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Abstract

According to the conventional asymptotic theory, the two-step Generalized Method of
Moments (GMM) estimator and test perform as least as well as the one-step estimator and
test in large samples. The conventional asymptotic theory, as elegant and convenient as it
is, completely ignores the estimation uncertainty in the weighting matrix, and as a result it
may not reflect finite sample situations well. In this paper, we employ the fixed-smoothing
asymptotic theory that accounts for the estimation uncertainty, and compare the performance
of the one-step and two-step procedures in this more accurate asymptotic framework. We show
the two-step procedure outperforms the one-step procedure only when the benefit of using
the optimal weighting matrix outweighs the cost of estimating it. This qualitative message
applies to both the asymptotic variance comparison and power comparison of the associated
tests. A Monte Carlo study lends support to our asymptotic results.
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1 Introduction

Efficiency is one of the most important problems in statistics and econometrics. In the widely-
used GMM framework, it is standard practice to employ a two-step procedure to improve the

*For helpful comments and suggestions, we would like to thank Brendan Beare, Graham Elliott, Bruce Hansen,
Jonathan Hill, Min Seong Kim, Oliver Linton, Seunghwa Rho, Peter Robinson, Peter Schmidt, Andres Santos,
Xiaoxia Shi, Valentin Verdier, Tim Vogelsang, Jeffrey Wooldridge and seminar participants at LSU, Madison,
Michigan State, UNC/Duke/NCSU, 2014 Shanghai Jiao Tong University and Singapore Management University
Bi-party Conference, and 2014 Shandong Econometrics Conference, China.

TEmail: j6hwang@ucsd.edu, yisun@ucsd.edu. Correspondence to: Department of Economics, University of
California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0508.



efficiency of the GMM estimator and the power of the associated tests. The two-step procedure
requires the estimation of a weighting matrix. According to the Hansen (1982), the optimal
weighting matrix is the asymptotic variance of the (scaled) sample moment conditions. For time
series data, which is our focus here, the optimal weighting matrix is usually referred to as the
long run variance (LRV) of the moment conditions. To be completely general, we often estimate
the LRV using the nonparametric kernel or series method.

Under the conventional asymptotics, both the one-step and two-step GMM estimators are
asymptotically normaﬂ In general, the two-step GMM estimator has a smaller asymptotic vari-
ance. Statistical tests based on the two-step estimator are also asymptotically more powerful than
those based on the one-step estimator. A driving force behind these results is that the two-step
estimator and the associated tests have the same asymptotic properties as the corresponding ones
when the optimal weighting matrix is known. However, given that the optimal weighting matrix
is estimated nonparametrically in the time series setting, there is large estimation uncertainty. A
good approximation to the distributions of the two-step estimator and the associated tests should
reflect this relatively high estimation uncertainty.

One of the goals of this paper is to compare the asymptotic properties of the one-step and two-
step procedures when the estimation uncertainty in the weighing matrix is accounted for. There
are two ways to capture the estimation uncertainty. One is to use the high order conventional
asymptotic theory under which the amount of nonparametric smoothing in the LRV estimator
increases with the sample size but at a slower rate. While the estimation uncertainty vanishes in
the first order asymptotics, we expect it to remain in high order asymptotics. The second way
is to use an alternative asymptotic approximation that can capture the estimation uncertainty
even with just a first-order asymptotics. To this end, we consider a limiting thought experiment
in which the amount of nonparametric smoothing is held fixed as the sample size increases. This
leads to the so-called fixed-smoothing asymptotics in the recent literature.

In this paper, we employ the fixed-smoothing asymptotics to compare the one-step and two-
step procedures. For the one-step procedure, the LRV estimator is used in computing the standard
errors, leading to the popular heteroskedasticity and autocorrelation robust (HAR) standard er-
rors. See, for example, Newey and West (1987) and Andrews (1991). For the two-step procedure,
the LRV estimator not only appears in the standard error estimation but also plays the role of the
optimal weighting matrix in the second-step GMM criterion function. Under the fixed-smoothing
asymptotics, the weighting matrix converges to a random matrix. As a result, the second-step
GMM estimator is not asymptotically normal but rather asymptotically mixed normal. The as-
ymptotic mixed normality reflects the estimation uncertainty of the GMM weighting matrix and
is expected to be closer to the finite sample distribution of the second-step GMM estimator. In
a recent paper, Sun (2014b) shows that both the one-step and two-step test statistics are asymp-
totically pivotal under this new asymptotic theory. So a nuisance-parameter-free comparison of
the one-step and two-step tests is possible.

Comparing the one-step and two-step procedures under the new asymptotics is fundamentally
different from that under the conventional asymptotics. Under the new asymptotics, the two-
step procedure outperforms the one-step procedure only when the benefit of using the optimal
weighting matrix outweighs the cost of estimating it. This qualitative message applies to both
the asymptotic variance comparison and the local asymptotic power comparison of the associated

'In this paper, the one-step estimator refers to the first-step estimator in a typical two-step GMM framework.
This is not to be confused with the continuous updating GMM estimator that involves only one step. We use the
terms “one-step” and “first-step” interchangingly. Our use of “one-step” and “two-step” is the same as what are
used in the Stata “gmm” command.



tests. This is in sharp contrast with the conventional asymptotics where the cost of estimating the
optimal weighting matrix is completely ignored. Since the new asymptotic approximation is more
accurate than the conventional asymptotic approximation, comparing the two procedures under
this new asymptotics will give an honest assessment of their relative merits. This is confirmed
by a Monte Carlo study.

There is a large and growing literature on the fixed-smoothing asymptotics. For kernel LRV
estimators, the fixed-smoothing asymptotics is the so-called the fixed-b asymptotics first studied
by Kiefer, Vogelsang and Bunzel (2002) and Kiefer and Vogelsang (2002a, 2002b, 2005) in the
econometrics literature. For other studies, see, for example, Jansson (2004), Sun, Phillips and Jin
(2008), Sun and Phillips (2009), Gonglaves and Vogelsang (2011), and Zhang and Shao (2013)
in the time series setting; Bester, Conley, Hansen and Vogelsang (2014) in the spatial setting;
and Gongalves (2011), Kim and Sun (2013), and Vogelsang (2012) in the panel data setting.
For orthonormal series LRV estimators, the fixed-smoothing asymptotics is the so-called fixed-K
asymptotics. For its theoretical development and related simulation evidence, see, for example,
Phillips (2005), Miiller (2007), Sun (2011, 2013) and Sun and Kim (2015). The approximation
approaches in some other papers can also be regarded as special cases of the fixed-smoothing
asymptotics. This includes, among others, Ibragimov and Miiller (2010), Shao (2010) and Bester,
Conley, and Hansen (2011). The fixed-smoothing asymptotics can be regarded as a convenient
device to obtain some high order terms under the conventional increasing-smoothing asymptotics.

The rest of the paper is organized as follows. The next section presents a simple overiden-
tified GMM framework. Section [3| compares the two procedures from the perspective of point
estimation. Section [4] compares them from the testing perspective. Section [5| extends the ideas
to a general GMM framework. Section [6] reports simulation evidence and provides some practical
guidance. The last section concludes. Proofs are provided in the Appendix.

A word on notation: for a symmetric matrix A, A2 (or A, /2) is a matrix square root of
A such that A'/2 (A1/2)/ = A. Note that A2 does not have to be symmetric. We will specify
AY/2 explicitly when it is not symmetric. If not specified, A2/2 is a symmetric matrix square root
of A based on its eigen-decomposition. For matrices A and B, we use “A > B” to signify that
A — B is positive (semi)definite. We use “0” and “O” interchangeably to denote a matrix of zeros
whose dimension may be different at different occurrences. For two random variables X and Y,
we use X L Y to indicate that X and Y are independent. For a matrix A, we use v (A), Vmin (4)
and vpax (A) to denote the set of all singular values, the smallest singular value, and the largest
singular value of A, respectively. For an estimator é, we use avar(é) to denote the asymptotic
variance of the limiting distribution of \/T(@— plimy_, o é) where T is the sample size.

2 A Simple Overidentified GMM Framework

To illustrate the basic ideas of this paper, we consider a simple overidentified time series model
of the form:

Y1 = 0o + e, yu € RY,
Yo = uge, yar € RY (1)

for t = 1,...,T where 0y € R is the parameter of interest and the vector process u; := (u},, ub;)’
is stationary with mean zero. We allow u; to have autocorrelation of unknown forms so that the



long run variance €2 of wu; :
o0
Q = lrvar(u) = Z Eugu),_;
—J
j=—00

takes a general form. However, for simplicity, we assume that var(u;) = 02[d+q for the momentﬂ
Our model is just a location model. We initially consider a general GMM framework but later find
out that our points can be made more clearly in the simple location model. From the asymptotic
point of view, we show later that a general GMM framework can be reduced to the above simple
location model.

Embedding the location model in a GMM framework, the moment conditions are

E(y) — ( 0321 ) =0,

-+ ZT: (ylt - 9)
_ VT £at=1
gT(H) ( \/i; ZtT:1 Yot > '

Then a GMM estimator of 8y can be defined as

where y; = (y};, yh)- Let

@GMM = arg mgin gT(H)’WT_lgT(H)

for some positive definite weighting matrix Wp. Writing

Wi Wi
Wy = ,
T < Wa1 Wao )

where W1; is a d X d matrix and Was is a ¢ X ¢ matrix, then it is easy to show that

1 T

) -1
Ocarine = T ; (Y1t — Bwyae) for By = WiaWs,o.
There are at least two different choices of Wp. First, we can take Wr to be the identity

matrix Wr = I, for m = d + q. In this case, 8y = 0 and the GMM estimator 91T is simply

L T
O = T ;ylt-

Second, we can take W to be the ‘optimal’ weighting matrix Wp = ). With this choice, we

obtain the GMM estimator: .

~ 1
Oor = T tz_; (y1t — Byat) ,

21t
Vi1 V
var (ur) = ( V; Vii ) # 0" Latq

Vi2 —( (Vi2)'? Vip (Vo) /2 >

for any o2 > 0, we can let

0 (Va2)'/?

—_ —_ 1 . . . .
where V1.2 = V1 — V12V221V21. Then V1/12 (y1+,y5:)" can be written as a location model whose error variance is

the identity matrix I444. The estimation uncertainty in estimating V will not affect our asymptotic results.



where § = 9129;21 is the long run regression coefficient matrix. While 017 completely ignores
the information in {y2}, o1 takes advantage of this source of information.
Under some moment and mixing conditions, we have

VT (élT — 90) L N(0,Q11) and VT (égT _ 90) L N (0, Q1)

where

Q1.2 = Q1 — Q12055 Qo1

So avar(OQT) < avar(&lT) unless 15 = 0. This is a well known result in the literature. Since we
do not know € in practice, fop is infeasible. However, given the feasible estimator 617, we can
estimate € and construct a feasible version of f37. The common two- step estimation strategy is
as follows.

i) Estimate the long run covariance matrix by

O:=0Q( ;ZZQh (ut—;i@7> (as—;im),

s=1 t=1

. N
where 4 = (v}, — 017, yh,)' -

ii) Obtain the feasible two-step estimator Oyp =T~ 1 Zle(ylt — Bygt) where 3 = 912@521

In the above definition of 2, Q, (r,s) is a symmetric weighting function that depends on the
smoothing parameter h. For conventional kernel LRV estimators, Qy, (r,s) = k ((r — s) /b) and we
take h = 1/b. For the orthonormal series (OS) LRV estimators, Qy, (r,s) = K~} ZJKZ1 ¢; (1) 9; (s)
and we take h = K, where {qu (7“)} are orthonormal basis functions on L2[0,1] satisfying

fol ¢; (r)dr = 0. We parametrize h in such a way so that h indicates the level or amount of
smoothing for both types of LRV estimators.

Note that we use the demeaned process {i4; — T~ ' 3.7_, 4, } in constructing € (@) . For the
location model, Q (@) is numerically identical to €2 (u) where the unknown error process {u;} is
used. The moment estimation uncertainty is reflected in the demeaning operation. Had we known
the true value of 6y and hence the true moment process {u;} , we would not need to demean {u;}.

While HQT is asymptotically more efficient than 91T, is HQT necessarily more efficient than 01T
and in what sense? Is the Wald test based on a7 necessary more powerful than that based on
6177 One of the objectives of this paper is to address these questions.

3 A Tale of Two Asymptotics: Point Estimation

We first consider the conventional asymptotics where h — oo as T — oo but at a slower rate,

e., h/T — 0. Sun (2014a, 2014b) calls this type of asymptotics the “Increasing-smoothing
Asymptotics,” as h increases Wlth the sample size. Under this type of asymptotics and some
regularity conditions, we have Q2 Q. It can then be shown that 6o is asymptotically equivalent
to Oar, i.e., f(@gT — €2T) =0, (1). As a direct consequence, we have

VT (élT _ 90) L N(0,Q0),VT (éQT _ 90) Ly N[0, Q11 — 012057 Q1] .



So 92T is still asymptotically more efficient than 91T.

The conventional asymptotics, as elegant and convenient as it is, does not reflect the finite
sample situations well. Under this type of asymptotics, we essentially approximate the distribu-
tion of by the degenerate distribution concentrating on Q. That is, we completely ignore the
estimation uncertainty in Q. The degenerate approximation is too optimistic, as Qisa nonpara-
metric estimator, which by definition can have high variation in finite samples.

To obtain a more accurate distributional approximation of \/T(@QT —6o), we could develop a
high order increasing-smoothing asymptotics that reflects the estimation uncertainty in 2. This
is possible but requires strong assumptions that cannot be easily verified. In addition, it is
also technically challenging and tedious to rigorously justify the high order asymptotic theory.
Instead of high order asymptotic theory under the conventional asymptotics, we adopt the type
of asymptotics that holds h fixed (at a positive value) as T' — oo. Given that h is fixed, we follow
Sun (2014a, 2014b) and call this type of asymptotics the “Fixed-smoothing Asymptotics.” This
type of asymptotics takes the sampling variability of ) into consideration.

Sun (2013, 2014a) has shown that critical values from the fixed-smoothing asymptotic distri-
bution are higher order correct under the conventional increasing-smoothing asymptotics. So the
fixed-smoothing asymptotics can be regarded as a convenient device to obtain some higher order
terms under the conventional increasing-smoothing asymptotics.

To establish the fixed-smoothing asymptotics, we maintain Assumption [I] on the kernel func-
tion and basis functions.

Assumption 1 (i) For kernel LRV estimators, the kernel function k(-) satisfies the following
conditions: for any b € (0,1], ky (z) = k(x/b) is symmetric, continuous, piecewise monotonic,
and piecewise continuously differentiable on [—1,1]. (ii) For the OS LRV wariance estimator,
the basis functions ¢; () are piecewise monotonic, continuously differentiable and orthonormal in

L?[0,1] and fol ¢; (z)dz = 0.

Assumption [T on the kernel function is very mild. It includes many commonly used kernel
functions such as the Bartlett kernel, Parzen kernel, and Quadratic Spectral (QS) kernel.
Define

1 1 1,1
Qire) = Qo) ~ [ Quirsdr— [ @unnir+ [ [ @uryranns,
0 0 0o Jo
which is a centered version of Qp(r, s), and

~ 1 Iz s t

s=1t=1

Assumption [1| ensures that Q and  are asymptotically equivalent. Furthermore, under this
assumption, Sun (2014a) shows that, for both kernel LRV and OS LRV estimation, the centered
weighting function Q7 (r, s) satisfies :

Qr(r,s) Zx\@

where {®;(r)} is a sequence of continuously differentiable functions satisfying fo (r)ydr =0
and the series on the right hand side converges to @} (r, s) absolutely and uniformly over (r,s) €



[0,1] x [0,1]. The representation can be regarded as a spectral decomposition of the compact
Fredholm operator with kernel Q7 (r,s). See Sun (2014a) for more discussion.

