
2

1� 2Jd;d
1p
q

 
1� 2 � Jd;q

1p
q

 
1� 2 � Jq;d

1
1� 2 � Iq

!
:

With some additional algebras, we have

��0 =

�
d+

1

(1�  )2 2

��1
Jd;d; (26)

and �max (��0) = (1 + 1=[d (1�  )2 2])�1:
Under the VARMA(1,1) design, the approximating AR(1) model is misspeci�ed. It is not

hard to obtain the probability limit of �W (�̂aT ) as

�W =
�
Im � ~�� ~� (��)�1

��1 �
I � ~� (��)�1 ~�0 + ~�~�0

��
Im � ~�0 � (��)�1 ~�0

��1
;

which is di¤erent from the true long run variance matrix 
�: Based on �W , 
�; and ��, we can
compute �a�

0
a and �a;R�

0
a;R:

For the basis functions in OS LRV estimation, we choose the following orthonormal basis
functions f�jg1j=1 in the L2[0; 1] space:

�2j�1(x) =
p
2 cos(2j�x) and �2j(x) =

p
2 sin(2j�x) for j = 1; :::;K=2;

where K is an even integer. We also consider kernel based LRV estimators with the three
commonly-used kernels: Bartlett, Parzen, QS kernels. For the choice of K in OS LRV estimation,
we employ the following AMSE-optimal formula in Phillips (2005):

KMSE = 2�
&
0:5

�
tr [(Im2 +Kmm)(
� 
 
�)]

4vec(B�)0vec(B�)

�1=5
T 4=5

'

where d�e is the ceiling function, Kmm is m2 �m2 commutation matrix and

B� = ��
2

6

1X
j=�1

j2Eu�tu
�0
t�j :
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Similarly, in the case of kernel LRV estimation, we select the smoothing parameter b according
to the AMSE-optimal formula in Andrews (1991). The unknown parameters in the AMSE are
either calibrated or data-driven using the VAR(1) plug-in approach. The qualitative messages
remain the same regardless of how the unknown parameters are obtained.

In all our simulations, the sample size T is 200; and the number of simulation replications is
s 10; 000.

6.1 Point Estimation

We focus on the case with d = 1, under which ��0 is a scalar and �max(��0) = ��0. For both
simulation designs, �max(��0) is increasing in 2 for a given  . We �x the value of  at 0:75
so that each time series is reasonably persistent. For this value of  ; we consider �max(��0) =
0; 0:09; 0:18; :::; 0:90; 0:99; which are obtained by setting  to appropriate values using (24) or
(26).

According to Proposition 3, if ��0 is greater than a threshold value, then V ar(�̂2T ) is ex-
pected to be smaller than V ar(�̂1T ): Otherwise, V ar(�̂2T ) is expected to be larger. We simulate
V ar(�̂1T ), V ar(�̂2T ) and V ar(�̂aT ). Here, �̂aT is based on a working weighting matrix �W (�̂0T )
using VAR(1) as the approximating model for the estimated error process fû�t (�̂0T )g:

Tables 5�6 report the simulated variances under the VAR(1) design with q = 3 and 4 for some
given values of K and b. These values are calibrated by using the AMSE optimal formulae under
the VAR(1) design with  = 0:75 and 2 =

�
��0(1�  2)2

�
= (d(1� ��0) for d = 1 and ��0 = 0:40:

We �rst discuss the case when the OS LRV estimator is used. It is clear that V ar(�̂2T ) becomes
smaller than V ar(�̂1T ) only when ��0 is large enough. For example, when q = 4 and there is no
long run correlation, i.e., ��0 = 0; we have V ar(�̂1T ) = 0:081 < V ar(�̂2T ) = 0:112, and so �̂1T
is more e¢ cient than �̂2T with 28% e¢ ciency gain. These numerical observations are consistent
with our theoretical result in Proposition 1: �̂2T becomes more e¢ cient relative to �̂1T only when
the bene�t of using the LRV matrix outweighs the cost of estimating it. With the choice of
K = 14 and q = 4; Table 5 indicates that V ar(�̂2T ) starts to become smaller than V ar(�̂1T )
when ��0 crosses a value in the interval [0:270; 0:360] from below: This agrees with the theoretical
threshold value ��0 = q=(K � 1) � 0:307 given in Corollary 4:

In the case of kernel LRV estimation, we get exactly the same qualitative messages. For ex-
ample, consider the case with the Bartlett kernel, b = 0:08; and q = 3:We observe that V ar(�̂2T )
starts to become smaller than V ar(�̂1T ) when ��0 crosses a value in the interval [0:09; 0:18] from
below. This is compatible with the threshold value 0:152 given in Table 1.

Finally, we note that V ar(�̂aT ) is smaller than V ar(�̂2T ) for all values of ��0 considered:
This is well expected. In constructing �̂aT , we employ a correctly speci�ed parametric model
to estimate the weighting matrix and so �W (�̂0T ) converges in probability to the true long run
variance matrix 
�: However, when the true DGP is VARMA(1,1), the results in Tables 7�8
indicate that the e¢ ciency of �̂aT is reduced due to the misspeci�cation bias in the working
weighting matrix �W (�̂aT ). The tables also report the values of �a�

0
a. We �nd that �̂aT is more

e¢ cient than �̂2T only when �a�
0
a is below a certain threshold value. This con�rms the qualitative

messages in Theorem 11(a) and (b).

6.2 Hypothesis Testing

We implement three testing procedures on the basis of W1T , W2T and WaT : Here, WaT is based
on the same working weighting matrix �W (�̂0T ) as in the point estimation case. The nominal
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signi�cance level is � = 0:05. As before,  = 0:75. We use (24) and (26) to set  and obtain
�max(��

0) 2 f0:00; 0:35; 0:50; 0:60; 0:80; 0:90g. We focus on the case with d = 3 and q = 3. The
null hypotheses of interest are:

H01 : �1 = 0;

H02 : �1 = �2 = 0

where p = 1; 2 respectively. For the smoothing parameters, we employ the data driven AMSE
optimal bandwidth through VAR(1) plug-in implementation developed by Andrews (1991) and
Phillips (2005).

Tables 9�16 report the empirical size of three nominal 5% testing procedures based on the
two types of asymptotic approximations. It is clear that all of the three tests based onW1T ;WaT

and W2T su¤er from severe size distortion if the conventional normal (or chi-square) critical
values are used. For example, when the DGP is VAR(1) and OS LRV estimation is implemented,
the empirical sizes of the three tests using the OS LRV estimator are reported to be around
14% � 29% when p = 2. The relatively large size distortion of the W2T test comes from the
additional cost in estimating the weighting matrix. However, if the nonstandard critical values
W�
11 andW�

21 are used, we observe that the size distortion of all three procedures is substantially
reduced. The result agrees with the previous literature such as Sun (2013, 2014a&b) and Kiefer
and Vogelsang (2005) which highlight the higher accuracy of the �xed-smoothing approximations.
Also, we observe that when the �xed-smoothing approximations are used, the W1T test is more
size-distorted than the W2T test in most cases. Similar results for the kernel cases are reported
in Tables 11�16.

Next, we investigate the �nite sample power performances of the three procedures. We use the
�nite sample critical values under the null, so the power is size-adjusted and the power comparison
is meaningful. The DGPs are the same as before except the parameters are from the local null
alternatives R�0 = r + �0=

p
T . The degree of overidenti�cation considered here is q = 3: Also,

the domain of each power curve is rescaled to be � := �00( ~R
1�2 ~R
0)�1�0 with ~R = R(��1�2)

1=2 as
in Section 4 and 5.

Figures 2�4 show the size-adjusted �nite sample power of the three procedures in the case
of OS LRV estimation. We can see that in all �gures, the power curve of the two-step test
shifts upward as the degree of the long run correlation �max(�R�

0
R) increases and it starts to

dominate that of the one-step test from certain point �max(�R�
0
R) 2 (0; 1). This is consistent

with Proposition 7. For example, with K = 14 and p = 1; the power curves in Figure 2 show that
the power curve of the two-step test W2T starts to dominate that of the one-step test W1T when
�max(�R�

0
R) reaches 0:25. This matches our theoretical results in Proposition 7 and Table 4 which

indicate that the threshold value max�2[1;25] f(�;K; p; q; �) is about 0:275 when K = 14; p = 1
and q = 3. Also, if �max(�R�

0
R) is as high as 0:75, we can see that the two-step test is more

powerful than the one-step test in most of cases.
Lastly, in the presence of VAR(1) error, the performance of WaT dominates that of W1T and

W2T for all �max(�R�
0
R) 2 (0; 1). This is analogous to the point estimation results. The working

weighting matrix �W (�̂0T ) based on VAR(1) plug-in model is close to the true long run variance
matrix 
�. This leads to power improvement whenever there is some long run correlation between
u�1t and u

�
2t. However, under the VARMA(1,1) error, Figures 3�4 show that the advantages of

WaT are reduced andWaT is more powerful than the two-step testW2T only when �max(�a;R�
0
a;R)

is below the threshold value f(�0;K; p; q; �). This is due to the misspeci�cation bias in �W (�̂0T )
which is attributed to the use of a wrong plug-in model. Nevertheless, we still observe comparable
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performances of WaT for most of non-zero �max(�a;R�
0
a;R) values: Figures 5�8 for the cases of

kernel LRV estimation deliver the same qualitative messages.

