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Abstract

The paper develops a support vector machine (SVM) for binary decision-making within
a utility framework. Given an information set, a decision-maker first predicts a binary out-
come and then selects a binary action based on this prediction to maximize expected utility,
where the utility function can depend on the action taken, observable covariates, and the
binary outcome subsequently realized. The proposed maximum utility SVM differs from the
traditional SVM in four key aspects. First, as a conceptual innovation, it incorporates the
optimal cut-off function as a separate and special covariate. Second, there is a sign restriction
on this special covariate. Third, it accounts for the dependence of the utility-induced loss
on both the covariates and the binary outcome. Finally, it allows the margin to differ across
different classes of outcomes. The paper proves that the proposed method is Bayes-consistent
under the maximum utility criterion and establishes a finite-sample generalization bound. A
simulation study shows that the proposed method outperforms existing methods under the
data-generating processes considered in the literature.
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1 Introduction

This paper studies binary decision making in a utility maximization framework. After observing
a training sample {(Xi, Yi)}ni=1 and an out-of-sample covariate X ∈ Rdx , the decision-maker
predicts the binary outcome variable Y ∈ {−1, 1} based on covariate X, and then chooses a
binary action a ∈ {−1, 1} before the outcome Y is realized. The decision-maker’s preference is
captured by a utility function U (a, Y,X), which quantifies the payoff associated with each action
a, given the realized outcome Y and the observed covariate X. The objective of the decision-
maker is to evaluate the likelihood of the outcome Y based on covariate X and then choose an
action a that maximizes the expected payoff.1

To illustrate our binary decision-making framework, we present a few examples below.

Loan Default Prediction and Approval Decision: A bank uses an applicant’s financial in-
formation, such as credit score, income, and loan amount (covariate X), to predict whether
the applicant will default on the loan (outcome Y ∈ {−1, 1} = {default, no default}). Based
on this prediction, the bank then decides whether to approve (action a = 1) or deny (action
a = −1) the loan.

Job Performance Prediction and Hiring Decision: A company predicts whether a job can-
didate will perform well in a job (outcome Y ∈ {−1, 1} = {poor performance, good perfor-
mance}) based on factors such as qualifications, experience, and interview results (covariate
X). The company then decides whether to hire (action a = 1) or reject (action a = −1)
the candidate.

Pandemic Prediction and Emergency Preparation: Public health officials use surveillance
data, including infection rates, mobility patterns, vaccination rates, and other relevant
factors (covariateX), to predict whether a pandemic will occur (outcome Y ∈ {−1, 1} = {no
pandemic, pandemic}). Based on the prediction, the authorities decide whether to prepare
emergency response teams for pandemic-related scenarios (action a ∈ {−1, 1} = {do not
prepare, prepare}).

Sentiment Prediction and Moderation Decision: A social media platform uses the pres-
ence (or absence) of certain keywords (covariate X) to predict whether a post will re-
ceive negative or positive sentiment (outcome Y ∈ {−1, 1} = {negative sentiment, positive
sentiment}). Based on this prediction, the platform decides whether to take moderation
actions, such as temporarily muting the user for a certain period (action a ∈ {−1, 1} =
{moderate, do not moderate}).

These examples highlight three key features in our binary decision framework.
First, the decision-maker considers the future and has to predict a binary outcome. The pre-

diction is based on the historical information {(Xi, Yi)}ni=1, as well as an out-of-sample observed
covariate X. This prediction helps the decision-maker assess the likelihood of the outcome before
making a choice.

Second, the decision-maker has to choose an action before the outcome Y is realized, as no
further information about Y, beyond the covariate X and sample information, is available at the

1In our setting, the payoff may also depend on another vector of observed covariates, say Z, which does not
help predict Y but can enter the payoff function. In this case, we can include Z as part of X, while continuing to
use U(a, Y,X) as the utility function, recognizing that not all elements of X are predictive of Y.

1



time of the decision. Importantly, the action does not influence the eventual outcome realized
but is based on the predicted probability of that outcome.

Third, the utility function allows for asymmetric and covariate-specific consequences: the
consequences of different actions may have varying degrees of severity depending on the outcome
realized and the covariate observed. For instance, in the loan example above, approving a loan
that defaults (i.e., Y = −1) may result in more significant financial loss than denying a loan
that would have been repaid (i.e., Y = 1). Thus, the cost of making a “false positive” decision
(approving a loan that defaults) may be much higher than the cost of making a “false negative”
decision (denying a loan that would have been repaid). These costs may also depend on the
loan characteristics and the applicant’s credit profile. This asymmetry in the payoff structure is
what distinguishes our decision framework from a standard binary decision problem, where the
decision-maker cares only about the direction of the decision (approve or deny) and treats all
decision errors equally.

Our framework is the same as Granger and Machina (2006), Elliott and Lieli (2013), and
Su (2021). Elliott and Lieli (2013) propose and study a maximum utility (MU) action rule that
maximizes expected utility when the model for the conditional distribution of Y given X = x
may be misspecified. Su (2021) employs a penalized MU approach for model selection within the
MU framework. However, the MU approach does not account for the margin of a point defined
as its distance to the decision boundary.

As an example, consider the case of complete separation when the number of elements dx
in X equals 2, as shown in Figure 1a. The figure plots Xi = (X1i, X2i) ∈ R2 together with the
associated outcome Yi indicated by the shape and color. It also shows the two decision boundaries
corresponding to action rules a1 and a2. According to the MU approach, a1 and a2 are equivalent
as they deliver the same in-sample empirical utility. However, the action rule a1 is expected
to have a smaller out-of-sample generalization error. The reason is that a1 is closer than a2 to
achieving the maximum separation between the two classes of points. The problem of ignoring
the margin is further illustrated in Figure 1b where a1 is indistinguishable from a2 according to
the MU criterion, but it is expected to have a smaller generalization error.

x1

x2

a2a1

(a)

x1

x2

a1

a2

(b)

Figure 1: Action rules a1 and a2 have the same in-sample empirical utility, but a1 is expected to
have a smaller out-of-sample generalization error than a2 (dx = 2).

In the presence of incomplete separation and a covariate-specific payoff, the notion of margin
has to be redefined. The optimal decision boundary now takes the form of sign (P (X)− c (X)),
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where P (X) is the probability of Y = 1 given X, and c (X) measures the relative cost of false
decisions under X (to be defined more precisely later in (1)). Hence, the optimal decision bound-
ary involves a cutoff function c (X) that depends on the covariate. This dependence renders
the standard support vector machine (SVM, e.g., Boser et al. (1992) and Cortes and Vapnik
(1995)) invalid. To address this problem, we treat the function c−(X) = −c(X) as a separate
covariate. By combining c−(X) with the original covariate vector X, we obtain the augmented
covariate vector W = (X ′, c−(X))′ , which may be referred to as the generalized attributes.
With this conceptual change, the original sample {(Xi, Yi) , i = 1, . . . , n} becomes the new sample
{(Wi, Yi) , i = 1, . . . , n} . This opens the door to using SVM, enabling us to capture the nuanced,
covariate-dependent cutoff function at the same time. We then apply the SVM framework to
the new sample, treating c−(X) as a special covariate whose coefficient is constrained to be non-
negative. At the same time, we account for the case-specific loss implied by the dependence of
the payoff function on the outcome, the action, and the covariate. We call our approach the
maximum utility SVM (MU-SVM).

Invented by Vapnik and Chervonenkis in 1963, the SVM has attracted tremendous attention,
resulting in a vast body of literature. The MU-SVM extends the standard SVM in three aspects.
First, it internalizes the cutoff function as a separate and special covariate. Second, it accommo-
dates the sign restriction on this special covariate. Third, it accounts for the dependence of the
utility-induced loss on the covariate (X) and the binary outcome (Y ).

From a broad perspective, the contributions of this paper relative to the MU approach are
analogous to those of the standard SVM relative to the maximum score approach of Manski (1975,
1985). Neither the MU approach nor the maximum score approach incorporates the notion of a
margin, which is a central feature of both the standard SVM and the approach we are proposing.
On the other hand, the standard SVM lacks the concept of a utility function, which is a key
feature of our framework.

Like the standard SVM, the MU-SVM exhibits sparsity. The entire sample collectively de-
termines the “support” subsample, which in turn defines the decision boundary. The set of Wi’s
corresponding to the support subsample is called the support vectors. Once the set of support
vectors, denoted by {Wi : i ∈ S} for some index set S, is determined, the decision rule for a new,
out-of-sample attribute w is based on the similarity of w to each support vector Wi for i ∈ S.
Our proposed decision-making method can then be referred to as support vector decision making.
It can also be interpreted as a voting rule, with the support subsample acting as the weighted
“representatives” who cast votes, with each vote carrying a different weight.

We extend our approach to accommodate nonparametric specifications of the decision bound-
ary. The “kernel trick” based on the theory of reproducing kernel Hilbert spaces (RKHS) can be
employed, but the kernel function we use will have an additional component that captures the
case-specific cutoff function.

We show that any decision rule that is Bayes-consistent under our MU-SVM criterion is also
Bayes-consistent under the MU criterion of Elliott and Lieli (2013) and Su (2021).2 We establish
a generalization bound that can be used, in principle, to construct a finite sample confidence
interval for the average out-of-sample utility obtained from using our support vector decision
rule.

A variant of the traditional SVM closely related to this paper is the cost-sensitive SVM. See,
for example, Lin et al. (2002), Bach et al. (2006), and Fernández et al. (2018). These papers allow

2If the excess risk of a decision rule under a certain risk measure goes to zero as the sample size increases, then
we say that the decision rule is Bayes-consistent under this risk measure. See Definition 3.
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the misclassification cost to depend on the binary outcome variable (Y ) but not on the covariate
(X). In comparison, we allow the misclassification cost to depend on both Y and X. Despite its
importance, the general case we consider here has received little attention in the SVM literature,
with only a few exceptions. One exception is Brefeld et al. (2003) which proposes an SVM-type
learning rule for the general case. However, as discussed following Proposition 3 in that paper,
the proposed rule may not be Bayesian optimal. Another exception is Iranmehr et al. (2019)
where the authors use the idea of probability elicitation to design a new loss function. However,
their proposed decision rule depends on the individual costs associated with false positives and
false negatives separately. This is not a desirable property, as the decision problem remains the
same as long as the ratio of the two costs does not change. An ideal decision rule should exhibit
invariance to proportional changes in these two costs. In contrast to the existing literature, our
decision rule possesses this invariance property and is also Bayesian optimal. This represents
a novel contribution to the SVM literature, as it allows for a more general cost function and
provides a more principled approach to cost-sensitive decisions.

In our simulation studies, we compare the MU-SVM method to existing methods, using the
out-of-sample utility achieved as the performance criterion. Our simulation results show that the
MU-SVM outperforms existing methods in an overall sense. First, it outperforms the maximum
likelihood method when the model is misspecified. Second, it outperforms the standard SVM
method whenever the utility function depends on the outcome or the covariate, and it reduces
to the standard SVM method when there is no such dependence. Third, it outperforms the
cost-sensitive SVM, as described in Lin et al. (2002), Bach et al. (2006), and Fernández et al.
(2018), when the utility function is covariate-dependent. Fourth, it outperforms the penalized
MU method of Su (2021) that uses the simulated maximum discrepancy as the penalty.

While the framework presented in this paper covers a wide range of applications, there are
certain binary prediction and decision problems that fall outside its scope. As pointed out by
Elliott and Lieli (2013), one such case arises when the forecaster and the decision maker are not
the same entity. For example, meteorologists use weather data to predict whether a storm will
occur, but different users may use the prediction differently. City planners might rely on this
prediction to decide whether to prepare emergency shelters, while average citizens might use it
to determine whether to stay at home. In this scenario, each user of the prediction would have
a distinct utility function that influences their decision-making, but meteorologists do not take
these utility functions into account when making predictions.

Another case outside the scope of this framework arises when the action affects the eventual
outcome. In such cases, the action can be interpreted broadly as a treatment that directly
influences the observed outcome. Our framework does not accommodate this type of relationship,
setting it apart from the econometric literature on empirical welfare maximization (e.g., Kitagawa
and Tetenov (2018)) and the related statistical literature on individualized treatment rules (e.g.,
Zhao et al. (2012), Zhou et al. (2017), Liu et al. (2018), ITR hereafter). The latter strand of
the ITR literature is related to the present paper, as it also employs SVM. However, in these
ITR papers, the goal is to assign a treatment based on covariates in order to affect the eventual
outcome so as to maximize a welfare objective. Predicting a binary outcome is not part of
the design of an ITR. The settings and objectives of our framework and the ITR literature are
conceptually different; it is not feasible to treat one as a special case of the other due to their
fundamentally distinct assumptions and information structures.

Finally, our framework does not apply to the matching market problem. The matching
problem typically involves two distinct sides (e.g., job seekers and employers), where both sides
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have preferences over participants on the other side. These preferences usually stem from mutual
evaluation between the two sides, and matches are based on these preferences. The goal is often
to find a stable or optimal match that satisfies both sides. In contrast, our framework involves
a one-sided decision process. In the hiring example, only the employer chooses to hire or reject
a candidate. The job seeker does not make a choice in terms of matching preferences. Instead,
the employer’s decision is based solely on its own predictions of candidate performance, with the
goal of hiring only those candidates predicted to perform well. There is no reciprocal matching
process between the two sides, as is typical in the classic matching market model.

The rest of the paper is organized as follows. Section 2 lays out the basic setting. Section
3 motivates the support vector decision from first principles and describes the method, its dual
problem, and its computational aspects. Section 4 extends the method to allow for a nonlinear
and nonparametric decision boundary. Section 5 establishes some theoretical results, including
the Bayes consistency of the support vector decision rule under the MU criterion and a gener-
alization bound that accommodates data-driven choices of tuning parameters. Section 6 reports
the simulation results. The last section concludes and discusses future research directions. Proofs
of the main theoretical results are provided in the Appendix. Further supporting materials are
given in the online supplementary appendix, which includes additional proofs and results, along
with a list of methods considered in the simulation study.

2 The Basic Setting

2.1 The framework

We adopt the standard decision-theoretic framework. A decision-maker observes a vector of
covariates X ∈ Rdx and needs to make a decision regarding the binary action a ∈ {−1, 1}. Here,
an action is defined in a broad sense. For example, it could indicate whether a bank approves
a loan, a firm hires a job candidate, public health officials prepare for an emergency response,
or a social media platform flags a post for moderation. The payoff or utility function of the
decision-maker is U(a, Y,X), where Y ∈ {−1, 1} is a binary outcome that is not observable at
the time of decision making. The table below illustrates the payoff function under X = x with
different combinations of (a, Y ) :

State of the world
Action Y = 1 Y = −1

a = 1 U (1, 1, x) U (1,−1, x)
a = −1 U (−1, 1, x) U (−1,−1, x)

The payoff U(a, y, x) depends on (a, y) and is possibly a nontrivial function of x for each given
(a, y) .

This standard decision-theoretic setting has also been considered by Granger and Machina
(2006), Elliott and Lieli (2013), and Su (2021). One may also regard a as a forecast of the random
variable Y whose value will be realized at a future time. Then, U(a, y, x) is the payoff when the
forecast is a, the realized value of Y is y, and the covariate vector X is equal to x.

We expect that U (1, 1, x) > U (−1, 1, x) and U (−1,−1, x) > U (1,−1, x) for all x. That is, a
correct prediction delivers a higher payoff than an incorrect prediction. We also assume that the
payoff function is measurable and bounded. We formalize these conditions as an assumption.

5



Assumption 1 (i) For all x in the support X of X, U (1, 1, x)−U (−1, 1, x) > 0 and U (−1,−1, x)−
U (1,−1, x) > 0; (ii) For all (a, y) ∈ {−1, 1}2, U(a, y, ·) is Borel measurable and

Umax := sup
(a,y)∈{−1,1}2,x∈X

U (a, y, x) <∞.

Conditional onX = x, the outcome variable Y follows a Bernoulli distribution with parameter
P (x) :

P (x) = Pr(Y = 1|X = x).

Our setting can be cast as a 2 × 2 game where Nature plays Y and the decision-maker plays a.
Nature plays a mixed strategy: for a given X = x, Nature plays Y = 1 with probability P (x).
The decision-maker plays a pure strategy by choosing a = 1 or a = −1, with the payoff U(a, y, x).
Under Assumption 1(i), there is no dominating strategy for the decision-maker; otherwise, the
decision problem becomes trivial.

Note that our framework also allows the following: a proper subvector of x to enter P (x),
and another proper subvector to enter U(a, y, x). The covariate vector x can then be regarded as
comprising all the covariates that enter either P (x) or U(a, y, x).

The decision-maker does not know P (x), but she observes an i.i.d. sample (Xi, Yi) for i ∈
[n] ≡ {1, 2, . . . , n}.

Assumption 2 (i) {(Xi, Yi) : i ∈ [n]} is an i.i.d. sample; (ii) Xi ∈ X ⊆ Rdx and Yi ∈ {−1, 1}
where dx is the number of elements in Xi.

In order to make an optimal decision, the decision-maker needs to learn P (x) from the sample
{(Xi, Yi)}ni=1. While the decision-maker is interested in P (x), their ultimate goal is to take the
best action to maximize expected utility. When X = x and the decision-maker takes action
a, the expected utility that the decision-maker will obtain is E [U (a, Y,X) |X = x] , where the
expectation is taken with respect to the conditional distribution Y given X = x. An action is
optimal if it maximizes this expected utility; that is,

a∗ = argmax
a

E [U (a, Y,X) |X = x] .

The optimal a∗ depends on the observed covariate value x. To signify such dependence, we write
it as a∗ (x). Equivalently, we can represent a∗ (x) as

a∗ (x) = argmin
a
E [U(Y, Y,X)− U (a, Y,X) |X = x]

= argmin
a
E [ψ(Y,X)1 {a ̸= Y } |X = x] ,

where
ψ(y, x) = U(y, y, x)− U (−y, y, x) .

We can regard ψ(y, x) as the loss incurred when an incorrect action is taken. More precisely, it
represents the loss that arises from taking action−y rather than y when the outcome and covariate
are equal to y and x, respectively. Under Assumption 1(i), ψ(y, x) > 0 for all y ∈ {−1, 1} and
x ∈ X . The loss ψ (y, x) may be a nontrivial function of both y and x. In particular, the loss is
not symmetric in the sense that false positives and false negatives may incur different losses. In
other words, ψ (1, x) may not equal ψ (−1, x) for any x ∈ X . See Granger and Machina (2006)
for more discussion on utility-induced loss and loss functions.
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WhenX = x and a = 1, the expected loss (from a false-positive decision) is (1−P (x))ψ(−1, x).
When X = x and a = −1, the expected loss (from a false-negative decision) is P (x)ψ(1, x). Given
X = x, the action a = 1 is optimal if the expected loss from a false-positive decision is lower than
that from a false-negative decision. So a∗ (x) = 1 if and only if (1−P (x))·ψ(−1, x) < P (x)·ψ(1, x).
That is, when P (x) ̸= 1, it is optimal to take a “positive” action if and only if

P (x)

1− P (x)
>
ψ(−1, x)

ψ(1, x)
.

We can also interpret ψ(−1, x) and ψ(1, x) as regrets from taking non-optimal actions. The regret
ratio ψ(−1, x)/ψ(1, x) has to be smaller than the odds ratio of the event Y = 1 relative to the
event Y = −1 to justify taking the action a = 1.

Define

b(x) = ψ(−1, x) + ψ(1, x),

c(x) =
ψ(−1, x)

ψ(−1, x) + ψ(1, x)
. (1)

By Assumption 1(i), c (x) ∈ (0, 1). With the above notation, it is easy to see that a∗(x) = 1 if
and only if P (x) > c(x). That is,

a∗(x) = sign [P (x)− c(x)] , (2)

where sign(z) = 1 for z > 0 and sign(z) = −1 for z < 0. The optimal action involves thresholding
the conditional probability P (x) with a covariate-dependent cutoff c (x) .

The decision-maker is assumed to know the payoff function U(a, y, x) and, hence, the cutoff
function c(x). Given the sample {(Xi, Yi)}ni=1, the decision-maker only needs to learn P (x)
in order to implement the optimal strategy defined by a∗(x). The process through which the
decision maker arrives at this payoff function is not the focus of the paper, as it is often highly
context-dependent. In some cases, the payoff function may be derived from historical data, expert
judgment, or other domain-specific considerations.

To clarify this further, consider an illustrative example: suppose a bank needs to decide
whether to extend a loan to an applicant, where uncertainty exists over whether the loan will be
repaid. In this case, the bank’s utility function can be represented by the net present value (NPV)
associated with each combination of action and outcome. Specifically, when the bank approves
the loan and the loan is repaid (i.e., the borrower does not default), the NPV depends on several
factors, such as the loan amount, loan duration, interest rate, and the discount rate. If the loan
defaults, the NPV still depends on these same factors, but it also incorporates additional elements
such as the time of default and the recovery amount, which may depend on the applicant’s
characteristics (e.g., creditworthiness, collateral, or assets available for recovery). In the event
that the bank rejects the loan application, the NPV would be zero, reflecting that no loan is
issued and, therefore, no return is gained or lost.

In this example, the decision maker’s utility function is profit-driven and calculated based on
the NPV, which depends on both the applicant’s characteristics and the loan terms. All relevant
factors, along with additional factors that can help predict the loan outcome, are incorporated
into the covariate X. In this paper, we abstract away the processes of covariate selection and
utility determination, both of which are highly domain-specific, and focus on the problem of
binary decision-making for a given utility function.
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2.2 Utility Maximizing Actions

Suppose the decision-maker chooses a proxy m(x; θ) for P (x), where θ ∈ Θ ⊆ Rdθ (with dθ being
the dimension of θ), and uses a decision rule of the form:

a (x, θ) = sign [m(x, θ)− c(x)] .

Then, the best a of the above form is given by

a(x, θ∗) = sign [m(x, θ∗)− c(x)] ,

where
θ∗ ∈ argmin

θ∈Θ
E [ψ(Y,X)1 {a (X, θ) ̸= Y }] .