Now, letting ®o(-) := 1 and using the basis functions {®;(-)}72; in the series representation
of the weighting function, we make the following assumptions.

Assumption 2 The vector process {u;}}_; satisfies:

(i) T—1/2 Zthl ®;(t/T)us converges weakly to a continuous distribution, jointly over j =0,1,. ..
for every fized J;

(ii) For every fized J and x € R™,
1, ¢t
Pl|l—=) ®i(=)us <z forj=0,1,...,J
(Freigseso )

T
1 t .
=P<91/2\/T§ Qj(T)etgxforj:0,1,...,J> +o(1) as T —
t=1

02 Q052
Qij2 = ( 12 175 >0
0 Q)

where

o0

is a matriz square root of the nonsingular LRV matriz Q) = ijfoo

N(0, I,).

Eutug_j and e; ~ tid
Assumption 3 Z;‘;_oo | EutUQ_j < o.

Proposition 1 Let Assumptions[IH3 hold. As T — oo for a fized h > 0, we have:
(a) O N Qoo where

. Do 11 Noo.12
B , L 00, oo,

~ 1 r1 / QOO QOO
Qo = /O/OQZ(T,S)dBm(r)dBm(S) ::< Qoo11 € 712>

Qo221 oo 22

and By (+) is a standard Brownian motion of dimension m = d + g;
~ d — .
(b) \/T<92T - 90) — ( Id7 _ﬁoo )Ql/2Bm(1) where Boo = 500(17,, d7 Q) = QOO,lZQOO:L’QQ 15
independent of By, (1).

Conditional on (., the asymptotic distribution of VT (92T —0)p) is a normal distribution with
variance

Q Q I
Vo= (1a, —Bs ) < Q; QZ ) ( —dﬁf)o > =M1 — D200 — Boo21 + B2 -

Given that V5 is random, VT (@QT —0p) is asymptotically mixed-normal rather than normal. Since
avar(égT) — avar(égT) = FEVy — (QH — 91292_21921)
=F (91292_21921 — Q1285 — Boo21 + Boc2285)
= E (229, — Boo) D22 (295 — B) > 0,

J



the feasible estimator 92T has a large variation than the infeasible estimator égT. This is con-
sistent with our intuition. The difference avar(@gT) — avar(égT) can be regarded as the cost of
implementing the two-step estimator, i.e., the cost of having to estimate the weighting matrix.

Under the fixed-smoothing asymptotics, we still have \/T(@lT —0o) N N(0,911), as 017
does not depend on the smoothing parameter h. So

avar(élT) — avar(égT) = Qll — (Qll — 91292_21921) = 91292_21921 Z 0,

which can be regarded as the benefit of going to the second step.
To compare the asymptotic variances of v/T' (017 —0p) and VT (0o — o), we need to evaluate
the relative magnitudes of the cost and the benefit. Define

Boo = Boo (h’ d’ Q) = QOO712Q;01722’ (2)

which does not depend on any nuisance parameter but depends on h, d, g. For notational economy,
we sometimes suppress this dependence. Direct calculations show that

Boo = N5 Booy % + Q12023 (3)
Using this, we have:
avar(fyp) — avar(617) = avar(farp) — avar(far) — [avar(f17) — avar(Oa7)]
c?)gt be;gﬁt
= QVZEB B () — 01905 Q1. (4)

If the cost is larger than the benefit, i.e. Ql/QEﬁooﬁ (Q 1/2) > (212(222 91, then the asymptotic
variance of 92T is larger than that of 91T- . .
The following lemma gives a characterization of EB., (h,d,q) B (h,d,q)" .

Lemma 2 For any d > 1, we have EB., (h,d,q) B (h,d,q) = (EHBOO (h,1,q) ||2) x 1q.

Using the lemma, we can prove that

avar(0ar) — avar(f1r) = (1+ B||Bos (b 1,) [ 90k, a)la — po] (2117,

where _
B||Bo (5,1, )]
1+ ElBo (. 1, )|

g(h,q) := € (0,1),

and
p = 0720120572 € Rxq,

which is the long run correlation matrix between uq; and uo;. The proposition below then follows
immediately.

Proposition 3 Let Assumptions|]] lﬁ hold. Consider the fized-smoothing asymptotics.
(@) If vimax (pp') < g(h, q), then HgT has a larger asymptotic variance than HlT
(b) If vimin (pp') > g(h,q), then Oyr has a smaller asymptotic variance than 017



To compute the eigenvalues of pp’, we can use the fact that v (pp’) = v (9129;219219;11) .
The eigenvalues of pp’ are the squared long run correlation coefficients between ¢juy; and chugs
for some ¢; and co, i.e., the squared long run canonical correlation coefficients between u1; and
u9¢. So the conditions in the proposition can be presented in terms of the smallest and largest
square long run canonical correlation coefficients.

If p = 0, then vmax (pp') < g(h, ) holds trivially. In this case, the asymptotic variance of
Oor is larger than the asymptotic variance of 017 Intuitively, when the long run correlation is
zero, there is no information that can be explored to improve efficiency. If we insist on using
the long run correlation matrix in attempt to improve the efficiency, we may end up with a less
efficient estimator, due to the noise in estimating the zero long run correlation matrix. On the
other hand, if pp’ = I, after some possible rotation, which holds when the long run variation of
uyy is perfectly predicted by wge, then vy (pp') = 1 and we have v (pp’) > g(h,q). In this
case, it is worthwhile estimating the long run variance and using it to improve the efficiency of
the two-step GMM estimator.

The two conditions vmin (pp') > g(h, q) and vmax (pp’) < g(h, q) in the proposition may appear
to be strong. However, the conclusions are also very strong. For example, 0 has a smaller
asymptotic variance than 91T means that avar(R@2T) < avar(RélT) for any matrix R € RPxd
and for all 1 < p < d. In fact, in the proof of the proposition, we show that the conditions are
both necessary and sufficient.

The two conditions vmin (pp’) > g(h,q) and vmax (pp’) < g(h,q) are not mutually exclusive
unless d = 1. When d > 1, it is possible that neither of two conditions is satisfied, in which case
avar(HgT) — avar(@lT) is 1ndeﬁn1te So, as a whole vector, the relative asymptotic efficiency of Oor
to 01T cannot be compared. However, there exist two matrices R € R%+*4 and R~ € R4 with
dy +d_ =d, dy <d, and d_ < d such that avar(R+92T) < avar(R*QlT) and avar(R~ GQT) >
avar(R~617). An example of the indefinite case is when ¢ < d and vmax (pp') > g(h,q). In
this case, vmin (pp’) = 0 and vmin (pp") > g(h,q) does not hold. A direct implication is that
avar(R™0yr) > avar(R™0;7) for some R™. So when the degree of overidentification is not large
enough, there are some directions characterized by R~ along which the two-step estimator is less
efficient than the one-step estimator.

When d = 1, pp is a scalar, and the two conditions vmin (pp’) > g(h, q) and vmax (pp') < g(h, q)
become mutually exclusive. So if pp’ > g(h,q), then Oor is asymptotically more efficient than
O17. Otherwise, it is asymptotically less efficient.

In the case of kernel LRV estimation, it is hard to obtain an analytical expression for
E||Bo(h,1,¢)]|? and hence g(h,q), although we can always simulate g(h,q) numerically. The
threshold g(h, q) depends on the smoothing parameter h = 1/b and the degree of overidentifica-
tion ¢. Tables report the simulated values of g(h,q) for b= 0.00: 0.01 : 0.20 and ¢ = 1 ~ 5.
These values are nontrivial in that they are close to neither zero nor one. It is clear that g(h,q)
increases with ¢ and decreases with the smoothing parameter h = 1/b.

When the OS LRV estimation is used, we do not need to simulate g(h,q), as we can obtain
a closed-form expression.

Corollary 4 Let Assumptions [IH3 hold. In the case of OS LRV estimation, we have

q
h,q) = .

S0 if vmax (pp') < %55 (07 vmin (pp') > FLg), then Oyr has a larger (or smaller) asymptotic

variance than 017 under the fixed-smoothing asymptotics.



Since a7 is not asymptotically normal, asymptotic variance comparison does not paint the
whole picture. To compare the asymptotic distributions of 91T and égT, we consider the case of
OS LRV estimation with d = ¢ = 1 and K = 4 as an example. We use the sine and cosine basis
functions as given in (?7) later in Section [6] Figure [I] reports the shapes of probability density
functions when (911,9%2,922) = (1,0.10,1). In this case, Q1.0 = Q11 — 91292_21921 = 0.9. The
first graph shows vT'(017 — ) < N(0,1) and v'T'(O37 — 6p) < N(0,0.9) under the conventional
asymptotics. The conventional limiting distributions for v/T (91T — 0p) and VT (92T — 0p) are
both normal but the latter has a smaller variance, so the asymptotic efficiency of o is always
guaranteed. However, this is not true in the second graph of Figure [I| which represents the
limiting distributions under the fixed-smoothing asymptotics. While we still have v/T'(617—0g) ~
N(0,1), VT (027 — 0¢) ~ MN[0,0.9(1 + Bio)] The mixed normality can be obtained by using a
conditional version of 1' More specifically, the conditional asymptotic variance of Oy is

avar (Ba7|Boc) = Vo = Q2 Boo Boo(UZ) + Qg = 0.9(1 + B). (5)

Comparing these two different families of distributions, we find that the asymptotic distribution
of 92T has fatter tail than that of 91T The asymptotic variance of GQT is
K-1

R . 3
avar(Byr) = BV; = Q1a{1 + BlllBao(hs 1) P} = Drage— =7 = 0.9 x 5 = 1.35,

which is larger than the asymptotic variance of 017

4 A Tale of Two Asymptotics: Hypothesis Testing

We are interested in testing the null hypothesis Hy : ROy = r against the local alternative
Hi:ROyg=1r+ 60/\/T for some p x d full rank matrix R and p x 1 vectors r and dg. Nonlinear
restrictions can be converted into linear ones using the Delta method. We construct the following
two Wald statistics:

A A -1 A
WlT = T(R@lT — 7“)/ (RQHR/> (RelT — T‘)

~ R —1 A
WQT = T(RQQT — T‘)/ (RQl.QR/> (RQQT - T‘)

where Ql.Q = Qll — Qqu}ngl. When p = 1 and the alternative is one sided, we can construct
the following two t statistics:

V(=) 6

1T . - \/m ( )
VT (RéQT — 7“)

Tor : = . (7)

VRO SR

No matter whether the test is based on 91T or @QT, we have to employ the long run covariance
estimator 2. Define the p x p matrices A; and As according to

AlAll = RQHR/ and AQA/2 = RQl.QR/.

10
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Figure 1: Limiting distributions of élT and 92T based on the OS LRV estimator with K = 4.

In other words, A; and As are matrix square roots of RQi1 R’ and RQq.oR’ respectively.

Under the conventional increasing-smoothing asymptotics, it is straightforward to show that
under Hy : ROy =1+ 50/\/?:

Wir =% x2([[AT100]) %), War =2 x2(]|A7 60| *),
Tir =2 N(A7'60,1), Tor =% N(A5280, 1),

where xg ()\2) is the noncentral chi-square distribution with noncentrality parameter A2. When
dg = 0, we obtain the null distributions:

Wiz, War =% x2 and Tir, Tor == N(0,1).

So under the conventional increasing-smoothing asymptotics, the null limiting distributions of

Wir and Wor are identical. Since HA;I&JHQ < HAZ_ 1(50H2, under the conventional asymptotics,
the local asymptotic power function of the test based on Wy is higher than that based on Wyp.
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The key driving force behind the conventional asymptotics is that we approximate the dis-
tribution of by the degenerate distribution concentrating on €. The degenerate approximation
does not reflect the finite sample distribution well. As in the previous section, we employ the
fixed-smoothing asymptotics to derive more accurate distributional approximations. Let

G = | 1 / ' Qi(r,5)dBy(r)dBy (s Cyg = / 1 / Qi 5)dB(r)dBy (s

1 1
Coa = /0 /0 Q}(r, $)dB, (r)dBy(s)', Cyp = Cl

and
Dypp = Cpp - Cpch_q1 C;q

where B)(-) € RP and B,(-) € R? are independent standard Brownian motion processes.

Proposition 5 Let Assumptions[IH3 hold. As T — oo for a fized h, we have, under Hy : Ry =
T+ 50/\/T :
1o 2
(a) Wip N Wioo(||A7 150H ) where

Wico(I€1%) = [By (1) + €] Gy [By (1) + €] for & € R, (8)
(b) Wop =2 Wao (||A5760||%) where
Wase(I6]2) = [By (1) — CpgCig' By (1) + €)' Dyt [B, (1) = CouCi By (1) +€] . (9)
(€) Tip =5 Tioo (A7160) = [By(1)+A7"80] /\/Cpp for p = 1.
(d) Tor =5 Tawe (A5 '80) := [By (1) = CpyCig By (1) + A5 60) /\/Dyp forp = 1.

In Proposition [5] we use the notation Wi (||£]|*), which implies that the right hand side of
depends on £ only through H§||2 . This is true, because for any orthogonal matrix H :

1B, (1) + €] C B, (1) + €] = [HB, (1) + HE] HC, H' [HB, (1) + H¢]
LB, (1) + HE) C,,} [B, (1) + He].

If we choose H = (¢/ ||€||, H)' for some H such that H is orthogonal, then

By (1) + €' Cpyt [By (1) + 6] £ [B, (1) + € &) Cpt 1By (1) + i€l ],

where e, = (1,0,...,0)" € RP. So the distribution of [B,, (1) + &' Ct [By (1) + €] depends on &
only through ||£||. Similarly, the distribution of the right hand side of @ depends only on ||£]*.

When §g = 0, we obtain the limiting distributions of Wy, Wor, T+ and Tor under the null
hypothesis:

Wit =5 Wig i= Wine(0) = B, (1) Cp,l B, (1) |

War =5 Waoo := Was(0) = [By (1) = CpeCit' By (1)]' Dyt [By (1) = CpyCid By (1)]
= Bp(1)//Cpp,

= [Bp(1)=CpeCoq By (1)] /v/Dpp.

d
Ti7 = Tioo := Tiso (0

d
TQT — TQOO = Tgoo 0

12



These distributions are different from those under the conventional asymptotics. For Wi and
Ti7, the difference lies in the random scaling factor Cy,, or \/C’T,p. The random scaling factor cap-
tures the estimation uncertainty of the LRV estimator. For Wor and Top, there is an additional
difference embodied by the random location shift C’qu’(;lqu (1) with a consequent change in the
random scaling factor.

The proposition below provides some characterization of the two limiting distributions Wy
and Wo,.

Proposition 6 For any x > 0, the following hold:
(a) Was (0) first-order stochastically dominates W1 (0) in that

P [Waeo (0) > 2] > P [Wys (0) > 2.

(b) P {Wloo(||§||2) > 33] strictly increases with ||€||* and lime) oo P {Wloo(||§“2) > q:] =1.
(c) P {Wgoo(HfHQ) > a:} strictly increases with ||€||* and limyj¢)—oo P {Wgoo(HfHQ) > :1:] =1.

Proposition @(a) is intuitive. Wy, first-order stochastically dominates Wi, because Waq,
first-order stochastically dominates B, (1)/D;p1Bp (1), which in turn first-order stochastically
B, (1)'C’p_ppr (1), which is just Wis. According to a property of the first-order stochastic
dominance, we have

W2oo i Wloo + We

for some W, > 0. Intuitively, W, shifts some of the probability mass of Wi, to the right. A
direct implication is that the asymptotic critical values for War are larger than the corresponding
ones for Wyp. The difference in critical values has implications on the power properties of the
two tests.

For x > 0, we have

P (T > ) = %P (Wise > 2%) and P (T2 > ) = %P (Waeo > 2%) .