6.3 Practical Recommendation

Both our theoretical result and simulation evidence suggest that we should go one more step
and employ the two-step estimator and test when the long run canonical correlation coe¢ cients
are large enough. In empirical applications, we often care about only a linear combination of
model parameters or a single model parameter. In this case, there is only one long run canonical
correlation coe¢ cient and it provides the necessary and su¢ cient condition for going the extra
step. However, it is hard to estimate the long run canonical correlation coe¢ cient with good
precision. This is exactly the source of the problem why the two-step estimator and test may
not outperform. In the absence of any prior knowledge of the long run canonical correlation,
we propose to use the two-step estimator and test only when the estimated long run canonical
correlation coe¢ cient is larger than our theoretical threshold by a margin, say 10%. On the other
hand, when the estimated long run canonical correlation coe¢ cient is smaller than our theoretical
threshold by 10%, we stick with the �rst-step estimator and test. When the estimated long run
canonical correlation coe¢ cient is within 10% of the theoretical threshold, we propose to use the
GMM estimator and test based on a working weighting matrix using VAR(1) as the approximating
parametric model. Our recommendation in the not so clear-cut case is based on the simulation
evidence that the working weighting matrix can deliver a robust performance in �nite samples.

We now formalize our recommendation using hypothesis testing as an example. Given the set
of moment conditions E �f(vt; �0) = 0 and the data fvtg ; suppose that we want to testH0 : R�0 = r
against R�0 6= r for some R 2 Rp�d. We follow the steps below to decide on which test to use.

1. Compute the initial estimator �̂0T = argmin�2�
PT

t=1
�f(vt; �)

2 :
2. On the basis of �̂0T ; use a data-driven method such as Andrews (1991) or Phillips (2005)
to select the smoothing parameter: Denote the data-driven value by ĥ:

3. Based on the smoothing parameter ĥ; compute ��est(�̂0T ) and �
est(�̂0T ) using the formulae
in (15).

4. Compute �GT (�̂0T ) =
1
T

PT
t=1

@ �f(vt;�)
@�0

j�=�̂0T and its singular value decomposition Û �̂V̂ 0

where �̂0 = (Âd�d; Od�q) and Âd�d is diagonal.

5. Estimate the variance and the long run variance of the rotated moment processes by

�̂� := Û 0 ��est(�̂0T )Û and 
̂� := Û 0 �
est(�̂0T )Û .

6. Compute the normalized LRV estimator:


̂ = (�̂�1=2)
�1
̂�(�̂�01=2)

�1 :=

�

̂11 
̂12

̂21 
̂22

�
where

�̂�1=2 =

0B@
�
�̂�1�2

�1=2
�̂�12

�
�̂�22

��1=2
0

�
�̂�22

�1=2
1CA : (27)
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7. Let ~Rest = RV̂ Â�1(�̂�1�2)
1=2. Compute the eigenvalues:

�
�
�̂R�̂

0
R

�
= �

h
( ~Rest
̂12
̂

�1
22 
̂12

~R0est)( ~Rest
̂11 ~R
0
est)

�1
i
:

Let �max
�
�̂R�̂

0
R

�
and �min

�
�̂R�̂

0
R

�
be the largest and smallest eigenvalues, respectively.

8. Choose the value of �o such that P
�
�2p (�

o) > �1��p

�
= 75%. This choice of �o is consistent

with the optimal testing literature. We may also choose a value of �o to re�ect scienti�c
interest or economic signi�cance.

9. (a) If �min
�
�̂R�̂

0
R

�
> 1:1f(�o; ĥ; p; q; �), then we use the second-step test based on W2T :

(b) If �max
�
�̂R�̂

0
R

�
< 0:9f(�o; ĥ; p; q; �); then we use the �rst-step test based on W1T :

(c) If neither condition (a) nor condition (b) is satis�ed, then we use the testing procedure
based on WaT using the VAR(1) as the approximating parametric model to estimate the
weighting matrix.

7 Conclusion

In this paper we have provided more accurate and honest comparisons between the popular one-
step and two-step GMM estimators and the associated inference procedures. We have given some
clear guidance on when we should go one step further and use a two-step procedure. Qualitatively,
we want to go one step further only if the bene�t of doing so clearly outweighs the cost. When
the bene�t and cost comparison is not clear-cut, we recommend using the GMM procedure with
a working weighting matrix.

The qualitative message of the paper is applicable more broadly. As long as there is additional
nonparametric estimation uncertainty in a two-step procedure relative to the one-step procedure,
we have to be very cautious about using the two-step procedure. While some asymptotic theory
may indicate that the two-step procedure is always more e¢ cient, the e¢ ciency gain may not
materialize in �nite samples. In fact, it may do more harm than good sometimes if we blindly
use the two-step procedure.

There are many extensions of the paper. We give some examples here. First, we can use
the more accurate approximations to compare the continuous updating GMM and other general-
ized empirical likelihood estimators with the one-step and two-step GMM estimators. While the
�xed-smoothing asymptotics captures the nonparametric estimation uncertainty of the weighting
matrix estimator, it does not fully capture the estimation uncertainty embodied in the �rst-step
estimator. The source of the problem is that we do not observe the moment process and have
to use the estimated moment process based on the �rst-step estimator to construct the nonpara-
metric variance estimator. It is interesting to develop a further re�nement to the �xed-smoothing
approximation to capture the �rst-step estimation uncertainty more adequately. Finally, it will
be also very interesting to give an honest assessment of the relative merits of the OLS and GLS
estimators which are popular in empirical applications.
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Table 1: Threshold values g(h; q) for asymptotic variance comparison with Bartlett kernel
b q = 1 q = 2 q = 3 q = 4 q = 5

0.010 0.007 0.014 0.020 0.027 0.033
0.020 0.014 0.027 0.040 0.053 0.065
0.030 0.020 0.040 0.059 0.078 0.097
0.040 0.027 0.053 0.079 0.104 0.128
0.050 0.034 0.066 0.098 0.128 0.157
0.060 0.040 0.079 0.116 0.152 0.185
0.070 0.047 0.092 0.135 0.175 0.211
0.080 0.054 0.104 0.152 0.197 0.237
0.090 0.061 0.117 0.170 0.218 0.260
0.100 0.068 0.129 0.186 0.238 0.282
0.110 0.074 0.141 0.203 0.257 0.303
0.120 0.081 0.153 0.218 0.274 0.322
0.130 0.088 0.164 0.233 0.291 0.340
0.140 0.094 0.175 0.247 0.306 0.356
0.150 0.101 0.186 0.260 0.321 0.371
0.160 0.107 0.196 0.273 0.334 0.384
0.170 0.113 0.206 0.284 0.347 0.397
0.180 0.119 0.216 0.295 0.358 0.407
0.190 0.124 0.226 0.306 0.369 0.417
0.200 0.130 0.235 0.316 0.380 0.425

Notes: h = 1=b indicates the level of smoothing and q is the degrees of overidenti�cation. If
the largest squared long run canonical correlation between the two blocks of (rotated and trans-
formed) moment conditions is less than g (h; q) ; then the two-step estimator �̂2T is asymptotically
less e¢ cient than the one-step estimator �̂1T : If the smallest squared long run canonical corre-
lation is greater than g (h; q) ; then the two-step estimator �̂2T is asymptotically more e¢ cient
than the one-step estimator �̂1T :
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Table 2: Threshold values g(h; q) for asymptotic variance comparison with Parzen kernel
b q = 1 q = 2 q = 3 q = 4 q = 5

0.010 0.006 0.011 0.016 0.022 0.027
0.020 0.011 0.022 0.033 0.043 0.054
0.030 0.017 0.033 0.049 0.065 0.081
0.040 0.022 0.044 0.065 0.087 0.107
0.050 0.028 0.055 0.082 0.108 0.134
0.060 0.033 0.066 0.099 0.130 0.161
0.070 0.039 0.077 0.115 0.152 0.187
0.080 0.045 0.088 0.132 0.173 0.213
0.090 0.051 0.100 0.148 0.194 0.238
0.100 0.057 0.111 0.164 0.215 0.263
0.110 0.063 0.122 0.181 0.236 0.288
0.120 0.069 0.133 0.197 0.257 0.312
0.130 0.075 0.145 0.213 0.277 0.336
0.140 0.081 0.156 0.229 0.297 0.359
0.150 0.087 0.168 0.245 0.317 0.382
0.160 0.093 0.179 0.261 0.337 0.404
0.170 0.100 0.191 0.277 0.356 0.426
0.180 0.106 0.202 0.293 0.375 0.448
0.190 0.112 0.214 0.308 0.393 0.469
0.200 0.118 0.225 0.323 0.411 0.489