To implement a(·, θ∗), the decision-maker can solve the sample version of the above problem:

θ̂ ∈ argmin
θ∈Θ

1

n

n∑
i=1

ψ(Yi, Xi)1 {a(Xi, θ) ̸= Yi}

= argmax
θ∈Θ

1

n

n∑
i=1

U(a(Xi, θ), Yi, Xi),

and then take the action according to

a(x, θ̂) = sign[m(x, θ̂)− c(x)].3

The above M-estimator θ̂ is motivated by utility maximization, and we will refer to it as the
maximum utility estimator. To highlight the method behind the estimator, we may write it as
θ̂MU. The MU estimator minimizes the empirical average loss from making incorrect decisions.
Intuitively, when a (Xi, θ) ̸= Yi, an incorrect decision is made, and the decision-maker incurs a
loss of ψ(Yi, Xi). The MU criterion function is the average of the losses over the sample. The
corresponding population criterion function is

QMU (θ) = E [ψ(Y,X)1 {a(X, θ) ̸= Y }] .

It can be shown that the above MU estimator is the same as the estimator of Elliott and Lieli
(2013). In the special case where the loss ψ (y, x) does not depend on either y or x, we have
c (x) = 1/2, and the MU estimator becomes

θ̂MU ∈ argmin
θ∈Θ

1

n

n∑
i=1

1 {sign[m(Xi, θ)− 0.5] ̸= Yi} .

3If we focus on the decision at a particular value, say xo, of X, we can solve a local version of the problem:

θ̂ (xo) ∈ argmax
θ∈Θ

1

n

n∑
i=1

U(a(Xi, θ), Yi, Xi)kh(Xi, xo),

where kh(·, ·) is a kernel weighting function with tuning parameter h. Weighting is also necessary when the sample
of covariates {Xi}ni=1 comes from a different population or subpopulation than the target population for which we
are making predictions and taking actions. In this case, we can solve

θ̂ω ∈ argmax
θ∈Θ

1

n

n∑
i=1

U(a(Xi, θ), Yi, Xi)ω(Xi),

where the weighting function ω(·) is used to reweight the sample so that it matches the target population of interest.
In this paper, we allow m (x, θ) to take a flexible form and defer the additional complication of (local) weighting
to future research.
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Hence, the MU estimator reduces to the maximum score estimator of Manski (1975, 1985).
The MU estimator is clearly different from the maximum likelihood (ML) estimator. Suppose

m(Xi, θ) ∈ (0, 1) for all θ ∈ Θ.4 The ML estimator is defined as

θ̂MLE ∈ argmax
θ∈Θ

1

n

n∑
i=1

{
Yi + 1

2
log[m(Xi, θ)] +

(
1− Yi + 1

2

)
log [1−m (Xi, θ)]

}
.

The criterion function underlying the ML estimator is motivated by statistical considerations,
without accounting for the payoff differences across different actions and states of the world.

While the ML method has been extensively studied, the MU method has received less atten-
tion. In particular, model selection within the MU framework has not been thoroughly explored
in the literature. To address this gap, Su (2021) considers a penalized MU estimator, where an
additive penalty regularizes the complexity of the model class. This model selection approach is
similar to AIC and BIC in the likelihood framework, but the penalty is based on a complexity
measure, such as the Vapnik–Chervonenkis (VC) dimension, of the model class. There is a large
body of statistical literature on model selection via complexity regularization; see, for example,
Koltchinskii (2001), Bartlett et al. (2002), and Massart (2007). Su (2021) is an application of
this method to the MU framework.

While the MU approach targets directly the expected payoff, it does not account for the margin
of a covariate vector from the underlying decision boundary, and it does not work well when the
VC dimension is infinite, which often occurs when the decision boundary is allowed to reside in
an RKHS. Our proposed approach overcomes these drawbacks. To the best of our knowledge,
this paper is the first to study the margin within the MU framework and to consider margin-
maximizing decision rules in this context. Another limitation of the MU approach is that, due to
the presence of an indicator function in its criterion function, the underlying optimization problem
is NP-hard and thus computationally challenging. In contrast, our approach is computationally
efficient, making it an attractive alternative.

3 Support-vector Decision Making

In this section, we introduce the concept of the margin and choose model parameters to maximize
it. This method addresses some of the limitations of the MU approach.

3.1 Complete Separation

We start with the case of complete separation, where a hyperplane can completely separate the
two classes of points. Figure 2a provides a visual representation of this scenario.5 While complete
separation may not be realistic in practice, it provides a useful starting point for introducing the
main concepts and ideas. We will address the case of incomplete separation in Section 3.2.

Due to the presence of the covariate-specific cutoff function c(·), the standard SVM cannot
be applied directly. To address this, we define

c− (x) := −c(x)
4If this is not the case, we can apply a transformation, such as the logistic transformation, to ensure that the

transformed version falls within the range of (0, 1).
5The figure is provided for illustrative purposes only. The specific space in which complete separation is achieved

will be defined shortly.
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Positive Points

(a) Completely separable data.

Middle Plane

w′θw = θ̄0

Negative Plane

w′θw = θ−0

Positive Plane, w′θw = θ+0

Negative Points

Positive Points

w1 : x

w
2
:
c −
(x
)

(b) Three planes in Rdw .

Figure 2: Completely separable data and three planes.

and view c− (X) as a separate and special covariate whose coefficient is restricted to be 1. Because
of this constraint, we still cannot rely on the standard SVM arguments to obtain the support-
vector decision directly. Instead, we develop our method from first principles.

Letting

Wi =

(
Xi

c−(Xi)

)
,

we map each point Xi ∈ Rdx into a point Wi ∈ Rdw , where dw = dx+1 is the number of elements
inWi. Under this mapping, the original sample {(Xi, Yi)}ni=1 is effectively transformed into a new
sample {(Wi, Yi)}ni=1. We now focus on the set of points

{
Wi ∈ Rdw

}
in a higher-dimensional

space, along with their “labels” {Yi} , and refer to Wi as a vector of generalized attributes. In
this subsection, we assume that complete separation is achieved in Rdw .

Denote

w =

(
x

c−(x)

)
and θw =

(
θx
θc

)
for θc = 1.

Under the assumption of complete separation in Rdw , there exist θ+0 , θ
−
0 , and θx with θ+0 > θ−0

such that the two parallel hyperplanes w′θw = θ+0 and w′θw = θ−0 in Rdw completely separate
the “positive” points {Wi : Yi = +1} from the “negative” points {Wi : Yi = −1}.

For a given θw, we choose θ+0 to be as large as possible, subject to the constraint that
W ′
iθw ≥ θ+0 for all i such that Yi = +1. This constraint requires that all positive points lie on

or above the “positive” hyperplane w′θw = θ+0 . Similarly, for a given θw, we choose θ−0 to be as
small as possible, subject to the constraint that W ′

iθw ≤ θ−0 for all i such that Yi = −1. This
constraint requires that all negative points lie on or below the “negative” hyperplane w′θw = θ−0 .

6

Based on these two hyperplanes, we define the “middle” hyperplane:

w′θw = θ̄0 for θ̄0 = ρθ+0 + (1− ρ) θ−0 ,

where ρ ∈ (0, 1). The “middle” hyperplane will serve as the decision boundary. For an out-of-
sample point x with w = (x′, c− (x)′)′, we take the action according to whether the point w is

6Without loss of generality, we assume that the points with Yi = +1 lie above the positive hyperplane and the
points with Yi = −1 lie below the negative hyperplane. If this is not the case, we can simply switch the labels.
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above or below the middle hyperplane, that is,

a (x) = sign
[
w′θw − θ̄0

]
.

See Figure 2b for an illustration of the three hyperplanes when dx = 1, dw = 2 so that w1 = x
and w2 = c− (x) .7

The choice of ρ is influenced by a number of factors, such as the relative costs of false positives
and false negatives, as well as the distribution of positive and negative points, especially near the
theoretically optimal decision boundary. If the cost of a false positive is generally higher than
that of a false negative and there are more negative points than positive points, then, as a rule
of thumb, we might choose ρ to be greater than 1/2, so that the “middle” hyperplane is closer
to the positive hyperplane. This would reduce the likelihood of making false positive decisions.
Otherwise, we might choose ρ to be less than 1/2. A default choice could be ρ = 1/2, in which
case the “middle” hyperplane is equidistant from the positive and negative hyperplanes. To avoid
introducing new terminology, we will use the term “middle hyperplane,” even if the hyperplane
is not exactly in the middle of the positive and negative hyperplanes.

The following lemma characterizes important distances that will be used throughout the
remainder of the paper. The proof can be found in Supplementary Appendix S.1.

Lemma 1 Let ∥θw∥ =
√
θ2c + ∥θx∥2. Then:

(i) the geometric distance from a point Wi to the middle hyperplane w′θw = θ̄0 is di ≡
di
(
θw, θ̄0

)
= Yi

(
W ′
iθw − θ̄0

)
/ ∥θw∥ ;

(ii) the geometric distance between the positive and negative hyperplanes is
(
θ+0 − θ−0

)
/ ∥θw∥ .

In the case of complete separation, the geometric distance between the positive and negative
hyperplanes, as given in Lemma 1, is referred to as the hard margin in the SVM literature, as
there is no point lying between these two hyperplanes. The positive and negative hyperplanes
are then referred to as the margin boundaries, and the middle hyperplane is called the decision
boundary.

A maximum margin decision rule seeks the values of θ+0 , θ
−
0 , and θx to maximize the margin.

That is, it solves

max
θ+0 ,θ

−
0 ,θx

θ+0 − θ−0√
θ2c + ∥θx∥2

subject to

X ′
iθx + c− (Xi) θc ≤ θ−0 for all i with Yi = −1,

X ′
iθx + c− (Xi) θc ≥ θ+0 for all i with Yi = +1, (3)

θ+0 − θ−0 > 0.

To obtain an alternative yet equivalent representation of the above problem, we define

θ∆0 = min (ρ, 1− ρ)
(
θ+0 − θ−0

)
,

q+ =
1− ρ

min (ρ, 1− ρ)
, q− =

ρ

min (ρ, 1− ρ)
,

and
qi = q+ · 1 {Yi = +1}+ q− · 1 {Yi = −1} .

7In the figure, we use the term “plane” instead of “hyperplane,” and we will use these two terms interchangeably.
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If ρ ≤ 1/2, then q− = 1. If ρ ≥ 1/2, then q+ = 1. Note that qi ≥ 1 for all i ∈ [n] := {1, 2, . . . , n} .
With these definitions of θ̄0, θ

∆
0 , and qi, the separation constraints in (3) can be written compactly

as
Yi
(
X ′
iθx + c− (Xi) θc − θ̄0

)
≥ qiθ

∆
0 for all i ∈ [n].

Define the normalized parameters:

κx =
θx

θ∆0
, κc =

θc

θ∆0
≥ 0, κ0 = − θ̄0

θ∆0
, and κw = (κ′x, κ

′
c)

′.

The separation requirement then becomes

Yi
[
κ0 +X ′

iκx + c− (Xi)κc
]
≥ qi for all i ∈ [n].

Note that when ρ ̸= 1/2, for one class of points, qi = 1, and for the other class of points, qi > 1.
We have, therefore, effectively normalized the smaller of the two lower bounds to be 1. The
maximization problem in (3) is then transformed into the following minimization problem:

min
κ0,κx,κc

1

2
(∥κx∥2 + κ2c) subject to

Yi
[
κ0 +X ′

iκx + c− (Xi)κc
]
≥ qi for all i ∈ [n], (4)

κc ≥ 0.

This is a standard quadratic programming problem and can be easily solved using commonly
available software packages.

The minimization problem resembles the minimization problem in the standard SVM, but
there are three key differences. First, we have included the cutoff c(·) as a separate covariate, and
this constitutes a conceptual innovation. Second, there is a sign restriction κc ≥ 0, which is not
present in the standard SVM. Third, unlike the standard SVM, our method allows for q+ ̸= q−,
so the middle hyperplane may not be equidistant from the positive and negative hyperplanes.
While the standard SVM requires Yi [κ0 +X ′

iκx + c− (Xi)κc] ≥ 1 for all observations, we require
Yi [κ0 +X ′

iκx + c− (Xi)κc] ≥ qi for a class-specific lower bound qi. Therefore, even if there is no
sign restriction, our minimization problem is more general than the standard SVM minimization
problem.

For the examples in Figure 1, our minimization problem will favor a1 over a2. For Figure 1a,
the decision boundary associated with a1 is closer to the maximum margin decision boundary.
For Figure 1b, the margin associated with a1 is larger than that associated with a2.

To develop the dual to the minimization problem in (4), we form the Lagrangian:

LP (κ;λ, λc) =
1

2

(
∥κx∥2 + κ2c

)
−

n∑
i=1

λi
{
Yi
[
κ0 +X ′

iκx + c− (Xi)κc
]
− qi

}
− λcκc,

where λ = (λ1, . . . , λn)
′ and λc are the Lagrangian multipliers, all of which are nonnegative. In

the above, the subscript “P” stands for “primal”. The Karush-Kuhn-Tucker (KKT) stationary
and complementary slackness conditions are

κx =

n∑
i=1

λiYiXi, (5)

κc =
n∑
i=1

λiYic−(Xi) + λc, (6)

0 = λi
{
Yi
[
κ0 +X ′

iκx + c− (Xi)κc
]
− qi

}
, (7)
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∑n
i=1 λiYi = 0, and λcκc = 0.

Define κ̂w =
(
κ̂′x, κ̂c

)′
and λ̂ = (λ̂1, . . . , λ̂n)

′. Let (κ̂0, κ̂w, λ̂, λ̂c) be a solution to the full

set of KKT conditions. From the KKT dual complementarity in (7), λ̂i > 0 implies that
Yi [κ̂0 +W ′

i κ̂w] = qi. Define
S+ = {i : λ̂i > 0}. (8)

It follows from (5) and (6) that the solution satisfies

κ̂x =
∑
i∈S+

λ̂iYiXi,

κ̂c =
∑
i∈S+

λ̂iYic− (Xi) + λ̂c. (9)

The above equations show that only the subsample {(Wi, Yi) : i ∈ S+} will ultimately determine
κ̂w. We call this the support subsample, as it supports the positive and negative hyperplanes in
the sense that it determines the locations and orientations of these hyperplanes. We refer to the
corresponding attributes {Wi : i ∈ S+} as the support vectors. Each support vector lies on either
the positive or negative hyperplane: κ̂0+w

′κ̂w = q+ or κ̂0+w
′κ̂w = −q−. As an illustration, the

circled points in Figure 2b are the support vectors.8

Once the support subsample has been identified, the “non-support” subsample {(Wi, Yi) :
i /∈ S+} can be discarded without altering the decision boundary. However, it would be erroneous
to conclude that the non-support subsample is irrelevant to the decision problem, since the set
of the support subsample is jointly and collectively determined by the whole sample.

Plugging (5) and (6) into LP (κ;λ, λc), we obtain the dual problem:

max
λ,λc

LD(λ, λc) =
n∑
i=1

λiqi −
1

2

 n∑
i=1

n∑
j=1

λiλjYiYjW
′
iWj + 2λc

n∑
i=1

λiYic− (Xi) + λ2c


s.t.

n∑
i=1

λiYi = 0, λi ≥ 0, for all i ∈ [n] , and λc ≥ 0. (10)

The dual problem is another quadratic programming problem.
The dual problem reveals that the points {Wi} interact with each other only via their cross

product W ′
iWj , which can be written as the Euclidean inner product in Rdw :W ′

iWj = ⟨Wi,Wj⟩ .
This opens the door to possible generalizations when other inner products are used. We consider
such an extension in Section 4.

Once we find the solution (λ̂1, . . . , λ̂n, λ̂c)
′ to the dual problem, we can plug it into (9) to obtain

κ̂x and κ̂c. To find κ̂0, we note that for i ∈ S+, we have Yi (κ̂0 +W ′
i κ̂w) = qi and so κ̂0+W

′
i κ̂w =

qiYi as Y
2
i = 1. Thus, we can recover κ̂0 by taking an average of {qiYi −W ′

i κ̂w : i ∈ S+} , leading
to

κ̂0 =
1

|S+|
∑
i∈S+

(
qiYi −W ′

i κ̂w
)
,

8Let S = {i : Yi (W ′
i κ̂w + κ̂0) = qi} . According to the definition of support vectors given here, not every point

in {Wi : i ∈ S} is a support vector, but for easy interpretation and geometric intuition, we may refer to all points in
{Wi : i ∈ S} as support vectors. The difference in the definitions of support vectors does not affect our theoretical
formulation. However, when λ̂i is available from the dual problem, we take the sum over i ∈ S+, as given in
(9), to compute κ̂w. We may call {Wi : i ∈ S} the set of geometric support vectors and

{
Wi : i ∈ S+

}
the set of

computational support vectors. What we illustrate in Figure 2b are the geometric support vectors.
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where |S+| denotes the number of elements in the set S+.
9 This shows that a solution to the dual

problem completely determines a corresponding solution to the primal problem.
For an out-of-sample point x with w = (x′, c−(x))

′, we take the action according to the
empirical optimal decision boundary:

â(x) = sign(w′κ̂w + κ̂0)

= sign

{
n∑
i=1

x′
[
λ̂iYiXi

]
+ c−(x)

[
n∑
i=1

λ̂iYic−(Xi) + λ̂c

]
+ κ̂0

}

= sign

∑
i∈S+

λ̂iYi [⟨x,Xi⟩+ c−(x)c− (Xi)] + λ̂cc−(x) + κ̂0

 ,

where ⟨x,Xi⟩ is the Euclidean inner product in Rdx . In the last line above, we have reduced the
summation over the whole sample to a summation over only the subsample corresponding to the
support vectors. Since the number of support vectors, namely, the size of the set S+, can be
much smaller than the sample size, such a reduction can yield significant computational savings,
especially in settings where the sample size n is much larger than the number of support vectors.

It is now clear that our decision rule is fully characterized by the support vectors {Wi : i ∈ S+}
and their labels {Yi : i ∈ S+} . Our approach can therefore be called support-vector decision
making. In a nutshell, the support vectors are jointly determined by all observations and may
be regarded as “representatives” for {Wi : i ∈ [n]}. Once the support vectors and their λi’s are
given, the subsequent decision for an out-of-sample point x can be made based solely on how w
is related to the support vectors {Wi : i ∈ S+} .

Under complete separation, the utility function plays the important role of supplying an
additional attribute c−(x) to the decision-making problem. In the next subsection, we will see
that under incomplete separation, the utility function also changes our decision-making problem
in other significant ways.

3.2 Incomplete Separation

In this subsection, we consider the case of incomplete separation, which is more realistic in
economic applications. See Figure 3 for a visual illustration of inseparable data. For now, we
maintain a linear decision boundary, though this constraint will be relaxed in Section 4.

3.2.1 The Primal Problem

In the presence of incomplete separation, it is not possible to find two parallel hyperplanes that
completely separate the two classes. Nevertheless, we still stipulate a “positive” hyperplane:
κ0 + w′κw = q+ and a “negative” hyperplane: κ0 + w′κw = −q−. We relax the separation
constraint Yi (κ0 +W ′

iκw) ≥ qi by introducing the smallest possible “slack” variable ξi ≥ 0 such
that

Yi
(
κ0 +W ′

iκw
)
+ ξi ≥ qi,

9Here, we have implicitly used the result that S+ is not empty. We can prove this by contradiction. If S+ is
empty, then λ̂i = 0 for all i ∈ [n], from which we can deduce that κ̂x = 0 and κ̂c = 0. However, under this choice
of (κ̂x, κ̂c) , the primal feasibility constraints Yi [κ0 +X ′

iκx + c− (Xi)κc] ≥ qi for all i ∈ [n] become Yiκ0 ≥ qi for
all i ∈ [n]. Since Yi’s do not have the same sign across i ∈ [n], Yiκ0 ≥ qi cannot hold for all i ∈ [n], leading to a
contradiction.

14



Negative Points

Positive Points

w1 : x

w
2
:
c −
(x
)

Figure 3: Inseparable data.

for all i ∈ [n] . By definition, ξi = [qi − Yi (κ0 +W ′
iκw)]+ , where ς+ ≡ max(0, ς). The slack

variable ξi measures how far Wi lies on the wrong side of its associated hyperplane. By taking
the magnitude of ξi into consideration, we account for the distance of a point to the decision
boundary. Our method is thus distinctly different from the MU method, where such distances
are completely ignored.

When a point lies on the wrong side of the middle hyperplane (i.e., κ0 + w′κw = 0), we have
Yi (κ0 +W ′

iκw) < 0 and thus ξi > qi. Since qi ≥ 1 by definition, it follows that ξi ≥ 1 for all
points on the wrong side of the middle hyperplane. Therefore, n−1

∑n
i=1 ξi is an upper bound

for the error rate, i.e., the fraction of false decisions.
For each false decision, we incur a loss ψ(Yi, Xi). A loss-weighted version of the error rate can

be defined as
1

n

n∑
i=1

ψ(Yi, Xi)

ψ̄
ξi,

where ψ̄ = n−1
∑n

i=1 ψ(Yi, Xi). This loss-weighted error rate better reflects our ultimate objective.
We are concerned not only with the direction and margin of decisions but also with the losses
associated with incorrect decisions, which may vary across individual observations.