It then follows from Proposition [6(a) that P (Tas > ) > P (T1s > z) for z > 0. So for a one-
sided test with the alternative Hy : ROy > r, critical values from Too, are larger than those from
T1oo. Similarly, we have P (Tn < ) > P (T100 < ) for z < 0. This implies that for a one-sided
test with the alternative Hy : Ry < r, critical values from Ty, are smaller than those from T1.

Let W and W$__ be the (1 — ) quantile from the distributions Wi, and Wa,, respectively.
The local asymptotic power functions of the two tests are

1 (HATI50H2) = (HAI150H2 R, p, q,oe) =P [Wloo(HAl‘ldoHQ) > W‘fm] ,

w2 ([[A5"00]") := 72 (JIAT 00”1, 0, 0) = P [Waoo (| A5 00]|") > Wi |

While HA2_160H2 > HA1_150 H2 , we also have W5 > W . The effects of the critical values and the
noncentrality parameters move in opposite directions. It is not straightforward to compare the
two power functions. However, Proposition [0 suggests that if the difference in the noncentrality
parameters ||A; 1(50H2 - HA1_150H2 is large enough to offset the increase in critical values, then
the two-step test based on Wor will be more powerful.
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To evaluate ”A5160||2 — HAI150H2, we define
—1/2 _
pr = (RQHR') / (R12) 9221/2a (10)
which is the long run correlation matrix pp between Ruj; and ug:. In terms of pp € RP*Y we have

160" — | A7 60|

— 5 (R R — R905) Q1 R') ™' 60 — 6 (R R) ™
— _q1-1 B

=0 (A1)~ [Ip — AT RO1205) Qo R (A7) 1] (A7"60) — 0 (A1) " (A" 60)

=0y () { [ = pro) ' = I} (A7)

150

So the difference in the noncentrality parameters depends on the matrix ppp’.

Let prpfy = Y7, Vi,R4i,RA; p e the eigen decomposition of pppy, where {v; g} are the
eigenvalues of ppp} and {a; g} are the corresponding eigenvectors. Sorted in the descending
order, {v; r} are the (squared) long run canonical correlation coefficients between Ruy; and ua;.
Then

p
_ _ Vi, _
45" 80]1" = A7 60" = 3= 77 [af 0]

Pl
Consider a special case that v, g := min!_, {v; g} approaches 1. If a;)’ RA1_150 # 0, then
[|A5 10012 — HAl_l(Fon and hence ||A;'d0||> approaches oo as v,z approaches 1 from below.

This case happens when the second block of moment conditions has very high long run predic-
tion power for the first block. In this case, we expect the Wop test to be more powerful, as
lim,,, 1 ﬂg(“Agléo“2) = 1. Consider another special case that max?_; {v; g} = 0, L.e., pp is
a matrix of zeros. In this case, the second block of moment conditions contains no additional
information, and we have HAQ_I(SOH2 = HA1_160H2 . In this case, we expect the Wop test to be less
powerful.

It follows from Proposition [6(b) and (c) that for any A, there exists a unique 7()\) :=

7 (A, p, g, @) such that
e <i) |
As a function of A, 7 ()) is defined implicitly via the above equation. Then ma(||A5'6|%) <
m1(]|A760]%) if and only if [|Ay 60| < 7(||A5 S0||) - [|AT 60| . Using
A5 0]" = ~([| Az 6o ") 1780

= 3 (1 D) s

o\l —vir
3 1 T(HA2_150H2) —1 / 1c 12 1c |2
B wR i, R\ 0 A6
2, ( HRETTET IR R
P
1 - - —
- Z l—-vir (Vi’R _f(HA2 150“2)> [GQ:RAll(SO]QT(HAz 150H2) (11)
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where f (-) is defined according to

T (A h,p,q,a) — 1

FA) = fNhpga)= P v

we can prove the proposition below.
Proposition 7 Let Assumptions [IH3 hold. Define
A (o) = {6 : 6 (RQ12R') 8 = Ao}

Consider the local alternative Hy (\g) : ROy = 7+ 00 /T for 6o € A (o) and the fived-smoothing
asymptotics.

(@) If vmax (PrPR) < f(Xo;h,p,q, ), then the two-step test based on War has a lower local
asymptotic power than the one-step test based on Wip for any o9 € 2 (o) .

(b) If vmin (PrPR) > f(Xo; h,p, ¢, @), then the two-step test based on War has a higher local
asymptotic power than the one-step test based on Wi for any do € A (Ng) .

To compute Vmax (PrpR) and Vmin (ppp’R), We can use the relationship that
v (prok) = v { (R3O R) (R R) '}

There is no need to compute the matrix square roots (RQ1; R’ )71/ % and 9521/ %,

As in the case of variance comparison, the conditions on the canonical correlation coeffi-
cients in Proposition [7a) and (b) are both sufficient and necessary. See the proof of the propo-
sition for details. The conditions may appear to be strong but the conclusions are equally
strong — the power comparison results hold regardless the directions of the local departure.
If we have a particular direction in mind so that dg is fixed and given, then we can evaluate
145 60]|* = 7 (A5"80) || A7 50| directly for the given 8o. I ||Ay 60> — 7 (A5 "80) [ A7 50| is
positive (negative), then the two-step test has a higher (lower) local asymptotic power along the
given direction.

When p = 1, which is of ultimate importance in empirical studies, prp'; is equal to the sum of
the squared long run canonical correlation coefficients. In this case, f(Ao;h,p, ¢, @) is the thresh-
old value of prp, for assessing the relative efficiency of the two tests. More specifically, when
prPR > f(Aos h,p, ¢, @), the two-step test is more powerful than the one-step test. Otherwise,
the two-step test is less powerful.

Proposition [7]is in parallel with Proposition [3| The qualitative messages of these two proposi-
tions are the same — when the long run correlation is high enough, we should estimate and exploit
it to reduce the variation of our point estimator and improve the power of the associated tests.
However, the thresholds are different quantitatively. The two propositions fully characterize the
threshold for each criterion under consideration.

Proposition 8 Consider the case of OS LRV estimation. For any A\ € R, we have 71 (\) >
72 (A) and hence T (\; h,p,q,a) > 1 and f(\;h,p,q,a) > 0.

Proposition [§ is intuitive. When there is no long run correlation between Ruis and uoy, we

_ 2 _ 2 . . .
have ||A; 1(50H = [|A 1(50H . In this case, the two-step War test is necessarily less powerful. The
proof uses the theory of uniformly most powerful invariant tests and the theory of complete and
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sufficient statistics. It is an open question whether the same strategy can be adopted to prove
Proposition [8]in the case of kernel LRV estimation. Our extensive numerical work supports that
T (A hyp,q,a) > 1 and f(A; h,p,q,a) > 0 continue to hold in the kernel case.

It is not easy to give an analytical expression for f(A; h,p, ¢, @) but we can compute it numer-
ically without any difficulty. In Table 4], we consider the case of OS LRV estimation and compute
the values of f(\;K,p,q,a) for A =1 ~ 25 K = 8,10,12,14, p =1 ~ 3 and ¢ = 1 ~ 3. The
values are nontrivial in that they are not close to the bounary value of zero or one. Similar to
the asymptotic variance comparison, we find that these threshold values increase as the degree
of overidentification increases and decrease as the smoothing parameter K increases.

For the case of kernel LRV estimation, results not reported here show that f(\;h,p,q,«)
increases with ¢ and decreases with h. This is entirely analogous to the case of OS LRV estimation.

5 General Overidentified GMM Framework

In this section, we consider the general GMM framework. The parameter of interest is a d x 1
vector § € © C R%. Let v € R% denote the vector of observations at time ¢. We assume that 6
is the true value, an interior point of the parameter space ©. The moment conditions

92

Ef(v;,0)=0,t=1,2,...,T.

hold if and only if # = 0y where f (v, -) is an m x 1 vector of continuously differentiable functions.
The process f (vt,0p) may exhibit autocorrelation of unknown forms. We assume that m > d and
that the rank of E[f (v;,00) /00'] is equal to d. That is, we consider a model that is possibly
overidentified with the degree of overidentification ¢ = m — d.

5.1 One-step and Two-step Estimation and Inference

Define the m X m contemporaneous covariance matrix ¥ and the LRV matrix € as:

v

S = Ef(ve,00) f(ve,00) and Q= > € where Q; = Ef(vy,00)f(vi—;,00)'.

j==o0

Let .
2 (0) — N Fly,
gt(9)—ﬁ;f(%9).

Given a simple positive-definite weighting matrix Wor that does not depend on any unknown
parameter, we can obtain an initial GMM estimator of 6y as

A _ Y Itir—1v
Oor = arg ggg gr(0) Wor gr(0).

For example, we may set Wor equal to I,. In the case of IV regression, we may set Wor equal
to Zi.Zp /T where Zr is the matrix of the instruments.

Using ¥ or €2 as the weighting matrix, we obtain the following two (infeasible) GMM estima-
tors:

~ - .o /i_lv 12

017 arg min gr(6)'X"9r(6), (12)

Oy : = argmin jr(0)'QY g0(0). (13)
0cO
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For the estimator 617, we use the contemporaneous covariance matrix Y as the weighting matrix
and ignore all the serial dependency in the moment vector process {f(vs,00)};. In contrast
to this procedure, the second estimator 6’2T accounts for the long run dependency. The feasible
versions of these two estimators 91T and 92T can be naturally defined by replacing Y and  with
their estimates Eest(ﬂggp) and Qest(HOT) where

T

jest<0) % Z f(vta )f(vt7 0>/7 (14)
=1

. 1 tT T S .

Qest (0 TZZQ n\p T Utu 0)f(vs, ) . (15)

s=1t=1

To test the null hypothesis Hy : Ry = r against H; : ROy = r + &g/ VT , we construct two
different Wald statistics as follows:

A N -1 ~

Wir @ = T(R91T — T), {RVITR,} (RHIT - T)a (16)
A A -1 ~

Wor : =T(ROap — T)/ {RVQTR/} (ROar — 1),

where

-1 N

o “ o o “ o o o R o -1
Vir = [G est(91T)G1T] [ Tzest(91T)9est(91T)Ee_s§(91T)01T][ 1Yt (017)Gar | (17)

N
Vor = [G2TQest(02T)G2T]
and

leT _ TZ af(vm )

A af Ut,
80/ ) G2T = T E ( : )
t=1

. 00
0=017 t=1

These are the standard Wald test statistics in the GMM framework.
To compare the two estimators 617 and fsr and associated tests, we maintain the standard
assumptions below.

0=027

Assumption 4 As T — oo for a fived h, Oor = 0o + 0, (1), 017 = 09 + 0, (1), a1 = 6y + 0, (1)
for an interior point 0y € O.

Assumption 5 Define

- 1 95 1x=0f(v,9) -
G(9) o0 T jE_l 50 fort>1 and Go(6) =0

For any 07 = 6y + 0,(1), the following hold: (7) plimTﬂooé[TT](QT) = rG uniformly in r where

G = G(8y) and G(0) = Edf (vy,0)/00'; (ii) Sest (07) 2 X > 0; (iii) 3, Q, 'S LG, and GO 1G

are all nonsingular.

With these assumptions and some mild conditions, the standard GMM theory gives us

T
o 1 U 11 oo o
VI~ 60) = [G’z—lG} G571 f(vr, 00) + 0p(1).
t=1

N
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Under the fixed-smoothing asymptotics, Sun (2014b) establishes the representation:

R U RN
VT (Oar —00) = —= > [GOZG] GO F(vr,00) + 0p(1),
where € is defined in the similar way as (0o in Proposition Qoo = Ql/gfloo(v)’lﬂ.

Due to the complicated structure of two transformed moment vector processes, it is not
straightforward to compare the asymptotic distributions of élT and égT as in Sections |3| and
To confront this challenge, we let

G=U -2 .V

mxm mxd dxd

be a singular value decomposition (SVD) of G, where

e A, O
- dxd dxq )’

Ais a d x d diagonal matrix and O is a matrix of zeros. Also, we define
£ (v, 00) = (fi (v, 00), f3" (v, 00)) := U f vy, 6) € R™,

where f§(vg,00) € R and f3 (v, 0p) € R? are the rotated moment conditions. The variance and
long run variance matrices of { f*(v, 0o)} are

= U'SU = < gil g}ﬂ ) :
21 22

and Q* := U’ SU)U, respectively. To convert the variance matrix into an identity matrix, we define
the normalized moment conditions below:

Fve,00) = [fi(ve,00)', f2(ve,00)'] = ( 1/2)71f*(vt,90)

where ) /
] (S12)Y? 51y (85,) 12
= . . (18)
v ( 0 (35,)"?
More specifically,
Fuloebo) = = (5102 [ (0, B0) — B2 (3) 71 £5 (w0, 00)] € Y,
Fa(ve00) © = (339) 7% f3 vy, 00) € R

Then the contemporaneous variance of the time series { f(v¢, 0o)} is I, and the long run variance
is 2 := (21/2)_19*(2’{’/2)_1.

Lemma 9 Let Assumptions hold with u; replaced by f(v, 6o) in Assumptions@ and@. Then
as T — oo for a fixed h > 0,

1

(Z50) V2 AV'NT (17 — 6) = -

T
> Fi(w, o) + 0,(1) == N(0, 1) (19)
t=1

(S12) "2 AVVT (Bor — 00) = [f1(v2,00) = Boo fa(vt, 00)] + 0p(1) (20)

S-S
e

t
L MN (0,911 — Q2B — Boo21 + Boo226L,)

where B = QOO7129<;O];22 is the same as in Proposition .

1
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Lemma [J] casts the stochastic expansions of two estimators in the same form. To the best
of our knowledge, these representations are new in the econometric literature and may be of
independent interest. Lemma [J] enables us to directly compare the asymptotic properties of
one-step and two-step estimators and the associated tests.

It follows from the proof of the lemma. that

1

(Z5.0) Y2 AV'VT (far — 00) = JT

T
Z f1(ve, 00) — Bofa(ve, 00)] + op(1),
=1

where ) = 9129521 as defined before. So the difference between the feasible and infeasible two-
step GMM estimators lies in the uncertainty in estimating 3,. While the true value of J appears
in the asymptotic distribution of the infeasible estimator O, the fixed- smoothmg limit of the
implied estimator 3 := 912Q22 appears in that of the feasible estimator 02T It is important
to point out that the estimation uncertainty in the whole weighting matrix Q.s matters only
through that in B .

If we let (uig,uor) = (f1(ve,00), fo(ve,0p)), then the right hand sides of and are
exactly the same as what we would obtain in the location model. The location model, as simple
as it is, has implications for general settings from an asymptotic point of view. More specifically,
define

yie = (ZT.Q)_I/Q AV’ + u,
Y2 = Uot,

where u1; = f1(ve,00) and ug = fa(v4,00). The estimation and inference problems in the GMM
setting are asymptotically equivalent to those in the above simple location model with {y1¢, y2:}
as the observations.

To present our next theorem, we transform R into R using

R=RVA(2,)Y2, (21)

which has the same dimension as R. We let

1

B (h,1,0) [//@hrsdBMdB H//@hrsdBmdB(),

which is compatible with the definition in . We define
p =070, € R and pp = (RO R) V2 (RO12)05, 7 € RPXC.

While p is the long run correlation matrix between fi(vy,60g) and fa(ve, 6o), pp is the long run
correlation matrix between Rfi(v,6p) and fao(vi,0p). The corresponding long run canonical
correlation coefficients are

v (ppf) = v { (129253 01) Q1 } and v (pppte) = v { (R0 Qo R (RO R
For the location model considered before, G = (14, deq)’ andsoU =1, A=Ijand V = 1.

Given the assumption that ¥ = X* = I,,,, which implies that £%, = I;, we have R = R. So the
above definition of pg is identical to that in (L0)).
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Theorem 10 Let the assumptions in Lemma[9 hold. Define
A(N) = {0: V[R(GQIG)IR716 = Ao}

Consider the local alternative Hy (\o) : ROy = 7+ 00//T for 5o € A(Xg) and the fived-smoothing
asymptotics. . R

(@) If vmax (PrPR) < 9(h,q), then RA6’2T has a larger asymptotic variance than Re}T-

(b) If vmin (prPR) > 9(h,q), then Rbar has a smaller asymptotic variance than RO;i7.