See notes to Table 1
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Table 3: Threshold values g(h; q) for asymptotic variance comparison with QS kernel

b q = 1 q = 2 q = 3 q = 4 q = 5

0.010 0.010 0.020 0.030 0.040 0.050
0.020 0.021 0.041 0.061 0.082 0.102
0.030 0.031 0.062 0.093 0.124 0.154
0.040 0.042 0.084 0.126 0.166 0.206
0.050 0.053 0.106 0.158 0.209 0.258
0.060 0.065 0.128 0.191 0.252 0.311
0.070 0.077 0.151 0.225 0.296 0.362
0.080 0.089 0.175 0.259 0.340 0.414
0.090 0.102 0.198 0.293 0.382 0.464
0.100 0.115 0.222 0.326 0.423 0.516
0.110 0.127 0.247 0.359 0.463 0.565
0.120 0.140 0.271 0.392 0.502 0.612
0.130 0.153 0.296 0.426 0.542 0.655
0.140 0.166 0.321 0.458 0.581 0.697
0.150 0.179 0.346 0.489 0.619 0.736
0.160 0.193 0.371 0.520 0.655 0.773
0.170 0.206 0.395 0.549 0.690 0.806
0.180 0.220 0.418 0.578 0.722 0.834
0.190 0.233 0.441 0.605 0.752 0.859
0.200 0.246 0.463 0.630 0.779 0.879

See notes to Table 1.
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Table 4: Threshold Values f(�;K; p; q; �) for power comparison with OS LRV estimation when
� = 0.05 and K = 8,10,12,14.

p = 1 p = 2 p = 3
K � q = 1 q = 2 q = 3 q = 1 q = 2 q = 3 q = 1 q = 2 q = 3

1.000 0.162 0.378 0.514 0.223 0.367 0.581 0.242 0.433 0.576
5.000 0.151 0.364 0.503 0.214 0.370 0.582 0.225 0.469 0.623
9.000 0.154 0.352 0.493 0.213 0.377 0.597 0.226 0.488 0.639

8 13.000 0.153 0.345 0.496 0.213 0.397 0.600 0.226 0.495 0.645
17.000 0.160 0.352 0.489 0.217 0.399 0.608 0.230 0.498 0.652
21.000 0.165 0.356 0.493 0.211 0.405 0.604 0.234 0.503 0.657
25.000 0.171 0.355 0.492 0.208 0.399 0.611 0.231 0.510 0.665
1.000 0.082 0.283 0.474 0.162 0.277 0.461 0.171 0.369 0.507
5.000 0.130 0.281 0.426 0.133 0.310 0.439 0.192 0.348 0.507
9.000 0.138 0.269 0.423 0.136 0.305 0.431 0.196 0.328 0.506

10 13.000 0.135 0.261 0.416 0.132 0.308 0.432 0.200 0.339 0.507
17.000 0.128 0.267 0.406 0.137 0.308 0.431 0.209 0.341 0.509
21.000 0.136 0.276 0.406 0.137 0.308 0.436 0.210 0.346 0.508
25.000 0.134 0.270 0.418 0.135 0.308 0.439 0.203 0.344 0.509
1.000 0.085 0.198 0.322 0.128 0.203 0.345 0.151 0.325 0.314
5.000 0.106 0.218 0.298 0.127 0.244 0.336 0.129 0.301 0.345
9.000 0.103 0.210 0.301 0.122 0.233 0.353 0.119 0.284 0.352

12 13.000 0.098 0.205 0.308 0.125 0.232 0.353 0.124 0.274 0.359
17.000 0.105 0.193 0.318 0.128 0.230 0.359 0.124 0.277 0.366
21.000 0.100 0.197 0.325 0.119 0.243 0.363 0.123 0.274 0.369
25.000 0.118 0.197 0.325 0.110 0.236 0.360 0.121 0.284 0.378
1.000 0.062 0.316 0.260 0.089 0.184 0.367 0.155 0.287 0.394
5.000 0.091 0.232 0.275 0.133 0.181 0.287 0.112 0.220 0.341
9.000 0.093 0.214 0.274 0.117 0.188 0.273 0.124 0.209 0.341

14 13.000 0.087 0.211 0.265 0.109 0.192 0.281 0.126 0.213 0.338
17.000 0.097 0.200 0.263 0.109 0.201 0.285 0.125 0.214 0.338
21.000 0.093 0.213 0.257 0.105 0.197 0.285 0.130 0.208 0.332
25.000 0.110 0.226 0.268 0.101 0.191 0.289 0.122 0.209 0.334

Notes: If the largest squared long run canonical correlation between the two blocks of (rotated
and transformed) moment conditions is smaller than f (�;K; p; q; �), then the two-step test is
asymptotically less powerful; If the smallest squared long run canonical correlation is greater

than f (�;K; p; q; �), then the two-step test is asymptotically more powerful.
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Table 5: Finite sample variance comparison for the three estimators �̂1T , �̂2T and �̂aT under
VAR(1) error with T = 200, and q = 3.

�max(��
0) Var(�̂1T ) Var(�̂2T ) Var(�̂aT )

� � OS Bartlett Parzen QS �
� � K=14 b=0.08 b=0.15 b=0.08 �

0.000 0.081 0.103 0.100 0.108 0.109 0.089
0.090 0.093 0.105 0.103 0.110 0.111 0.093
0.180 0.107 0.108 0.105 0.112 0.113 0.096
0.270 0.124 0.111 0.108 0.114 0.115 0.099
0.360 0.146 0.115 0.111 0.117 0.118 0.102
0.450 0.174 0.120 0.116 0.120 0.122 0.106
0.540 0.214 0.127 0.122 0.125 0.127 0.110
0.630 0.272 0.137 0.131 0.132 0.134 0.116
0.720 0.368 0.154 0.145 0.144 0.146 0.123
0.810 0.554 0.185 0.174 0.166 0.170 0.135
0.900 1.073 0.274 0.253 0.227 0.235 0.166
0.990 10.892 1.937 1.731 1.372 1.451 0.714

Table 6: Finite sample variance comparison for the three estimators �̂1T , �̂2T and �̂aT under
VAR(1) error with T = 200, and q = 4.

�max(��
0) Var(�̂1T ) Var(�̂2T ) Var(�̂aT )

� � OS Bartlett Parzen QS �
� � K=14 b=0.07 b=0.150 b=0.07 �

0.000 0.081 0.112 0.104 0.120 0.114 0.089
0.090 0.092 0.114 0.106 0.121 0.115 0.093
0.180 0.106 0.117 0.108 0.123 0.118 0.096
0.270 0.122 0.124 0.111 0.126 0.120 0.100
0.360 0.146 0.125 0.115 0.129 0.124 0.105
0.450 0.175 0.130 0.121 0.133 0.129 0.110
0.540 0.217 0.139 0.129 0.139 0.135 0.116
0.630 0.278 0.151 0.141 0.148 0.146 0.123
0.720 0.379 0.172 0.160 0.163 0.162 0.134
0.810 0.576 0.213 0.198 0.193 0.196 0.152
0.900 1.128 0.328 0.305 0.276 0.289 0.197
0.990 11.627 2.538 2.364 1.884 2.089 1.013
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Table 7: Finite sample variance comparison for the three estimators �̂1T , �̂2T and �̂aT under
VARMA(1,1) error with T = 200, and q = 3

�max(��
0) Var(�̂1T ) Var(�̂2T ) �max(�a�

0
a) Var(�̂aT )

� � OS Bartlett Parzen QS � �
� � K = 14 b = 0:08 b = 0:15 b = 0:08 � �

0.000 0.081 0.103 0.100 0.108 0.109 0.000 0.089
0.090 0.104 0.105 0.102 0.110 0.110 0.152 0.087
0.180 0.129 0.107 0.103 0.111 0.112 0.199 0.090
0.270 0.161 0.109 0.105 0.113 0.114 0.250 0.096
0.360 0.202 0.112 0.108 0.116 0.117 0.306 0.104
0.450 0.255 0.116 0.111 0.119 0.121 0.368 0.115
0.540 0.329 0.121 0.116 0.124 0.126 0.439 0.130
0.630 0.439 0.129 0.123 0.131 0.133 0.519 0.153
0.720 0.620 0.143 0.134 0.143 0.145 0.611 0.191
0.810 0.970 0.168 0.155 0.165 0.168 0.716 0.265
0.900 1.950 0.240 0.215 0.228 0.233 0.838 0.471
0.990 20.496 1.589 1.357 1.411 1.462 0.982 4.356

Table 8: Finite sample variance comparison for the three estimators �̂1T , �̂2T and �̂aT under
VARMA(1,1) error with T = 200, and q = 4.