By Lemma 1, the geometric distance between the negative and positive hyperplanes (i.e.,
κ0 +w′κw = q+ and κ0 +w′κw = −q−) is (q+ + q−) / ∥κw∥ = 1/ [min (ρ, 1− ρ) ∥κw∥] . In seeking
a maximum margin decision boundary, we maximize the (soft) margin (equivalently, minimize
the squared reciprocal of the soft margin) subject to the control of the loss-weighted error rate:

min
κ0,κw,ξ

∥κw∥2 subject to

1

n

n∑
i=1

ψ(Yi, Xi)

ψ̄
ξi ≤ B,

Yi
(
κ0 +W ′

iκw
)
+ ξi ≥ qi, ξi ≥ 0, for i ∈ [n] and κc ≥ 0,

15



where ξ = (ξ1, . . . , ξn)
′ and B is a user-chosen upper bound for the loss-weighted error rate. With

an appropriately chosen µ, the above problem is equivalent to

min
κ0,κw,ξ

{
1

n

n∑
i=1

ψ(Yi, Xi)

ψ̄
ξi +

µ

2
∥κw∥2

}
subject to

Yi
(
κ0 +W ′

iκw
)
+ ξi ≥ qi, ξi ≥ 0, for i ∈ [n], and κc ≥ 0. (11)

The minimization problem resembles the standard SVM problem, and we will call it the
Maximum Utility SVM (MU-SVM). However, there are four key differences. First, as a conceptual
innovation, we allow the cutoff function c (·) to directly affect the decision boundary. Second,
the MU-SVM imposes a sign restriction κc ≥ 0. Third, since q+ may not equal q−, the MU-SVM
allows for different margins for different classes of observations. Finally, the MU-SVM accounts
for different losses ψ(Yi, Xi) for different points lying on the wrong side of the positive or negative
hyperplane (i.e., for points with ξi > 0). In effect, the standard SVM problem assumes that ψ(·, ·)
is a constant function and imposes the same loss for all incorrect decisions. In contrast, we allow
the loss to be heterogeneous across observations.

In the minimization problem given in (11), the parameter µ is a regularization parameter that
balances the size of the margin and the loss-weighted error rate. Note that the margin is given
by (q+ + q−) / ∥κw∥ . A larger value of µ encourages a smaller ∥κw∥2 and hence a larger margin,
and it may also give rise to larger slack variables and a higher loss-weighted error rate. However,
a larger margin often leads to a smaller generalization error; see Section 5.2 for a theoretical
analysis.

As an equivalent formulation, the MU-SVM minimizes

Qn,MU-SVM (κ) =
1

n

n∑
i=1

(
1 {Yi = 1}

[
q+ − Vi

]
+
+ 1 {Yi = −1}

[
q− − Vi

]
+

)
ψ(Yi, Xi)+

µψ̄

2
∥κw∥2 ,

(12)
where Vi := Yi (κ0 +W ′

iκw) . Using the same notation for the variables to optimize over, the
standard MU (e.g., Elliott and Lieli (2013)) minimizes

Qn,MU (κ) =
1

n

n∑
i=1

1 {Vi ≤ 0}ψ(Yi, Xi).

Comparing the two criterion functions, we observe two key differences. First, in the standard
MU criterion function, the loss is weighted by the zero-one function 1 {Vi ≤ 0}, whereas in the
MU-SVM criterion function, the loss is weighted by the hinge function (q+ − Vi)+ or (q− − Vi)+ .
See Figure 4 for an illustration of (1− V )+ compared to the zero-one loss. The hinge function
(1− V )+ is a convex function that lies above the zero-one function and can be viewed as a convex
surrogate for it. Using the hinge loss function simplifies the optimization problem, reducing it to a
quadratic programming problem and avoiding the need for complex algorithms such as simulated
annealing. Moreover, employing the hinge function enables us to account for the margin in our
decision problem.

Second, the MU-SVM criterion function includes an additional term to regularize the margin
of the decision rule. From a modern perspective, this term is simply a regularization term that
serves to control the size of the coefficients. In the present setting, the regularizer has a margin
interpretation, which may not be readily available in a general regularization problem. Note that,
for the standard MU approach, adding regularization on the size of the coefficients has no effect on
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the decision rule, as the zero-one loss is scale-invariant in the sense that 1 {V ≤ 0} = 1 {ςV ≤ 0}
for any constant ς > 0.
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Figure 4: The hinge loss (1− V )+ and zero-one loss 1 {V ≤ 0} .

Instead of using hinge loss, non-convex loss functions, such as ramp loss (Collobert et al.
(2006)) or smoothed ramp loss (Zhou et al. (2017)), can be employed within the maximum utility
framework. However, these non-convex losses introduce increased computational complexity due
to the potential for local minima. While they may be less sensitive to outliers, we have opted
for the modified hinge loss in this paper because its convexity ensures simpler optimization and
a unique global solution.

3.2.2 The Dual Problem

We now derive the dual problem to the MU-SVM given in (11). The Lagrangian function is

LP (κ, ξ;λ, λc, r) =
1

n

n∑
i=1

ξi
ψ(Yi, Xi)

ψ̄
+
µ

2
∥κw∥2−

n∑
i=1

λi
{
Yi
[
κ0 +W ′

iκw
]
+ ξi − qi

}
−

n∑
i=1

riξi−λcκc,

(13)
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where λ = (λ1, . . . , λn) ≥ 0, λc ≥ 0, and r = (r1, . . . , rn) ≥ 0 are the Lagrangian multipliers for
the three sets of inequality constraints. The KKT conditions are

κx =
1

µ

(
n∑
i=1

λiYiXi

)
,

κc =
1

µ

(
n∑
i=1

λiYic−(Xi) + λc

)
,

n∑
i=1

λiYi = 0,

1

n

ψ(Yi, Xi)

ψ̄
− λi − ri = 0,

and

λi
[
Yi
(
κ0 +W ′

iκw
)
+ ξi − qi

]
= 0, riξi = 0, λcκc = 0,

Yi
(
κ0 +W ′

iκw
)
+ ξi ≥ qi, κc ≥ 0,

λi ≥ 0, λc ≥ 0, ri ≥ 0.

The first block above consists of the stationarity conditions, and the second block consists of
the complementarity conditions and the primal and dual feasibility conditions. A new KKT
condition, not present in the case of complete separation, is

ψ(Yi, Xi)

nψ̄
− λi − ri = 0.

We can interpret λi + ri as the shadow price of relaxing ξi, and this equation states that the
shadow price equals the loss from such a relaxation.

Since the MU-SVM is a convex problem that satisfies Slater’s condition, the above KKT
conditions are necessary and sufficient for κ0, κw, ξ to be a solution to the primal problem. Let
(κ̂0, κ̂w, ξ̂, λ̂, λ̂c, r̂), where κ̂w = (κ̂′x, κ̂

′
c)

′, be a solution to the KKT conditions. From the KKT
complementarity conditions, we can draw the following conclusions:

(i) If Yi (κ̂0 +W ′
i κ̂w) > qi, then Yi (κ̂0 +W ′

i κ̂w) + ξ̂i > qi, and so λ̂i = 0.
(ii) If Yi (κ̂0 +W ′

i κ̂w) < qi, then ξ̂i > 0, and thus r̂i = 0, which, combined with the last
stationarity condition, implies that λ̂i = ψ(Yi, Xi)/(nψ̄).

(iii) If Yi (κ̂0 +W ′
i κ̂w) = qi, then 0 ≤ λ̂i ≤ ψ(Yi, Xi)/(nψ̄).

Figure 5 illustrates the value of λ̂i for positive points, which varies depending on whether they
lie above, below, or on the positive hyperplane.

Define
S+ =

{
i ∈ [n] : λ̂i > 0

}
.10

It then follows from the stationarity conditions that

κ̂x =
1

µ

∑
i∈S+

λ̂iYiXi,

κ̂c =
1

µ

∑
i∈S+

λ̂iYic−(Xi) + λ̂c

 . (14)

10As in the case of complete separation, we can prove by contradiction that S+ is not empty.
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Figure 5: Lagrangian multipliers λ̂i for positive points.

The above representations show that κ̂x is a linear combination of {Xi : i ∈ S+}, and κ̂c is a
linear combination of {c−(Xi) : i ∈ S+} , up to a constant adjustment. After the set S+ is deter-
mined through the dual problem, only the subsample {(Wi, Yi) : i ∈ S+} ultimately determines
the decision boundary. We refer to this subsample as the support subsample, as it dictates the
locations and orientations of the three hyperplanes.

To characterize the support subsample, we note that when λ̂i > 0, the constraint Yi (κ0 +W ′
iκw)+

ξi ≥ qi in the primal problem holds with equality, yielding Yi (κ0 +W ′
iκw)+ξi = qi. Since ξi ≥ 0,

this implies that Yi (κ0 +W ′
iκw) ≤ qi for all i ∈ S+. Consequently, each positive (or negative)

point in {Wi : i ∈ S+} lies on the positive (or negative) hyperplane, or on the wrong side of the
respective hyperplane. We call {Wi : i ∈ S+} the set of support vectors. See Figure 6 for an
illustration.

As in the case of complete separation, the number of support vectors can be much smaller
than the number of observations. Numerical work based on the support subsample, rather than
the whole sample, can yield substantial computational savings. As before, once the support
subsample is identified, removing the non-support subsample ex post does not change the solution.
However, we do not know in advance which observations belong to the support subsample. We
have to use all observations together to determine the membership of the support subsample.

Using the KKT conditions to eliminate κ, ξ, and r in LP (κ, ξ;λ, λc, r), we obtain the criterion
function for the dual problem:

LD(λ, λc) =
n∑
i=1

λiqi −
1

2µ

 n∑
i=1

n∑
j=1

λiλjYiYjW
′
iWj + 2λc

n∑
i=1

λiYic−(Xi) + λ2c

 .
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Figure 6: All circled data points are (geometric) support vectors.

For a given µ, the dual problem is then:

max
λ,λc

LD(λ, λc) subject to

n∑
i=1

λiYi = 0, λc ≥ 0, and

0 ≤ λi ≤
1

n

ψ(Yi, Xi)

ψ̄
for all i ∈ [n] . (15)

Like the primal problem, the dual problem is also a quadratic programming problem. The
dual problem is almost identical to the one for the case with complete separation (cf. (10)).
One difference is that the original constraint λi ≥ 0 has now become 0 ≤ λi ≤ ψ(Yi, Xi)/(nψ̄).
Another difference between incomplete separation and complete separation is that the quadratic
term in (λ, λc) in the objective function has now been weighted by 1/µ.When µ = 1, the objective
function for the dual problem in (15) matches that for the complete separation case.

Let (λ̂1, . . . , λ̂n, λ̂c) be a solution to the dual problem. Then, we can recover the solution for
κw to the primal problem using (14). To find the primal solution for κ0, we use the fact that
the inequality 0 < λ̂i < ψ(Yi, Xi)/(nψ̄) implies the equality Yi (κ̂0 +W ′

i κ̂w) = qi, or equivalently,
κ̂0 = qiYi −W ′

i κ̂w. Let

Sψ+ =
{
i : 0 < λ̂i < ψ(Yi, Xi)/

(
nψ̄
)}
,

which is a subset of the points on the positive and negative hyperplanes (the margin boundaries).

If Sψ+ is not empty, we can recover κ̂0 as follows:

κ̂0 =
1

|Sψ+|

∑
i∈Sψ+

(
qiYi −W ′

i κ̂w
)
. (16)
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If Sψ+ is empty, we revert to the primal problem to determine κ̂0. More specifically, given κ̂w, we
solve

κ̂0 ∈ argmin
κ0

{
1

n

n∑
i=1

[
qi − Yi

(
κ0 +W ′

i κ̂w
)]

+
ψ (Yi, Xi)

}
.

This is a univariate convex minimization problem that can be solved efficiently. If multiple
solutions exist, we select the one closest to the origin. Section S.3 in the supplementary appendix
contains some discussion on the uniqueness of κ̂w and κ̂0.

As in the case of complete separation, for an out-of-sample point x with w = (x′, c−(x))
′, we

take the action according to the estimated decision boundary:

â(x) = sign(w′κ̂w + κ̂0)

= sign

 1

µ

∑
i∈S+

λ̂iYix
′Xi +

1

µ
c−(x)

∑
i∈S+

λ̂iYic−(Xi) + λ̂c

+ κ̂0


= sign

∑
i∈S+

λ̂i
µ
Yi ⟨w,Wi⟩+

λ̂c
µ
c−(x) + κ̂0

 , (17)

where ⟨w,Wi⟩ is the usual Euclidean inner product in Rdw .

3.2.3 Interpretation of the Support-vector Decision

As in the case of complete separation, the action rule in (17) depends on the sample only through
the support subsample. To facilitate interpretation, consider the case where λ̂c = 0 and qi = 1 for
all i ∈ [n] as an example. To make the decision for an out-of-sample point x with w = (x′, c−(x))

′,
we first compute the Euclidean inner product ⟨w,Wi⟩ and obtain the score Yi ⟨w,Wi⟩ for each
support vector Wi. Then, we aggregate the scores according to the weighted formula:

S(w) =
∑
i∈S+

λ̂i
µ
Yi ⟨w,Wi⟩ .

If w is in the same direction asWi so that ⟨w,Wi⟩ > 0 and Yi = +1, then the score Yi ⟨w,Wi⟩ will
be positive, tipping the scale toward the positive action a = +1. If w is in the same direction as
Wi but Yi = −1, then the score Yi ⟨w,Wi⟩ will be negative, tipping the scale toward the negative
action a = −1. The same intuition applies to other scenarios when w is in the opposite direction
to Wi.

The individual scores are weighted by {λ̂i/µ, i ∈ S+}. For a given µ, a support vector with
higher loss ψ(Yi, Xi) tends to have a larger λ̂i and hence receives a higher weight. This is quite
reasonable, as we should assign relatively higher weights to observations with higher potential
loss. The final decision rule is based on the sign of the aggregate score after a location adjustment
of κ̂0, that is, sign {S(w) + κ̂0} .

If we view the scores as votes, the support vector decision rule can be regarded as a voting
rule. Each support vector carries a weight of λ̂i/µ and casts a vote based on its outcome (Yi)
and similarity to the out-of-sample target point w measured by ⟨w,Wi⟩. The total vote, S(w), is
a weighted sum of individual votes from the support vectors. When this voting rule is applied to
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the subset of support vectors {Wi: i ∈ Sψ+}, we get

S(Wi) =
∑
j∈S+

λ̂j
µ
Yi ⟨Wi,Wj⟩ for each i ∈ Sψ+.

The average difference between Yi and the vote S(Wi) over i ∈ Sψ+ is (|Sψ+|)−1
∑

i∈Sψ+
[Yi − S(Wi)].

This is just equal to κ̂0 defined in (16).
For an out-of-sample point w, let Y (w) be the expected value of Y conditional on W = w.

We expect the difference between Y (w) and the vote S(w) it receives to be comparable to the

average difference over i ∈ Sψ+:

Y (w)− S(w) ≈ 1

|Sψ+|

∑
i∈Sψ+

[Yi (Wi)− S(Wi)] ,

where Yi (Wi) := Yi. This resembles the parallel trend assumption in the difference-in-differences
literature: the difference between Y (w) and S(w) is expected to be the same as the difference

between Yi and S(Wi) averaged over i ∈ Sψ+, the subset of (computational) support vectors. It
then follows that Y (w) ≈ S(w) + 1

|Sψ+|

∑
i∈Sψ+

[Yi − S(Wi)]. Hence, it is reasonable to predict the

binary outcome by

sign

S(w) +
1

|Sψ+|

∑
i∈Sψ+

[Yi − S(Wi)]

 = sign

∑
i∈S+

λ̂i
µ
Yi ⟨w,Wi⟩+ κ̂0

 .

This is exactly our support-vector decision rule for the case where λ̂c = 0 and qi = 1 for all
i ∈ [n] .

4 Series and Kernel Support Vector Decision Making

The previous section assumes a linear decision boundary. In this section, we introduce a more
flexible approach by incorporating a nonlinear decision boundary using the widely adopted “kernel
trick” from the machine learning literature.

4.1 Series Support Vector Decision Making

We first assume that the nonlinear decision boundary can be approximated by a series expansion.
The proposed decision boundary is now:

κ0 + ϕ (x)′ κϕ + c−(x)κc,

where ϕ (x) = (ϕ1 (x) , . . . , ϕJ (x))
′ and {ϕj (·) : j = 1, . . . , J} is a sequence of J basis functions.

For example, we can take J = 3 and ϕ (x) =
(
x, x2, x3

)′
. In the machine learning literature,

ϕ (·) is often referred to as the feature mapping, which maps “attributes” x ∈ Rdx to “features”
ϕ (x) ∈ RJ . Note that the number of features, J , may be much larger than the number of
covariates, dx. We assume that J is finite in this subsection and will consider the case of an
infinite J in the next subsection.
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Replacing X ′
iκx with ϕ (Xi)

′ κϕ in the MU-SVM given in (11), we obtain the following mini-
mization problem:

min
κ0,κϕ,κc,ξ

{
1

n

n∑
i=1

ψ(Yi, Xi)

ψ̄
ξi +

µ

2

(
∥κϕ∥2 + κ2c

)}
subject to

Yi
(
κ0 + ϕ(Xi)

′κϕ + c− (Xi)κc
)
+ ξi ≥ qi, ξi ≥ 0, for i ∈ [n], and κc ≥ 0.

Similar to (15), the dual problem is

max
λ1,...,λn,λc

LD (λ, λc) subject to

n∑
i=1

λiYi = 0, λc ≥ 0, and

0 ≤ λi ≤
1

n

ψ(Yi, Xi)

ψ̄
for i ∈ [n],

where

LD (λ, λc) =

n∑
i=1

qiλi

− 1

2µ

 n∑
i=1

n∑
j=1

λiλjYiYj
[
⟨ϕ(Xi), ϕ(Xj)⟩+ c−(Xi)

′c−(Xj)
]
+ 2λc

n∑
i=1

λiYic−(Xi) + λ2c

 ,
and

⟨ϕ(x), ϕ(x̃)⟩ =
J∑
j=1

ϕj(x)ϕj(x̃).

Let (κ̂0, κ̂ϕ, κ̂c, ξ̂) be the solution to the primal problem, and (λ̂1, . . . , λ̂n, λ̂c) be the solution
to the dual problem. For an out-of-sample point x such that w = (x′, c−(x))

′, we take the action
according to

â (x) = sign (ϕ(x)κ̂ϕ + c−(x)κ̂c + κ̂0)

= sign

 1

µ

∑
i:λ̂i>0

λ̂iYi [⟨ϕ(x), ϕ(Xi)⟩+ c− (x) c− (Xi)] +
1

µ
· λ̂c · c−(x) + κ̂0

 .

Since a series expansion is used to approximate P (x), we refer to the above rule as the series
support vector decision rule. In particular, if we use a polynomial approximation such that
ϕ (x) =

(
x, x2, x3, . . . , xJ

)′
, we refer to the method as “Poly-MU-SVM”.

4.2 Kernel Support Vector Decision Making

In series support vector decision making, the dual objective function depends on the features
only via the inner product ⟨ϕ(x), ϕ(x̃)⟩ in RdJ ⊆ ℓ2, where ℓ2 is the standard sequence space
consisting of square-summable sequences. The action rule is also solely determined by this inner
product. To capture the inner product more compactly, we define a kernel function:

KJ (x, x̃) = ⟨ϕ(x), ϕ(x̃)⟩ :=
J∑
j=1

ϕj (x)ϕj (x̃) (18)
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for any x ∈ X and x̃ ∈ X . If ϕ (·) is continuous, then KJ (·, ·) is continuous, symmetric, and
positive-definite. Importantly, our series support vector decision rule can be expressed entirely
in terms of the kernel function KJ (·, ·) defined above.

Conversely, for any general kernel function K (·, ·) that is continuous, symmetric, and strictly
positive-definite, Mercer’s theorem allows us to represent it as:

K (x, x̃) =

∞∑
j=1

α∗
jϕ

∗
j (x)ϕ

∗
j (x̃) , (19)

where {α∗
j}∞j=1 are a sequence of non-increasing eigenvalues of K (·, ·), and

{
ϕ∗j (·)

}
are the corre-

sponding eigenfunctions:∫
X
K(x, x̃)ϕ∗j (x̃) dx̃ = α∗

jϕ
∗
j (x) with α∗

j > 0, for each x ∈ X ,

and the right-hand side of (19) converges uniformly on compact subsets of X . See, for example,
Steinwart and Christmann (2008) (Section 4.5) for further discussion on Mercer’s theorem.11

To develop a support vector decision rule using the general kernel function K (·, ·) , we choose
the feature mapping to be

ϕ (x) = (
√
α∗
1ϕ

∗
1 (x) , . . . ,

√
α∗
jϕ

∗
j (x) , . . .)

′ ∈ ℓ2, (20)

for each x ∈ X . Then the primal problem becomes

min
κ0,κϕ,κc,ξ

{
1

n

n∑
i=1

ψ(Yi, Xi)

ψ̄
ξi +

µ

2

(
∥κϕ∥2 + κ2c

)}
subject to

Yi

κ0 + ∞∑
j=1

[√
α∗
jϕ

∗
j (Xi)

]
κϕ,j + c−(Xi)κc

+ ξi ≥ qi, ξi ≥ 0, for i ∈ [n] , and κc ≥ 0,

where ∥κϕ∥2 =
∑∞

j=1 κ
2
ϕ,j . We can regard

∑∞
j=1

√
α∗
jϕ

∗
j (·)κϕ,j as an element of the RKHS gen-

erated by the kernel K (·, ·). By definition, its squared RKHS norm is

∞∑
j=1

(
√
α∗
jκϕ,j)

2

α∗
j

=
∞∑
j=1

κ2ϕ,j ,

which is exactly the same as ∥κϕ∥2 . Thus, the margin regularization becomes a control of the
RKHS norm.

Note that, for the feature mapping given in (20), we have

⟨ϕ(x), ϕ(x̃)⟩ℓ2 =
∞∑
j=1

α∗
jϕ

∗
j (x)ϕ

∗
j (x) = K (x, x̃) .

11If K (·, ·) is positive-definite but not strictly positive-definite, then α∗
j ≥ 0. In this case, if K (·, ·) has an infinite

number of positive eigenvalues, then the representation in (19) still holds by dropping the summands associated
with zero eigenvalues, if any. If K (·, ·) has a finite number of positive eigenvalues such that for some integer
J > 1, αj = 0 for all j > J , then Mercer’s expansion can be written in the form given in (18), and this case has
been covered in the previous subsection.
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The dual problem then becomes:

max
λ1,...,λn,λc

LD (λ, λc) subject to

n∑
i=1

λiYi = 0, λc ≥ 0, and

0 ≤ λi ≤
1

n

ψ(Yi, Xi)

ψ̄
, for i ∈ [n] , (21)

where

LD (λ, λc) =
n∑
i=1

qiλi −
1

2µ

 n∑
i=1

n∑
j=1

λiλjYiYjKc (Xi, Xj) + 2λc

n∑
i=1

λiYic−(Xi) + λ2c

 ,
and

Kc (x, x̃) = K (x, x̃) + c−(x)
′c−(x̃)

is an augmented kernel function. The dual problem is as easy to solve as the problem with a
linear decision boundary.