(€) If Vmax (prPR) < f(Xosh,p,q, ), then the two-step test is asymptotically less powerful
than the first-step test for any dp € A (Ng).

(d) If vmin (PrPR) > [ (Xoi h, D, q, ), then the two-step test is asymptotically more powerful
than the first-step test for any 6o € A (Ng).

If R = I, then R is a square matrix with a full rank. Since the long canonical correlation
coefficient is invariant to a full-rank linear transformation, we have v (prplz) = v (pp’) . It then
follows from Theorem [10{a) (b) that

(i) if vmax (pp') < g(h,q), then avar(G7) > avar(f17).

(i1) if vmin (pp") > g(h, q), then avar(for) < avar(6i7).

These results are identical to what we obtain for the location model. The only difference is
that in the general GMM case we need to rotate and standardize the original moment conditions
before computing the long run correlation matrix. Theorem [10| can also be applied to a general
* )1/2‘

location model with a nonscalar error variance, in which case R = R (X7 5

5.2 GMM Estimation and Inference with a Working Weighting Matrix

In the previous subsection, we employ two specific weighting matrices — the variance and long

run variance estimators. In this subsection, we consider a general weighting matrix WT(é’OT),

which may depend on the initial estimator for and the sample size T, leading to yet another

GMM estimator: .
bur = argmin gr(6)' [Wr(or)|  4(0)

where the subscript ‘a’ signifies ‘another’ or ‘alternative’.

An example of WT(éoT) is the implied LRV matrix when we employ a simple approximating
parametric model to capture the dynamics in the moment process. We could also use the general
LRV estimator but we choose a large h so that the variation in WT(@OT) is small. In the kernel
LRV estimation, this amounts to including only autocovariances of low orders in constructing
WT(@OT). We assume that WT(éoT) LW, a positive definite nonrandom matrix under the fixed-
smoothing asymptotics. W may not be equal to the variance or long run variance of the moment
process. We call WT(@OT) a working weighting matrix. This is in the same spirit of using a
working correlation matrix rather than a true correlation matrix in the generalized estimating
equations (GEE) setting. See, for example, Liang and Zeger (1986).

In parallel to , we construct the test statistic

A A -1 N
War == T(Rbur — ) {RVar R’} (Rbar — ),
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. Var is defined according to
aT

where, for éaT = %Z;‘ll (Uta )/89/

A~

v -1 A o v
Var = |Ga Wi (0ar)Gar| |Gl Wi Qur)est(@ur) Wi (Dur) Gar | |G Wi Bur) Gar |

which is a standard variance estimator for 6,7.
Define

W* = U'WU and W = X W ( ’;/2)—1_<

Wi Wia )
1/2

War Wa
and ﬁa = W12W251.
Using the same argument for proving Lemma [9] we can show that

T
(Si0)™ 2 AVVT(Dur = 00) = = 3011 (0.00) = Bufo (. 00)] + 0D (22)
t=1

The above representation is the same as that in except that [, is now replaced by j3,,.
Let V, and V, g be the long run variances of

[f1 (1, 00) — Buf2 (v,00)] and R[f1 (ve,00) — Bofa (ve,00)]

respectively. The long run correlation matrices are
_ -1 -1/2 [ 5 -1/2
Pa = Va 12 (Ql? - BaQ22) QQ 2 and Pa,R = V / [R (Ql2 - /3a922):| Qgg/ .
The corresponding long run canonical correlation coefficients are

vi(pabh) = v{(Q - B.022) Q% (12 — B,02) V; '} and
V(parPar) = v {é (D2 — B,Q02) Qg (2 — B,022)" R'V;R} :

Theorem 11 Let the assumptions in Lemma@ hold. Assume further that WT(@OT) 2 W, a
positive definite nonrandom matriz. Consider the local alternative Hy (Ag) and the fized-smoothing
asymptotics.

(@) If Vmax(Pa, Pl r) < 9(h,q), then RO has a larger asymptotic variance than Rf,r.

(0) If vmin(pa,rP, r) > 9(h,q), then Rbor has a smaller asymptotic variance than Rfyr.

(c) If ymax(pa’Rp;7R) < f(Xo;h,p,q, ), then the two-step test based on Wo is asymptotically
less powerful than the test based on W, for any do € A (Ng).

(d) If Vmin(pa,Rp:;,R) > f (Mo h,p,q, ), then the two-step test based on Wo is asymptotically
more powerful than the test based on W, for any dg € 2A (o).

Theorem [I1]is entirely analogous to Theorem [I0} The only difference is that the second block
of moment conditions is removed from the first block using the implied matrix coefficient 3,
before computing the long run correlation coefficient.

When R = I;, R becomes a square matrix, and we have V(Pa,rPa.r) = V (PaPa)- Theorem
11)(a) and (b) gives the conditions under which fyp is asymptotically more (or less) efficient than
Our.
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To understand the theorem, we can see that the effective moment conditions behind R@GT
are:

Efla (Ut, 90) = 0 fOI' fla (Ut7 90) = R [fl (Ut, 90) - Baf? (Ut760)] .

RO, uses the information in E f2 (ve,00) = 0 to some extent, but it ignores the residual informa-
tion that is still potentially available from E fo (v, 6p) = 0. In contrast, Rlyp attempts to explore
the residual information. If there is no long run correlation between fi, (v¢,600) and fa (v, 0p),
i.e., po g = 0, then all the information in £ f5 (v, 00) = 0 has been fully captured by the effective

moment conditions underlying ROur. As a result, the test based on ROur necessarily outperforms
that based on Rfar. If the long run correlation p, p is large enough in the sense given in Theorem

(d)7 the test based on RéQT could be more powerful than that based on R@aT in large samples.

6 Simulation Evidence and Practical Guidance

This section compares the finite sample performances of one-step and two-step estimators and
tests using the fixed-smoothing approximations. We consider the location model given in
with the true parameter value 6y = (0,...,0) € R? but we allow for a nonscalar error variance.
The error {u;} follows a VAR(1) process:

q

wlt = puil |+ lZusg_l +eftfori=1,..,d (23)
Vi

uy = Yus_q +es fori=1,..,q

where e3! ~ iid N(0,1) across i and t, e5! ~ iid N(0,1) across i and ¢, and {e},,t = 1, 2. T} are
independent of {e},,t =1,2,...,T}. Let uf := ((u},)’, (ub,)’) € R™ € R™, then uf = Tu;_; + €f

where
I, %, 1
ro— vl Vv’ da el = eit ~did N (0, I,),
mXxXm 0 qu egt

and Jg, is the d x ¢ matrix of ones. Direct calculations give us the expressions for the long run
and contemporaneous variances of {u;} as

o = Z Eu:(uf—j)l = (I, = 0) "' (L = T) 7!
j=—00
1 v? v
_ o ld T g dad gy g daa
%Jqd %[q
(1=v)°ya * (1—%)
and 2 (1402)

1 1ty v _ %

I+ Jad Tz Ja,
E* _ UCLT(u:) _ 171/]27 151”/’2)3 Va (1717’02)2 q

Vi (i) o =gl

Let uy = (SF) Y2 [uf, — 5%, (53,) ' ub,] and ug = (232)_1/2 u3, and p be the long run corre-
lation matrix between uq; and ug;. With some algebraic manipulations, we have

_2y2N L
ppl = <d + a,.);/})> Jd,d' (24)

22



So the maximum eigenvalue of pp’ is given by vmax(pp’) = [1+ (1 — ¢?)?/(d+?)] _1, which is also
the only nonzero eigenvalue.

In addition to the VAR(1) error process, we also consider the following VARMA (1,1) process
for uy :

q
wfh = pufl g e b =S e fori=1,..,d (25)
Vi
uht = Yus_ +eh fori=1,...,q

id.d . . .
where ef '~ N (0, I,,) . The corresponding long run covariance matrix * and contemporaneous
covariance matrix X* are

LIyt L Jag - Jy
o = 90 ¢ a-)iva T
oy Jad aop la
and L 2 e
T < 1_¢i d;; 1_j§2Jd,d ﬁll_wz 'IJd#] > )
Vit Jud
With some additional algebras, we have

1 -1
pp’ = <d + (1—¢1)2’Y2> Jd.d, (26)

and Vmax (pp') = (1 +1/[d (1 - 71})2 7))
Under the VARMA(1,1) design, the approximating AR(1) model is misspecified. It is not
hard to obtain the probability limit of W (8,r) as

W= (Im ~T-A (2*)*1)71 (I ~AE) A+ M’) (Im - (z)! ]\’)71 :

which is different from the true long run variance matrix 2*. Based on W, Q*, and ¥*, we can

compute p,p, and p, gP), p-
For the basis functions in OS LRV estimation, we choose the following orthonormal basis
functions {®;}32; in the L?[0,1] space:

®o;_1(x) = V2cos(2jmz) and Pgj(z) = V2sin(2j7x) for j = 1,..., K/2,

where K is an even integer. We also consider kernel based LRV estimators with the three
commonly-used kernels: Bartlett, Parzen, QS kernels. For the choice of K in OS LRV estimation,
we employ the following AMSE-optimal formula in Phillips (2005):

* * /
Kysp =2 X {0.5 <tr (U2 + K )( © O )]>1 5T4/5-‘

4vec(B*) vec(B*)

2

where [-] is the ceiling function, K, is m? x m? commutation matrix and



Similarly, in the case of kernel LRV estimation, we select the smoothing parameter b according
to the AMSE-optimal formula in Andrews (1991). The unknown parameters in the AMSE are
either calibrated or data-driven using the VAR(1) plug-in approach. The qualitative messages
remain the same regardless of how the unknown parameters are obtained.

In all our simulations, the sample size T is 200, and the number of simulation replications is
s 10, 000.

6.1 Point Estimation

We focus on the case with d = 1, under which pp’ is a scalar and vmax(pp’) = pp’. For both
simulation designs, vmax(pp) is increasing in 42 for a given 1. We fix the value of ¢ at 0.75
so that each time series is reasonably persistent. For this value of v, we consider vyax(pp’) =
0,0.09,0.18, ...,0.90,0.99, which are obtained by setting + to appropriate values using or
29).

According to Proposition (3 l if pp’ is greater than a threshold value, then Var(é’gT) is ex-
pected to be smaller than Var(&lT) Otherwise, Var(GgT) is expected to be larger. We simulate
Var(@lT), Var(@QT) and Var(éaT) Here, 0,1 is based on a working weighting matrix W(GOT)
using VAR(1) as the approximating model for the estimated error process {i*(for)}.

Tablesreport the simulated variances under the VAR(1) design with ¢ = 3 and 4 for some
given values of K and b. These values are calibrated by using the AMSE optimal formulae under
the VAR(1) design with ¢ = 0.75 and 72 = (pp/(1 — w2)2) /(d(1 — pp') for d =1 and pp’ = 0.40.
We first discuss the case when the OS LRV estimator is used. It is clear that Var(égT) becomes
smaller than Var(@lT) only when pp’ is large enough. For example, when ¢ = 4 and there is no
long run correlation, i.e., pp’ = 0, we have Var(@lT) = 0.081 < Var(égT) = 0.112, and so 017
is more efficient than 92T with 28% efﬁ(:lency gain. These numerical observations are consistent
with our theoretical result in Proposition |1 I 92T becomes more efficient relative to 91T only when
the benefit of using the LRV matrix outweighs the cost of estimating it. With the choice of
K = 14 and ¢ = 4, Table [5| indicates that Var(far) starts to become smaller than Var(6;7)
when pp’ crosses a value in the interval [0.270,0.360] from below. This agrees with the theoretical
threshold value pp’ = ¢/(K — 1) ~ 0.307 given in Corollary

In the case of kernel LRV estimation, we get exactly the same qualitative messages. For ex-
ample, consider the case with the Bartlett kernel, b = 0.08, and ¢ = 3. We observe that Var(égT)
starts to become smaller than Var(fy7) when pp/ crosses a value in the interval [0.09,0.18] from
below. This is compatible with the threshold value 0.152 given in Table [I]

Finally, we note that Var(f,r) is smaller than Var(far) for all values of pp’ considered.
This is well expected. In constructing @aT, we employ a correctly specified parametric model
to estimate the weighting matrix and so W(@gT) converges in probability to the true long run
variance matrix 2*. However, when the true DGP is VARMA(1,1), the results in Tables
indicate that the efficiency of 6,7 is reduced due to the misspecification bias in the working
weighting matrix W (f,7). The tables also report the values of p,p/,. We find that 6,7 is more
efficient than o7 only when Papy is below a certain threshold value. This confirms the qualitative
messages in Theorem [I1fa) and (b).

6.2 Hypothesis Testing

We implement three testing procedures on the basis of Wi, Wor and W,p. Here, W, is based
on the same working weighting matrix W (6or) as in the point estimation case. The nominal
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significance level is a = 0.05. As before, » = 0.75. We use and to set v and obtain
vmax(pp") € {0.00,0.35,0.50,0.60,0.80,0.90}. We focus on the case with d = 3 and ¢ = 3. The
null hypotheses of interest are:

Hopy : 01 =0,
H02 : (91:(92:0

where p = 1,2 respectively. For the smoothing parameters, we employ the data driven AMSE
optimal bandwidth through VAR(1) plug-in implementation developed by Andrews (1991) and
Phillips (2005).

Tables report the empirical size of three nominal 5% testing procedures based on the
two types of asymptotic approximations. It is clear that all of the three tests based on Wi, W,
and Wap suffer from severe size distortion if the conventional normal (or chi-square) critical
values are used. For example, when the DGP is VAR(1) and OS LRV estimation is implemented,
the empirical sizes of the three tests using the OS LRV estimator are reported to be around
14% ~ 29% when p = 2. The relatively large size distortion of the Wap test comes from the
additional cost in estimating the weighting matrix. However, if the nonstandard critical values

¢ and W§_ are used, we observe that the size distortion of all three procedures is substantially
reduced. The result agrees with the previous literature such as Sun (2013, 2014a&b) and Kiefer
and Vogelsang (2005) which highlight the higher accuracy of the fixed-smoothing approximations.
Also, we observe that when the fixed-smoothing approximations are used, the Wi test is more
size-distorted than the Wop test in most cases. Similar results for the kernel cases are reported
in Tables [T~I6

Next, we investigate the finite sample power performances of the three procedures. We use the
finite sample critical values under the null, so the power is size-adjusted and the power comparison
is meaningful. The DGPs are the same as before except the parameters are from the local null
alternatives Ry = r 4 d9/v/T. The degree of overidentification considered here is ¢ = 3. Also,
the domain of each power curve is rescaled to be A := §y(RQ1.oR') 16y with R = R(X%,)"/? as
in Section @ and B

Figures show the size-adjusted finite sample power of the three procedures in the case
of OS LRV estimation. We can see that in all figures, the power curve of the two-step test
shifts upward as the degree of the long run correlation vmax(prpf) increases and it starts to
dominate that of the one-step test from certain point vmax(prp’r) € (0,1). This is consistent
with Proposition [7] For example, with K = 14 and p = 1, the power curves in Figure 2] show that
the power curve of the two-step test Wop starts to dominate that of the one-step test Wi when
Vmax(prpr) reaches 0.25. This matches our theoretical results in Proposition and Table Which
indicate that the threshold value maxyg(; 25 f(\; K, p, ¢, @) is about 0.275 when K = 14,p = 1
and ¢ = 3. Also, if vmax(pgp’p) is as high as 0.75, we can see that the two-step test is more
powerful than the one-step test in most of cases.