�max(��
0) Var(�̂1T ) Var(�̂2T ) �max(�a�

0
a) Var(�̂aT )

� � OS Bartlett Parzen QS � �
� � K = 14 b = 0:07 b = 0:15 b = 0:07 � �

0.000 0.081 0.112 0.104 0.120 0.114 0.000 0.089
0.090 0.103 0.113 0.105 0.121 0.115 0.152 0.086
0.180 0.132 0.115 0.106 0.123 0.117 0.199 0.091
0.270 0.167 0.118 0.108 0.125 0.119 0.250 0.098
0.360 0.212 0.121 0.111 0.128 0.122 0.306 0.109
0.450 0.272 0.126 0.114 0.132 0.126 0.368 0.123
0.540 0.356 0.132 0.119 0.137 0.131 0.439 0.144
0.630 0.481 0.142 0.127 0.145 0.139 0.519 0.174
0.720 0.686 0.158 0.140 0.159 0.153 0.611 0.225
0.810 1.086 0.190 0.164 0.186 0.180 0.716 0.325
0.900 2.206 0.279 0.235 0.262 0.257 0.838 0.605
0.990 23.519 2.013 1.598 1.735 1.742 0.982 5.954
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Table 9: Empirical size of one-step and two-step tests based on the series LRV estimator under
VAR(1) error when  = 0:75; p = 1 � 2, and T = 200

p = 1 and q = 3
� One Step(�̂�) One Step( �W ) Two Step

�max(�R�
0
R) �2 W11 �2 W11 �2 W21

0.00 0.128 0.098 0.151 0.119 0.187 0.076
0.15 0.126 0.096 0.135 0.103 0.177 0.061
0.25 0.135 0.102 0.138 0.105 0.187 0.063
0.33 0.135 0.105 0.127 0.094 0.174 0.059
0.57 0.139 0.107 0.086 0.061 0.154 0.044
0.75 0.143 0.116 0.046 0.031 0.118 0.032

p = 2 and q = 3
� One Step(�̂�) One Step( �W ) Two Step

�max(�R�
0
R) �2 W11 �2 W11 �2 W21

0.00 0.181 0.111 0.222 0.138 0.290 0.077
0.26 0.191 0.118 0.219 0.136 0.296 0.069
0.40 0.192 0.115 0.201 0.120 0.290 0.065
0.50 0.195 0.119 0.194 0.112 0.290 0.057
0.73 0.206 0.120 0.168 0.095 0.272 0.057
0.86 0.206 0.124 0.143 0.082 0.245 0.051

Notes: �One Step(�̂�) test�is based on the �rst-step GMM estimator using the
contemporaneous variance estimator as the weighing matrix; �One Step( �W ) test�is based on
the GMM estimator using the VAR(1) parametric plug-in LRV estimator as the weighing
matrix; �Two Step test�is based on the two-step GMM estimator using the data driven

nonparametric LRV estimator as the weighing matrix.
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Table 10: Empirical size of one-step and two-step tests based on the series LRV estimator under
VARMA(1,1) error when  = 0:75; p = 1 � 2, and T = 200

p = 1 and q = 3
� One Step(�̂�) One Step( �W ) Two Step

�max(�R�
0
R) �2 W11 �2 W11 �2 W21

0.00 0.117 0.091 0.138 0.108 0.181 0.068
0.15 0.140 0.113 0.142 0.113 0.173 0.071
0.25 0.144 0.117 0.140 0.113 0.165 0.065
0.33 0.155 0.127 0.141 0.111 0.160 0.060
0.57 0.167 0.138 0.128 0.106 0.121 0.043
0.75 0.168 0.141 0.118 0.096 0.087 0.025

p = 2 and q = 3
One Step(�̂�) One Step( �W ) Two Step

�max(�R�
0
R) �2 W11 �2 W11 �2 W21

0.00 0.188 0.119 0.227 0.146 0.290 0.080
0.26 0.202 0.129 0.209 0.136 0.270 0.073
0.40 0.206 0.135 0.204 0.134 0.254 0.069
0.50 0.223 0.148 0.215 0.144 0.251 0.065
0.73 0.221 0.148 0.205 0.138 0.214 0.053
0.86 0.222 0.156 0.194 0.132 0.178 0.044

See notes to Table 9.
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Table 11: Empirical size of one-step and two-step tests based on the Bartlett kernel variance
estimator under VAR(1) error when  = 0:75, p = 1 � 2 and T = 200

p = 1 and q = 3
� One Step(�̂�) One Step( �W ) Two Step

�max(�R�
0
R) �2 W11 �2 W11 �2 W21

0.00 0.156 0.138 0.192 0.172 0.201 0.133
0.15 0.163 0.138 0.175 0.154 0.201 0.120
0.25 0.161 0.138 0.164 0.141 0.196 0.112
0.33 0.154 0.127 0.140 0.115 0.181 0.100
0.57 0.147 0.119 0.085 0.066 0.144 0.069
0.75 0.152 0.128 0.035 0.023 0.115 0.053

p = 2 and q = 3
� One Step(�̂�) One Step( �W ) Two Step

�max(�R�
0
R) �2 W11 �2 W11 �2 W21

0.00 0.239 0.183 0.287 0.228 0.305 0.177
0.26 0.230 0.166 0.263 0.196 0.298 0.150
0.40 0.231 0.169 0.243 0.170 0.296 0.138
0.50 0.228 0.161 0.234 0.159 0.286 0.130
0.73 0.228 0.157 0.179 0.118 0.263 0.108
0.86 0.230 0.159 0.161 0.108 0.240 0.098

See notes to Table 9.

Table 12: Empirical size of one-step and two-step tests based on the Bartlett kernel variance
estimator under VARMA(1,1) error when  = 0:75, p = 1 � 2 and T = 200

p = 1 and q = 3
� One Step(�̂�) One Step( �W ) Two Step

�max(�R�
0
R) �2 W11 �2 W11 �2 W21

0.00 0.161 0.142 0.196 0.177 0.203 0.134
0.15 0.147 0.127 0.165 0.144 0.188 0.116
0.25 0.140 0.117 0.149 0.129 0.174 0.105
0.33 0.131 0.115 0.134 0.113 0.158 0.090
0.57 0.117 0.099 0.083 0.068 0.109 0.051
0.75 0.109 0.092 0.035 0.026 0.058 0.024

p = 2 and q = 3
� One Step(�̂�) One Step( �W ) Two Step

�max(�R�
0
R) �2 W11 �2 W11 �2 W21

0.00 0.235 0.180 0.292 0.230 0.307 0.174
0.26 0.213 0.157 0.239 0.181 0.278 0.146
0.40 0.203 0.147 0.224 0.165 0.262 0.124
0.50 0.205 0.146 0.209 0.151 0.246 0.115
0.73 0.191 0.136 0.167 0.114 0.195 0.085
0.86 0.190 0.133 0.147 0.105 0.174 0.078

See notes to Table 9.
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Table 13: Empirical size of one-step and two-step tests based on the Parzen kernel variance
estimator under VAR(1) error when  = 0:75, p = 1 � 2 and T = 200

p = 1 and q = 3
� One Step(�̂�) One Step( �W ) Two Step

�max(�R�
0
R) �2 W11 �2 W11 �2 W21

0.00 0.145 0.108 0.182 0.139 0.214 0.090
0.15 0.148 0.105 0.173 0.125 0.223 0.076
0.25 0.142 0.102 0.161 0.115 0.220 0.070
0.33 0.142 0.101 0.142 0.099 0.211 0.063
0.57 0.150 0.105 0.107 0.068 0.186 0.050
0.75 0.141 0.101 0.054 0.030 0.147 0.034

p = 2 and q = 3
� One Step(�̂�) One Step( �W ) Two Step

�max(�R�
0
R) �2 W11 �2 W11 �2 W21

0.00 0.216 0.123 0.278 0.169 0.340 0.102
0.26 0.225 0.117 0.267 0.149 0.348 0.085
0.40 0.221 0.117 0.260 0.140 0.346 0.081
0.50 0.219 0.112 0.241 0.123 0.331 0.072
0.73 0.217 0.102 0.199 0.097 0.310 0.059
0.86 0.226 0.116 0.175 0.080 0.292 0.054

See notes to Table 9.

Table 14: Empirical size of one-step and two-step tests based on the Parzen kernel variance
estimator under VARMA(1,1) error when  = 0:75, p = 1 � 2 and T = 200

p = 1 and q = 3
� One Step(�̂�) One Step( �W ) Two Step

�max(�R�
0
R) �2 W11 �2 W11 �2 W21

0.00 0.142 0.104 0.186 0.141 0.218 0.088
0.15 0.134 0.099 0.164 0.125 0.210 0.082
0.25 0.136 0.099 0.155 0.117 0.200 0.076
0.33 0.127 0.096 0.150 0.113 0.191 0.074
0.57 0.122 0.087 0.110 0.079 0.156 0.052
0.75 0.111 0.082 0.070 0.046 0.114 0.033

p = 2 and q = 3
� One Step(�̂�) One Step( �W ) Two Step

�max(�R�
0
R) �2 W11 �2 W11 �2 W21

0.00 0.220 0.124 0.279 0.171 0.338 0.100
0.26 0.204 0.112 0.248 0.142 0.320 0.094
0.40 0.198 0.108 0.226 0.135 0.303 0.083
0.50 0.196 0.112 0.225 0.131 0.291 0.085
0.73 0.186 0.106 0.188 0.102 0.255 0.063
0.86 0.182 0.105 0.156 0.083 0.219 0.055

See notes to Table 9.
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Table 15: Empirical size of one-step and two-step tests based on the QS kernel variance estimator
under VAR(1) error when  = 0:75, p = 1 � 2 and T = 200

p = 1 and q = 3
� One Step(�̂�) One Step( �W ) Two Step

�max(�R�
0
R) �2 W11 �2 W11 �2 W21

0.00 0.138 0.107 0.174 0.144 0.204 0.089
0.15 0.138 0.103 0.164 0.126 0.209 0.077
0.25 0.141 0.106 0.151 0.115 0.214 0.076
0.33 0.135 0.099 0.145 0.106 0.208 0.069
0.57 0.149 0.110 0.101 0.068 0.187 0.056
0.75 0.132 0.099 0.049 0.029 0.136 0.036

p = 2 and q = 3
� One Step(�̂�) One Step( �W ) Two Step

�max(�R�
0
R) �2 W11 �2 W11 �2 W21

0.00 0.210 0.124 0.265 0.168 0.312 0.101
0.26 0.217 0.122 0.261 0.151 0.335 0.089
0.40 0.216 0.119 0.244 0.141 0.327 0.084
0.50 0.214 0.114 0.234 0.130 0.332 0.077
0.73 0.204 0.113 0.188 0.099 0.295 0.063
0.86 0.214 0.121 0.158 0.082 0.277 0.063

See notes to Table 9.