With the solution (λ̂1, . . . , λ̂n, λ̂c) to the dual problem, we can recover κ̂ϕ, κ̂c, and κ̂0 as follows:

κ̂ϕ =
1

µ

∑
i∈S+

λ̂iYiϕ (Xi) ,

κ̂c =
1

µ

∑
i∈S+

λ̂iYic− (Xi) + λ̂c

 ,

κ̂0 =
1∣∣∣Sψ+∣∣∣

∑
i∈Sψ+

qiYi − 1

µ

∑
j∈S+

λ̂jYjKc (Xi, Xj) + λ̂cc−(Xi)

 ,

where S+ = {i : λ̂i > 0} and Sψ+ = {i : 0 < λ̂i < ψ(Yi, Xi)/(nψ̄)}. For an out-of-sample point
w = (x′, c−(x))

′, we take the action according to

â(x) = sign
(
ϕ(x)′κ̂ϕ + c− (x) κ̂c + κ̂0

)
= sign

 1

µ

∑
i∈S+

λ̂iYi
[
ϕ(x)′ϕ (Xi) + c−(x)c−(Xi)

]
+ λ̂cc− (x)

+ κ̂0


= sign

 1

µ

∑
i∈S+

λ̂iYiKc (x,Xi) + λ̂cc− (x)

+ κ̂0

 .

The last expression depends only on the augmented kernel function Kc (·, ·) . There is no need
to know ϕ (·) to compute the action rule. The main differences between our procedure and the
standard kernel SVM are the sign constraint, the class-dependent margin requirement, the case-
specific loss, and the augmented kernel function.

For ease of reference, we call the support vector decision rule built on a kernel function
with an infinite number of positive eigenvalues as the kernel support vector decision rule. A
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widely used example of such kernels in the SVM literature is the Gaussian Radial Basis Func-
tion (RBF) kernel, defined as K (x, x̃) = exp(−τ ∥x− x̃∥2), which is continuous, symmetric,
and strictly positive-definite. Using this kernel function is equivalent to choosing m (x, θ) =∑n

i=1 θi exp(−τ ∥x−Xi∥2) to approximate P (x) . Buhmann (2003) provides a comprehensive
introduction to the theory and applications of radial basis functions.

5 Theoretical results

5.1 Bayes Consistency

In this subsection, we consider the population decision problem where the true data distribution is
known. We show that the excess risk under the MU approach is bounded above by the excess risk
under MU-SVM approach. Hence, a decision rule that is Bayes-consistent under the MU-SVM
is also Bayes-consistent under the MU.12

Ignoring the regularization term in (12), which is relevant only for finite samples, we can see
that the population support vector decision solves

f∗MU-SVM (·) = arg min
f∈M

QMU-SVM (f) , (22)

where QMU-SVM (f) = EℓMU-SVM (Y, f (X)), with

ℓMU-SVM (y, f(x)) =
{
1 {y = +1}

[
q+ − f (x)

]
+
+ 1 {y = −1}

[
q− + f (x)

]
+

}
ψ(y, x),

and M: X → R is the class of all measurable functions defined on X .13 Since the MU-SVM loss
is nonnegative, we can solve for the optimal function value f∗MU-SVM (x) pointwise for each point
x ∈ X .

Now, for a given point x ∈ X , we define α := f(x) ∈ R. Then, the pointwise minimization
problem is

α∗
MU-SVM = argmin

α∈R
E [ℓMU-SVM (Y, α) |X = x]

= argmin
α∈R

{
P (x)

[
q+ − α

]
+
ψ(1, x) + [1− α]

[
q− + α

]
+
ψ(−1, x)

}
. (23)

The above minimization problem is equivalent to the one in (22), but with a different point of
view. In (22), we adopt a function view and search for the entire function f (·) in a function
space, while in (23), we adopt a scalar view and search for a scalar value in the real line for a
given value x of X.

In the rest of this subsection, our analysis will be conditional on X = x, unless stated
otherwise. For notional simplicity, we suppress the conditioning and write P1 = P = P (x) ,
P−1 = 1− P (x) , ψ1 = ψ1 (x) = ψ(1, x), ψ−1 = ψ−1 (x) = ψ(−1, x). We then have

α∗
MU-SVM = argmin

α∈R
QMU-SVM (α) ,

where, with some abuse of notation, we define

QMU-SVM (α) = P1ψ1

[
q+ − α

]
+
+ P−1ψ−1

[
q− + α

]
+

(24)

12In the machine learning literature, Bayes consistency, as defined here, is often referred to as Fisher consistency.
13Sufficient conditions for the measurability of f∗

MU-SVM (·) can be found in Lemma A.3.18 of Steinwart and
Christmann (2008).
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as the conditional risk (at X = x).
Based on QMU-SVM (·), we define the (conditional) excess risk under the MU-SVM:

RMU-SVM (α) = QMU-SVM (α)− inf
α∈R

QMU-SVM (α) .

The excess risk RMU-SVM (α) measures how far QMU-SVM (α) is from its infimum over α ∈ R. If
the infimum is achieved at α∗

MU-SVM, then for a given α, RMU-SVM (α) measures how far α is from
α∗
MU-SVM in terms of their QMU-SVM-risks. Intuitively, we can regard the gap QMU-SVM (α) −
QMU-SVM(α∗

MU-SVM) as a measure of the distance between α and α∗
MU-SVM.

Next, we define the corresponding quantities under the MU approach. Let

ℓMU (y, f(x)) = 1 {sign (yf(x)) < 0}ψ(y, x).

The conditional risk function under the MU approach, conditional on X = x, is

QMU (α) = E [ℓMU (Y, α) |X = x] = P1ψ1 · 1 {sign (α) = −1}+ P−1ψ−1 · 1 {sign (α) = 1} . (25)

This is well-defined unless α = 0, in which case, sign (0) is not well-defined and we will treat this
shortly.

To define the excess risk, we first find the value of α that minimizes QMU (α). Let c =
ψ−1/

(
ψ1 + ψ−1

)
. Clearly, when P ̸= c,

α∗
MU = P − c ∈ arg inf

α∈R
QMU (α) .

Hence, when α ̸= 0 and P ̸= c, the conditional excess risk

RMU (α) = QMU (α)− inf
α∈R

QMU (α) ,

is well-defined.
The case with P = c or α = 0 requires special treatment, as sign (0) is not well-defined. Re-

gardless of how sign (0) may be defined, we assume that the decision sign (0) incurs the maximum
risk when P ̸= c. That is,

QMU (0) = max
{
P1ψ1, P−1ψ−1

}
if P ̸= c,

and so
RMU (0) = max

{
P1ψ1, P−1ψ−1

}
−QMU (P − c) if P ̸= c.

On the other hand, we treat any decision as a correct decision when P = c. Hence, QMU (α) = 0
and RMU (α) = 0 for any α ∈ R if P = c.

Combining all cases, we define RMU (·) as follows:

RMU (α) =


QMU (α)−QMU (P − c) , if P ̸= c, α ̸= 0;
max

{
P1ψ1, P−1ψ−1

}
−QMU (P − c) , if P ̸= c, α = 0;

0, if P = c.

In the statistical literature, excess risks are also referred to as regrets. The definition of excess
risks, or regrets, depends on the risk measures being used. Here, we have two risk measures: QMU

and QMU-SVM. The first measure is directly tied to what we care about, while the second measure
is motivated by margin considerations. From a computational perspective, it is much easier to
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optimize the sample analogue of the second measure; however, this measure is not directly linked
to the expected utility we aim to maximize. Our goal is to show that a minimizer of the surrogate
excess risk function also minimizes the excess risk function induced by the expected utility, thereby
maximizing the expected utility. More precisely, we aim to show that RMU (α) ≤ RMU-SVM (α)
for any α ∈ R, such that whenever RMU-SVM (α) is close to zero, RMU (α) is also close to zero.

For any ϵ > 0, define the “ϵ-worse” set:

SMU (ϵ) = {α ∈ R : RMU (α) > ϵ} .

For any α ∈ SMU (ϵ), its excess QMU-risk is greater than ϵ. Intuitively, SMU (ϵ) consists of α
values that perform worse than the best choice α∗

MU by at least ϵ. On this set, we show in the
next proposition that the excess QMU-SVM-risk is also greater than ϵ, which then implies that
RMU (α) ≤ RMU-SVM (α) for any α ∈ R.

Proposition 2 For any finite ϵ > 0, we have
(i) infP∈[0,1] infα∈SMU(ϵ)RMU-SVM (α) ≥ ϵ where, for a null set ∅, infα∈∅RMU-SVM (α) is

defined to be +∞.
(ii) RMU (α) ≤ RMU-SVM (α) for any α ∈ R.
(iii) the unconditional excess risks satisfy

E [RMU (f (X))] ≤ E [RMU-SVM (f (X))] ,

for any f ∈ M and any distribution of X such that E [RMU-SVM (f (X))] is well-defined.

Proposition 2 extends a well-known result in the SVM literature (e.g., Chapter 3 of Stein-
wart and Christmann (2008)) by allowing for case-dependent losses and class-specific margins.
Propositions 2(i) and 2(ii) are pointwise results, each of which holds for every x ∈ X , while
Proposition 2(iii) is an integrated version of Proposition 2(ii). The proposition holds for any
positive values of q+ and q−. This gives us the flexibility to use different margins for different
classes of observations.

Proposition 2(ii) shows that the minimizer of RMU-SVM (α) is necessarily also a minimizer of
RMU (α) . According to the proof of Proposition 2, we have: if P1ψ1 < P−1ψ−1 (equivalently,
P < c),

RMU (α) =

{
0, if α < 0
P−1ψ−1 − P1ψ1, if α ≥ 0

RMU-SVM (α) =


− (q− + α)P1ψ1, if α ≤ −q−
(q− + α)

(
P−1ψ−1 − P1ψ1

)
, if − q− < α < q+

(q− + α)P−1ψ−1 − (q+ + q−)P1ψ1, if α ≥ q+

and if P1ψ1 ≥ P−1ψ−1 (equivalently, P ≥ c),

RMU (α) =

{
P1ψ1 − P−1ψ−1, if α ≤ 0
0, if α > 0

RMU-SVM (α) =


(q+ − α)P1ψ1 − (q+ + q−)P−1ψ−1, if α ≤ −q−
(q+ − α)

(
P1ψ1 − P−1ψ−1

)
, if − q− < α < q+

(α− q+)P−1ψ−1, if α ≥ q+
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Figure 7: The excess risk as a function of α for the cases (q+, q−) = (1, 1) and (1, 2) .

Figure 7 plots each of RMU-SVM (α) and RMU (α) as a function of α for some fixed P1ψ1 and
P−1ψ−1 when q+ = q− = 1 and when q+ = 1, q− = 2. Given P and ψ, the figure clearly shows
that the minimizer of RMU-SVM (α) also minimizes RMU (α) . The figure also demonstrates the
convexity of RMU-SVM (α) as a function of α.

Proposition 2(iii) compares the unconditional excess risks, as the conditional covariate has
been integrated out. It shows that for any f ∈ M, the unconditional excess QMU-risk of f is
bounded above by its unconditional excess QMU-SVM-risk. Thus, we can use the QMU-SVM-risk
as a surrogate for the QMU-risk.

Proposition 2 allows us to study the transferability of Bayes consistency, a notion we now
define. To this end, consider a general loss function ℓG(·, ·) ≥ 0, with the subscript “G”
indicating it is a general loss. Define the corresponding conditional QG-risk, conditional on
X = x, by QG (α) = E [ℓG(Y, α)|X = x] , and the conditional excess risk by RG (α) = QG (α)−
infα∈RQG (α) . Here, QG (α) and RG (α) are defined in the same way as QMU-SVM (α) and
RMU-SVM (α) (or QMU (α) and RMU (α)) are defined. The unconditional risk and excess risk
of f under the loss ℓG(·, ·) are then given by E [QG(f(X))] and E [RG (f(X))] , respectively.
Let f̂n be a sequence of estimators of the target function that minimizes E [QG(f(X))] over
f ∈ M. For example, we can take f̂n as an approximate minimizer of n−1

∑n
i=1 ℓG (Yi, f(Xi)),

the empirical version of E [QG(f(X))] , over a certain function space.

Definition 3 Let FX (·) be the CDF of X. If E
[
RG(f̂n (X))

]
:=
∫
X RG(f̂n (x))dFX (x) → 0 in

probability as n → ∞, then we say that f̂n is Bayes-consistent with respect to the risk measure
QG.
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Clearly, Bayes consistency is a concept inherently linked to a specific risk measure of interest.
By definition, if f̂n is Bayes-consistent with respect to a particular risk measure QG, then the
QG-risk of f̂n will approach the smallest possible QG-risk as n increases. In other words, the
performance of f̂n in terms of the QG-risk improves, eventually converging to the smallest possible
QG-risk. Mathematically, QG(f̂n) → inff∈MQG (f) in probability as n→ ∞.

Now, suppose that f̂MU-SVM,n is Bayes-consistent under QMU-SVM so that

E[RMU-SVM(f̂MU-SVM,n (X))] = op (1) .

By Proposition 2(iii), which is an algebraic result that holds for any f ∈ M, including a sample-
dependent function f̂MU-SVM,n, we have

E[RMU(f̂MU-SVM,n (X))] ≤ E[RMU-SVM(f̂MU-SVM,n (X))].

Hence, E[RMU(f̂MU-SVM,n (X))] = op (1) . In fact, if

E[RMU-SVM(f̂MU-SVM,n (X))] = Op (δn)

for a sequence δn → 0, then, by the same argument, we have: E[RMU(f̂MU-SVM,n (X))] = Op (δn) .
Therefore, any decision rule that is Bayes-consistent under QMU-SVM is also Bayes-consistent
under QMU with the same rate of convergence. To a great extent, using QMU-SVM as the risk
measure combines the best of both worlds: the computational feasibility and the transferability
of Bayes consistency.

5.2 Finite Sample Generalization Bound

In this subsection, we establish a generalization bound for the support vector decision rule.
We consider the general case where the decision boundary lies in an RKHS, which can be either
finite or infinite dimensional, covering all cases considered in the previous sections.

Let F0 be a set of constant functions, FK be the RKHS corresponding to a kernel K (·, ·) ,
which can be KJ (·, ·) as defined in (18) or the kernel considered in (19), and Fc be the linear
subspace spanned by c− (·) . Recall that the MU-SVM solves

min
κϕ,κc,κ0,ξ

{
1

n

n∑
i=1

ξi
ψ(Yi, Xi)

ψ̄
+
µn
2

(
∥κϕ∥2 + κ2c

)}
,

subject to the constraints:

Yif(Xi) + ξi ≥ qi, ξi ≥ 0, for i ∈ [n] , and κc ≥ 0.

In the above, µn is a positive constant that may depend on the sample size, and f (x) = f0 (x) +
fK (x) + fc (x) for

f0 (x) ∈ F0, fK(x) =

J∑
j=1

√
α∗
jϕ

∗
j (x)κϕ,j ∈ FK, and fc(x) = c− (x)κc ∈ Fc,

where J can be finite or infinite in this subsection, depending on whether K (·, ·) has a finite
number of positive eigenvalues or not.
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We assume that F0 = {f : f (x) ≡ κ0 for all x ∈ X and some κ0 ∈ K0}, where K0 ⊂ R
is a compact set, and that any pairwise intersection of F0,FK, and Fc contains only the zero
function.14 Let F = F0 ⊕ FK ⊕ Fc be the direct sum of F0,FK, and Fc. For any f (x) =
f0 (x) + fK (x) + c− (x)κc ∈ F , we define the “Kc” norm ∥·∥Kc as

∥f∥Kc =
(
∥fK∥2K + κ2c

)1/2
,

where ∥·∥K stands for the RKHS norm. Equipped with the above norm ∥·∥Kc, F is a Banach
space.

For a solution f̂ ∈ F of the MU-SVM problem, we are interested in obtaining a high-
probability upper bound for QMU(f̂) where

QMU (f) = E [ψ(Y,X)1 {Y ̸= sign (f (X))}] = E [ψ(Y,X) · 1 {Y f (X) ≤ 0}] ,

assuming X is a continuous random variable. The upper bound for QMU(f̂) informs us about the
out-of-sample performance of the decision rule a (x) = sign(f̂ (x)). To this end, for some s > 0,
we define the ramp loss:

h̃s (r) =


1, if r ≤ 0,
1− r/s, if 0 < r < s,
0, if r ≥ s,

which is a truncated and rescaled version of the hinge loss [1− r]+. The ramp loss is not convex,

but it is Lipschitz continuous. Note that 1 {r ≤ 0} ≤ h̃s (r) ≤ 1 {r ≤ s} . So h̃s (r) can be regarded
as a smooth interpolation between the usual 0-1 loss 1 {r < 0} and the margin-sensitive 0-1 loss
1 {r < s} .

For some γ+ ∈ (0, q+] and γ− ∈ (0, q−], denote γ = (γ+, γ−) and define

hγ (r, y) = h̃γ+ (r) 1 {y = +1}+ h̃γ− (r) 1 {y = −1} .

In view of the fact that 1 {r ≤ 0} ≤ h̃min(γ+,γ−) (r) ≤ hγ (r, y) for both y = +1 and y = −1, we
have

QMU(f) ≤ E [hγ(Y f (X) , Y )ψ(Y,X)] := Qhγ (f)

for any f ∈ F . In particular, QMU(f̂) ≤ Qhγ (f̂). Instead of establishing an upper bound for

QMU(f̂), we will focus on deriving an upper bound for Qhγ (f̂). This approach proves to be more
manageable since, for each fixed y, hγ (·, y) is both bounded and Lipschitz continuous.

Our upper bound for Qhγ (f̂) is based on its empirical version Qn,hγ (f̂), where

Qn,hγ (f) =
1

n

n∑
i=1

[hγ (Yif (Xi) , Yi)ψ(Yi, Xi)] .

Let
ψ+
max = sup

x∈X+

ψ (1, x) , ψ−
max = sup

x∈X−

ψ (−1, x) ,

where X+ and X− are the supports of X conditional on Y = +1 and −1, respectively.

14For example, if we take FK to be the popular RKHS generated by a Gaussian RBF, then F0 ∩ FK contains
only the zero function, as the Gaussian RKHS does not include any non-zero constant functions; see Corollary 4.44
of Steinwart and Christmann (2008) (p. 141).
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Theorem 4 Let Assumptions 1 and 2 hold. Assume that ψmax = max
(
ψ+
max, ψ

−
max

)
< ∞ and

supκ0∈K0
|κ0| <∞.

(i) With probability one, f̂ ∈ Fn for

Fn := Fµn =

{
f ∈ F : ∥f∥2Kc ≤

q+ + q−

µn

}
.

(ii) With probability at least 1− δ, for any γ = (γ+, γ−) ∈ (0, q+]⊗ (0, q−], we have

QMU(f̂) ≤ Qn,hγ (f̂) +
2√
n
max

(
ψ+
max

γ+
,
ψ−
max

γ−

)
V (Fn, n, δ) +

ψmax√
n

√
1

2
log

2

δ
,

where

V (Fn, n, δ) =

√
q+ + q−

µn

√√√√ 1

n

n∑
i=1

Kc (Xi, Xi) +
√
max
x∈X

Kc (x, x)

√
1

2
log

2

δ

+ sup
κ0∈K0

|κ0| .

Theorem 4(ii) remains valid if Qn,hγ (f̂) is replaced by the following empirical measure:

1

n

n∑
i=1

[
1{Yif̂ (Xi) < γ+}1 {Yi = +1}+ 1{Yif̂ (Xi) < γ−}1 {Yi = −1}

]
ψ(Yi, Xi), (26)

which is larger than Qn,hγ (f̂). The above measure is constructed based on the margin-sensitive
0-1 losses with γ+ and γ− as the margin parameters. The upper bound in Theorem 4(ii) is tighter
and is therefore preferred from a theoretical perspective. However, one might find the measure
in (26) more intuitively appealing.

The generalization bound in Theorem 4(ii) depends on µn, which controls the margin of the
action rule. On the one hand, as µn increases, the first term (i.e., Qn,hγ (f̂)) in the generalization
bound becomes larger because there is a stronger restriction on the RKHS norm and a weaker
restriction on the margin, leading to a larger margin and hence more misclassified points. This
causes the first term in the generalization bound to increase.

For intuition, we can refer to Figure 6 and consider the problem from the perspectives of
the extensive and intensive margins. From the perspective of the extensive margin, a larger µn
implies that the MU-SVM solution has a smaller norm. As a result, the “positive” and “negative”
hyperplanes in the figure are further apart, and more points will fall on the wrong side of their
respective hyperplanes. This leads to more points having a positive value of hγ (Yif (Xi) , Yi) ,

which increases Qn,hγ (f̂). From the perspective of the intensive margin, a larger µn implies a
smaller value of Yif (Xi), a weakly larger value of hγ (Yif (Xi) , Yi), and thus a larger value of

Qn,hγ (f̂).
On the other hand, as µn increases, the second term, which reflects the size of the function

space Fn, becomes smaller. Therefore, there is an opportunity to choose µn to trade off these
two terms, and it can be selected via cross-validation.