Lastly, in the presence of VAR(1) error, the performance of W, dominates that of Wy and
War for all vmax(prp’r) € (0,1). This is analogous to the point estimation results. The working
weighting matrix W (fgr) based on VAR(1) plug-in model is close to the true long run variance
matrix Q*. This leads to power improvement whenever there is some long run correlation between
uj, and uj,. However, under the VARMA(1,1) error, Figures show that the advantages of
W, are reduced and W, is more powerful than the two-step test Wop only when I/max(pa, Rp;, R)

is below the threshold value f(Ao; K, p,q,«). This is due to the misspecification bias in W(éOT)
which is attributed to the use of a wrong plug-in model. Nevertheless, we still observe comparable
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performances of W, for most of non-zero vmax(p, o), g) values. Figures @ for the cases of
kernel LRV estimation deliver the same qualitative messages.

6.3 Practical Recommendation

Both our theoretical result and simulation evidence suggest that we should go one more step
and employ the two-step estimator and test when the long run canonical correlation coefficients
are large enough. In empirical applications, we often care about only a linear combination of
model parameters or a single model parameter. In this case, there is only one long run canonical
correlation coefficient and it provides the necessary and sufficient condition for going the extra
step. However, it is hard to estimate the long run canonical correlation coefficient with good
precision. This is exactly the source of the problem why the two-step estimator and test may
not outperform. In the absence of any prior knowledge of the long run canonical correlation,
we propose to use the two-step estimator and test only when the estimated long run canonical
correlation coefficient is larger than our theoretical threshold by a margin, say 10%. On the other
hand, when the estimated long run canonical correlation coefficient is smaller than our theoretical
threshold by 10%, we stick with the first-step estimator and test. When the estimated long run
canonical correlation coefficient is within 10% of the theoretical threshold, we propose to use the
GMM estimator and test based on a working weighting matrix using VAR(1) as the approximating
parametric model. Our recommendation in the not so clear-cut case is based on the simulation
evidence that the working weighting matrix can deliver a robust performance in finite samples.
We now formalize our recommendation using hypothesis testing as an example. Given the set
of moment conditions Ef(vt, 0o) = 0 and the data {v;} , suppose that we want to test Hy : R0y = r
against Rfy # r for some R € RP*4, We follow the steps below to decide on which test to use.

. y 2
1. Compute the initial estimator 8y = arg mingcg Hz:tpzl f (g, H)H

2. On the basis of fgr, use a data-driven method such as Andrews (1991) or Phillips (2005)
to select the smoothing parameter. Denote the data-driven value by h.

3. Based on the smoothing parameter fz, compute iest(@ogp) and Qest(@or_ﬁ) using the formulae
in (T3).
1 T 8f(vt’9)

4. Compute Gr(for) = T2 t=1 89" lg—d,, and its singular value decomposition Uzv’

where & = (Agxa, Odxq) and Agyq is diagonal.

5. Estimate the variance and the long run variance of the rotated moment processes by

A~ A~

E* = [)djest(é()T)U and Q* = U,Qest(éOT)U.
6. Compute the normalized LRV estimator:
O = * 719* */ \—1 — < N 11 - 12 )
( 1/2) ( 1/2) Q21 922
where 12 12
y (312) " 50 (S5)

1/2 = 0 <A ;2> 1/2 (27)

26



7. Let Rey = RVA_l(f]f,2)1/2. Compute the eigenvalues:

v (priR) =v [(Restfllﬁﬁl@uf?’ )(Rest1RL,) 7| -

est est

Let vmax (ﬁ) Rﬁ’R) and Vmin (b RZJ’R) be the largest and smallest eigenvalues, respectively.

8. Choose the value of \? such that P (XZZ, (X)) > le)_o‘) = 75%. This choice of \° is consistent
with the optimal testing literature. We may also choose a value of A\° to reflect scientific
interest or economic significance.

9. (a) If vmin (i)Ri)}%) > 1L.1f(A% h,p, q, a), then we use the second-step test based on Wyp.
(b) If vmax (bR,b/R) < 0.9f(X\% h,p,q, a), then we use the first-step test based on Wyp.

(c) If neither condition (a) nor condition (b) is satisfied, then we use the testing procedure
based on W, using the VAR(1) as the approximating parametric model to estimate the
weighting matrix.

7 Conclusion

In this paper we have provided more accurate and honest comparisons between the popular one-
step and two-step GMM estimators and the associated inference procedures. We have given some
clear guidance on when we should go one step further and use a two-step procedure. Qualitatively,
we want to go one step further only if the benefit of doing so clearly outweighs the cost. When
the benefit and cost comparison is not clear-cut, we recommend using the GMM procedure with
a working weighting matrix.

The qualitative message of the paper is applicable more broadly. As long as there is additional
nonparametric estimation uncertainty in a two-step procedure relative to the one-step procedure,
we have to be very cautious about using the two-step procedure. While some asymptotic theory
may indicate that the two-step procedure is always more efficient, the efficiency gain may not
materialize in finite samples. In fact, it may do more harm than good sometimes if we blindly
use the two-step procedure.

There are many extensions of the paper. We give some examples here. First, we can use
the more accurate approximations to compare the continuous updating GMM and other general-
ized empirical likelihood estimators with the one-step and two-step GMM estimators. While the
fixed-smoothing asymptotics captures the nonparametric estimation uncertainty of the weighting
matrix estimator, it does not fully capture the estimation uncertainty embodied in the first-step
estimator. The source of the problem is that we do not observe the moment process and have
to use the estimated moment process based on the first-step estimator to construct the nonpara-
metric variance estimator. It is interesting to develop a further refinement to the fixed-smoothing
approximation to capture the first-step estimation uncertainty more adequately. Finally, it will
be also very interesting to give an honest assessment of the relative merits of the OLS and GLS
estimators which are popular in empirical applications.
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Table 1: Threshold values g(h, q) for asymptotic variance comparison with Bartlett kernel
b la=1[g=2]g=38[qg=4[q=5]
0.010 | 0.007 | 0.014 | 0.020 | 0.027 | 0.033
0.020 | 0.014 | 0.027 | 0.040 | 0.053 | 0.065
0.030 | 0.020 | 0.040 | 0.059 | 0.078 | 0.097
0.040 | 0.027 | 0.053 | 0.079 | 0.104 | 0.128
0.050 | 0.034 | 0.066 | 0.098 | 0.128 | 0.157
0.060 | 0.040 | 0.079 | 0.116 | 0.152 | 0.185
0.070 | 0.047 | 0.092 | 0.135 | 0.175 | 0.211
0.080 | 0.054 | 0.104 | 0.152 | 0.197 | 0.237
0.090 | 0.061 | 0.117 | 0.170 | 0.218 | 0.260
0.100 | 0.068 | 0.129 | 0.186 | 0.238 | 0.282
0.110 | 0.074 | 0.141 | 0.203 | 0.257 | 0.303
0.120 | 0.081 | 0.153 | 0.218 | 0.274 | 0.322
0.130 | 0.088 | 0.164 | 0.233 | 0.291 | 0.340
0.140 | 0.094 | 0.175 | 0.247 | 0.306 | 0.356
0.150 | 0.101 | 0.186 | 0.260 | 0.321 | 0.371
0.160 | 0.107 | 0.196 | 0.273 | 0.334 | 0.384
0.170 | 0.113 | 0.206 | 0.284 | 0.347 | 0.397
0.180 | 0.119 | 0.216 | 0.295 | 0.358 | 0.407
0.190 | 0.124 | 0.226 | 0.306 | 0.369 | 0.417
0.200 | 0.130 | 0.235 | 0.316 | 0.380 | 0.425

Notes: h = 1/b indicates the level of smoothing and ¢ is the degrees of overidentification. If
the largest squared long run canonical correlation between the two blocks of (rotated and trans-
formed) moment conditions is less than g (h, q) , then the two-step estimator 0o is asymptotically
less efficient than the one-step estimator 91T. If the smallest squared long run canonical corre-
lation is greater than g (h,q), then the two-step estimator for is asymptotically more efficient

than the one-step estimator 6;p.

28



Table 2: Threshold values g(h, q) for asymptotic variance comparison with Parzen kernel
b [g=1[g=2]g=3[g=4[g=5]
0.010 | 0.006 | 0.011 | 0.016 | 0.022 | 0.027
0.020 | 0.011 | 0.022 | 0.033 | 0.043 | 0.054
0.030 | 0.017 | 0.033 | 0.049 | 0.065 | 0.081
0.040 | 0.022 | 0.044 | 0.065 | 0.087 | 0.107
0.050 | 0.028 | 0.055 | 0.082 | 0.108 | 0.134
0.060 | 0.033 | 0.066 | 0.099 | 0.130 | 0.161
0.070 | 0.039 | 0.077 | 0.115 | 0.152 | 0.187
0.080 | 0.045 | 0.088 | 0.132 | 0.173 | 0.213
0.090 | 0.051 | 0.100 | 0.148 | 0.194 | 0.238
0.100 | 0.057 | 0.111 | 0.164 | 0.215 | 0.263
0.110 | 0.063 | 0.122 | 0.181 | 0.236 | 0.288
0.120 | 0.069 | 0.133 | 0.197 | 0.257 | 0.312
0.130 | 0.075 | 0.145 | 0.213 | 0.277 | 0.336
0.140 | 0.081 | 0.156 | 0.229 | 0.297 | 0.359
0.150 | 0.087 | 0.168 | 0.245 | 0.317 | 0.382
0.160 | 0.093 | 0.179 | 0.261 | 0.337 | 0.404
0.170 | 0.100 | 0.191 | 0.277 | 0.356 | 0.426
0.180 | 0.106 | 0.202 | 0.293 | 0.375 | 0.448
0.190 | 0.112 | 0.214 | 0.308 | 0.393 | 0.469
0.200 | 0.118 | 0.225 | 0.323 | 0.411 | 0.489
See notes to Table [
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Table 3: Threshold values g(h, q) for asymptotic variance comparison with QS kernel

| b [g=1[g=2]g=3[g=4[g=5]
0.010 | 0.010 | 0.020 | 0.030 | 0.040 | 0.050
0.020 | 0.021 | 0.041 | 0.061 | 0.082 | 0.102
0.030 | 0.031 | 0.062 | 0.093 | 0.124 | 0.154
0.040 | 0.042 | 0.084 | 0.126 | 0.166 | 0.206
0.050 | 0.053 | 0.106 | 0.158 | 0.209 | 0.258
0.060 | 0.065 | 0.128 | 0.191 | 0.252 | 0.311
0.070 | 0.077 | 0.151 | 0.225 | 0.296 | 0.362
0.080 | 0.089 | 0.175 | 0.259 | 0.340 | 0.414
0.090 | 0.102 | 0.198 | 0.293 | 0.382 | 0.464
0.100 | 0.115 | 0.222 | 0.326 | 0.423 | 0.516
0.110 | 0.127 | 0.247 | 0.359 | 0.463 | 0.565
0.120 | 0.140 | 0.271 | 0.392 | 0.502 | 0.612
0.130 | 0.153 | 0.296 | 0.426 | 0.542 | 0.655
0.140 | 0.166 | 0.321 | 0.458 | 0.581 | 0.697
0.150 | 0.179 | 0.346 | 0.489 | 0.619 | 0.736
0.160 | 0.193 | 0.371 | 0.520 | 0.655 | 0.773
0.170 | 0.206 | 0.395 | 0.549 | 0.690 | 0.806
0.180 | 0.220 | 0.418 | 0.578 | 0.722 | 0.834
0.190 | 0.233 | 0.441 | 0.605 | 0.752 | 0.859
0.200 | 0.246 | 0.463 | 0.630 | 0.779 | 0.879
See notes to Table[1l
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Table 4: Threshold Values f(\; K, p, ¢, «) for power comparison with OS LRV estimation when

a = 0.05 and K = 8,10,12,14.

p=1 p=2 p=3

K A q=1 q¢q=2 ¢q=3 qg=1 q=2 q=3 qgq=1 q¢q=2 q=3
1.000 0.162 0.378 0.514 0.223 0.367 0.581 0.242 0.433 0.576

5.000 | 0.151 0.364 0.503 0.214 0.370 0.582 0.225 0.469 0.623

9.000 | 0.1564 0.352 0.493 0.213 0.377 0.597 0.226 0.488 0.639

8 | 13.000 | 0.153 0.345 0.496 0.213 0.397 0.600 0.226  0.495 0.645
17.000 | 0.160 0.352 0.489 0.217 0.399 0.608 0.230 0.498 0.652

21.000 | 0.165 0.356 0.493 0.211  0.405 0.604 0.234 0.503 0.657

25.000 | 0.171 0.355 0.492 0.208 0.399 0.611 0.231 0.510 0.665

1.000 | 0.082 0.283 0474 0.162 0.277 0.461 0.171  0.369 0.507

5.000 0.130 0.281 0.426 0.133 0.310 0.439 0.192 0.348 0.507

9.000 0.138 0.269 0.423 0.136  0.305 0.431 0.196 0.328 0.506

10 | 13.000 | 0.135 0.261 0.416 0.132 0.308 0.432 0.200 0.339 0.507
17.000 | 0.128 0.267 0.406 0.137 0.308 0.431 0.209 0.341 0.509

21.000 | 0.136 0.276 0.406 0.137  0.308 0.436 0.210 0.346  0.508

25.000 | 0.134 0.270 0.418 0.135 0.308 0.439 0.203 0.344 0.509

1.000 | 0.085 0.198 0.322 0.128 0.203 0.345 0.151 0.325 0.314

5.000 | 0.106 0.218 0.298 0.127 0.244 0.336 0.129 0.301 0.345

9.000 | 0.103 0.210 0.301 0.122  0.233 0.353 0.119 0.284 0.352

12 | 13.000 | 0.098 0.205 0.308 0.125 0.232 0.353 0.124 0.274 0.359
17.000 | 0.105 0.193 0.318 0.128 0.230 0.359 0.124 0.277 0.366

21.000 | 0.100 0.197 0.325 0.119 0.243 0.363 0.123 0.274 0.369

25.000 | 0.118 0.197 0.325 0.110 0.236 0.360 0.121 0.284 0.378

1.000 0.062 0.316 0.260 0.089 0.184 0.367 0.155 0.287 0.394

5.000 0.091 0.232 0.275 0.133 0.181 0.287 0.112 0.220 0.341

9.000 | 0.093 0.214 0.274 0.117 0.188 0.273 0.124 0.209 0.341

14 | 13.000 | 0.087 0.211 0.265 0.109 0.192 0.281 0.126 0.213 0.338
17.000 | 0.097 0.200 0.263 0.109 0.201 0.285 0.125 0.214 0.338

21.000 | 0.093 0.213 0.257 0.105 0.197 0.285 0.130 0.208 0.332

25.000 | 0.110 0.226 0.268 0.101 0.191 0.289 0.122 0.209 0.334

Notes: If the largest squared long run canonical correlation between the two blocks of (rotated
and transformed) moment conditions is smaller than f (A; K, p, g, «), then the two-step test is
asymptotically less powerful; If the smallest squared long run canonical correlation is greater

than f (\; K, p, g, a), then the two-step test is asymptotically more powerful.
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Table 5: Finite sample variance comparison for the three estimators 91T, 92T and éaT under
VAR(1) error with T'= 200, and ¢ = 3.

Vmax(pp') | Var(617) Var(0ar) Var(0,7)
. : OS | Bartlett | Parzen QS :
K=14 | b=0.08 | b=0.15 | b=0.08
0.000 0.081 0.103 0.100 0.108 0.109 0.089
0.090 0.093 0.105 0.103 0.110 0.111 0.093
0.180 0.107 0.108 0.105 0.112 0.113 0.096
0.270 0.124 0.111 0.108 0.114 0.115 0.099
0.360 0.146 0.115 0.111 0.117 0.118 0.102
0.450 0.174 0.120 0.116 0.120 0.122 0.106
0.540 0.214 0.127 0.122 0.125 0.127 0.110
0.630 0.272 0.137 0.131 0.132 0.134 0.116
0.720 0.368 0.154 0.145 0.144 0.146 0.123
0.810 0.554 0.185 0.174 0.166 0.170 0.135
0.900 1.073 0.274 0.253 0.227 0.235 0.166
0.990 10.892 1.937 1.731 1.372 1.451 0.714

Table 6: Finite sample variance comparison for the three estimators 91T, 92T and éaT under
VAR(1) error with 7" = 200, and ¢ = 4.