Table 16: Empirical size of one-step and two-step tests based on the QS kernel variance estimator
under VARMA(1,1) error when  = 0:75, p = 1 � 2 and T = 200

p = 1 and q = 3
� One Step(�̂�) One Step( �W ) Two Step

�max(�R�
0
R) �2 W11 �2 W11 �2 W21

0.00 0.141 0.112 0.175 0.141 0.204 0.090
0.15 0.137 0.110 0.164 0.132 0.201 0.089
0.25 0.130 0.104 0.149 0.117 0.188 0.076
0.33 0.123 0.096 0.140 0.111 0.178 0.074
0.57 0.117 0.094 0.113 0.088 0.152 0.058
0.75 0.110 0.085 0.060 0.042 0.110 0.034

p = 2 and q = 3
� One Step(�̂�) One Step( �W ) Two Step

�max(�R�
0
R) �2 W11 �2 W11 �2 W21

0.00 0.213 0.128 0.271 0.176 0.323 0.106
0.26 0.199 0.123 0.249 0.160 0.310 0.104
0.40 0.194 0.122 0.231 0.147 0.297 0.096
0.50 0.183 0.108 0.212 0.130 0.278 0.083
0.73 0.188 0.114 0.187 0.113 0.250 0.072
0.86 0.182 0.113 0.156 0.091 0.217 0.061

See notes to Table 9.
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Figure 2: Size-adjusted power of the three tests based on the OS LRV estimator under VAR(1)
error with p = 1, q = 3,  = 0:75, T = 200; and K = 14.
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Figure 3: Size-adjusted power of the three tests based on the OS LRV estimator under
VARMA(1,1) error with p = 1, q = 3,  = 0:75, T = 200; and K = 14.
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Figure 4: Size-adjusted power of the three tests based on the OS LRV estimator under
VARMA(1,1) error with p = 2, q = 3,  = 0:75, T = 200; and K = 14.
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Figure 5: Size-adjusted power of the three tests based on the Bartlett LRV estimator under
VAR(1) error with p = 2, q = 3,  = 0:75, T = 200; and b = 0:078.
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Figure 6: Size-adjusted power of the three tests based on the OS LRV estimator under VAR(1)
error with p = 2, q = 3,  = 0:75, T = 200; and K = 14.
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Figure 7: Size-adjusted power of the three tests based on the Parzen LRV estimator under VAR(1)
error with p = 2, q = 3,  = 0:75, T = 200; and b = 0:16.

44



0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1
Po

w
er

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Po
w

er

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Po
w

er

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Po
w

er

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Po
w

er

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Po
w

er

Figure 8: Size-adjusted power of the three tests based on the QS LRV estimator under VAR(1)
error with p = 2, q = 3,  = 0:75, T = 200; and b = 0:079.
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8 Appendix of Proofs

Proof of Proposition 1. Part (a) follows from Lemma 1 of Sun (2014b). For part (b), we

note that �̂ d
=) �1 and so

p
T
�
�̂2T � �0

�
=

1p
T

TX
t=1

h
(y1t � Ey1t)� �̂y2t

i
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Id; ��̂

� 1p
T
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1p
T
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t=1 y2t

!
d
=)

�
Id; ��1

�

1=2Bm(1):

Proof of Lemma 2. For any a 2 Rd; we have
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where

�(h; q) (28)

= Etr
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So
E~�1 (h; d; q) ~�1 (h; d; q)

0 = �(h; q) � Id:
Since this holds for any d; we have E~�1 (h; 1; q) ~�1 (h; 1; q)

0 = �(h; q): It then follows that

E~�1 (h; d; q) ~�1 (h; d; q)
0 =

�
E
~�1 (h; 1; q)2� � Id:
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Proof of Proposition 3. Using (4) and Lemma 2, we have

avar(�̂2T )� avar(�̂1T )
= (Ejj~�1 (h; 1; q) jj2)
1�2 � 
12
�122 
21
= (Ejj~�1 (h; 1; q) jj2)
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12
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�
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11 � 
12
�122 
21

�
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0:

So avar(�̂2T ) > avar(�̂1T ) if and only if g(h; q)Id > ��0. Let ��0 = Q���Q
0
� be the eigen-

decomposition of ��0 where �� is a diagonal matrix with the eigenvalues of ��0 as the diagonal
elements and Q� is an orthogonal matrix that consists of the corresponding eigenvectors. Then
g(h; q)Id > ��0 if and only ifQ0�g(h; q)Q� > ��; which is equivalent to g(h; q)Id��� > 0: The latter
holds if and only if �max (��0) < g(h; q): We have therefore proved that avar(�̂2T ) > avar(�̂1T ) if
and only if �max (��0) < g(h; q): Similarly, we can prove that avar(�̂2T ) < avar(�̂1T ) if and only if
�min (��

0) > g(h; q):

Proof of Corollary 4. For the OS LRV estimator, we have
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As a result, for �(h; q) de�ned in (28), we have:
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where the last equality follows from the mean of an inverse Wishart distribution. Using this, we
have

g(h; q) =
�(h; q)

1 + �(h; q)
=

q=(K � q � 1)
1 + q=(K � q � 1) =

q

K � 1 :

The corollary then follows from Proposition 3.

Proof of Proposition 5. It su¢ ces to prove parts (a) and (b) as parts (c) and (d) follow from
similar arguments. Part (b) is a special case of Theorem 6(a) of Sun (2014b) with G = [Id; Od�q]0:
It remains to prove part (a). Under R�0 = r + �0=

p
T , we have:
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Using Proposition 1(a), we have
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as desired.

Proof of Proposition 6.
Part (a) Let �2p

�
�2
�
be a random variable following the noncentral chi-squared distribution

with degrees of freedom p and noncentrality parameter �2: We �rst prove that P
�
�2p
�
�2
�
> x

�
increases with �2 for any integer p and x > 0: Note that

P
�
�2p
�
�2
�
> x

�
=

1X
j=0

e��
2=2(�2=2)j

j!
P
�
�2p+2j > x

�
;
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where �2p+2j is a (central) chi-squared variate with degrees of freedom p+ 2j, we have

@P
�
�2p
�
�2
�
> x

�
@�2

= �1
2

1X
j=0

(�2=2)j

j!
e��

2=2P
�
�2p+2j > x

�
+
1

2

1X
j=1

(�2=2)j�1

(j � 1)! e
��2=2P

�
�2p+2j > x

�
= �1

2

1X
j=0

(�2=2)j

j!
e��

2=2P
�
�2p+2j > x

�
+
1

2

1X
j=0

(�2=2)j

j!
e��

2=2P
�
�2p+2+2j > x

�
=
1

2

1X
j=0

(�2=2)j

j!
e��

2=2
�
P
�
�2p+2+2j > x

�
� P

�
�2p+2j > x

��
> 0;

as needed.
Let � s N(0; 1) and  be a zero mean random variable that satis�es  2 > 0 a.e. and  ? �.

Using the monotonicity of P
�
�2p
�
�2
�
> x

�
in �2; we have

P (k�+  k2 > x) = E
�
P (�21

�
 2
�
> x)j 2

�
> P (�21 > x) = P (k�k2 > x) for any x:

Now we proceed to prove the theorem. Note that Bp (1) and Bq (1) are independent of
Cpq; Cpp; and Cqq: Let D�1

pp =
Pp

i=1 �Didid
0
i be the spectral decomposition of D

�1
pp where �Di � 0

almost surely and fdig are orthonormal in Rp. Then�
Bp (1)� CpqC�1qq Bq (1)

�0
D�1
pp

�
Bp (1)� CpqC�1qq Bq (1)

�
=

pX
i=1

�Di
�
d0iBp (1)� d0iCpqC�1qq Bq (1)

�2
=

pX
i=1

�Di (�i +  i)
2

where �i = d0iBp (1),  i = �d0iCpqC�1qq Bq (1) ; f�ig is independent of f ig conditional on Cpq; Cpp;
and Cqq: In addition, �i s iidN(0; 1) conditionally on Cpq; Cpp; and Cqq and unconditionally. So
for any x > 0;

P (W21 (0) > x) = EP (W21 (0) > xjCpq; Cpp; Cqq)

= EP

 
pX
i=1

�Di (�i +  i)
2 > xjCpq; Cpp; Cqq

!