Suppose we use the MU approach to obtain

f̂MU ∈ arg min
f∈Fn

Qn,MU(f), for Qn,MU(f) =
1

n

n∑
i=1

1 {Yif(Xi) ≤ 0}ψ(Yi, Xi).
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Then a generalization bound based on VC theory typically takes the following form: with prob-
ability at least 1− δ,

QMU(f̂MU) ≤ Qn,MU(f̂MU) +
ψmax√
n

C

(√
VC[sign(Fn)] log (n) +

√
log

(
1

δ

))
,

where C > 0 is a constant and VC[sign(Fn)] is the VC dimension of the class sign(Fn) := {sign(f):
f ∈ Fn}. See, for example, Proposition 1 in Su (2021). However, the above bound is not useful
if VC[sign(Fn)] is infinite. Indeed, VC[sign(Fn)] = ∞ when FK is an infinite-dimensional RKHS
generated by a universal kernel.15 In such a case, we have to replace VC[sign(Fn)] log (n) by the
logarithm of 2n, the growth function of sign(Fn), and we obtain: with probability at least 1− δ,

QMU(f̂MU) ≤ Qn,MU(f̂MU) + ψmaxC
√

log2 +
ψmax√
n

C

√
log

(
1

δ

)
.

Note that ψmaxC
√
log2 is a constant that does not decay to zero. The high-probability bound

for the generalization error QMU(f̂MU) − Qn,MU(f̂MU) does not decay to zero as n increases. In
contrast, the generalization error bound in Theorem 4 goes to zero as long as µn → 0 such that
nµn → ∞. In particular, if µn goes to zero arbitrarily slowly, then QMU(f̂) − Qn,hγ (f̂) goes to
zero at a rate arbitrarily close to 1/

√
n.

The generalization bound in Theorem 4 also depends on γ. The first term in the generalization
bound increases with γ+ and γ−, while the second term decreases with γ+ and γ−. In principle,
we can choose γ to optimize these two terms. However, this would lead to a random γ̂, but the
above bound can only accommodate a fixed γ. To address this, we employ an idea from Bartlett
(1998) to establish an upper bound that holds for a random γ̂. The main departure is that we
have a two-dimensional parameter γ ∈ (0, q+]⊗ (0, q−], while the parameter in Bartlett (1998) is
one-dimensional (i.e., a scalar).

Proposition 5 Let the assumptions in Theorem 4 hold. For any γ̂ =
(
γ̂+, γ̂−

)
∈ (0, q+]⊗ (0, q−]

that may be random and data-dependent, we have: with probability at least 1− δ,

QMU(f̂) ≤ Qn,hγ̂ (f̂) +
4√
n
max

(
ψ+
max

γ̂+
,
ψ−
max

γ̂−

)
· V
(
Fn, n,

δγ̂+γ̂−

4q+q−

)
+
ψmax√
n

√
1

2
log

8q+q−

δγ̂+γ̂−
.

The proposition allows us to search for a γ̂ to minimize the generalization bound. We note
that there is a search cost: compared to the generalization bound in Theorem 4(ii), both the
second and third terms in the above bound have extra inflation factors.

To accommodate a data-driven choice of µn, we need to establish an upper bound that is
uniform over all choices of µn. Let {µn,ℓ, ℓ = 1, . . . , Ln} be the set of the candidate values of
µn. Both µn,ℓ and Ln can depend on and grow with n, but they are not allowed to depend on

the sample. Let {pℓ ≥ 0, ℓ = 1, . . . , Ln} be a nonnegative sequence with
∑Ln

ℓ=1 pℓ ≤ 1. Let f̂µn,ℓ
be the estimator of f ∈ Fµn,ℓ , and let ℓ̂ represent the data-driven cross-validated choice over
ℓ = 1, . . . , Ln.

15In the context of machine learning and kernel methods, a universal kernel refers to a type of kernel function
whose RKHS is dense in the space of continuous functions under the sup norm.
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Corollary 6 Let the assumptions in Theorem 4 hold.
(i) With probability at least 1− δ, we have

QMU(f̂µn,ℓ̂) < Qn,hγ (f̂µn,ℓ̂) +
2√
n
max

(
ψ+
max

γ+
,
ψ−
max

γ−

)
V
(
Fµn,ℓ̂ , n, pℓ̂δ

)
+
ψmax√
n

√
1

2
log

2

pℓ̂δ

for any fixed γ = (γ+, γ−) ∈ (0, q+]⊗ (0, q−].
(ii) For any γ̂ =

(
γ̂+, γ̂−

)
∈ (0, q+]⊗ (0, q−] that may be random and data-dependent, such as

(
γ̂+, γ̂−

)
∈ arg min

γ∈(0,q+]⊗(0,q−]

[
Qn,hγ (f̂µn,ℓ̂) +

2√
n
max

(
ψ+
max

γ+
,
ψ−
max

γ−

)
V
(
Fµn,ℓ̂ , n, pℓ̂δ

)]
,

we have, with probability at least 1− δ,

QMU(f̂µn,ℓ̂) ≤ Qn,hγ̂ (f̂µn,ℓ̂)+
4√
n
max

(
ψ+
max

γ̂+
,
ψ−
max

γ̂−

)
V

(
Fµn,ℓ̂ , n,

δpℓ̂γ̂
+γ̂−

4q+q−

)
+
ψmax√
n

√
1

2
log

8q+q−

δpℓ̂γ̂
+γ̂−

.

The above upper bound can be translated directly into a lower bound on the out-of-sample
mean utility. Consider the case with a fixed γ as an example. Denote the out-of-sample mean
utility as

U(f) = EU(sign (f) , Y,X) = EU(Y, Y,X)− Eψ(Y,X) · 1 {Y ̸= sign (f)} (27)

= EU(Y, Y,X)−QMU(f).

Then, by Theorem 4(ii), we have, with probability at least 1− δ/2,

U(f̂µn,ℓ̂) > EU(Y, Y,X)−Qn,hγ (f̂µn,ℓ̂)−
2√
n
max

(
ψ+
max

γ+
,
ψ−
max

γ−

)
V
(
Fµn,ℓ̂ , n,

pℓ̂δ

2

)
−ψmax√

n

√
1

2
log

4

pℓ̂δ
.

The unknown EU(Y, Y,X) in the above can be estimated by 1
n

∑n
i=1 U (Yi, Yi, Xi). Using Ho-

effding’s lemma, we have

Pr

(
1

n

n∑
i=1

U (Yi, Yi, Xi)− EU(Y, Y,X) > Umax

√
2

n
log

2

δ

)

≤ exp

{
−4n2U2

max

4nU2
max

1

n
log

2

δ

}
=
δ

2
.

Hence, with probability at least 1− δ,

U(f̂µn,ℓ̂) >
1

n

n∑
i=1

U (Yi, Yi, Xi)−Qn,hγ (f̂µn,ℓ̂)−
2√
n
max

(
ψ+
max

γ+
,
ψ−
max

γ−

)
V
(
Fµn,ℓ̂ , n,

1

2
pℓ̂δ

)

− ψmax√
n

√
1

2
log

4

pℓ̂δ
− Umax

√
2

n
log

2

δ
.

The case with a data-driven γ can be handled similarly.
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6 Simulation Study

6.1 Utility Normalization

To make our simulation results comparable to those in Su (2021), we normalize the utility function
in the same way. By direct calculations, we have

U(a, y, x) = b (x)

[
y + 1

2
− c(x)

](
a+ 1

2

)
+ U (−1, y, x) .

This shows that the binary decision problem does not depend on U (−1, y, x) . Hence, we can
normalize U (−1, y, x) to be any value. If we normalize it according to

U (−1, y, x) = −1

2
b (x)

(
y + 1

2
− c(x)

)
,

then

U(a, y, x) =
1

2
b (x)

[
y + 1

2
− c(x)

]
a.

This normalization amounts to using the payoff functions in the table below:

y = 1 y = −1

a = 1 +1
2b (x) [1− c(x)] −1

2b (x) c(x)
a = −1 −1

2b (x) [1− c(x)] +1
2b (x) c(x)

loss from “incorrect actions” b (x) [1− c(x)] b (x) c(x)

Under the above normalization, the loss function becomes

ℓ(a, y, x) = U(y, y, x)− U(a, y, x) =
1

2
b (x)

[
y + 1

2
− c(x)

]
(y − a)

= ψ(y, x) · 1 {y ̸= a} ,

where

ψ(y, x) = b(x)

[
y + 1

2
− yc(x)

]
=

1

2
b(x) {y [1− 2c(x)] + 1} > 0. (28)

We will use the above normalization in our simulation study; see (29) and (30). The nor-
malization is the same as that in Su (2021), so our simulation results are directly comparable to
those in Su (2021).

6.2 Simulation Design

Following Elliott and Lieli (2013), we consider two data generating processes (DGPs), each of
which is combined with two preferences. These simulation designs are also considered by Su
(2021). In the first data generating process, X is a scalar random variable following the location-
shifted and rescaled beta distribution:

X ∼ 5B(1, 1.3)− 2.5,

where B(1, 1.3) is the standard beta distribution with parameter (1, 1.3). Since B(1, 1.3) is sup-
ported on [0, 1] , X is supported on [−2.5, 2.5]. Conditional on X = x, Y is generated according
to

P (Y = 1|X = x) = P (x) and P (Y = −1|X = x) = 1− P (x),
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where

P (x) = Λ
(
β0 + β1x+ β2x

2 + β3x
3
)

:=
1

1 + exp [− (β0 + β1x+ β2x
2 + β3x

3)]

is the true conditional probability and β =: (β0, β1, β2, β3)
′ = (0,−0.5, 0, 0.2)′. The choice of

β, which is the same as that in Elliott and Lieli (2013) and Su (2021), makes P (x) sufficiently
close to the linear logit model Λ (β0 + β1x) in the following sense: the 5% Lagrangian multi-
plier test of the null of a linear logit model against the alternative of the cubic logit model
Λ
(
β0 + β1x+ β2x

2 + β3x
3
)
has power of about 35% only.

For this DGP, we consider two preferences, leading to two different configurations of b(·) and
c (·) :

Preference 1: b (x) = 20 and c(x) = 0.5;
Preference 2: b (x) = 20 and c(x) = 0.5 + 0.025x.
Given this DGP, the cubic ML under the specificationmML(x, θ) = Λ

(
θ0 + θ1x+ θ2x

2 + θ3x
3
)

is clearly correctly specified. On the other hand, the cubic MU with the specification that
mMU (x, θ) is a cubic polynomial is correctly (sign) specified. To see this, note that P (x)−c(x) = 0
has three real solutions under both Preferences 1 and 2. See Figure 8 below for an illustration.
For each preference, we can find a cubic polynomial P3 (x, θ) that has the same three solutions
as P (x) − c(x) and satisfies sign(P3 (x, θ)) = sign(P (x) − c(x)).16 Note that sign(P3 (x; θ)) =
sign([P3 (x, θ) + c(x)] − c(x)) and Pc

3 (x, θ) := P3 (x, θ) + c(x) is also a cubic polynomial. From
the perspective of the action rule, the specification of mMU (x, θ) as a cubic polynomial (i.e.,
mMU (x, θ) = Pc

3 (x; θ) = P3 (x, θ) + c(x)) is correct, as only the sign of mMU (x, θ) − c (x) mat-
ters. Unlike mML(x, θ), which is constrained to be in the unit interval [0, 1], mMU (x, θ) does not
have such a restriction and can take values outside this interval.

In the second data generating process, X consists of two variables: X = (X1, X2)
′, where X1

and X2 are independent and uniformly distributed on [−3.5, 3.5]. The true conditional distribu-
tion of Y given X = x for x = (x1, x2)

′ is

P (x) = Λ (Q(v)) for v = 1.5x1 + 1.5x2,

where Q(v) = (1.5− 0.1v) exp
[
−
(
0.25v + 0.1v2 − 0.04v3

)]
is not a polynomial. We also consider

two preferences under this DGP:
Preference 3: b(x) = 20 and c (x) = 0.75;
Preference 4: b(x) = 20 + 40 · 1 {|x1 + x2| < 1.5} and c (x) = 0.75.
Relative to Preference 3, Preference 4 makes observations closer to the center of the distri-

bution more important. This will have an effect on the decision rule, as the choice of b(x) affects
the loss ψ (y, x) ; see equation (28).

For this DGP, the cubic ML under the specification that mML(x, θ) = Λ (P3(x; θ)) is not
correctly specified. In fact, Λ(Pj(x; θ)) is not correctly specified for any finite order poly-
nomial Pj(x; θ), because Q(v) is not a polynomial. However, the cubic MU, which speci-
fies mMU (x, θ) as a cubic polynomial, is correctly (sign) specified. To see this, we note that
Λ (Q(v)) − 0.75 = 0 has three solutions, say v1, v2, v3; see Figure 9. For each solution vj , the
pair (x1, x2)

′ satisfying 1.5x1 + 1.5x2 = vj is a solution to P (x)− c(x) = 0. But there is a cubic

16We use Pj (x, θ) to represent a polynomial in variable x with degree j and coefficient θ. The polynomial can
be different for different occurrences.
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Figure 8: Graph of P (x)− c(x) under DGP 1 and Preferences 1 and 2.

polynomial P3 (v; θv) with coefficients θv that has the same three roots as Λ (Q(v)) − 0.75, and
sign(P3 (v, θv)) = sign(Λ (Q(v))− 0.75) . Hence sign(P3 (1.5x1 + 1.5x2; θv)) = sign(P (x)− c(x)) .
Given that P3 (1.5x1 + 1.5x2; θv) := Px

3 (x, θ) is a cubic polynomial in x, and c (x) is constant,
Px
3 (x, θ)+c(x) = Px,c

3 (x; θ) is also a cubic polynomial in x. Therefore, if we specify mMU (x, θ) as
a cubic polynomial (i.e., mMU (x, θ) = Px,c

3 (x, θ)), then for some θ, the sign of mMU (x, θ)− c(x)
matches exactly with the sign of P (x)− c(x).

For each data generating process, we consider five groups of methods (see Section S.4 in
the supplementary appendix for a summary of these methods). The first group consists of the
ML method with the logit polynomial specification mML(x, θ) = Λ (Pj(x, θ)) of the conditional
probability P (x) for j = 1, 2, 3. The second group consists of the standard MU method with the
polynomial specification mMU(x, θ) − c(x) = Pj(x, θ). The third group consists of the penalized
MU method that uses the simulated maximal discrepancy (SMD) as the data-dependent com-
plexity penalty.17 We denote this as MU-SMD. The SMD is a data-driven measure of model
complexity. We let the maximum polynomial order J be 3, 4, 5. For each maximum polynomial
order J , the MU-SMD selects the best polynomial order over j = 1, 2, . . . , J. In terms of achiev-
ing higher utilities, Su (2021) shows that the MU-SMD method dominates the MU method of
(Elliott and Lieli (2013)) that uses pretesting to select the polynomial order. It also dominates
the MU method that uses cross-validation and the MU method that uses AIC and BIC types of
penalty to select the polynomial order. Hence, the third group consists of the most competitive
procedure in the literature.18

The fourth group consists of “Lp-SVMs”, which ignore the loss heterogeneity, and the cost-

17Su (2021) also considers other data-dependent complexity penalties, but alternative penalties do not deliver
better performances than SMD. Here, we have also ignored a technical term that is detrimental to the performance
of the penalized MU with data-dependent complexity penalties. See Su (2021) for more details.

18In estimating the SMD, we follow Su (2021) to set the parameter m (the number of simulations defined in that
paper) to be 10. Setting m = 100 produces similar simulation results. We thank Dr. Su for sharing the programs.
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Figure 9: Graph of Λ(Q(v))− 0.75 (cf. DGP 2 and Preferences 3 and 4).

sensitive SVM (CS-SVM), which partially accounts for the loss heterogeneity. As a prominent
example of an “Lp-SVM”, the standard “L2-SVM” employs the squared L2-norm ∥κw∥22 as the
regularizer. We also consider using the L1-norm ∥κw∥1 as the regularizer, leading to the “L1-
SVM”. The CS-SVM we consider here is a modified version of the L2-SVM (see, for example,
Lin et al. (2002), Bach et al. (2006), and Fernández et al. (2018)). It involves using different costs
for false positives and false negatives. However, the costs do not depend on any covariate. In the
simulation, we use the averages of ψ (−1, Xj) and ψ (1, Xj) over the simulated covariate values
as the costs for false positives and false negatives, respectively. The CS-SVM can be regarded
as a misspecified version of the proposed polynomial MU-SVM: instead of using correctly spec-
ified covariate-specific costs, the CS-SVM employs the averaged version, thereby only partially
accounting for the loss heterogeneity.

For all SVM-based methods in the fourth group, we use κ0 + ϕ (x)′ κϕ = 0 as the decision
boundary and specify κ0+ϕ (x)

′ κϕ as a polynomial of order j = 3, 4, or 5.We consider polynomials
of higher order than those for the ML and standard MU methods because the SVM is a regularized
method, while the ML method and the standard MU method are not. We implement the L2-SVM
and CS-SVM using quadratic programming based on the primal problem, and we implement
the L1-SVM using the lpsvm algorithm provided by Fung and Mangasarian (2004). For the
hyperparameter µ in the L1-SVM and L2-SVM, we employ the rate of correct actions as the
criterion and use ten-fold cross validation to choose it from

(
2−12, 2−10, . . . , 212

)
/n. This method

of selecting µ is compatible with the recommendation of Hsu et al. (2003). For the hyperparameter
µ in the CS-SVM, we use the same selection method as that used for the Poly-MU-SVM, described
next.

The last group consists of the methods proposed in this paper with three different values of
ρ = 1/4, 1/2, 3/4. The first procedure in this group is the polynomial series MU-SVM method
(Poly-MU-SVM) in Section 4.1 with κ0 + ϕ (x)′ κϕ = 0 as the decision boundary. As in the
case with L1-SVM and L2-SVM, we specify κ0 + ϕ (x)′ κϕ as polynomials of order j = 3, 4, 5.
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For example, when x is a scalar, we have ϕ (x) =
(
x, x2, . . . , xj

)
so that all monomials are

treated equally. We also use ten-fold cross validation to choose the hyperparameter µ, but the
cross-validation criterion is now the average utility achieved for each µ. We solve the polynomial
MU-SVM using quadratic programming based on the primal problem. See Section S.2 for details.

The second procedure in the last group is the kernel-based MU-SVM method in Section 4.2.
We use the radial basis function (RBF) kernel K (x, x̃) = exp(−τ ∥x− x̃∥2). We note that for
the MU or Poly-MU-SVM methods, c (x) can be absorbed into the polynomial specification, and
there is no need to include the extra covariate c− (x) in formulating the decision boundary. In
contrast, for the RBF-based MU-SVM, c(x) is included as a separate variable. We implement
the RBF-based kernel MU-SVM (denoted by RBF-MU-SVM) via quadratic programming based
on the dual problem (cf. Section S.2). The hyperparameters (µ, τ) are chosen via ten-fold cross
validation over the grid

(
2−12, 2−10, . . . , 212

)
/n⊗

(
2−12, 2−10, . . . , 212

)
.

We use the average relative out-of-sample utility as the performance criterion to compare
different methods. For each method, let â (·) be the action rule constructed using the sample
{(Xi, Yi)}ni=1 where n is the size of the estimation sample (i.e., the training sample). The average
out-of-sample utility is computed as

Ūout,â =
1

nout

n+nout∑
j=n+1

{
1

2
b (Xj)

[
Yj + 1

2
− c(Xj)

]
â(Xj)

}
, (29)

where {(Xj , Yj) : j = n+ 1, . . . , n+ nout} is the set of out-of-sample observations (i.e., the testing
sample). We normalize Ūout,â by the oracle out-of-sample utility assuming that P (x) is known:

Uoracle =
1

nout

n+nout∑
j=n+1

{
1

2
b (Xj)

[
Yj + 1

2
− c(Xj)

]
sign(P (Xj)− c(Xj))

}
. (30)

For each simulation replication, we compute the utility ratio Ūout,â/Uoracle and report its average
over 500 simulation replications. In the experiments, we set n = 500, 1000 and nout = 5000.

6.3 Simulation Results

Table 1 reports the utility ratio for DGP 1 when n = 500. For this DGP, the cubic polynomial
specification (i.e., j = 3 in the table) under the ML method is correct, and it is not surprising
that it outperforms all other methods. However, the ML method with misspecified lower-order
polynomials (i.e., j = 1 and 2) is dominated by all other methods. This is especially true
under Preference 2, where c (·) is not a constant function. The penalized MU-SMD method
outperforms the standard MU method. The L1-SVM and L2-SVM methods perform well with
L1-SVM dominating L2-SVM, which is the standard SVM. The performance of the CS-SVM
is close to that of the L2-SVM, which is expected, as c (·) is not significantly different from a
constant function.

Our proposed Poly-MU-SVM with ρ = 1/2 performs as well as the standard L2-SVM under
Preference 1, where both b (·) and c (·) are constant functions and c (x) = 0.5. It clearly outper-
forms the L2-SVM under Preference 2, where c (x) depends on x. This provides strong evidence
that the Poly-MU-SVM dominates the standard SVM when the utility-induced loss depends on
covariates. On the other hand, the Poly-MU-SVM with ρ = 1/2 is numerically indistinguishable
from the CS-SVM under Preference 1 where both b (·) and c (·) are constant functions. In this
case, these two methods are theoretically identical. However, the Poly-MU-SVM with ρ = 1/2
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clearly dominates the CS-SVM under Preference 2, where c (·) is not a constant function. This
demonstrates the advantage of using the Poly-MU-SVM over the CS-SVM when the cost of a
false decision is covariate-dependent.

Among the MU-SVM methods, the RBF kernel version and the polynomial series version
have comparable performances. In an overall sense, each of our proposed MU-SVM methods
outperforms the MU-SMD, often by a large margin.

For the proposed MU-SVMmethods, Table 1 shows that the choice of ρmatters. In particular,
ρ = 1/2 yields better results than the other two alternatives.

Table 1: Average out-of-sample utility ratios (in percentage) under DGP 1 and Preferences 1 and
2 for n = 500.