Vmax(pp') | Var(617) Var(0ar) Var(0,7)
. . OS | Bartlett | Parzen QS .
K=14 | b=0.07 | b=0.150 | b=0.07
0.000 0.081 0.112 0.104 0.120 0.114 0.089
0.090 0.092 0.114 0.106 0.121 0.115 0.093
0.180 0.106 0.117 0.108 0.123 0.118 0.096
0.270 0.122 0.124 0.111 0.126 0.120 0.100
0.360 0.146 0.125 0.115 0.129 0.124 0.105
0.450 0.175 0.130 0.121 0.133 0.129 0.110
0.540 0.217 0.139 0.129 0.139 0.135 0.116
0.630 0.278 0.151 0.141 0.148 0.146 0.123
0.720 0.379 0.172 0.160 0.163 0.162 0.134
0.810 0.576 0.213 0.198 0.193 0.196 0.152
0.900 1.128 0.328 0.305 0.276 0.289 0.197
0.990 11.627 2.538 2.364 1.884 2.089 1.013
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Table 7: Finite sample variance comparison for the three estimators 91T, 92T and éaT under

VARMA(1,1) error with 7' = 200, and ¢ = 3

Vmax(pp') | Var(01r) Var(6ar) Vmax(PaPy) | Var(far)
. : (O] Bartlett | Parzen QS . .
K=14|b=0.08 | b=0.15| b=10.08
0.000 0.081 0.103 0.100 0.108 0.109 0.000 0.089
0.090 0.104 0.105 0.102 0.110 0.110 0.152 0.087
0.180 0.129 0.107 0.103 0.111 0.112 0.199 0.090
0.270 0.161 0.109 0.105 0.113 0.114 0.250 0.096
0.360 0.202 0.112 0.108 0.116 0.117 0.306 0.104
0.450 0.255 0.116 0.111 0.119 0.121 0.368 0.115
0.540 0.329 0.121 0.116 0.124 0.126 0.439 0.130
0.630 0.439 0.129 0.123 0.131 0.133 0.519 0.153
0.720 0.620 0.143 0.134 0.143 0.145 0.611 0.191
0.810 0.970 0.168 0.155 0.165 0.168 0.716 0.265
0.900 1.950 0.240 0.215 0.228 0.233 0.838 0.471
0.990 20.496 1.589 1.357 1.411 1.462 0.982 4.356

Table 8: Finite sample variance comparison for the three estimators 91T, 92T and éaT under
VARMA(1,1) error with 7' = 200, and g = 4.

Vmax(pp') | Var(01r) Var(6a7) Vmax (o) | Var(far)
. . (ON) Bartlett | Parzen QS . .
K=14|b6=0.07 | b=0.15 | b= 0.07
0.000 0.081 0.112 0.104 0.120 0.114 0.000 0.089
0.090 0.103 0.113 0.105 0.121 0.115 0.152 0.086
0.180 0.132 0.115 0.106 0.123 0.117 0.199 0.091
0.270 0.167 0.118 0.108 0.125 0.119 0.250 0.098
0.360 0.212 0.121 0.111 0.128 0.122 0.306 0.109
0.450 0.272 0.126 0.114 0.132 0.126 0.368 0.123
0.540 0.356 0.132 0.119 0.137 0.131 0.439 0.144
0.630 0.481 0.142 0.127 0.145 0.139 0.519 0.174
0.720 0.686 0.158 0.140 0.159 0.153 0.611 0.225
0.810 1.086 0.190 0.164 0.186 0.180 0.716 0.325
0.900 2.206 0.279 0.235 0.262 0.257 0.838 0.605
0.990 23.519 2.013 1.598 1.735 1.742 0.982 5.954
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Table 9: Empirical size of one-step and two-step tests based on the series LRV estimator under
VAR(1) error when ¢ = 0.75,p =1 ~ 2, and T = 200
p=1and ¢g=3
: One Step(X*) | One Step(W) | Two Step
vmax(PrPR) | X | Wie | X2 | Wi | X* | Wao

0.00 0.128 | 0.098 | 0.151 | 0.119 | 0.187 | 0.076
0.15 0.126 | 0.096 | 0.135 | 0.103 | 0.177 | 0.061
0.25 0.135 | 0.102 | 0.138 | 0.105 | 0.187 | 0.063
0.33 0.135 | 0.105 | 0.127 | 0.094 | 0.174 | 0.059
0.57 0.139 | 0.107 | 0.086 | 0.061 | 0.154 | 0.044
0.75 0.143 | 0.116 | 0.046 | 0.031 | 0.118 | 0.032

p=2and ¢g=3
. One Step(X*) | One Step(W) | Two Step
Vmax(pRle) X2 ‘ Wioo X2 ‘ Wico X2 ‘ Waoo

0.00 0.181 | 0.111 | 0.222 | 0.138 | 0.290 | 0.077
0.26 0.191 | 0.118 | 0.219 | 0.136 | 0.296 | 0.069
0.40 0.192 | 0.115 | 0.201 | 0.120 | 0.290 | 0.065
0.50 0.195 | 0.119 | 0.194 | 0.112 | 0.290 | 0.057
0.73 0.206 | 0.120 | 0.168 | 0.095 | 0.272 | 0.057
0.86 0.206 | 0.124 | 0.143 | 0.082 | 0.245 | 0.051

Notes: “One Step(i]*) test” is based on the first-step GMM estimator using the
contemporaneous variance estimator as the weighing matrix; “One Step(W) test” is based on
the GMM estimator using the VAR(1) parametric plug-in LRV estimator as the weighing
matrix; “T'wo Step test” is based on the two-step GMM estimator using the data driven

nonparametric LRV estimator as the weighing matrix.
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Table 10: Empirical size of one-step and two-step tests based on the series LRV estimator under

VARMA(1,1) error when ¢ = 0.75,p =1 ~ 2, and T' = 200

p=1and ¢q=3
One Step(2*) | One Step(W) | Two Step
Vmax(pRle) X2 ‘ Wioo X2 ‘ Wioo X2 ‘ Wooo
0.00 0.117 | 0.091 | 0.138 | 0.108 | 0.181 | 0.068
0.15 0.140 | 0.113 | 0.142 | 0.113 | 0.173 | 0.071
0.25 0.144 | 0.117 | 0.140 | 0.113 | 0.165 | 0.065
0.33 0.155 | 0.127 | 0.141 | 0.111 | 0.160 | 0.060
0.57 0.167 | 0.138 | 0.128 | 0.106 | 0.121 | 0.043
0.75 0.168 | 0.141 | 0.118 | 0.096 | 0.087 | 0.025
p=2and qg=3
One Step(X*) | One Step(W) Two Step
Vmax(ﬂRle) X2 ‘ Wloo X2 ‘ Wloo X2 ‘ W2oo
0.00 0.1883 | 0.119 | 0.227 | 0.146 | 0.290 | 0.080
0.26 0.202 | 0.129 | 0.209 | 0.136 | 0.270 | 0.073
0.40 0.206 | 0.135 | 0.204 | 0.134 | 0.254 | 0.069
0.50 0.223 | 0.148 | 0.215 | 0.144 | 0.251 | 0.065
0.73 0.221 | 0.148 | 0.205 | 0.138 | 0.214 | 0.053
0.86 0.222 | 0.156 | 0.194 | 0.132 | 0.178 | 0.044

See notes to Table [9]
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Table 11: Empirical size of one-step and two-step tests based on the Bartlett kernel variance

estimator under VAR(1) error when ¢ = 0.75, p =1 ~ 2 and T = 200

p=1and ¢g=3
One Step(X*) | One Step(W) | Two Step
Vmax(PRPIR) X2 ‘ Wiso X2 ‘ Wico X2 Waso
0.00 0.156 | 0.138 | 0.192 | 0.172 | 0.201 | 0.133
0.15 0.163 | 0.138 | 0.175 | 0.154 | 0.201 | 0.120
0.25 0.161 | 0.138 | 0.164 | 0.141 | 0.196 | 0.112
0.33 0.154 | 0.127 | 0.140 | 0.115 | 0.181 | 0.100
0.57 0.147 | 0.119 | 0.085 | 0.066 | 0.144 | 0.069
0.75 0.152 | 0.128 | 0.035 | 0.023 | 0.115 | 0.053
p=2and q=3
One Step(2*) | One Step(W) | Two Step
Vmax(pRp/R) X2 ‘ Wioo X2 ‘ Wioo X2 ‘ Wooo
0.00 0.239 | 0.183 | 0.287 | 0.228 | 0.305 | 0.177
0.26 0.230 | 0.166 | 0.263 | 0.196 | 0.298 | 0.150
0.40 0.231 | 0.169 | 0.243 | 0.170 | 0.296 | 0.138
0.50 0.228 | 0.161 | 0.234 | 0.159 | 0.286 | 0.130
0.73 0.228 | 0.157 | 0.179 | 0.118 | 0.263 | 0.108
0.86 0.230 | 0.159 | 0.161 | 0.108 | 0.240 | 0.098

Table 12: Empirical size of one-step and two-step tests based on the Bartlett kernel variance

See notes to Table[d

estimator under VARMA(1,1) error when ¢ = 0.75, p =1~ 2 and T = 200

p=1and ¢g=3
One Step(X*) | One Step(W) | Two Step
Vmax(ﬂRle) X2 ‘ Wloo X2 ‘ Wloo X2 ‘ W2oo
0.00 0.161 | 0.142 | 0.196 | 0.177 | 0.203 | 0.134
0.15 0.147 | 0.127 | 0.165 | 0.144 | 0.188 | 0.116
0.25 0.140 | 0.117 | 0.149 | 0.129 | 0.174 | 0.105
0.33 0.131 | 0.115 | 0.134 | 0.113 | 0.158 | 0.090
0.57 0.117 | 0.099 | 0.083 | 0.068 | 0.109 | 0.051
0.75 0.109 | 0.092 | 0.035 | 0.026 | 0.058 | 0.024
p=2and q=3
One Step(2*) | One Step(W) | Two Step
Vmax(pRle) X2 ‘ Wioo X2 ‘ Wico X2 ‘ Wooo
0.00 0.235 | 0.180 | 0.292 | 0.230 | 0.307 | 0.174
0.26 0.213 | 0.157 | 0.239 | 0.181 | 0.278 | 0.146
0.40 0.203 | 0.147 | 0.224 | 0.165 | 0.262 | 0.124
0.50 0.205 | 0.146 | 0.209 | 0.151 | 0.246 | 0.115
0.73 0.191 | 0.136 | 0.167 | 0.114 | 0.195 | 0.085
0.86 0.190 | 0.133 | 0.147 | 0.105 | 0.174 | 0.078

See notes to Table[A
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Table 13: Empirical size of one-step and two-step tests based on the Parzen kernel variance

estimator under VAR(1) error when ¢ = 0.75, p =1 ~ 2 and T = 200

p=1and ¢g=3
One Step(X*) | One Step(W) | Two Step
Vmax(PRPIR) X2 ‘ Wiso X2 ‘ Wico X2 Waso
0.00 0.145 | 0.108 | 0.182 | 0.139 | 0.214 | 0.090
0.15 0.148 | 0.105 | 0.173 | 0.125 | 0.223 | 0.076
0.25 0.142 | 0.102 | 0.161 | 0.115 | 0.220 | 0.070
0.33 0.142 | 0.101 | 0.142 | 0.099 | 0.211 | 0.063
0.57 0.150 | 0.105 | 0.107 | 0.068 | 0.186 | 0.050
0.75 0.141 | 0.101 | 0.054 | 0.030 | 0.147 | 0.034
p=2and q=3
One Step(2*) | One Step(W) | Two Step
Vmax(pRp/R) X2 ‘ Wioo X2 ‘ Wioo X2 ‘ Wooo
0.00 0.216 | 0.123 | 0.278 | 0.169 | 0.340 | 0.102
0.26 0.225 | 0.117 | 0.267 | 0.149 | 0.348 | 0.085
0.40 0.221 | 0.117 | 0.260 | 0.140 | 0.346 | 0.081
0.50 0.219 | 0.112 | 0.241 | 0.123 | 0.331 | 0.072
0.73 0.217 | 0.102 | 0.199 | 0.097 | 0.310 | 0.059
0.86 0.226 | 0.116 | 0.175 | 0.080 | 0.292 | 0.054

Table 14: Empirical size of one-step and two-step tests based on the Parzen kernel variance

See notes to Table[d

estimator under VARMA(1,1) error when ¢ = 0.75, p =1~ 2 and T = 200

p=1and ¢g=3
One Step(X*) | One Step(W) | Two Step
Vmax(ﬂRle) X2 ‘ Wloo X2 ‘ Wloo X2 ‘ W2oo
0.00 0.142 | 0.104 | 0.186 | 0.141 | 0.218 | 0.088
0.15 0.134 | 0.099 | 0.164 | 0.125 | 0.210 | 0.082
0.25 0.136 | 0.099 | 0.155 | 0.117 | 0.200 | 0.076
0.33 0.127 | 0.096 | 0.150 | 0.113 | 0.191 | 0.074
0.57 0.122 | 0.087 | 0.110 | 0.079 | 0.156 | 0.052
0.75 0.111 | 0.082 | 0.070 | 0.046 | 0.114 | 0.033
p=2and q=3
One Step(2*) | One Step(W) | Two Step
Vmax(pRle) X2 ‘ Wico X2 ‘ Wico X2 ‘ Woso
0.00 0.220 | 0.124 | 0.279 | 0.171 | 0.338 | 0.100
0.26 0.204 | 0.112 | 0.248 | 0.142 | 0.320 | 0.094
0.40 0.198 | 0.108 | 0.226 | 0.135 | 0.303 | 0.083
0.50 0.196 | 0.112 | 0.225 | 0.131 | 0.291 | 0.085
0.73 0.186 | 0.106 | 0.188 | 0.102 | 0.255 | 0.063
0.86 0.182 | 0.105 | 0.156 | 0.083 | 0.219 | 0.055

See notes to Table[A

37




Table 15: Empirical size of one-step and two-step tests based on the QS kernel variance estimator

under VAR(1) error when ¢ = 0.75, p =1~ 2 and T' = 200

p=1and ¢g=3
One Step(X*) | One Step(W) | Two Step
Vmax(PRPIR) X2 ‘ Wiso X2 ‘ Wico X2 Waso
0.00 0.138 | 0.107 | 0.174 | 0.144 | 0.204 | 0.089
0.15 0.138 | 0.103 | 0.164 | 0.126 | 0.209 | 0.077
0.25 0.141 | 0.106 | 0.151 | 0.115 | 0.214 | 0.076
0.33 0.135 | 0.099 | 0.145 | 0.106 | 0.208 | 0.069
0.57 0.149 | 0.110 | 0.101 | 0.068 | 0.187 | 0.056
0.75 0.132 | 0.099 | 0.049 | 0.029 | 0.136 | 0.036
p=2and q=3
One Step(2*) | One Step(W) | Two Step
Vmax(pRp/R) X2 ‘ Wioo X2 ‘ Wioo X2 ‘ Wooo
0.00 0.210 | 0.124 | 0.265 | 0.168 | 0.312 | 0.101
0.26 0.217 | 0.122 | 0.261 | 0.151 | 0.335 | 0.089
0.40 0.216 | 0.119 | 0.244 | 0.141 | 0.327 | 0.084
0.50 0.214 | 0.114 | 0.234 | 0.130 | 0.332 | 0.077
0.73 0.204 | 0.113 | 0.188 | 0.099 | 0.295 | 0.063
0.86 0.214 | 0.121 | 0.158 | 0.082 | 0.277 | 0.063