= EP

 
�D1 (�1 +  1)

2 > x�
pX
i=2

�Di (�i +  i)
2 jCpq; Cpp; Cqq; f�ig

p
i=2; f ig

p
i=1

!

� EP

 
�D1�

2
1 > x�

pX
i=2

�Di (�i +  i)
2 jCpq; Cpp; Cqq; f�i;  ig

p
i=2

!

= EP

 
�D1�

2
1 > x�

pX
i=2

�Di (�i +  i)
2 jCpq; Cpp; Cqq; f ig

p
i=2

!
:
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Using the above argument repeatedly, we have

P (W21 (0) > x) � EP

 
pX
i=1

�Di�
2
i > xjCpq; Cpp; Cqq

!

= P

 
pX
i=1

�Di�
2
i > x

!
= P

�
Bp (1)

0D�1
pp Bp (1) > x

�
> P

�
Bp (1)

0C�1pp Bp (1) > x
�
= P (W11 (0) > x) ;

where the last inequality follows from the fact that D�1
pp > C�1pp almost surely.

Part (b). Let C�1pp =
Pp

i=1 �Cicic
0
i be the spectral decomposition of C

�1
pp : Since Cpp > 0 with

probability one, �ci > 0 with probability one. We have

W11
�
k�k2

�
d
= [Bp (1) + k�k ep]0C�1pp [Bp (1) + k�k ep]

=

pX
i=1

�Ci
�
c0iBp (1) + k�k c0iep

�2
where [c0iBp (1) + k�k c0iep]

2 follows independent noncentral chi-square distributions with noncen-
trality parameter k�k2 (c0iep)

2 ; conditional on f�Cigpi=1 and fcig
p
i=1 : Now consider two vectors �1

and �2 such that k�1k < k�2k : We have

P
h
W11

�
k�1k2

�
> x

i
= P

(
pX
i=1

�Ci
�
c0iBp (1) + k�1k c0iep

�2
> x

)

= EP

(
�C1

�
c01Bp (1) + k�1k c01ep

�2
> x�

pX
i=2

�Ci
�
c0iBp (1) + k�1k c0iep

�2����� f�Cigpi=1 ; fcigpi=1
)

< EP

(
�C1

�
c01Bp (1) + k�2k c01ep

�2
> x�

pX
i=2

�Ci
�
c0iBp (1) + k�1k c0iep

�2����� f�Cigpi=1 ; fcigpi=1
)

= P

(
�C1

�
c01Bp (1) + k�2k c01ep

�2
+

pX
i=2

�Ci
�
c0iBp (1) + k�1k c0iep

�2
> x

)

where we have used the strict monotonicity of P
�
�21
�
�2
�
> x

�
in �2: Repeating the above argu-

ment, we have

P
h
W11

�
k�1k2

�
> x

i
< P

(
�C1

�
c01Bp (1) + k�2k c01ep

�2
+ �C2

�
c02Bp (1) + k�2k c02ep

�2
+

pX
i=3

�Ci
�
c0iBp (1) + k�1k c0iep

�2
> x

)

< P

(
pX
i=1

�Ci
�
c0iBp (1) + k�2k c0iep

�2
> x

)
= P

�
[Bp (1) + �2]

0C�1pp [Bp (1) + �2] > x
	
= P

h
W11

�
k�2k2

�
> x

i
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as desired.
Part (c). We note that

W21
�
k�k2

�
=
�
Bp (1)� CpqC�1qq Bq (1) + k�k ep

�0
D�1
pp

�
Bp (1)� CpqC�1qq Bq (1) + k�k ep

�
=
n�
Ip + CpqC

�1
qq C

�1
qq Cqp

��1=2 �
Bp (1)� CpqC�1qq Bq (1)

�
+ k�k ~ep

o0
�
�
Ip + CpqC

�1
qq C

�1
qq Cqp

�1=2
D�1
pp

�
Ip + CpqC

�1
qq C

�1
qq Cqp

�1=2
�
n�
Ip + CpqC

�1
qq C

�1
qq Cqp

��1=2 �
Bp (1)� CpqC�1qq Bq (1)

�
+ k�k ~ep

o
where

~ep =
�
Ip + CpqC

�1
qq C

�1
qq Cqp

��1=2
ep:

Let
Pp

i=1
~�Di

~di ~d
0
i be the spectral decomposition of

�
Ip + CpqC

�1
qq C

�1
qq Cqp

�1=2
D�1
pp

�
Ip + CpqC

�1
qq C

�1
qq Cqp

�1=2.
De�ne

~�di =
~d0i
�
Ip + CpqC

�1
qq C

�1
qq Cqp

��1=2 �
Bp (1)� CpqC�1qq Bq (1)

�
:

Then conditional on Cpq; Cpp and Cqq; ~�di s iidN(0; 1): Since the conditional distribution does
not depend on Cpq; Cpp and Cqq; ~�di s iidN(0; 1) unconditionally. Now

W21(k�1k2)

=

pX
i=1

~�Di

n
~d0i
�
Ip + CpqC

�1
qq C

�1
qq Cqp

��1=2 �
Bp (1)� CpqC�1qq Bq (1)

�
+ k�1k d0i~ep

o2
=

pX
i=1

~�Di

�
~�di + k�1k ~d0i~ep

�2
;

and so for two vectors �1 and �2 such that k�1k < k�2k we have

P
n
W21(k�1k2) > x

o
= EP

(
pX
i=1

~�Di

�
~�di + k�1k ~d0i~ep

�2
> x

�����Cpq; Cpp; Cqq
)

< EP

(
pX
i=1

~�Di

�
~�di + k�2k ~d0i~ep

�2
> x

�����Cpq; Cpp; Cqq
)

= P

(
pX
i=1

~�Di

�
~�di + k�2k ~d0i~ep

�2
> x

)
= P

n
W21(k�2k2) > x

o
:
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Proof of Proposition 7. We prove part (b) only as part (a) can be proved using the same
argument. Using (11), we have, for �0 =

��12 �0
2 :��12 �0

2 � �(�0)��11 �0
2

= �(�0)

pX
i=1

1

1� �i;R
[�i;R � f(�0)]

�
a0i;R�

�1
1 �0

�2
= �(�0)

��11 �0
2 pX

i=1

1

1� �i;R
[�i;R � f(�0)]

*
ai;R;

��11 �0��11 �0

+2

; (29)

where �i;R 2 [0; 1) and h�; �i is the usual inner product.
We proceed to show that

��12 �0
2 � �(�0)

��11 �0
2 > 0 for all �0 2 A (�0) if and only if

�i;R� f(�0) > 0 for all i = 1; :::; p: The �if�part is obvious. To show the �only if�part, we prove
by contradiction. Suppose that

��12 �0
2�f(�0)��11 �0

2 > 0 for all �0 2 A (�0) but there exists
an i� such that �i�;R � f(�0) � 0: Choosing �0 2 A (�0) such that

�
��11 �0

�
=
��11 �0

 = ai�;R; we
have ��12 �0

2 � �(�0)��11 �0
2 = ��11 �0

2
1� �i�;R

[�i�;R � f(�0)] �(�0) � 0; (30)

leading to a contradiction.
Note that the condition �i;R�f (�0) > 0 for all i = 1; :::; p is equivalent tomin f�i;Rg > f (�0) ;

which is the same as �min (�R�
0
R) > f(�0;h; p; q; �): This completes the proof of part (b).

Proof of Proposition 8. Instead of directly proving �1 (�) > �2 (�) for any � > 0; we consider
the following testing problem: we observe (Y; S) 2 Rp+q� R(p+q)�(p+q) with Y ? S from the
following distributions:

Y
(p+q)�1

=

� Y1
(p�1)
Y2
(q�1)

�
s Np+q(�;
) with � =

� �0
(p�1)
0

(q�1)

�
;
 =

0B@ 
11
(p�p)

0
(p�q)

0
(q�p)


22
(q�q)

1CA

S
(p+q)�(p+q)

=

0B@ S11
(p�p)

S12
(p�q)

S21
(q�p)

S22
(q�q)

1CA s
Wp+q(K;
)

K

where 
11 and 
22 are non-singular matrices and Wp+q(K;
) is the Wishart distribution with
K degrees of freedom. We want to test H0 : �0 = 0 against H1 : �0 6= 0. The testing problem is
partially motivated by Das Gupta and Perlman (1974) and Marden and Perlman (1980).