P (x) = Λ
(
−0.5x+ 0.2x3

)
b (x) = 20, c(x) = .5 b (x) = 20, c (x) = .5 + .025x

Polynomial order j = 1 j = 2 j = 3 j = 1 j = 2 j = 3

ML 34.21 31.47 93.10 8.66 11.67 94.33
MU 54.87 44.68 64.47 33.36 45.06 53.81

Max Poly order J = 3 J = 4 J = 5 J = 3 J = 4 J = 5

MU-SMD 59.25 62.07 69.40 56.62 59.07 67.19

Polynomial order j = 3 j = 4 j = 5 j = 3 j = 4 j = 5

L1-SVM 85.85 84.20 87.52 82.10 79.50 81.72
L2-SVM 69.18 70.47 81.32 62.00 63.53 75.24
CS-SVM 69.21 70.48 81.19 62.48 64.94 75.47

Poly-MU-SVM (ρ = 1/4) 59.81 63.23 75.33 65.72 66.92 75.45
Poly-MU-SVM (ρ = 1/2) 69.21 70.48 81.19 76.42 76.50 83.17
Poly-MU-SVM (ρ = 3/4) 66.96 67.09 76.09 74.36 72.00 76.97

ρ = 1/4 ρ = 1/2 ρ = 3/4 ρ = 1/4 ρ = 1/2 ρ = 3/4

RBF-MU-SVM 74.98 77.14 74.30 74.90 77.83 72.76

Table 2 reports the utility ratio for DGP 2 when n = 500. For the ML, all polynomial
specifications are incorrect. As a result, the ML method does not perform well. The L1-SVM
and L2-SVM perform even worse. The reason is that these two SVM methods do not account
for the dependence of the utility on covariates. Even though neither b (x) nor c(x) depends
on the covariate x under Preference 3, the fact that c(x) = 0.75 rather than 0.5 captures the
dependence of the utility on the action and the outcome. The L1-SVM and L2-SVM effectively
use 0.5 as the decision threshold for the conditional probability. Such a threshold does not
capture the loss asymmetry. Theoretically, when b (x) = 20 and c(x) = 0.75, we have ψ(y, x) =
b (x) [(y + 1) /2− y × c (x)] = 10−5y and U(a, y, x) = 0.5b (x) [(y + 1) /2− c(x)] a = (5y − 2.5) a.
Hence, the loss under y = −1 (i.e., the loss from a false positive action) is three times as large as
the loss under y = 1 (i.e., the loss from a false negative action). That is, a false-positive decision
costs three times as large as a false-negative decision. Ignoring the loss asymmetry, both L1-SVM
and L2-SVM result in very bad performances. In addition, Ūout,â could be negative if too many
false decisions are made. In the extreme case when a = −y, we have U(a, y, x) = −5 + 2.5y ∈
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{−7.5,−2.5} .
The Poly-MU-SVM with ρ = 1/2 performs the same as the CS-SVM under Preference 3,

where both b (·) and c (·) are constant functions. However, the former outperforms the latter
under Preference 4, where b (·) is not a constant function even though c (·) is. Note that when
the covariate is equal to x, the costs of false positives and false negatives are b (x) c (x) and
b (x) [1− c (x)] , respectively. Therefore, the cost of a false decision depends on x when b (x)
depends on x, while c (x) does not. In such cases, the CS-SVM is inferior to the Poly-MU-SVM
because it fails to capture the cost heterogeneity across different covariate values.

The performance of the Poly-MU-SVM is comparable to or better than that of the MU-SMD
when the maximum polynomial order is 4 or 5. When the maximum polynomial order is 3, the
MU-SMD does better than the Poly-MU-SVM, but not by a large margin. The performance of
the RBF-MU-SVM is much better than that of the MU-SMD for all polynomial specifications
under consideration.

As in Table 1, we observe that the choice of ρ affects the performance of the proposed MU-
SVM methods, with ρ = 1/2 and ρ = 3/4 yielding better results than ρ = 1/4.

Table 2: Average out-of-sample utility ratios (in percentage) under DGP 2 and Preferences 3 and
4 for n = 500.

P (x) = Λ (Q(1.5(x1 + x2))) , Q(v) = (1.5−0.1v)
exp(0.25v+0.1v2−0.04v3)

b (x) = 20 b(x) = 20 + 40 {x1 + x2 < 1.5}
c (x) = 0.75 c (x) = 0.75

Polynomial order j = 1 j = 2 j = 3 j = 1 j = 2 j = 3

MLE 59.16 58.53 59.48 29.04 27.71 33.43

MU 69.45 50.11 68.60 54.63 32.91 50.66

Max Poly order J = 3 J = 4 J = 5 J = 3 J = 4 J = 5

MU-SMD 68.16 67.84 68.95 51.10 51.06 52.90

Polynomial order j = 3 j = 4 j = 5 j = 3 j = 4 j = 5

L1-SVM 0.37 7.42 8.32 14.11 19.90 19.72
L2-SVM -6.51 0.71 2.90 9.40 14.72 16.35
CS-SVM 64.94 69.54 78.44 38.48 49.46 64.85

Poly-MU-SVM (ρ = 1/4) 61.70 64.79 69.84 38.79 52.94 62.59
Poly-MU-SVM (ρ = 1/2) 64.94 69.54 78.44 43.57 59.63 69.32
Poly-MU-SVM (ρ = 3/4) 65.60 70.40 79.56 43.51 59.23 67.68

ρ = 1/4 ρ = 1/2 ρ = 3/4 ρ = 1/4 ρ = 1/2 ρ = 3/4

RBF-MU-SVM 74.90 76.24 76.58 63.76 64.75 64.09

Tables 3 and 4 report the results when n = 1000. Relative to the sample size n = 500, the
performance of the ML method improves under the correct specification, but this is not the case
under misspecifications. This is expected. On the one hand, under correct specifications, the
MLE converges more quickly to the true parameter value, as it becomes more efficient. On the
other hand, under misspecifications, the MLE converges more quickly to a value that is different
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from the true parameter value. In contrast, when the sample size increases from 500 to 1000, the
performance of each MU-based method improves. The L1-SVM and L2-SVM do not necessarily
have better performances for a larger sample size. This is because these SVM methods are not
tailored to the specific problem at hand.

The relative performances of all methods in Table 3 are comparable to those in Table 1. The
qualitative observations made for Table 1 are applicable to Table 3. Similarly, the qualitative
observations made for Table 2 are applicable to Table 4.

To sum up, the ML method is not suitable for utility-based decision making when there is a
risk of model misspecifications. The standard L1-SVM and L2-SVM do not work well when the
loss function depends on either the outcome variable or the covariates. The CS-SVM works well
when the loss function depends only on the outcome variable, but its performance deteriorates
when the loss also depends on the covariates. The penalized MU-SMD works reasonably well, but
its performance is often dominated by the proposed support vector decision rules. In particular,
the RBF-MU-SVM outperforms the penalized MU-SMD in all cases, and often by a large margin.
Simulation results not reported here show that, for the MU-SVM method, it is important to
include the cutoff function as a separate covariate if it is not multicollinear with other covariates
or features used in formulating the decision boundary.

Table 3: Average out-of-sample utility ratios (in percentage) under DGP 1 and Preferences 1 and
2 for n = 1000.

P (x) = Λ
(
−0.5x+ 0.2x3

)
b (x) = 20, c(x) = .5 b (x) = 20, c (x) = .5 + .025x

Polynomial order j = 1 j = 2 j = 3 j = 1 j = 2 j = 3

ML 31.06 30.80 97.23 6.78 6.72 97.80
MU 58.94 48.53 68.45 34.71 48.02 60.31

Max Poly order J = 3 J = 4 J = 5 J = 3 J = 4 J = 5

MU-SMD 63.43 67.62 77.07 64.10 67.07 77.47

Polynomial order j = 3 j = 4 j = 5 j = 3 j = 4 j = 5

L1-SVM 94.13 92.70 94.63 91.25 88.64 91.12
L2-SVM 73.38 75.69 91.85 67.56 69.77 87.98
CS-SVM 73.51 75.70 91.79 68.81 71.32 86.77

Poly-MU-SVM, ρ = 1/4 65.98 69.33 83.41 76.75 75.32 85.67
Poly-MU-SVM, ρ = 1/2 73.51 75.70 91.79 88.05 87.02 94.69
Poly-MU-SVM, ρ = 3/4 71.50 72.23 85.13 83.17 81.91 85.69

ρ = 1/4 ρ = 1/2 ρ = 3/4 ρ = 1/4 ρ = 1/2 ρ = 3/4

RBF-MU-SVM 83.66 87.11 83.55 85.31 90.06 83.54
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Table 4: Average out-of-sample utility ratios (in percentage) under DGP 2 and and Preferences
3 and 4 for n = 1000.

P (x) = Λ (Q(1.5(x1 + x2))) , Q(v) = (1.5−0.1v)
exp(0.25v+0.1v2−0.04v3)

b (x) = 20 b(x) = 20 + 40 {x1 + x2 < 1.5}
c (x) = 0.75 c (x) = 0.75

Polynomial order j = 1 j = 2 j = 3 j = 1 j = 2 j = 3

ML 58.22 56.99 59.70 26.81 24.07 31.83
MU 72.24 56.67 71.72 58.79 39.00 56.42

Max Poly order J = 3 J = 4 J = 5 J = 3 J = 4 J = 5

MU-SMD 71.37 71.45 72.95 57.40 58.00 61.07

Polynomial order j = 3 j = 4 j = 5 j = 3 j = 4 j = 5

L1-SVM -2.16 7.12 7.92 13.46 19.48 20.04
L2-SVM -8.94 -3.96 -1.80 7.81 11.50 13.10
CS-SVM 66.06 71.29 85.10 37.16 49.51 74.46

Poly-MU-SVM, ρ = 1/4 64.66 66.78 76.30 42.18 57.49 70.88
Poly-MU-SVM, ρ = 1/2 66.06 71.29 85.10 46.79 65.34 80.22
Poly-MU-SVM, ρ = 3/4 67.07 71.81 84.46 46.83 66.07 79.42

ρ = 1/4 ρ = 1/2 ρ = 3/4 ρ = 1/4 ρ = 1/2 ρ = 3/4

RBF-MU-SVM 83.54 84.40 85.40 75.66 75.80 75.23

7 Conclusion

The paper considers a binary decision-making problem. Given the training sample (Xi, Yi)
n
i=1 and

an out-of-sample covariate X = x, the decision-maker takes a binary action a (x) to maximize the
expected utility E [U(a, Y, x)|X = x] where the utility function U (a, Y, x) depends on the action
a taken, the covariate value x, and the outcome variable Y to be realized after the covariate is
observed and the action is taken. Had the decision-maker known the conditional distribution
P (x) = Pr(Y = 1|X = x) and the optimal cutoff function c(x), which depends on the utility
function, the decision-maker would have taken the optimal action a (x) = sign (P (x)− c(x)) .
However, P (x) is not known, and the optimal action rule has to be learned from the training
sample. This paper proposes a learning method that accounts for the covariate-specific cutoff
function and the distance of the training points to the decision boundary. The method is moti-
vated by the literature on support vector machines. However, the presence of a covariate-specific
cutoff function calls for a conceptual change, leading to an augmented attribute space and a new
learning method. A simulation study shows that the proposed method outperforms the most
recent methods in the literature and the ML method when the model is misspecified.

In this paper, the margin and the regularizer take the form of a squared ℓ2/L2 norm or a
squared RKHS norm. While these norms have delivered promising results, it may be worthwhile
to investigate regularizers of different forms, such as the ℓ1/L1 norm, especially when the covariate
space is of high dimension. By doing so, we could potentially achieve double sparsity, resulting
in both a small number of support vectors and a limited number of covariates entering the
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support vector. Another intriguing avenue for research is the development of a simple rule to
select the parameter ρ that largely captures the optimal location of the middle hyperplane. To
accomplish this, a more extensive simulation study may be necessary, incorporating new DGPs
and preferences that have not been considered in the existing literature. A data-driven approach
to choosing ρ, such as cross-validation, is also a possibility. The current focus of the paper is on
binary decision problems, but it would be valuable to extend our method to handle multi-class
decisions, where both Y and a can take more than two values. We leave these extensions for
future research.

8 Appendix of Proofs

Proof of Proposition 2. Part (i). We follow a few steps to prove this part. First, we charac-
terize the set SMU (ϵ) . Note that α∗

MU = P − c, so we have sign (α∗
MU) = sign

(
P1ψ1 − P−1ψ−1

)
and

inf
α∈R

QMU (α) = QMU (α∗
MU) = min

{
P1ψ1, P−1ψ−1

}
.

When P ̸= c, we have, for α ̸= 0,

RMU (α) = QMU (α)−QMU (α∗
MU)

= P1ψ1 {1 {sign (α) = −1} − 1 {sign (α∗
MU) = −1}}

+ P−1ψ−1 {1 {sign (α) = 1} − 1 {sign (α∗
MU) = 1}}

=
(
P1ψ1 − P−1ψ−1

)
· 1 {α < 0, α∗

MU > 0}
+
(
P−1ψ−1 − P1ψ1

)
· 1 {α > 0, α∗

MU < 0}
=
(
P1ψ1 − P−1ψ−1

)
· 1 {α < 0, P > c}

+
(
P−1ψ−1 − P1ψ1

)
· 1 {α > 0, P < c} .

When P ̸= c, we have, for α = 0,

RMU (α) = max
{
P1ψ1, P−1ψ−1

}
− P1ψ1 · 1 {sign (α∗

MU) = −1} − P−1ψ−1 · 1 {sign (α∗
MU) = 1}

= P1ψ1 · 1 {P > c}+ P−1ψ−1 · 1 {P < c} − P1ψ1 · 1 {P < c} − P−1ψ−1 · 1 {P > c}
=
(
P1ψ1 − P−1ψ−1

)
1 {P > c}+

(
P−1ψ−1 − P1ψ1

)
1 {P < c} ,

where the first line holds because QMU (0) is defined to be max
{
P1ψ1, P−1ψ−1

}
when P ̸= c.

Therefore, when P ̸= c,

SMU (ϵ)

=
{
α ≤ 0 : P > c and P1ψ1 − P−1ψ−1 > ϵ

}
∪
{
α ≥ 0 : P < c and P−1ψ−1 − P1ψ1 > ϵ

}
=
{
α ∈ R : α ≤ 0, P1ψ1 − P−1ψ−1 > ϵ

}
∪
{
α ∈ R : α ≥ 0, P1ψ1 − P−1ψ−1 < −ϵ

}
,

where the second line follows because:
(i) P1ψ1 − P−1ψ−1 > ϵ implies that P1ψ1 − P−1ψ−1 > 0, which in turn implies that P > c;

and
(ii) P1ψ1 − P−1ψ−1 < −ϵ implies that P1ψ1 − P−1ψ−1 < 0, which then implies that P < c.
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When P = c, we have P1ψ1 = P−1ψ−1, and thus

RMU (α) = QMU (α)−QMU (α∗
MU) = 0 for any α ∈ R.

Hence, SMU (ϵ) = ∅, that is, SMU (ϵ) is an empty set.
Second, we compute infα∈RQMU-SVM (α) . We have

inf
α∈R

QMU-SVM (α) = inf
α

{
P1ψ1

[
q+ − α

]
+
+ P−1ψ−1

[
q− + α

]
+

}
,

where

P1ψ1

[
q+ − α

]
+
+ P−1ψ−1

[
q− + α

]
+

=


P1ψ1 (q

+ − α) , if α ≤ −q−;
P1ψ1 (q

+ − α) + P−1ψ−1 (q
− + α) , if − q− < α < q+;

P−1ψ−1 (q
− + α) , if α ≥ q+.

If P < ψ−1/
(
ψ1 + ψ−1

)
= c (i.e., P1ψ1 < P−1ψ−1), the infimums over the individual

ranges are achieved at α = −q−,−q−, and q+, with the infimums given by (q+ + q−)P1ψ1,
(q+ + q−)P1ψ1, and (q+ + q−)P−1ψ−1, respectively. The infimum over the entire range is achieved
at α = −q−, with the infimum given by (q+ + q−)P1ψ1.

If P > ψ−1/
(
ψ1 + ψ−1

)
= c (i.e., P1ψ1 > P−1ψ−1), the infimums over the individual ranges

are achieved α = −q−, q+, and q+, with the infimums given by (q+ + q−)P1ψ1, (q
+ + q−)P−1ψ−1,

and (q+ + q−)P−1ψ−1, respectively. The infimum over the entire range is achieved at α = q+,
with the infimum given by (q+ + q−)P−1ψ−1.

If P = ψ−1/
(
ψ1 + ψ−1

)
= c (i.e., P1ψ1 = P−1ψ−1), the infimum over the entire range is

achieved at any α ∈ [−q−, q+], with the infimum given by (q+ + q−)P1ψ1.
Hence,

inf
α∈R

QMU-SVM (α) =
(
q+ + q−

) (
P1ψ11 {P ≤ c}+ P−1ψ−11 {P > c}

)
.

Third, we compute infα∈S(ϵ)QMU-SVM (α) . If
∣∣P1ψ1 − P−1ψ−1

∣∣ ≤ ϵ, we have S (ϵ) = ∅. By
definition, infα∈S(ϵ)QMU-SVM (α) = ∞, and Part (i) of the proposition clearly holds.

If P1ψ1 − P−1ψ−1 > ϵ, then the infimum is taken over α ≤ 0, under which we have

P1ψ1

[
q+ − α

]
+
+ P−1ψ−1

[
q− + α

]
+

=

{
P1ψ1 (q

+ − α) + P−1ψ−1 (q
− + α) , if − q− < α ≤ 0;

P1ψ1 (q
+ − α) , if α ≤ −q−.

The infimums over the individual ranges are achieved at α = 0 and −q−, respectively. The
infimum over the entire range α ≤ 0 is

min
(
q+P1ψ1 + q−P−1ψ−1,

(
q+ + q−

)
P1ψ1,

)
= q+P1ψ1 + q−P−1ψ−1.

If P1ψ1 − P−1ψ−1 < −ϵ, then the infimum is taken over α ≥ 0, under which we have

P1ψ1

[
q+ − α

]
+
+ P−1ψ−1

[
q− + α

]
+

=

{
P1ψ1 (q

+ − α) + P−1ψ−1 (q
− + α) , if 0 ≤ α < q+;

P−1ψ−1 (q
− + α) , if α ≥ q+.
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The infimums over the individual ranges are achieved at α = 0 and q+, respectively. The infimum
over the entire range α ≥ 0 is

min
(
q+P1ψ1 + q−P−1ψ−1,

(
q+ + q−

)
P−1ψ−1

)
= q+P1ψ1 + q−P−1ψ−1.

Therefore, when
∣∣P1ψ1 − P−1ψ−1

∣∣ > ϵ, we have

inf
α∈S(ϵ)

QMU-SVM (α) = q+P1ψ1 + q−P−1ψ−1.

Fourth, using the results from the previous two steps, we have, when
∣∣P1ψ1 − P−1ψ−1

∣∣ > ϵ :

inf
α∈S(ϵ)

RMU-SVM (α)

= q+P1ψ1 + q−P−1ψ−1 −
(
q+ + q−

) (
P1ψ11 {P ≤ c}+ P−1ψ−11 {P > c}

)
= P1ψ1

[
q+ −

(
q+ + q−

)
1 {P ≤ c}

]
+ P−1ψ−1

[
q− −

(
q+ + q−

)
1 {P > c}

]
= P1ψ1

[
q+1{P > c} − q−1 {P ≤ c}

]
+ P−1ψ−1

[
q−1 {P ≤ c} − q+1 {P > c}

]
=
(
P1ψ1 − P−1ψ−1

) [
q+1{P > c} − q−1 {P ≤ c}

]
=
∣∣P1ψ1 − P−1ψ−1

∣∣ [q+1{P > c}+ q−1 {P ≤ c}
]

≥ ϵ.

Since infα∈S(ϵ)RMU-SVM (α) ≥ ϵ for any P satisfying
∣∣P1ψ1 − P−1ψ−1

∣∣ > ϵ, and

inf
α∈S(ϵ)

RMU-SVM (α) = ∞

for any P satisfying
∣∣P1ψ1 − P−1ψ−1

∣∣ ≤ ϵ, we have

inf
P∈[0,1]

inf
α∈S(ϵ)

RMU-SVM (α) ≥ ϵ.

Part (ii). It follows from Part (i) that, for any ϵ > 0, if RMU (α) ≥ ϵ for any α ∈ R, then we
must have RMU-SVM (α) ≥ ϵ. Upon choosing ϵ = RMU (α) , so that RMU (α) ≥ ϵ holds trivially
for any α ∈ R, we obtain:

RMU-SVM (α) ≥ RMU (α)

for any α ∈ R.
Part (iii). We first make the dependence of RMU-SVM (α) on x explicit. We write

RMU-SVM (α) = E [ℓMU-SVM (Y, α) |X = x]− E [ℓMU-SVM (Y, α∗
MU-SVM (x)) |X = x] ,

where α∗
MU-SVM (x) is the same as α∗

MU-SVM, but its dependence on x is made explicit. For any
f ∈ M and any x ∈ X , by plugging in α = f(x), we obtain

RMU-SVM (f(x)) = E [ℓMU-SVM (Y, f(x)) |X = x]− E [ℓMU-SVM (Y, α∗
MU-SVM (x)) |X = x] .

Similarly, we have

RMU (f(x)) = E [ℓMU (Y, f(x)) |X = x]− E [ℓMU (Y, α∗
MU (x)) |X = x] .
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By Part (ii), we know that

RMU (f(x)) ≤ RMU-SVM (f(x)) ,

for any f ∈ M and any x ∈ X . Taking the integral of the above with respect to the distribution
FX (·) of X, we obtain∫

X
RMU (f(x)) dFX (x) ≤

∫
X
RMU-SVM (f(x)) dFX (x) ,

i.e., E [RMU (f (X))] ≤ E [RMU-SVM (f (X))] , as long as the integral
∫
X RMU-SVM (f(x)) dFX (x)

or, equivalently, the expectation E [RMU-SVM (f (X))] , is well-defined.