Table 16: Empirical size of one-step and two-step tests based on the QS kernel variance estimator

See notes to Table[d

under VARMA(1,1) error when ¢ = 0.75, p =1 ~ 2 and T' = 200

p=1and ¢g=3
One Step(X*) | One Step(W) | Two Step
Vmax(ﬂRle) X2 ‘ Wloo X2 ‘ Wloo X2 ‘ W2oo
0.00 0.141 | 0.112 | 0.175 | 0.141 | 0.204 | 0.090
0.15 0.137 | 0.110 | 0.164 | 0.132 | 0.201 | 0.089
0.25 0.130 | 0.104 | 0.149 | 0.117 | 0.188 | 0.076
0.33 0.123 | 0.096 | 0.140 | 0.111 | 0.178 | 0.074
0.57 0.117 | 0.094 | 0.113 | 0.088 | 0.152 | 0.058
0.75 0.110 | 0.085 | 0.060 | 0.042 | 0.110 | 0.034
p=2and q=3
One Step(2*) | One Step(W) | Two Step
Vmax(pRle) X2 ‘ Wico X2 ‘ Wico X2 ‘ Woso
0.00 0.213 | 0.128 | 0.271 | 0.176 | 0.323 | 0.106
0.26 0.199 | 0.123 | 0.249 | 0.160 | 0.310 | 0.104
0.40 0.194 | 0.122 | 0.231 | 0.147 | 0.297 | 0.096
0.50 0.183 | 0.108 | 0.212 | 0.130 | 0.278 | 0.083
0.73 0.188 | 0.114 | 0.187 | 0.113 | 0.250 | 0.072
0.86 0.182 | 0.113 | 0.156 | 0.091 | 0.217 | 0.061

See notes to Table[A
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Figure 2: Size-adjusted power of the three tests based on the OS LRV estimator under VAR(1)
error withp=1, ¢ =3, ¢ =0.75, T = 200, and K = 14.
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43



Power

Power

Power

Vinaz (pRle) =0.00

a";-'.?'
P ,e0°°
0.8 et
.I ,....
Ve o
0.6 A
77
o’..°
0.4 R/
.,...
,‘°. camoan W1T<91T)
0.2 / cossocce W2T(§%T)
- o= = W,r(bir)
O ! ! ! !
0 5 10 15 20 25
A
Vmaz (PRPIR) =0.40
1 : : :
o T
//"-":...
0.8 Ppl’
/, ’°:..
/o
,. i
0.6 ,.../,-
/%
7’
0.4
,‘:o
°am o am WIT(élT)
0.2 cccccce WZT(Q“%T)
- o= = W,r(bi7)
0 ! ! ! !
0 5 10 15 20 25
A
Vinaz (PRP’R) =0.73
1 ‘ ——— )
’.:,.o." °
.... ’n
0.8 o ,°
e L
o 7
0.6 /,-' ya
04t 457
Ly Warur)
X cemoe= (it
0.2 ‘-/ ceceees Wyr(dyr)
( o= o= = W, (0i7)
O L ! L
0 5 10 15 20 25
A

Power

Power

Power

0.8

0.6

047

0.2

0.8¢

0.6

04f}

0.2

0.8¢

0.6

047

0.2

Vinag (PRPIR) =0.26

Pt -
P
/ ,-"
/%
a
/°
| ./.. o amoan WIT(?IT)
/ """'Wzr(é’gr)
- o= = W)
5 10 15 20 25
A
Vinag (PRPIR) =0.50
‘ ‘ gy
- .'g.‘ﬂ' i
’. .;....’..
7,05
N
7
l_.('
£y
3
4 -
| ( o amoan WIT(AGIT)
/ """'WzT(9gT)
- o= = W)
0 5 10 15 20 25
A
Vmaz (PRPIR) =0.86
DS i
e
/. 7
I,'. /.
,.'. ’.
o.. .,.
[ :
I f. cemom= WIT(AalT)
‘/ eccccce WZT(9gT)
' 4 - o= = Wr(0i1)
0 5 10 15 20 25
A

Figure 7: Size-adjusted power of the three tests based on the Parzen LRV estimator under VAR(1)
error with p =2, ¢ =3, ¢ =0.75, T' = 200, and b = 0.16.
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Figure 8: Size-adjusted power of the three tests based on the QS LRV estimator under VAR(1)
error with p =2, ¢ =3, ¢ = 0.75, T' = 200, and b = 0.079.
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8 Appendix of Proofs

Proof of Proposition Part (a) follows from Lemma 1 of Sun (2014b). For part (b), we
s d
note that § = [, and so

VT <@2T — 00) = ZT: [ (y1e — Eyr) Bym&}

R — _ —F
(1 -B) ( o T = ) ) L (L B ) B(l).
VT t=1

Proof of Lemma @. For any a € R%, we have

Ed' By (h,d,q) Bo (h,d,q) a

= efwd ([ [ @ieoranioas o)
([ [ @i namorame) ([ [ e im0 me) ]
_ E;r(/l/lQ;;mdB MB/<S>)‘2
([ [ stenamramia)s ([ [ oiccnsmcron, o)
= plo([ [ @eammame)
. ( [ [ @iz wassn) ([ [ o 86 iz 6)]

= k(h,q)d a,

where

(28)

- Etr<//QhrsdB )dB!, (s ) [//(/ QhrTQhTsdT>dB()dB/()}

So
BBy (h,d,q) B (h,d,q)" = k(h,q) - 1.
Since this holds for any d, we have EBOO (h,1,q) BOO (h,1,q)" = k(h,q). It then follows that

BB (h.d,q) oo (. d ) = (E oo (1. 1,q>1(2> La
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Proof of Proposition Using and Lemma |2 we have

avar(Oy7) — avar(6,7)
= (Bl|Bo (h,1,0) [1) Q1.2 — Q12055 o1
EHIBOO (hv 1, Q) H )Qll - (1 + EHIBOO (hv 1, Q) H2)912Q2_21921
1+ BB (h,1,) I7) [9(h, @)1 — Q12055 Q1]
14 BB (h 1, @) DY |9, @) 1a = 0112000057 01 (91,77 | (017
)

(
(
(
% 0L/2 1/2

(1+ Bl (h, 1,0)H2* [g(h a)la = pp'] (11"

So avar(fyp) > avar(fir) if and only if g(h,q)Iqy > pp/. Let pp = QpA,Q), be the eigen-
decomposition of pp’ where A, is a diagonal matrix with the eigenvalues of pp’ as the diagonal
elements and @, is an orthogonal matrix that consists of the corresponding eigenvectors. Then
g(h,q)Ig > pp'if and only if Q;g(h, q)Q, > A,, which is equivalent to g(h, ¢)I4—A, > 0. The latter
holds if and only if vmax (pp") < g(h,q). We have therefore proved that avar(t‘)zT) > avar(fy7) if
and only if vimax (pp") < g(h, ¢). Similarly, we can prove that avar(HQT) < avar(HlT) if and only if

Vmin (pp") > g(h,q). m

Proof of Corollary For the OS LRV estimator, we have

Qj, (1, 9) KZCID
and so
| @ienaieaa - /OKZM)@@)szl@m)@j(s)ch
= KQZ‘I) *Qh(r s).

As a result, for k(h,q) defined in , we have:

k(h, q) = %Etr </01 /01 Q}, (r5) dB, (r) dB, (s))

Let )
&= [ @) dBy(r) ~ iidN(O.1,),
0
then
K -1 q
_ }: ' _
K’(th)_trE j_lgj&.] - K_q_17



where the last equality follows from the mean of an inverse Wishart distribution. Using this, we

e (ha) _ _a/(K-q-1)
Kk, q q —q- q
1+#k(hq 14¢/(K—qg-1) K-1
The corollary then follows from Proposition ]

Proof of Proposition It suffices to prove parts (a) and (b) as parts (c¢) and (d) follow from
similar arguments. Part (b) is a special case of Theorem 6(a) of Sun (2014b) with G = [I4, O4x,]’.
It remains to prove part (a). Under Ry = r 4 6o/v/T, we have:

VT(Rb17 — 1) = VTR(f17 — 00) + 60 == RV By(1) + 8.

Using Proposition [I|(a), we have

(RO R) =% RQY2Ch(ROMZY

where Cyq = fol fol Q7 (r,s)dB4(r)dBgy(s)" and Cgq L Bg(1). Invoking the continuous mapping
theorem yields

WlT .= \/T(RélT — T)/(RQHR/)_l\/T(RélT — T’)
/ -1
=L [RUBa(1) + 60| RO Caa R | [ROYBa(1) + 0]

Now, [RQ}{QBd(l), RQ}{QCdd(RQi?)’} is distributionally equivalent to [A1B) (1), A1CppAl], and

SO

Wir =2 [A1B, (1) + 6]’ [A1CppAt] ™" [A1B, (1) + 80]
L (B, (1) + A7'60] Gyt [By (1) + AT 80] £ Wieo( AT 60]1%),

as desired. m

Proof of Proposition [6]

Part (a) Let X% (52) be a random variable following the noncentral chi-squared distribution
with degrees of freedom p and noncentrality parameter §2. We first prove that P (X;% (52) > a:)
increases with 62 for any integer p and = > 0. Note that

N e 0262 /2)7

PG () > ) = :

P (X127+2j > -’E) ,
=0
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where X?g 4oj 18 a (central) chi-squared variate with degrees of freedom p + 27, we have

OP (xp (0°) > 2) 1N (8%/2) g 1 & (82/2)1
o5 =32 P (G > @) 45D e PP (e > )

100522j_ 100522j_
= IO trap ) ¢ LY O tp )

1= (6%/2)7 _
252 [2F -2 [P (Xpy2125 > %) = P (Xp12; > 7)] >0,

as needed.
Let ¢ ~ N(0,1) and 9 be a zero mean random variable that satisfies 12 > 0 a.e. and 1 L ¢.
Using the monotonicity of P (X; (52) > x) in 62, we have

Plo+ol* > 2)=E[P(i (1?) > )]
> P(32 >z)=P(|¢|® > z) for any z.

Now we proceed to prove the theorem. Note that B, (1) and B, (1) are independent of
Cpgs Cpp, and Cyq. Let Dot = 30 | Apid;d; be the spectral decomposition of D, ! where Ap; > 0
almost surely and {d;} are orthonormal in R?. Then

(B (1) = Cpq ' By (1)) Dy} [By (1) = CoyCog By (1)]

pp
p
=5 | — diCpgC By (1)]* =Y Api (6 + ;)
=1 =1

where ¢; = d;By, (1), 1h; = —d;CpqCy! By (1), {¢;} is independent of {;} conditional on Cyq, Cpp,
and Cyq. In addition, ¢; ~ #4dN (0, 1) conditionally on Cp,, Cpp, and Cy, and unconditionally. So
for any = > 0,

P (Waeo (0) > 2) = EP(Waeo (0) > 2|Chg, Cpp, Coq)

p
= FP (Z /\Di (Z)Z +¢‘)2 > «T|CpqacppﬂcQQ>

Ap1 (91 ‘Hbl > T — ZADz ¢1+1/’z) \Cpq,Cpp,qu,{qbz =2 {0 f1>

=2

v

=2

EP (ADI(JSI > T — Z )\DZ (bz + wz) |CPQ’ CPP’ ngv {¢17¢z}1 2)

EP >\D1¢1 > X = Z Api (¢; + %) |Cpg, Cops Caq {¥i i 2)

1=2
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Using the above argument repeatedly, we have
P
P (Waeo (0) > ) > EP (Z Api®7 > 2|Cpg, Cpp, qu>
i=1
P
=P (Z Apid? > x) = P[B,(1) DB, (1) > x]
i=1

> P B, (1) C,,' By (1) > x] = P(Wies (0) > ),

where the last inequality follows from the fact that D;pl > C’ijl almost surely.
Part (b). Let C,.)t = 37| Agicic) be the spectral decomposition of C, . Since Cyy, > 0 with
probability one, A, > 0 with probability one. We have

wm(ngu) (B, (1) + [l el €y 1By (1) + [l e

_ Z Aci [, (1) + €] ey

where [¢,B, (1) + ||€]| ¢}e,)? follows independent noncentral chi-square distributions with noncen-

trality parameter ||¢|| (c;ep)2 , conditional on {A¢;}r_; and {¢;}?_; . Now consider two vectors &;
and &, such that ||&;]| < [|€5]]. We have

P Wi (||51u2) > |

{ 0i [¢By (1) + II&1 ]| chep) * > 3«“}

{)\01 1By (1) + I, ]| crep] >w*ZACz [€}By (1) + 11| dhep]”

{)\Cz i=1" {Ci}fl}

2
< EP { At [1Bp (1) + [|€all dhep]” > @ — ZACz‘ [€}By (1) + [I€1| cjep ]
=2

{Acitiz 1a{Ci}€=1}

p
2 2
=P {Am [€1By (1) + lléall chep] ™ + D Aci [€iBy (1) + Iyl chey]” > 96}

1=2

where we have used the strict monotonicity of P (X% (52) > .’L‘) in 62. Repeating the above argu-
ment, we have

P Wi (I61I) > 2]

P
2 2 2
<P {Am [iBy (1) + 1€l chep)” + Az [hBy (1) + [[€all chep] ™ + D Aci [¢iBy (1) + 16l chep]” > 93}
i=3

P
<P {Z Aci [€iBp (1) + [|€2 ]l Cgep]Q > x}

i=1

= P{[B, (1) + &I Gy [By (1) + & > 0} = P [Whee (I1&2)?) > 2]
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as desired.
Part (c). We note that

Wass (1]
= [Bp (1) - Cpch_qqu (1) + 1€l ep]/Dp_pl [Bp (1) - Cpch_qqu (1) + 1€l ep]
= { [1 + CoaCi O Cun) 7 [B, (1) = CpCg! By (D] + €11 & |

x I *‘(7pq(j£§1(7é§1(j§p]1/2 l?;i‘[lb *‘(jbq(32&1(35§1(3§p]1/2

% { [l + CpuaCagt Cagt Cap) ™ [By (1) = CypyCi By (1] + €11, |

where 12
& = [Ip + CpqCid' Ci Cap ep-

1/2 1/2

Let Y | A D; CZZCZ be the spectral decomposition of [Ip + Cqu;ql qull qu]
Define

Dyt [Ip + CpgCodt Cott Cop)
~ ~ o —-1/2 -
Pai = ; [Ip + Cquqqlcqqlcqp] / [Bp (1) - CPquqqu (1)] )

Then conditional on Cpy, Cpp and Cyg, ¢4 ~ 1idN(0,1). Since the conditional distribution does
not depend on Cy, Cpp and Cyq, ¢g; ~ 19dN (0, 1) unconditionally. Now

Waoo ([1€1]%)

5 N _ 2
A, {d [1y + Cou ! Co Cap] ™% [By (1) = CoaCi By (0] + 41 i }

I
,M%

1

7

AD, <édi+'”§1ufﬁép)27

I
'M“

=1

and so for two vectors &; and &, such that ||£;] < ||€2]| we have

P{Waus([1&1]%) > @ |

p
::EP{E:X&(&ﬁ+”&H@@J2>x
i=1

CP‘P CPP’ C‘I‘]}

P
<EP { ZS‘Di (;bdi + [ J;ép)Q >z

=1

CP‘]’ Cpp’ CQQ}

- P {Z 3, (B + 2l ) > m} = P{Wa(les]) > 2}
1=1
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Proof of Proposition We prove part (b) only as part (a) can be proved using the same
argument. Using , we have, for A\g = ||A5150“2 :

145 80 |* = 7(%0) [[A 80"

= 100 Y T i~ SO (0 A 00)’

i L ViR
P 1 ATY6, ?
= () AT 60— i — F(M0)] <a¢, 71_> : (29)
0 H 1 OH ;1—%’,1% R 0 R ”A1150H

where v; g € [0,1) and (-, -) is the usual inner product.