The joint pdf of (Y; S) can be written as

f(Y; Sj�0;
11;
22)

= �(�0;
11;
22)h(S) exp

�
�1
2
tr
�

�111 (Y1Y

0
1 +KS11) + 


�1
22 (Y2Y

0
2 +KS22)

�
+ Y 01


�1
11 �0

�
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for some functions �(�) and h(�): It follows from the exponential structure that

� := (Y1; S11; Y2Y
0
2 +KS22)

is a complete su¢ cient statistic for

� := (�0;
11;
22):

We note that Y1 � N(�0;
11), KS11 � Wp(K;
11) and Y2Y 02 + KS22 � Wq(K + 1;
22) and
these three random variables are mutually independent.

Now, we de�ne the following two test functions for testing H0 : �0 = 0 against H1 : �0 6= 0:

�1(�) : = 1(V1(�) >W�
11)

�2(�) : = E[1(W2(Y; S) >W�
21)j�]

where

V1(�) := Y 01S
�1
11 Y1 and W2(Y; S) := (Y1 � S12S�122 Y2)0(S11 � S12S

�1
22 S21)

�1(Y1 � S12S�122 Y2):

We can show that the distributions of V1(�) and W2(Y; S) depend on the parameter � only via
�00


�1
11 �0: First, it is easy to show that

W2(Y; S) =

�
Y1
Y2

�0�
S11 S12
S21 S22

��1�
Y1
Y2

�
� Y 02S�122 Y2:

Let

~Y : =

�
~Y1
~Y2

�
= 
�1=2

�
Y1
Y2

�
s N(~�; Ip+q); ~� =

 


�1=2
11 �0
0

!
and

~S : =

�
~S11 ~S12
~S21 ~S22

�
= 
�1=2

�
S11 S12
S21 S22

�
(
�1=2)0 s

Wp+q(K; Ip+q)

K
:

Then ~Y ? ~S and
W2(Y; S) =

�
~Y + ~�

�0
~S�1

�
~Y + ~�

�
� ~Y 02 ~S

�1
22
~Y2:

It is now obvious that the distribution of W2(Y; S) depends on � only via jj~�jj2; which is equal
to �00


�1
11 �0: Second, we have

V1(�) =
�
~Y1 +


�1=2
11 �0

�0
~S�111

�
~Y1 +


�1=2
11 �0

�
and so the distribution of V1(�) depends on � only via


�1=211 �0

2 which is also equal to �00
�111 �0:
It is easy to show that the null distributions of V1(�) and W2(Y; S) are the same as W11

and W21; respectively. In view of the critical values used, both the tests �1(�) and �2(�) have
the correct level �. Since

E�1(�) = P (V1(�) >W�
11) and E�2(�) = E fE[1(W2(Y; S) >W�

21)j�]g = P (W2(Y; S) >W�
11);

the power functions of the two tests �1(�) and �2(�) are �1(�
0
0


�1
11 �0) and �2(�

0
0


�1
11 �0), respec-

tively.
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We consider a group of transformations G, which consists of the elements in Ap�p := fA 2
Rp�Rp : A is a (p�p) non-singular matrixg and acts on the sample space � := Rp�Rp�p�Rq�q
for the su¢ cient statistic � through the mapping

G : (Y1; S11; Y2Y
0
2 +KS22)) (AY1; AS11A

0; Y2Y
0
2 +KS22):

The induced group of transformations �G acting on the parameter space � := Rp� Sp�p� Sq�q is
given by

�G : � = (�0;
11;
22)) (A�0; A
11A
0;
22):

Our testing problem is obviously invariant to this group of transformations.
De�ne

V(�) := (Y 01S
�1
11 Y1; Y2Y

0
2 +KS22) := (V1(�);V2(�)) :

It is clear that V(�) is invariant under G: We can also show that V(�) is maximal invariant
under G. To do so, we consider two di¤erent samples � := (Y1; S11; Y2Y

0
2 + KS22) and �� :=

( �Y1; �S11; �Y2 �Y
0
2 +K �S22) such that V(�) = V(��): We want to show that there exists a p � p non-

singular matrix A such that Y1 = A �Y1 and S11 = A �S11A
0 whenever Y 01S

�1
11 Y1 =

�Y 01
�S�111

�Y1: By
Theorem A9.5 (Vinograd�s Theorem) in Muirhead (2009), there exists an orthogonal p�p matrix
H such that S�1=211 Y1 = H �S

�1=2
11

�Y1 and this gives us the non-singular matrix A := S
1=2
11 H

�S
�1=2
11

satisfying Y1 = A �Y1 and S11 = A �S11A
0: Similarly, we can show that

v(�) := (�00

�1
11 �0;
22)

is maximal invariant under the induced group �G. Therefore, restricting attention to G-invariant
tests, testing H0 : �0 = 0 against H1 : �0 6= 0 reduces to testing

H 0
0 : �

0
0


�1
11 �0 = 0 against H

0
1 : �

0
0


�1
11 �0 > 0

based on the maximal invariant statistic V(�):
Let f(V1; �00


�1
11 �0) and f(V2; 
22) be the marginal pdf�s of V1 := V1(�) and V2 := V2(�):

By construction, V1(�)K=(K � p+ 1) follows the noncentral F distribution Fp;K�p+1(�00

�1
11 �0):

So f(V1; �00

�1
11 �0) is the (scaled) pdf of the noncentral F distribution. It is well known that the

noncentral F distribution has the Monotone Likelihood Ratio (MLR) property in V1 with respect
to the parameter �00


�1
11 �0 (e.g. Chapter 7.9 in Lehmann and Romano (2008)). Also, in view of

the independence between V1 and V2; the joint distribution of V(�) also has the MLR property
in V1: By the virtue of the Neyman-Pearson lemma, the test �1(�) := 1(V1(�) > W�

11) is the
unique Uniformly Most Powerful Invariant (UMPI) test among all G-invariant tests based on the
complete su¢ cient statistic �: So if �2(�) is equivalent to a G-invariant test, then �1(�

0
0


�1
11 �0) >

�2(�
0
0


�1
11 �0) for any �

0
0


�1
11 �0 > 0. To show that �2(�) has this property, we let g 2 G be any

element of G with the corresponding matrix Ag and induced transformation �g 2 �G. Then,

E�[�2(g�)] = E�g�[�2(�)] = �2
�
(Ag�0)

0(Ag
11A
0
g)
�1(Ag�0)

�
= �2(�

0
0


�1
11 �0) = E�[�2(�)]

for all �: It follows from the completeness of � that �2(g�) = �2(�) almost surely and this drives
the desired result.

54



Proof of Lemma 9. We prove a more general result by establishing a representation for

1p
T

TX
t=1

h
�G0 �M�1 �G

i�1
�G0 �M�1 �f(vt; �0)

in terms of the rotated and normalized moment conditions for any m�m (almost surely) positive
de�nite matrix �M which can be random. Let

M� = U 0 �MU;M = ���11=2M
�(���11=2 )

0 =

�
M11 M12

M21 M22

�
and M1�2 = M11 �M12M

�1
22 M21 where M11 2 Rd�d and M22 2 Rq�q. Using the SVD U�V 0 of

�G, we have

�G0 �M�1 �G = V �0(U 0 �MU)�1�V 0

= V A
�
Id; O

�
(M�)�1

�
Id; O

�0
AV 0

= V A
�
Id; O

�
(���11=2 )

0
h
���11=2M

�(���11=2 )
0
i�1

���11=2

�
Id; O

�0
AV 0

= V A
�
Id; O

�
(���11=2 )

0M�1���11=2

�
Id; O

�0
AV 0

= V A (��1�2)
�1=2 � Id; O

�
M�1

h
V A (��1�2)

�1=2 � Id; O
�i0

= V A (��1�2)
�1=2M�1

1�2 (�
�
1�2)

�1=2AV 0; (31)

where we have used

�
Id; O

�
(���11=2 )

0 =
�
Id; O

� (��1�2)
�1=2 O

�
h
(��1�2)

�1=2��12 (�
�
22)

�1
i0

(��22)
�1=2

!
=

�
(��1�2)

�1=2 ; O
�
= (��1�2)

�1=2 � Id; O
�
:

In addition,

�G0 �M�1 �f(vt; �0)

= V �0(U 0 �MU)�1U 0 �f(vt; �0) = V A
�
Id; O

�
(M�)�1 f� (vt; �0)

= V A
�
Id; O

�
(���11=2 )

0
h
���11=2M

�(���11=2 )
0
i�1

���11=2 f
� (vt; �0)

= V A
�
Id; O

�
(���11=2 )

0M�1f (vt; �0) = V A (��1�2)
�1=2 � Id; O

�
M�1f (vt; �0)

= V A (��1�2)
�1=2 � Id; O

�� M�1
1�2 �M�1

1�2M12M
�1
22

�
�
M�1
1�2M12M

�1
22

�0
M�1
2�1

�
f (vt; �0)

= V A (��1�2)
�1=2 � M�1

1�2 ; �M�1
1�2M12M

�1
22

�
f (vt; �0)

= V A (��1�2)
�1=2M�1

1�2
�
f1 (vt; �0)�M12M

�1
22 f2 (vt; �0)

�
:
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Hence

1p
T

TX
t=1

h
�G0 �M�1 �G

i�1
�G0 �M�1 �f(vt; �0)

=
1p
T

TX
t=1

h
V A (��1�2)

�1=2M�1
1�2 (�

�
1�2)