Proof of Theorem 4. Part (i). We write f̂ (x) = κ̂0 + f̂K (x) + f̂c (x) , where f̂K (x) ∈ FK and
f̂c (x) = κ̂cc− (x) ∈ FC . By definition, the objective function evaluated at f̂ is not greater than
that evaluated at the constant function f (x) ≡ q+. So

1

n

n∑
i=1

[
qi − Yif̂ (Xi)

]
+

ψ(Yi, Xi)

ψ̄
+
µn
2

(∥∥∥f̂K∥∥∥2
K
+ κ̂2c

)

≤ 1

n

n∑
i=1

[
qi − Yiq

+
]
+

ψ(Yi, Xi)

ψ̄
=

(q− + q+)

n

∑
i:Yi=−1

ψ(Yi, Xi)

ψ̄
.

Using the same argument with f (x) ≡ −q− as the candidate function, we have

1

n

n∑
i=1

[
qi − Yif̂ (Xi)

]
+

ψ(Yi, Xi)

ψ̄
+
µn
2

(∥∥∥f̂K∥∥∥2
K
+ κ̂2c

)

≤ 1

n

n∑
i=1

[
qi + Yiq

−]
+

ψ(Yi, Xi)

ψ̄
=

(q− + q+)

n

∑
i:Yi=+1

ψ(Yi, Xi)

ψ̄
.

Therefore,

1

n

n∑
i=1

[
qi − Yif̂ (Xi)

]
+

ψ(Yi, Xi)

ψ̄
+
µn
2

(∥∥∥f̂K∥∥∥2
K
+ κ̂2c

)

≤
(
q− + q+

)
min

 1

n

∑
i:Yi=+1

ψ(Yi, Xi)

ψ̄
,
1

n

∑
i:Yi=−1

ψ(Yi, Xi)

ψ̄


≤
(
q− + q+

) 1
2

 1

n

∑
i:Yi=+1

ψ(Yi, Xi)

ψ̄
+

1

n

∑
i:Yi=−1

ψ(Yi, Xi)

ψ̄


=
q− + q+

2
.

As a result, with probability one,

µn
2

∥∥∥f̂∥∥∥2
Kc

≤ q− + q+

2
,
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and thus ∥∥∥f̂∥∥∥2
Kc

≤ q− + q+

µn
.

That is, with probability one, f̂ ∈ Fn, and we can treat Fn as the parameter space.
Part (ii). We adopt the arguments in Bartlett and Mendelson (2002) and prove the results in

two steps.
Step I: Use the Rademacher Analysis to obtain a high-probability upper bound

for QMU(f̂).
To emphasize the dependence of Qhγ (f) on the sample S = {(Xi, Yi)}ni=1, we write it as

Qn,hγ (f ;S) when needed. To prove the upper bound in the theorem, we first provide an upper
bound for the probability:

Pr

{
sup
f∈Fn

[
Qn,hγ (f ;S)−Qhγ (f)

]
− E sup

f∈Fn

[
Qn,hγ (f ;S)−Qhγ (f)

]
> ϵ

}

using McDiarmid’s inequality. The inequality requires that the object of interest does not change
too much if only one observation in the sample is replaced. Let Si = [∪j ̸=i (Xj , Yj)] ∪ (X◦

i , Y
◦
i )

be another sample, which is the same as S but with the i-th pair (Xi, Yi) replaced by (X◦
i , Y

◦
i )

drawn at random from the same population. Then

sup
f∈Fn

[
Qn,hγ (f ;S)−Qhγ (f)

]
− sup
f∈Fn

[
Qn,hγ

(
f ;Si

)
−Qhγ (f)

]
= sup

f∈Fn

[
Qn,hγ (f ;S)−Qhγ (f)

]
− sup
f∈Fn

[
Qn,hγ (f ;S)−Qhγ (f) +

hγ (Y
◦
i f (X

◦
i ) , Y

◦
i )ψ(Y

◦
i , X

◦
i )− hγ (Yif (Xi) , Yi)ψ(Yi, Xi)

n

]
≥ sup

f∈Fn

[
Qn,hγ (f ;S)−Qhγ (f)

]
− sup
f∈Fn

[
Qn,hγ (f ;S)−Qhγ (f)

]
− sup
f∈Fn

hγ (Y
◦
i f (X

◦
i ) , Y

◦
i )ψ(Y

◦
i , X

◦
i )− hγ (Yif (Xi) , Yi)ψ(Yi, Xi)

n

= − sup
f∈Fn

hγ (Y
◦
i f (X

◦
i ) , Y

◦
i )ψ(Y

◦
i , X

◦
i )− hγ (Yif (Xi) , Yi)ψ(Yi, Xi)

n
.

Similarly,

sup
f∈Fn

[
Qn,hγ

(
f ;Si

)
−Qhγ (f)

]
− sup
f∈Fn

[
Qn,hγ (f ;S)−Qhγ (f)

]
≥ − sup

f∈Fn

hγ (Yif (Xi) , Yi)ψ(Yi, Xi)− hγ (Y
◦
i f (X

◦
i ) , Y

◦
i )ψ(X

◦
i , Y

◦
i )

n
,

which implies that

sup
f∈Fn

[
Qn,hγ (f ;S)−Qhγ (f)

]
− sup
f∈Fn

[
Qn,hγ

(
f ;Si

)
−Qhγ (f)

]
≤ sup

f∈Fn

hγ (Yif (Xi) , Yi)ψ(Yi, Xi)− hγ (Y
◦
i f (X

◦
i ) , Y

◦
i )ψ(Y

◦
i , X

◦
i )

n
.
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Hence, ∣∣∣∣∣ supf∈Fn

[
Qn,hγ (f ;S)−Qhγ (f)

]
− sup
f∈Fn

[
Qn,hγ

(
f ;Si

)
−Qhγ (f)

]∣∣∣∣∣
≤ sup

f∈Fn

|hγ (Yif (Xi))ψ(Yi, Xi)− hγ (Y
◦
i f (X

◦
i ) , Y

◦
i )ψ(Y

◦
i , X

◦
i )|

n
≤ ψmax

n
.

Now, by McDiarmid’s inequality (Lemma 26.4 in Shalev-Shwartz and Ben-David (2014), p. 328),
we have

Pr

{
sup
f∈Fn

[
Qn,hγ (f)−Qhγ (f)

]
− E sup

f∈Fn

[
Qn,hγ (f)−Qhγ (f)

]
> ϵ

}
≤ exp

(
− 2nϵ2

ψ2
max

)
.

That is, with probability at least 1− exp
(
− 2nϵ2

ψ2
max

)
,

sup
f∈Fn

[
Qhγ (f)−Qn,hγ (f)

]
< E sup

f∈Fn

[
Qhγ (f)−Qn,hγ (f)

]
+ ϵ.

For any δ ∈ (0, 1) , choose ϵ to satisfy exp
(
− 2nϵ2

ψ2
max

)
= δ

2 or ϵ = ψmax

√
log 2

δ
2n . Then the above

implies that, with probability at least 1− δ
2 , we have

QMU(f̂) ≤ Qn,hγ (f̂) +Qhγ (f̂)−Qn,hγ (f̂)

≤ Qn,hγ (f̂) + E sup
f∈Fn

[
Qhγ (f)−Qn,hγ (f)

]
+ ψmax

√
log 2

δ

2n
.

Using Lemma 26.2 in Shalev-Shwartz and Ben-David (2014) (p. 326), we have

E sup
f∈Fn

[
Qhγ (f)−Qn,hγ (f)

]
≤ 2Eσ,S sup

f∈Fn

[
1

n

n∑
i=1

σihγ (Yif (Xi) , Yi)ψ(Yi, Xi)

]
,

where {σi} are independent Rademacher random variables (i.e., Pr (σi = 1) = Pr (σi = −1) =
1/2) and the expectation in the upper bound is taken with respect to the distributions of σ = {σi}
and the sample S = {(Xi, Yi)}ni=1 .

Define
Hγ,i (r) = hγ (r, Yi)ψ(Yi, Xi).

Then

E sup
f∈Fn

[
Qhγ (f)−Qn,hγ (f)

]
≤ 2Eσ,S sup

f∈Fn

[
1

n

n∑
i=1

σiHγ,i (ti)

]
for ti = Yif(Xi).

Note that

|Hγ,i (r1)− Hγ,i (r2)| = |hγ (r1, Yi)ψ(Yi, Xi)− hγ (r2, Yi)ψ(Yi, Xi)|
= |hγ (r1, Yi)− hγ (r2, Yi)|ψ(Yi, Xi)

≤ max

(
ψ+
max

γ+
,
ψ−
max

γ−

)
|r1 − r2| .
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Using Lemma 26.9 of Shalev-Shwartz and Ben-David (2014) (p. 331), which is a version of
Talagrand’s contraction lemma (Ledoux and Talagrand (1991)), we have

Eσ,S sup
f∈Fn

[
1

n

n∑
i=1

σiHγ,i (ti)

]
≤ max

(
ψ+
max

γ+
,
ψ−
max

γ−

)
Eσ,S sup

f∈Fn

1

n

n∑
i=1

σif (Xi) .

To obtain an upper bound for Eσ,S supf∈Fn n
−1
∑n

i=1 σif (Xi) , we define the function class

FKc,n :=

{
fK + fc : fK ∈ FK, fc = c−(x)κc ∈ Fc, and ∥fK∥2K + κ2c ≤

q+ + q−

µn

}
.

Then any f ∈ Fn can be represented by f = κ0 + fKc where κ0 ∈ K0 and fKc ∈ FKc,n. So

Eσ,S sup
f∈Fn

1

n

n∑
i=1

σif (Xi) =

{
Eσ,S sup

fKc∈FKc,n,κ0∈K0

1

n

n∑
i=1

σi [fKc (Xi) + κ0]

}

≤ Eσ,S sup
fKc∈FKc,n

1

n

n∑
i=1

σifKc (Xi) + Eσ

∣∣∣∣∣ 1n
n∑
i=1

σi

∣∣∣∣∣ sup
κ0∈K0

|κ0|

≤ Eσ,S sup
fKc∈FKc,n

1

n

n∑
i=1

σifKc (Xi) +
1√
n

sup
κ0∈K0

|κ0| ,

where the second inequality holds because

Eσ

∣∣∣∣∣ 1n
n∑
i=1

σi

∣∣∣∣∣ ≤
Eσ ( 1

n

n∑
i=1

σi

)2
1/2

=
1√
n
.

Therefore,

E sup
f∈Fn

[Qh (f)−Qn,h (f)]

≤ 2max

(
ψ+
max

γ+
,
ψ−
max

γ−

)(
Eσ,S sup

fKc∈FKc,n

1

n

n∑
i=1

σifKc (Xi) +
1√
n

sup
κ0∈K0

|κ0|

)
.

It then follows that with probability at least 1− δ/2, we have

QMU(f̂) ≤ Qn,hγ (f̂)

+ 2max

(
ψ+
max

γ+
,
ψ−
max

γ−

)(
Eσ,S sup

fKc∈FKc,n

1

n

n∑
i=1

σifKc (Xi) +
1√
n

sup
κ0∈K0

|κ0|

)
+ ψmax

√
log 2

δ

2n
.

But, by McDiarmid’s inequality, we obtain:

Pr

{
Eσ,S sup

fKc∈FKc,n

1

n

n∑
i=1

σifKc (Xi)− Eσ sup
fKc∈FKc,n

1

n

n∑
i=1

σifKc (Xi) > ϵ

}
< exp

(
− 2nϵ2

f2Kc,max

)
,

where |fKc,max| = supfKc∈FKc,n supx∈X |fKc (x)| and so

Pr

Eσ,S sup
fKc∈FKc,n

1

n

n∑
i=1

σifKc (Xi)− Eσ sup
fKc∈FKc,n

1

n

n∑
i=1

σifKc (Xi) > |fKc,max|

√
log 2

δ

2n

 <
δ

2
.
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Combining the above analysis, we obtain, with probability at least 1− δ,

QMU(f̂) ≤ Qn,hγ (f̂)

+ 2max

(
ψ+
max

γ+
,
ψ−
max

γ−

)Eσ sup
fKc∈FKc,n

1

n

n∑
i=1

σifKc (Xi) + |fKc,max|

√
log 2

δ

2n
+

1√
n

sup
κ0∈K0

|κ0|


+ ψmax

√
log 2

δ

2n
.

Step II: Derive upper bounds for Eσ supfKc∈FKc,n
1
n

∑n
i=1 σifKc (Xi) and |fKc,max| .

Let ⟨·, ·⟩K be the inner product on the RKHS associated with the kernel K (·, ·). We have

Eσ sup
fKc∈FKc,n

1

n

n∑
i=1

σifKc (Xi)

= Eσ sup
fKc∈FKc,n

1

n

n∑
i=1

σi (fK (Xi) + c−(Xi)κc)

=
1

n
Eσ sup

fKc∈FKc,n

[〈
n∑
i=1

σiK (Xi, ·) , fK (·)

〉
K

+
n∑
i=1

σic−(Xi)κc

]

≤ 1

n
Eσ sup

fKc∈FKc,n

[∥∥∥∥∥
n∑
i=1

σiK (Xi, ·)

∥∥∥∥∥
K

∥fK∥K +

∣∣∣∣∣
n∑
i=1

σic−(Xi)

∣∣∣∣∣ |κc|
]

≤ 1

n
Eσ

∥∥∥∥∥
n∑
i=1

σiK (Xi, ·)

∥∥∥∥∥
2

K

+

∣∣∣∣∣
n∑
i=1

σic−(Xi)

∣∣∣∣∣
2
1/2

sup
fKc∈FKc,n

(
∥fK∥2K + κ2c

)1/2

=
1

n

Eσ
∥∥∥∥∥

n∑
i=1

σiK (Xi, ·)

∥∥∥∥∥
2

K

+

∣∣∣∣∣
n∑
i=1

σic−(Xi)

∣∣∣∣∣
2
1/2

sup
fKc∈FKc,n

(
∥fK∥2K + κ2c

)1/2

≤ 1

n

Eσ
n∑
i=1

n∑
j=1

σiσj [K (Xi, Xj) + c−(Xi)c− (Xj)]


1/2√

q+ + q−

µn

≤ 1

n

√√√√ n∑
i=1

K (Xi, Xi) + c−(Xi)c− (Xi)

√
q+ + q−

µn

=
1√
n

√√√√q+ + q−

µn

1√
n

n∑
i=1

Kc (Xi, Xi).
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Next, for any fKc ∈ FKc,n, we have

|fKc (x)| = |fK (x) + c−(x)κc| ≤ |fK (x)|+ |c−(x)| · |κc|
= ⟨K (x, ·) , fK (·)⟩K + |c−(x)| · |κc|
≤ ∥K (x, ·)∥K ∥f (·)∥K + |c−(x)| · |κc|

=
√
K (x, x) ∥f (·)∥K + |c−(x)| · |κc|

≤
√
K (x, x) + c− (x)2

√
∥f (·)∥K + κ2c

≤
√
Kc (x, x)

√
q+ + q−

µn

for any x ∈ X . Hence, |fKc,max| ≤
√

q++q−

µn
maxx∈X Kc (x, x).

Combining the results in the above two steps, we have

QMU(f̂) ≤ Qn,hγ (f̂) +
2√
n
max

(
ψ+
max

γ+
,
ψ−
max

γ−

)
V (Fn, n, δ) +

ψmax√
n

√
1

2
log

2

δ
,

with probability at least 1− δ.

Proof of Proposition 5. For any γ1 =
(
γ+1 , γ

−
1

)
, γ2 =

(
γ+2 , γ

−
2

)
, δ ∈ (0, 1], define the event:

En(γ1, γ2, δ) =

{
QMU(f̂) > Qn,hγ1 (f̂) +

2√
n
max

(
ψ+
max

γ+2
,
ψ−
max

γ−2

)
· V (Fn, n, δ) +

ψmax√
n

√
1

2
log

2

δ

}
.

Note that the lower bound in the definition of En(γ1, γ2, δ) is increasing in γ1 and decreasing in
γ2 and δ. We have

En(γ1, γ2, δ) ⊆ En(γ̃1, γ2, δ) for γ̃1 ≤ γ1,

En(γ1, γ2, δ) ⊆ En(γ1, γ̃2, δ) for γ̃2 ≥ γ2,

En(γ1, γ2, δ) ⊆ En(γ1, γ2, δ̃) for δ̃ ≥ δ,
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where, for example, γ̃1 ≤ γ1 is an elementwise inequality. Using the above results, we have

Pr

(
QMU(f̂) > Qn,hγ (f̂) +

4√
n
max

(
ψ+
max

γ+
,
ψ−
max

γ−

)
· V
(
Fn, n,

δγ+γ−

4q+q−

)
+
ψmax√
n

√
1

2
log

8q+q−

δγ+γ−
for some γ :=

(
γ+, γ−

)
∈ (0, q+]⊗ (0, q−]

)

= Pr

(
En(γ,

γ

2
,
δ

4

γ+γ−

q+q−
) for some γ ∈ (0, q+]⊗ (0, q−]

)
≤

∞∑
m=0

∞∑
ℓ=0

Pr

{
En(γ,

γ

2
,
δ

4

γ+γ−

q+q−
) for some γ ∈

(
q+

2ℓ+1
,
q+

2ℓ

]
⊗
(

q−

2m+1
,
q−

2m

]}

≤
∞∑
m=0

∞∑
ℓ=0

Pr

{
En
((

q+

2ℓ+1
,
q−

2m+1

)
,
1

2

(
q+

2ℓ
,
q−

2m

)
,

δ

4q+q−
q+

2ℓ
q−

2m

)}

=

∞∑
m=0

∞∑
ℓ=0

Pr

{
En
((

q+

2ℓ+1
,
q−

2m+1

)
,

(
q+

2ℓ+1
,
q−

2m+1

)
,
δ

4

1

2ℓ
1

2m

)}

≤ 1

4

∞∑
m=0

∞∑
ℓ=0

1

2ℓ
1

2m
δ = δ,

where the second inequality follows from the fact that

En(γ,
γ

2
,
δ

4

γ+γ−

q+q−
) ⊆ En

((
q+

2ℓ+1
,
q−

2m+1

)
,
1

2

(
q+

2ℓ
,
q−

2m

)
,

δ

4q+q−
q+

2ℓ
q−

2m

)
for any γ ∈

(
q+

2ℓ+1 ,
q+

2ℓ

]
⊗
(

q−

2m+1 ,
q−

2m

]
and the last inequality follows from Pr (En(γ, γ, δ)) ≤ δ for

any γ ∈ (0, q+]⊗(0, q−] and δ ∈ (0, 1]. It then follows that for any γ̂ that may be data-dependent,
we have

Pr

(
QMU(f̂) > Qn,hγ̂ (f̂) +

4√
n
max

(
ψ+
max

γ̂+
,
ψ−
max

γ̂−

)
· V
(
Fn, n,

δγ̂+γ̂−

4q+q−

)
+
ψmax√
n

√
1

2
log

8q+q−

δγ+γ−

)

≤ Pr

(
QMU(f̂) > Qn,hγ (f̂) +

4√
n
max

(
ψ+
max

γ+
,
ψ−
max

γ−

)
· V
(
Fn, n,

δγ+γ−

4q+q−

)
+
ψmax√
n

√
1

2
log

8q+q−

δγ+γ−
for some γ =

(
γ+, γ−

)
∈ (0, q+]⊗ (0, q−]

)
≤ δ.

Proof of Corollary 6. Part (i). Define the event:

En,ℓ(f̂µn,ℓ , γ, δ)

=

{
QMU(f̂µn,ℓ) > Qn,hγ (f̂µn,ℓ) +

2√
n
max

(
ψ+
max

γ+
,
ψ−
max

γ−

)
V (Fµn,ℓ , n, pℓδ) +

ψmax√
n

√
1

2
log

2

pℓδ

}
.
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Using Theorem 4(ii), we obtain Pr[En,ℓ(f̂µn,ℓ , γ, δ)] ≤ δpℓ for all ℓ = 1, 2, . . . , Ln. Then

Pr
[
En,ℓ̂(f̂µn,ℓ̂ , γ, δ)

]
≤ Pr

[
En,ℓ(f̂µn,ℓ , γ, δ) for at least one ℓ = 1, 2, . . . , Ln

]
≤

Ln∑
ℓ=1

Pr
[
En,ℓ(f̂µn,ℓ ; γ, δ)

]
≤

Ln∑
ℓ=1

pℓδ ≤ δ,

which is equivalent to the result in Corollary 6(i).
Part (ii). For any γ1 =

(
γ+1 , γ

−
1

)
, γ2 =

(
γ+2 , γ

−
2

)
, δ ∈ (0, 1], define the event:

Ẽn,ℓ̂(γ1, γ2, δ)

=

{
QMU(f̂µn,ℓ̂) > Qn,hγ1 (f̂µn,ℓ̂) +

2√
n
max

(
ψ+
max

γ+2
,
ψ−
max

γ−2

)
V
(
Fµn,ℓ̂ , n, pℓ̂δ

)
+
ψmax√
n

√
1

2
log

2

pℓ̂δ

}
.

Using the same argument as in the proof Proposition 5, we can see that the set Ẽn,ℓ̂(γ1, γ2, δ)
becomes larger for a smaller γ1, a larger γ2 or a larger δ. So, using Part (i), we have

Pr

{
QMU(f̂µn,ℓ̂) > Qn,hγ (f̂µn,ℓ̂) +

4√
n
max

(
ψ+
max

γ̂+
,
ψ−
max

γ̂−

)
V

(
Fµn,ℓ̂ , n,

pℓ̂γ̂
+γ̂−

4q+q−
δ

)

+
ψmax√
n

√
1

2
log

8q+q−

pℓ̂γ̂
+γ̂−δ

}

= Pr

(
Ẽn,ℓ̂(γ,

γ

2
,
δ

4

γ+γ−

q+q−
) for some γ ∈ (0, q+]⊗ (0, q−]

)
≤

∞∑
m=0

∞∑
ℓ=0

Pr

{
Ẽn,ℓ̂(γ,

γ

2
,
δ

4

γ+γ−

q+q−
) for some γ ∈

(
q+

2ℓ+1
,
q+

2ℓ

]
⊗
(

q−

2m+1
,
q−

2m

]}

=

∞∑
m=0

∞∑
ℓ=0

Pr

{
Ẽn,ℓ̂

((
q+

2ℓ+1
,
q−

2m+1

)
,

(
q+

2ℓ+1
,
q−

2m+1

)
,
δ

4

1

2ℓ
1

2m

)}

=
∞∑
m=0

∞∑
ℓ=0

Pr

{
En,ℓ̂

(
f̂µn,ℓ̂ ,

(
1

2ℓ+1
,

1

2m+1

)
,
δ

4

1

2ℓ
1

2m

)}

≤ 1

4

∞∑
m=0

∞∑
ℓ=0

1

2ℓ
1

2m
δ = δ,

which implies the desired result.
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de Saint-Flour XXXIII - 2003. Lecture Notes in Mathematics. Springer.