We proceed to show that HA5150H2 — 7(Ao) HAII&)Hz > 0 for all §p € A (A\g) if and only if
vir—f(Ao) >0foralli=1,...,p. The “if” part is obvious. To show the “only if” part, we prove
by contradiction. Suppose that ‘A5150”2—f()\0) HAI150H2 > 0 for all 69 € A (N\g) but there exists
an ¢* such that v+ p — f(Ag) < 0. Choosing dg € 2 (Ag) such that (Al_léo) / HAl_l(FOH = a;* R, We
have

_ 2 _ 2
A5 60" = 7(No) |AT160]|” = - [ie r — f(N0)] T(No) <0, (30)
leading to a contradiction.

Note that the condition v; g— f (Ag) > 0 for all ¢ = 1, ..., p is equivalent to min {v; g} > f (o),
which is the same as vmin (0p%R) > f(Ao; h, p, ¢, ). This completes the proof of part (b). m

Proof of Proposition Instead of directly proving w1 (A) > 72 (A) for any A > 0, we consider
the following testing problem: we observe (Y, S) € RPtIx RPHOX(PH9) with Y 1| S from the
following distributions:

Yl 50 Q11 0
Y . = (“’X”) ~ Npiq(p, Q) with p = ((pxl)),@ - (PSM (gxq)
(p+q)x1 Y, 0 -
(gx1) (gx1) (@xp)  (gxq)
S Si2
S _ wxp) (pxa) | _ Wrta(K, Q)
(p+q)x (p+q) So1 S22 K

(gxp) (gxq)

where Q17 and (g2 are non-singular matrices and Wy, 4(K, Q) is the Wishart distribution with
K degrees of freedom. We want to test Hy : dg = 0 against Hy : g # 0. The testing problem is
partially motivated by Das Gupta and Perlman (1974) and Marden and Perlman (1980).

The joint pdf of (Y,S) can be written as

f(Y, 5|00, Q11,$92)
1
= 04(50, 11, ng)h(S) exp {—2t7“ [Ql_ll(YlYll + KSH) + 92—21(Y2Y2/ + KSQQ)] + 1/1/91_11(50}
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for some functions a(-) and h(-). It follows from the exponential structure that
IT := (Y3, S11, YoY5 + K S9)
is a complete sufficient statistic for
I := (b0, Q1, Q22).

We note that Y; ~ N(ég,Qn), KSi1 ~ WP(K,QH) and }/2}/2, + K So9 ~ Wq(K + 1,922) and
these three random variables are mutually independent.
Now, we define the following two test functions for testing Hg : dg = 0 against H; : dg # 0:

(M) = =1(Vi(II) > Wi,)
$o(I) = = E[1(Wa(Y,5) > W, )[II]

where
\i (H) = Y{Sl_llyl and WQ(Y, S) = (Yl — 51252_21Y2)/(511 - 51252_21521)71(1/1 — S1252_21Y2).

We can show that the distributions of V1 (II) and Wy (Y, S) depend on the parameter I" only via
561 60. First, it is easy to show that

([ n (S S\ '/ m ra—1
WZ(Y’S)_<Y2> (521 522) Yo BREECRE

- % - - —1/2
Y <¥1):Q_l/z(?)NN(5,Ip+q)a5:<Qllo 50) and

Ys 2

5 Sit S “1/2 < S Si2 ) “1j2y WK Ipig)
S . ~ ~ = Q Q ~N —
< Sa1 S22 ) Sa1 Sa22 ( ) K

Let

Then Y L S and ,

W (Y, §) = (f/ + S) 51 (f/ + S) v
It is now obvious that the distribution of Wy(Y;S) depends on I' only via ||d||2, which is equal
to 601 do. Second, we have

I~

V. (I1) = (ffl Aoy 250) S (fq + oY 250)

2
and so the distribution of V; (II) depends on I' only via HQil/ %50 H which is also equal to 657" d.

It is easy to show that the null distributions of Vi (II) and Wy(Y, S) are the same as Wio
and W, respectively. In view of the critical values used, both the tests ¢ (II) and ¢4(II) have
the correct level . Since

E¢ () = P(Vy(IT) > Wi) and E¢y(Il) = E{E[1(W(Y, 5) > Wy, )|II]} = P(Wy(Y, 5) > W),

the power functions of the two tests ¢, (IT) and ¢o(IT) are (5597, 60) and 72(5pQ1 o), respec-
tively.
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We consider a group of transformations G, which consists of the elements in AP*P := {A €
RP xRP : Ais a (p X p) non-singular matrix} and acts on the sample space IT := RP x RP*P x R7*¢
for the sufficient statistic II through the mapping

G (Yl, 511, YVQYVQI + KS22) = (AYL ASHA,, YQYQI + KSQQ).

The induced group of transformations G acting on the parameter space I' :== RP x SP*P x S7%4 ig
given by
G:T= ((50, QH, 922) = (A(S(), AQHA/, 922).

Our testing problem is obviously invariant to this group of transformations.
Define
V() := (Y{S1;' Y1, YaYs + K Sos) = (Vi (II), Vo(II)) .

It is clear that V(II) is invariant under G. We can also show that V(II) is maximal invariant
under G. To do so, we consider two different samples IT := (Y7, S11, Y2Yy + K S22) and I =
(Yfl, 5’11, }U/QY’Q’ + Kém) such that V(II) = V(f[) We want to show that there exists a p X p non-
singular matrix A such that Y3 = AY; and S1; = ASi1 A’ whenever Y/ Sl_llYl = 171’ 5’1_11171 By
Theorem A9.5 (Vinograd’s Theorem) in Muirhead (2009), there exists an orthogonal p x p matrix
H such that 51_11/2Y1 = HS’l_ll/Q}v/l and this gives us the non-singular matrix A := S%{ZHS';ll/z
satisfying Y7 = AY; and Sp; = ASy A’ Similarly, we can show that

v(T) == (3pQ11 60, Q22)

is maximal invariant under the induced group G. Therefore, restricting attention to G-invariant
tests, testing Hy : g = 0 against H; : dg # 0 reduces to testing

H : 6407 00 = 0 against H] : 550,760 > 0

based on the maximal invariant statistic V(II).

Let f(V7y; 56(21_1150) and f(Va;Qg2) be the marginal pdf’s of V; := V;(II) and Vy := Vy(II).
By construction, V1 (IT)K /(K — p+ 1) follows the noncentral F distribution F, g+ 1(6697;00)-
So f(V1;60Q1 o) is the (scaled) pdf of the noncentral F distribution. It is well known that the
noncentral F distribution has the Monotone Likelihood Ratio (MLR) property in V; with respect
to the parameter §yQ;'60 (e.g. Chapter 7.9 in Lehmann and Romano (2008)). Also, in view of
the independence between V; and Vs, the joint distribution of V(II) also has the MLR property
in Vy. By the virtue of the Neyman-Pearson lemma, the test ¢, (II) := 1(V{(II) > W) is the
unique Uniformly Most Powerful Invariant (UMPI) test among all G-invariant tests based on the
complete sufficient statistic IT. So if ¢,(IT) is equivalent to a G-invariant test, then (559 d0) >
m2(6pQ1 o) for any 65Q; 09 > 0. To show that ¢o(TI) has this property, we let g € G be any
element of G with the corresponding matrix A, and induced transformation g € G. Then,

Erlgo(gll)] = Egr[¢o(ID)] = m2 ((Ag60) (AgQu1A}) ™" (Agdo))
= 7a(6091'60) = Er[¢o(ID)]
)

for all T'. Tt follows from the completeness of IT that ¢4(gII) = ¢5(II) almost surely and this drives
the desired result. =
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Proof of Lemma [9) We prove a more general result by establishing a representation for
T

;TZ [Gara]” G o 00)
t=1

in terms of the rotated and normalized moment conditions for any m x m (almost surely) positive
definite matrix M which can be random. Let

v M M
x _ 17/ _oyvk—1l gk yk—1y/ _ 11 12
M _UMU,M_El/QM(El/Q)_<M21 M22)

and My.o = Myy — MiaMy,' Moy where Miq € R¥? and My, € R??. Using the SVD UZV” of
G, we have

GM'G = vE

1/2 1/2
2**1)’M—12;7;( I, 0) AV

(
(fa: O)(

= VA( I, 0)(S},) [2’{7;1\4*(2**1)’}71 s (I, 0) AV
(Ia O)(
(S22 (L 0 )M [VASL) 2 (1 0)]
(

where we have used

(Bf5) "2 0 )
- ) )Y )T

= (™2 0) =) (1 0).

(I 0)EY = (1 o>(

In addition,
G/ M~ f (v, 0o)
= VE(U'MU) U f(u,00) =VA( I, O)(M*)™" f* (v, 600)
—1
= VA(Iy 0)EY [Sip M E1Y| S (v 60)
= VA( I, O)(E5)YM 7 f(v,00) = VAT 2 (1a O ) M~ f (v, 60)
M, — My MizMa' >
v, 0

(My3 MMy M, f (o)
= VASL) (M7}, —M MMy ) f (v, 00)
= VA (E”{.g)_lﬂ M, [f1 (vt,00) — M2 My, f (vt,600)] -

= VA1) V2 (1, 0) ( B
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Hence

T
1 S
—— > |G'MG| G'M f (v, 0o)
77 (el
T
_ LZ [VA( * )71/2 M (s )71/2 AV’]il [VA( * )71/2 Mfl}
t=1
X [f1 ( vt, 00) — Mia My fo (vr, 0)]
1 _
= 7 Z VAT (515)"2 [f1 (vr,00) — Mia My 2 (vr, 00)] - (32)
t=1
Let M = %, we have M* = U'SU = £* and M = 5}/ M*(S}7)) = Inn. So MiaMg' = 0.

As a result

T
Z[é’M*“} G/ f (v, B0) = \FZVA =2 1 (v, 00) -

t=1

3/~

Using this and the stochastic expansion of \/T(@lT —6p), we have
f(HlT —00 fZVA * )1/2 fl (’Ut,eo) +Op(1)
It then follows that
(212) V2 AVVT (byr — 00) = Z F1(ve, 00) + 0p(1) =5 N(0,011).

Let M = Qu, we have M = ED;U’Q UZ’{/QI’ = O, and so Mg M,,' = QOOJQQ;O];QQ = B
As a result,

1 vy O [t NIV o 1
7 2 [(FORE] T GOl 00) = = S TVAT (50 [ (10, 00) — B (v, 0]
T t=1 T t=1
Using this, we have
. A LY
VI(Oar —00) = —=>_ |G| GO Flvr,00) + 0, (1)

It then follows that
T
(S59) 2 AV'VT (Bor — 6) = L Z [f1(ve,00) — Boo f2(vt,60)] + 0p(1) (33)

L MN (0,011 — Q2B — Boo21 + Boo228L,) -



Proof of Theorem [10} Parts (a) and (b). Instead of comparing the asymptotic variances
of RVT (91T o) and RVT (02T 90) directly, we equivalently compare the asymptotic variances
of (RR')"Y2RVT (017 — 0y) and (RR')~"Y2R\/T(0ar — 0y). We can do so because (RR')~1/2 i

nonsingular. Note that the latter two asymptotic variances are the same as those of the respective

~R ~R
one-step estimator 6§, and two-step estimator fyp of 85 in the following simple location model:

R
{yﬁ=90+uﬁeRp (34)
Yor = uge € RY
where - o .
0ff = (RR))™/*Roy, ufi = (RR)™"*Ruy,
and the (contemporaneous) variance and long run variance of u; = (ufy,ub,)" are I, and
respectively.

. . R “R . )
It suffices to compare the asymptotic variances of 6,7 and 855 in the above location model.

!/
By construction, the variance of uft := ((uﬁ)/ , (u2t)l) is

I, O
wr) = (G ) =t

So the above location model has exactly the same form as the model in Section [3} We can invoke
Proposition [3| to complete the proof.

The long run canonical correlation coefficients between ult and wug; are the same as those
between Rult and wugs. This follows because uﬁ is equal to Rult pre-multiplied by a full rank

square matrix. But the long run correlation matrix between Ruq; and ugy is
~ S — = —-1/2
(ROuR) V2 Ra} x Q5572 = pe.

So the long run canonical correlation coefficients between uf and ug; are the eigenvalues of p RrOR>
ie., v(prp’) - Parts (a) and (b) then follow from Proposition

Parts (c) and (d). The local asymptotic power of the one-step test and two-step test are
the same as the local asymptotic power of respective one-step and two-step tests in the location
model given in . We use Proposition [7| to complete the proof. For the above location model,
the asymptotic variance of the infeasible two-step GMM estimator is

0f, = [(RR)V2R] 015 [(RR’)*/?R}/.

In addition, the local alternative parameter corresponding to Hy : ROy = 7 + do/VT VT for the
location model is (RR')~Y/28y/+/T. So the set of dy’s considered in Proposmon I is given by

Nioe (No) = {5: [(RR’)*V?&]/ ()" [(RR’)*/%} - AO}
- {5 L §'(RQ.2R) 716 = AO} . (35)

It remains to show that the above set is the same as what is given in the theorem.
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Using with M1 = Q_l, we have M = () and so
CIOIG = VA1) RO (S1a) 2 AV

Plugging this into ¢’ [R(é’fl_lé)_lR’} o J yields
§ [r@aa)yr] s
= o {r[vacio ot av] T R) g
= V{RVAT (519)"7 Qs (B10)'V? A‘1V’R’}71 5=2¢ (1[?91.2}?’)71 .

So the set of dy’s considered in the theorem is exactly the same as that given in (35). m

Proof of Theorem The theorem is similar to Theorem [I0] We only give the proof for
part (d) in some details. It is easy to show that under the local alterative Hy : Ry = r+ 0o/V/T,

we have W,y =2 Wloo(||V;}%/260||2) where

Von = REWIE W OIW GG R
_ " I, _ " !
= RVATL(3]y)"? <Id,—ﬁa>ﬂ< 7 )[RVA L)) (36)

Similarly, we have
d —
War =5 W (|| V3 *60l ),
where
Vor = R(EGQU'G)'R

= RVATN (1) (L —BO)Q< 5 > vt @i

which is the asymptotic variance of Rv/T (égT —6p) with 027 being the infeasible optimal two-step
GMM estimator.
The difference in the two matrices V, r and Vo g is

Vo = Var =RVA™ (Z12)"* (8. — Bo) Q22 (B, — Bo)’ [RVA_l (2?2)1/2}"
Now for any 7 > 0,
Vo 280ll2 = 7lIVi 1260117 = 5[V & — 7V k1o
= 4 [v;}l__i/ﬂ’ {[vif;]’vi}%viﬁ —~ ij} VY%,
= &V’ { Vi VeV | o ﬂp} v, 25,
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But
Vi VerlVo i) = I — Vi i* Var — Var) Vi T,

and
Vorl? Var = Vor) Vo
/
= V;Ilz/2RVA_1 (312)"? (Ba — 2129537) Q22 (B, — Q1205) [RVA_l (ET.z)I/Q] [V;}lz/2],
= pa,Rp;,R'
So
- - - -1
Vi 200l = 71V 200l = 5 Vo il?] [ = pumitn) ™ = 71| Vik?00 -7
for any 7.

Let py gy p = Di=1 Vi,a,Rbia,RY; 4 g De the eigen decomposition of p, ppy, r, then

IV 260l1% = 7 (o) [V, 1 260l

_ Zp:[l T(AO)] (b; RV 1/250)

im1 1_VzaR
2
_ Via,R — ) Va_ll%/25
- ‘ 50“2 1—umR <bi’“’R’ —}1%/250H

which has the same form as the representation given in . The rest of the proof is then identical
to the proof of Proposition [7] and is omitted here. m
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