�1=2AV 0
i�1 h

V A (��1�2)
�1=2M�1

1�2

i
�
�
f1 (vt; �0)�M12M

�1
22 f2 (vt; �0)

�
=

1p
T

TX
t=1

V A�1 (��1�2)
1=2 �f1 (vt; �0)�M12M

�1
22 f2 (vt; �0)

�
: (32)

Let �M = ��; we have M� = U 0 ��U = �� and M = ���11=2M
�(���11=2 )

0 = Im. So M12M
�1
22 = 0:

As a result

1p
T

TX
t=1

h
�G0 �M�1 �G

i�1
�G0 �M�1 �f(vt; �0) =

1p
T

TX
t=1

V A�1 (��1�2)
1=2 f1 (vt; �0) :

Using this and the stochastic expansion of
p
T (�̂1T � �0), we have

p
T (�̂1T � �0) =

1p
T

TX
t=1

V A�1 (��1�2)
1=2 f1 (vt; �0) + op(1):

It then follows that

(��1�2)
�1=2AV 0

p
T (�̂1T � �0) =

1p
T

TX
t=1

f1(vt; �0) + op(1)
d
=) N(0;
11):

Let �M = �
1; we have M = ���11=2 U
0 �
1U�

��10
1=2 = 
1, and so M12M

�1
22 = 
1;12


�1
1;22 = �1:

As a result,

1p
T

TX
t=1

h
�G0 �
�11 �G

i�1
�G0 �
�11 �f(vt; �0) =

1p
T

TX
t=1

V A�1 (��1�2)
1=2 [f1 (vt; �0)� �1f2 (vt; �0)] :

Using this, we have

p
T (�̂2T � �0) =

1p
T

TX
t=1

h
�G0 �
�11 �G

i�1
�G0 �
�11 �f(vt; �0) + op (1)

=
1p
T
V A�1 (��1�2)

1=2
TX
t=1

(f1(vt; �0)� �1f2(vt; �0)) + op(1):

It then follows that

(��1�2)
�1=2AV 0

p
T (�̂2T � �0) =

1p
T

TX
t=1

[f1(vt; �0)� �1f2(vt; �0)] + op(1) (33)

d
=)MN

�
0;
11 � 
12�01 � �1
21 + �1
22�01

�
:
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Proof of Theorem 10. Parts (a) and (b). Instead of comparing the asymptotic variances
of R

p
T (�̂1T ��0) and R

p
T (�̂2T ��0) directly, we equivalently compare the asymptotic variances

of ( ~R ~R0)�1=2R
p
T (�̂1T � �0) and ( ~R ~R0)�1=2R

p
T (�̂2T � �0): We can do so because ( ~R ~R0)�1=2 is

nonsingular. Note that the latter two asymptotic variances are the same as those of the respective

one-step estimator �̂
R

1T and two-step estimator �̂
R

2T of �
R
0 in the following simple location model:�

yR1t = �R0 + u
R
1t 2 Rp

y2t = u2t 2 Rq
(34)

where
�R0 = ( ~R ~R

0)�1=2R�0; u
R
1t = ( ~R ~R

0)�1=2 ~Ru1t;

and the (contemporaneous) variance and long run variance of ut = (u01t; u
0
2t)

0 are Im and 

respectively.

It su¢ ces to compare the asymptotic variances of �̂
R

1T and �̂
R

2T in the above location model.

By construction, the variance of uRt :=
��
uR1t
�0
; (u2t)

0
�0
is

var(uRt ) =

�
Ip O
O Iq

�
= Ip+q:

So the above location model has exactly the same form as the model in Section 3. We can invoke
Proposition 3 to complete the proof.

The long run canonical correlation coe¢ cients between uR1t and u2t are the same as those
between ~Ru1t and u2t: This follows because uR1t is equal to ~Ru1t pre-multiplied by a full rank
square matrix. But the long run correlation matrix between ~Ru1t and u2t is

( ~R
11 ~R
0)�1=2f ~R
12g � 
�1=222 = �R:

So the long run canonical correlation coe¢ cients between uR1t and u2t are the eigenvalues of �R�
0
R;

i.e., � (�R�
0
R) : Parts (a) and (b) then follow from Proposition 3.

Parts (c) and (d). The local asymptotic power of the one-step test and two-step test are
the same as the local asymptotic power of respective one-step and two-step tests in the location
model given in (34). We use Proposition 7 to complete the proof. For the above location model,
the asymptotic variance of the infeasible two-step GMM estimator is


R1�2 =
h
( ~R ~R0)�1=2 ~R

i

1�2

h
( ~R ~R0)�1=2 ~R

i0
:

In addition, the local alternative parameter corresponding to H1 : R�0 = r + �0=
p
T for the

location model is ( ~R ~R0)�1=2�0=
p
T . So the set of �0�s considered in Proposition 7 is given by

Aloc (�0) =

�
� :
h
( ~R ~R0)�1=2�

i0 �

R1�2

��1 h
( ~R ~R0)�1=2�

i
= �0

�
=

n
� : �0( ~R
1�2 ~R

0)�1� = �0

o
: (35)

It remains to show that the above set is the same as what is given in the theorem.
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Using (31) with �M�1 = �
�1, we have M = 
 and so

�G0 �
�1 �G = V A (��1�2)
�1=2
�11�2 (�

�
1�2)

�1=2AV 0:

Plugging this into �0
h
R( �G0 �
�1 �G)�1R0

i�1
� yields

�0
h
R( �G0 �
�1 �G)�1R0

i�1
�

= �0
�
R
h
V A (��1�2)

�1=2
�11�2 (�
�
1�2)

�1=2AV 0
i�1

R0
��1

�

= �0
n
RV A�1 (��1�2)

1=2
1�2 (�
�
1�2)

1=2A�1V 0R0
o�1

� = �0
�
~R
1�2 ~R

0
��1

�:

So the set of �0�s considered in the theorem is exactly the same as that given in (35).

Proof of Theorem 11. The theorem is similar to Theorem 10. We only give the proof for
part (d) in some details. It is easy to show that under the local alterative H1 : R�0 = r+ �0=

p
T ,

we have WaT
d
=)W11(jjV�1=2a;R �0jj2) where

Va;R = R( �G0 �W�1 �G)�1 �G0 �W�1 �
 �W�1 �G( �G0 �W�1 �G)�1R0

= RV A�1 (��1�2)
1=2 (Id;��a) 


�
Id
��0a

�h
RV A�1 (��1�2)

1=2
i0
: (36)

Similarly, we have

W2T
d
=)W21(jjV�1=22;R �0jj2);

where

V2;R = R( �G0 �
�1 �G)�1R0

= RV A�1 (��1�2)
1=2 (Id;��0) 


�
Id
��00

�h
RV A�1 (��1�2)

1=2
i0
;

which is the asymptotic variance of R
p
T (~�2T ��0) with ~�2T being the infeasible optimal two-step

GMM estimator.
The di¤erence in the two matrices Va;R and V2;R is

Va;R � V2;R = RV A�1 (��1�2)
1=2 (�a � �0) 
22 (�a � �0)0

h
RV A�1 (��1�2)

1=2
i0
:

Now for any � > 0;

jjV�1=22;R �0jj2 � � jjV�1=2a;R �0jj2 = �00[V�12;R � �V
�1
a;R]�0

= �00

h
V�1=2a;R

i0 n
[V1=2a;R]

0V�12;RV
1=2
a;R � �Ip

o
V�1=2a;R �0

= �00

h
V�1=2a;R

i0�h
V�1=2a;R V2;R(V�1=2a;R )0

i�1
� �Ip

�
V�1=2a;R �0:
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But
V�1=2a;R V2;R[V�1=2a;R ]0 = Ip � V�1=2a;R (Va;R � V2;R) [V�1=2a;R ]0;

and

V�1=2a;R (Va;R � V2;R) [V�1=2a;R ]0

= V�1=2a;R RV A�1 (��1�2)
1=2 ��a � 
12
�122 �
22 ��a � 
12
�122 �0 hRV A�1 (��1�2)1=2i0 [V�1=2a;R ]0

= �a;R�
0
a;R:

So
jjV�1=22;R �0jj2 � � jjV�1=2a;R �0jj2 = �00

h
V�1=2a;R

i0 h�
Ip � �a;R�0a;R

��1 � �IpiV�1=2a;R �0 � �

for any � :
Let �a;R�

0
a;R =

Pp
i=1 �i;a;Rbi;a;Rb

0
i;a;R be the eigen decomposition of �a;R�

0
a;R; then

jjV�1=22;R �0jj2 � � (�0) jjV�1=2a;R �0jj2

=

pX
i=1

�
1

1� �i;a;R
� � (�0)

��
b0i;a;RV

�1=2
a;R �0

�2
= � (�0)

V�1=2a;R �0

2 pX
i=1

�i;a;R � f (�0)
1� �i;a;R

*
bi;a;R;

V�1=2a;R �0V�1=2a;R �0


+2

;

which has the same form as the representation given in (29) : The rest of the proof is then identical
to the proof of Proposition 7 and is omitted here.
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