Shalev-Shwartz, S. and Ben-David, S. (2014). Understanding Machine Learning: From Theory
to Algorithms. Cambridge University Press.

Steinwart, I. and Christmann, A. (2008). Support Vector Machines. Springer, 1st edition.

Su, J.-H. (2021). Model selection in utility-maximizing binary prediction. Journal of Economet-
rics, 223(1):96–124.

Zhao, Y., Zeng, D., Rush, A. J., and Kosorok, M. R. (2012). Estimating individualized treat-
ment rules using outcome weighted learning. Journal of the American Statistical Association,
107(499):1106–1118.

Zhou, X., Mayer-Hamblett, N., Khan, U., and Kosorok, M. R. (2017). Residual weighted learning
for estimating individualized treatment rules. Journal of the American Statistical Association,
112(517):169–187.

56



Online Supplementary Appendix

Title: Support Vector Decision Making
Author: Yixiao Sun

S.1 Additional Proofs

Proof of Lemma 1. Let di be the geometric distance from a pointWi to the middle hyperplane
w′θw = θ̄0 and let W◦ be the point on the middle hyperplane that is closest to Wi. Then

W ′
◦θw = θ̄0, (S.1)

and Wi −W◦ and θw are collinear so that

Wi −W◦ = Yi
θw

∥θw∥
di. (S.2)

It follows from equation (S.2) that

W◦ =Wi − Yi
θw

∥θw∥
di.

Plugging the above into (S.1) yields

W ′
iθw − Yi ∥θw∥ di = θ̄0.

Solving for di, we have

di =
W ′
iθw − θ̄0
Yi ∥θw∥

=
Yi
(
W ′
iθw − θ̄0

)
Y 2
i ∥θw∥

=
Yi
(
W ′
iθw − θ̄0

)
∥θw∥

.

For a point Wi on the positive hyperplane, we have W ′
iθw = θ+0 and Yi = +1. So, for this

point,

di =
Yi
(
θ+0 − θ̄0

)
∥θw∥

=
θ+0 − ρθ+0 − (1− ρ) θ−0

∥θw∥
=

(1− ρ)
(
θ+0 − θ−0

)
∥θw∥

.

Similarly, for a point Wj on the negative hyperplane, we have

dj =
Yj
(
θ−0 − θ̄0

)
∥θw∥

= −θ
−
0 − ρθ+0 − (1− ρ) θ−0

∥θw∥
=
ρ
(
θ+0 − θ−0

)
∥θw∥

.

The geometric distance between the two hyperplanes is then equal to

di + dj =
θ+0 − θ−0
∥θw∥

.
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S.2 MU-SVM in the Matrix Form

S.2.1 The primal problem in the linear case

The primal problem in the linear MU-SVM case is

min
κ0,κw,{ξi}

{
1

n

n∑
i=1

ψ(Yi, Xi)

ψ̄
ξi +

µ

2
∥κw∥2

}
subject to

Yi
(
W ′
iκw + κ0

)
+ ξi ≥ qi, ξi ≥ 0, for i ∈ [n] and κc ≥ 0. (S.3)

To write this quadratic programming problem in a matrix form, we let

H11 =

(
O1×1 Odw×1

O1×dw Idw×dw

)
dw̃×dw̃

, H =

(
H11 Odw̃×n

On×dw̃ On×n

)
,

Ψ◦ =
1

nψ̄
[O1×dw̃ , ψ (Y1, X1) , . . . , ψ (Yn, Xn)]

′,

q = (q1, . . . , qn)
′,

G11 =


Y1(1,W

′
1),

. . .
Yi(1,W

′
i ),

. . .
Yn(1,W

′
n),


n×dw̃

, G = −

 G11, In
On×dw̃ , In

[O1×dw , 1] , O1×n

 , g = −

 qn×1

On×1

O1×1

 ,

and u =
(
κ̃′w, ξ1, . . . , ξn

)′
,

where dw̃ = dw + 1, κ̃w = (κ0, κ
′
w)

′, κw = (κ′x, κ
′
c)

′ and Orow,col stands for a row× col matrix
of zeros. The primal minimization problem can then be written as the quadratic programming
problem:

min
u∈Rdw̃+n

(Ψ◦)′u+
µ

2
u′Hu subject to Gu ≤ g.

This is the required form for using quadratic programming in software packages such as Matlab.

S.2.2 The dual problem in the kernel case

Recall that the dual problem in the kernel case is

max
λ1,...,λn,λc

LD (λ, λc) subject to

n∑
i=1

λiYi = 0, λc ≥ 0, and

0 ≤ λi ≤
1

n

ψ(Yi, Xi)

ψ̄
, for all i ∈ [n] , (S.4)

where

LD (λ, λc) =

n∑
i=1

qiλi −
1

2µ

 n∑
i=1

n∑
j=1

λiλjYiYjKc (Xi, Xj) + 2λc

n∑
i=1

λiYic−(Xi) + λ2c

 .
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Let λ = (λ1, . . . , λn)
′ and u =

(
λ′, λ′c

)′
be the choice variable. Denote

H =

(
H11 H12

H21 H22

)
, (S.5)

where

H11 = −


Y1Y1Kc (X1, X1) . . . Y1YnKc (X1, Xn)
Y2Y1Kc (X2, X1) . . . Y2YnKc (X2, Xn)

. . . . . . . . .
YnY1Kc (Xn, X1) . . . YnYnKc (Xn, Xn)

 , H12 = −


Y1c−(X1)

. . .
Yic−(Xi)

. . .
Ync−(Xn)

 ,

H21 = H ′
12, H22 = −1.

Also, let
q◦ = [q1, q2, . . . , qn︸ ︷︷ ︸

1×n

, 0]′.

Then the objective function becomes LD (λ, λc) = q′◦u+ 1
2µu

′Hu. Next, we let

G =

 −In×n On×1

O1×n −1
In×n On×1

 , g =


O(n+1)×1

1
nψ̄
ψ (Y1, X1)

. . . .
1
nψ̄
ψ (Yn, Xn)

 ,

and
Geq =

(
Y1, . . . Yn, 0

)
, geq =

(
0
)
.

Then the inequality and equality constraints can be written as Gu ≤ g and Gequ = geq,
respectively. With the above definitions of H, q◦, G, g,Geq, and geq, the dual problem becomes

max
u

(
q′◦u+

1

2µ
u′Hu

)
subject to Gu ≤ g and Gequ = geq.

This can be solved using standard quadratic programming packages. It is important to note that
when dealing with the dual problem, the objective function must be maximized. Therefore, if
a program is designed to minimize an objective function, we need to flip the sign and minimize
−q′◦u− u′Hu/ (2µ) .

Proposition S.1 If the matrix (K (Xi, Xj))n×n is positive definite, then H given in (S.5) is
negative definite, and hence (S.4) has a unique solution.

Proof of Proposition S.1 . For any u =
(
λ′, λ′c

)′
, we have

u′Hu = u′
(
H11 H12

H21 H22

)
u = H22λ

2
c + 2λcλ

′H12 + λ′H11λ.
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This is a quadratic equation in λc with a negative quadratic coefficient (H22 = −1) . The discrim-
inator is

∆ = 4λ′H12H21λ− 4H22

(
λ′H11λ

)
= 4

n∑
i=1

n∑
j=1

λiλjYiYjc− (Xi) c−(Xj)− 4

n∑
i=1

n∑
j=1

λiλjYiYjKc (Xi, Xj)

= −4
n∑
i=1

n∑
j=1

λiλjYiYjK (Xi, Xj) .

Under the assumption that (K (Xi, Xj))n×n is positive definite, we have ∆ < 0 for all λ such that

λ⊙ Y := (λ1Y1, . . . , λnYn)
′ ̸= 0.

Now, for any u ̸= 0, we have either (λ ̸= 0) or (λ = 0 and λc ̸= 0).

� When λ ̸= 0, we have λ⊙ Y ̸= 0, and so u′Hu < 0.

� When λ = 0 but λc ̸= 0, we have u′Hu = H22λ
2
c = −λ2c < 0.

We have shown that u′Hu < 0 for any u ̸= 0. That is, H is negative definite. This implies
that the quadratic programming in (S.4) has a unique solution.

S.3 Characterizing the Solution to the Linear MU-SVM

Recall that the linear MU-SVM problem is

min
κ0,κw,ξ

{
1

n

n∑
i=1

ξi
ψ(Yi, Xi)

ψ̄
+
µ

2
∥κw∥2

}
subject to

Yi
(
κ0 +W ′

iκw
)
+ ξi ≥ qi, ξi ≥ 0 for all i ∈ [n] , and κc ≥ 0. (S.6)

Proposition S.2 The solution of the coefficient vector κw to the MU-SVM is unique.

Proof of Proposition S.2 . We prove the uniqueness by contradiction. Suppose û =

(κ̂0, κ̂
′
w, ξ̂

′
)′ and ǔ = (κ̌0, κ̌

′
w, ξ̌

′
)′ are two minimizers with κ̂′w ̸= κ̌w, both of which achieve the

minimum of the objective function, say C∗. Given that û and ǔ are both feasible, it is clear that

uδ :=
(
κ0,δ, κ

′
w,δ, ξ

′
δ

)′
= δû+ (1− δ) ǔ for any δ ∈ (0, 1) is also feasible. But,

1

n

n∑
i=1

ξi,δ
ψ(Yi, Xi)

ψ̄
+
µ

2
∥κw,δ∥2

= δ
1

n

n∑
i=1

ξ̂i
ψ(Yi, Xi)

ψ̄
+ (1− δ)

1

n

n∑
i=1

ξ̌i
ψ(Yi, Xi)

ψ̄
+
µ

2
∥κw,δ∥2

< δ
1

n

n∑
i=1

ξ̂i
ψ(Yi, Xi)

ψ̄
+ (1− δ)

1

n

n∑
i=1

ξ̌i
ψ(Yi, Xi)

ψ̄
+
µ

2
δ ∥κ̂w∥2 +

µ

2
(1− δ) ∥κ̌w∥2

= δ

(
1

n

n∑
i=1

ξ̂i
ψ(Yi, Xi)

ψ̄
+
µ

2
∥κ̂w∥2

)
+ (1− δ)

(
1

n

n∑
i=1

ξ̌i
ψ(Yi, Xi)

ψ̄
+
µ

2
∥κ̌w∥2

)
= δ (C∗) + (1− δ) (C∗) = C∗,
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where we have used the strict convexity of ∥·∥2 . Hence, we have found a feasible uδ that delivers
a smaller objective function. This contradicts the assumption that û and ǔ are both solutions.
Therefore, all solutions to the MU-SVM problem have the same κ̂w.

While Proposition S.2 establishes the uniqueness of κ̂w, it does not say anything about κ̂0.
To characterize κ̂0, we define

I+ (κ̂0|κ̂w) =
{
i : Yi = +1 and Yi

(
κ̂0 +W ′

i κ̂w
)
≤ qi

}
,

I− (κ̂0|κ̂w) =
{
i : Yi = −1 and Yi

(
κ̂0 +W ′

i κ̂w
)
≤ qi

}
.

Given κ̂0 and κ̂w, the index sets I+ (κ̂0|κ̂w) and I− (κ̂0|κ̂w) consist of the indices for the positive
and negative (geometric) support vectors, respectively.

Proposition S.3 If
∑

i∈I+(κ̂0|κ̂w) ψ(Yi, Xi) ̸=
∑

i∈I−(κ̂0|κ̂w) ψ(Yi, Xi), then there exists an i∗ such

that Yi∗ (κ̂0 +W ′
i∗ κ̂w) = qi.

As a direct implication of Proposition S.3 , at the solution (κ̂0, κ̂w) , either there is a sup-
port vector on the margin boundary (i.e., the positive and negative hyperplanes) such that
Yi∗ (κ̂0 +W ′

i∗ κ̂w) = qi∗ for some i∗, or the total loss from the positive support vectors is equal
to that from the negative support vectors. At least one of these two equations holds and can be
used to identify the unique κ̂0 with the smallest absolute value.

Proof of Proposition S.3 . Without loss of generality, we assume that
∑

i∈I+(κ̂0|κ̂w) ψ(Yi, Xi) >∑
i∈I−(κ̂0|κ̂w) ψ(Yi, Xi). Given κ̂w, the solution κ̂0 for κ0 satisfies

κ̂0 ∈ argmin
κ0

Q̃n (κ0) =
1

n

n∑
i=1

[
qi − Yi

(
κ0 +W ′

i κ̂w
)]

+
ψ (Yi, Xi) .

We prove the stated result by contradiction. Suppose no observation satisfies Yi (κ̂0 +W ′
i κ̂w) = qi.

Then, I+ (κ̂0|κ̂w) and I− (κ̂0|κ̂w) reduce to

I+ (κ̂0|κ̂w) =
{
i : Yi = +1 and Yi

(
κ̂0 +W ′

i κ̂w
)
< qi

}
,

I− (κ̂0|κ̂w) =
{
i : Yi = −1 and Yi

(
κ̂0 +W ′

i κ̂w
)
< qi

}
.

As a result, we can increase κ̂0 by an infinitesimal amount ϵ > 0 without changing I+ (κ̂0|κ̂w) or
I− (κ̂0|κ̂w) so that

I+ (κ̂0 + ϵ|κ̂w) = I+ (κ̂0|κ̂w) ,
I− (κ̂0 + ϵ|κ̂w) = I− (κ̂0|κ̂w) ,
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for a small enough ϵ > 0. Now,

Q̃n (κ̂0 + ϵ)− Q̃n (κ̂0)

=
1

n

∑
i∈I+(κ̂0|κ̂w)

[
qi − Yi

(
κ̂0 + ϵ+W ′

i κ̂w
)]

+
ψ(Yi, Xi)−

1

n

∑
i∈I+(κ̂0|κ̂w)

[
qi − Yi

(
κ̂0 +W ′

i κ̂w
)]

+
ψ(Yi, Xi)

+
1

n

∑
i∈I−(κ̂0|κ̂w)

[
qi − Yi

(
κ̂0 + ϵ+W ′

i κ̂w
)]

+
ψ(Yi, Xi)−

1

n

∑
i∈I−(κ̂0|κ̂w)

[
qi − Yi

(
κ̂0 +W ′

i κ̂w
)]

+
ψ(Yi, Xi)

=
1

n

∑
i∈I+(κ̂0|κ̂w)

−Yiϵψ(Yi, Xi) +
1

n

∑
i∈I−(κ̂0|κ̂w)

−Yiϵψ(Yi, Xi)

= ϵ
1

n

 ∑
i∈I−(κ̂0|κ̂w)

ψ(Yi, Xi)−
∑

i∈I+(κ̂0|κ̂w)

ψ(Yi, Xi)

 < 0.

This contradicts the optimality of κ̂0.

S.4 List of Methods Used in Simulations

Before listing the methods, a few clarifications are necessary. Since c (x) is linear in the simulation
study and is absorbed into the polynomial approximation of P (x), we do not include c(x) in
constructing the decision rule for the polynomial-based MU method or the Poly-MU-SVM in the
simulation study. Specifically, for the latter, we do not include c(x) in the separation constraints
(including it has virtually no effect on the simulation results). More generally, when c (x) is
highly nonlinear, unreported simulation results clearly demonstrate the advantage of including
c (x) as a special covariate in implementing the Poly-MU-SVM.

S.4.1 The ML method

� The specification:
m(x, θ) = Λ (Pj (x; θ)) .

where Pj is a polynomial of order j with constant term included.

� The estimator:

θ̂MLE ∈ argmax
θ∈Θ

1

n

n∑
i=1

{
Yi + 1

2
logm(Xi, θ) +

(
1− Yi + 1

2

)
log [1−m (Xi, θ)]

}
.

� The estimated action rule:

âMLE (x) = sign
{
Λ(Pj(x; θ̂MLE))− c(x)

}
.

S.4.2 The MU method

� The proposed action rule:
a (x; θ) = sign (Pj (x; θ)) .
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� The estimator:

θ̂MU ∈ argmin
θ∈×

1

n

n∑
i=1

ψ(Yi, Xi)1 {Yi ̸= aMU (Xi, θ)}

∈ argmax
θ∈Θ

n∑
i=1

U(aMU (Xi, θ) , Yi, Xi).

� The estimated action rule:

âMU (x) = sign{Pj(x; θ̂MU)}.

S.4.3 The MU-SMD method

� The proposed action rules:

aj

(
x; θ(j)

)
= sign{Pj(x; θ(j))}, j = 1, 2, . . . , J.

� The estimators:

θ̂
(j)

MU-SMD ∈ arg max
θ(j)∈Θj

1

n

n∑
i=1

U(aj

(
Xi, θ

(j)
)
, Yi, Xi)

= arg min
θ(j)∈×j

1

n

n∑
i=1

ψ(Yi, Xi)1
{
Y ̸= aj

(
Xi, θ

(j)
)}

,

and

θ̂MU-SMD = θ̂
(ȷ̂)

MU-SMD for

ȷ̂ = arg max
j=1,...,Jmax

{
1

n

n∑
i=1

U(aj(Xi, θ̂
(j)

MU-SMD), Yi, Xi)− SMDj

}
,

where SMDj is the simulated maximal discrepancy for the model class
{
Pj
(
x; θ(j)

)
: θ(j) ∈ Θj

}
.

� The estimated action rule:

âMU-SMD (x) = aȷ̂(x, θ̂
(ȷ̂)

MU-SMD) = sign(Pȷ̂(x; θ̂
(ȷ̂)

MU-SMD)).

S.4.4 The Lp-SVM for p = 1, 2

� The estimator:

(κ̂0, κ̂ϕ, ξ̂) = arg min
(κ0,κϕ,ξ)

{
1

n

n∑
i=1

ξi +
µ

2

(
∥κϕ∥pp + ∥κc∥pp

)}
subject to

Yi
(
κ0 + ϕ(Xi)

′κϕ
)
+ ξi ≥ 1, ξi ≥ 0 for all i ∈ [n] .

� The estimated action rule:

âLp-SVM (x) = sign(κ̂0 + ϕ (x)′ κ̂ϕ).
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S.4.5 The CS-SVM

� The estimator:

(κ̂0, κ̂ϕ, ξ̂) = arg min
(κ0,κϕ,ξ)

{
1

n

n∑
i=1

ξi
ψ̄ (Yi)

ψ̄
+
µ

2

(
∥κϕ∥pp + ∥κc∥pp

)}
subject to

Yi
(
κ0 + ϕ(Xi)

′κϕ
)
+ ξi ≥ 1, ξi ≥ 0 for all i ∈ [n] ,

where

ψ̄ (1) =
1

n+ nout

n+nout∑
j=1

ψ(1, Xj), ψ̄ (−1) =
1

n+ nout

n+nout∑
j=1

ψ(−1, Xj).

� The estimated action rule:

âCS-SVM (x) = sign(κ̂0 + ϕ (x)′ κ̂ϕ).

S.4.6 Poly-MU-SVM

� The estimator:

(κ̂0, κ̂ϕ, ξ̂) = arg min
(κ0,κϕ,ξ)

{
1

n

n∑
i=1

ξi
ψ (Yi, Xi)

ψ̄
+
µ

2

(
∥κϕ∥2 + ∥κc∥2

)}
subject to

Yi
(
κ0 + ϕ(Xi)

′κϕ
)
+ ξi ≥ qi, ξi ≥ 0 for all i ∈ [n] ,

where

q+ =
1− ρ

min (ρ, 1− ρ)
, q− =

ρ

min (ρ, 1− ρ)
,

and
qi = q+ · 1 {Yi = +1}+ q− · 1 {Yi = −1} .

� The estimated action rule:

âPoly-MU-SVM (x) = sign
(
κ̂0 + ϕ(x)′κ̂ϕ

)
.

S.4.7 RBF-MU-SVM

� The specification:
m (x, θ) = κ0 + ϕ(x)′κϕ,

where ϕ(x) = (
√
α∗
1ϕ

∗
1(x), . . .

√
α∗
jϕ

∗
j (x), . . .)

′ and {(α∗
j , ϕ

∗
j (·))}∞j=1 are the eigenvalues and

eigenfunctions of the RBF kernel K (x, x̃) = exp(−τ ∥x− x̃∥2).

� The estimator: (
λ̂1, . . . , λ̂n, λ̂c

)
= arg max

λ1,...,λn,λc
LD (λ, λc) subject to

n∑
i=1

λiYi = 0, λc ≥ 0, and

0 ≤ λi ≤
1

n

ψ(Yi, Xi)

ψ̄
for all i ∈ [n] , (S.7)
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where

LD (λ, λc) =
n∑
i=1

qiλi −
1

2µ

 n∑
i=1

n∑
j=1

λiλjYiYjKc (Xi, Xj) + 2λc

n∑
i=1

λiYic−(Xi) + λ2c


and Kc (Xi, Xj) = K (Xi, Xj) + c−(Xi)c−(Xj).

� The estimated action rule:

âRBF-MU-SVM(x) = sign

(
1

µ

[
n∑
i=1

λ̂iYiKc (x,Xi) + λ̂cc− (x)

]
+ κ̂0

)
,

where

κ̂0 =
1∣∣∣Sψ+∣∣∣

∑
i∈Sψ+

Yi − 1

µ

 n∑
j=1

λ̂jYjKc (Xi, Xj) + λ̂cc−(Xi)


for Sψ+ = {i : 0 < λ̂i < ψ(Yi, Xi)/

(
nψ̄
)
}.
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