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Abstract

We propose a simple asymptotically F-distributed Portmanteau test for zero autocorrela-

tions in an otherwise dependent time series. By employing the orthonormal series variance

estimator of the variance matrix of sample autocovariances, our test statistic follows an F

distribution asymptotically under fixed-smoothing asymptotics. The asymptotic F theory

accounts for the estimation error in the underlying variance estimator, which the asymptotic

chi-squared theory ignores. Monte Carlo simulations reveal that the F approximation is much

more accurate than the corresponding chi-squared approximation in finite samples. Compared

with the nonstandard test proposed by Lobato (2001), the asymptotic F test is as easy to use

as the chi-squared test: There is no need to obtain critical values by simulations. Further,

Monte Carlo simulations indicate that Lobato’s (2001) nonstandard test tends to be heavily

undersized under the null and suffers from substantial power loss under the alternatives.
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1 INTRODUCTION

In this study, we test the null hypothesis that a time series process is uncorrelated up to a certain

order. This is a basic problem in time series analysis. There is a large body of literature on testing

zero autocorrelations in a time series. These tests can be roughly categorized into time-domain

autocorrelation-based and frequency-domain periodogram-based tests. The latter tests consider

an infinite number of autocorrelations (see, e.g., Hong (1996), Shao (2011), and the references

therein). They are consistent in the sense that all nonzero autocorrelations can be detected.

On the other hand, the former tests conventionally focus on a finite number of autocorrelations.

They can obtain optimal power in some directions that practitioners are interested in.

Among the time-domain tests, as early as the 1970s, Box and Pierce (1970) and Ljung and Box

(1978) proposed the so-called Q test for a covariance stationary time series under the independent

and identically distributed (i.i.d.) assumption. However, both economic theories and empirical

studies have revealed that the i.i.d. assumption may be too restrictive. For example, the market

efficiency hypothesis, rational expectation models, and optimal consumption smoothing theory

all imply that the relevant process is a martingale difference (MD) sequence instead of an i.i.d.

sequence. Empirical studies have further found that conditional heteroskedasticity is prevalent

in financial time series.

In general, when a time series process is only uncorrelated, its sample autocorrelations are not

necessarily asymptotically standard normal. Instead, the asymptotic covariance matrix of the

sample autocorrelations depends on the data generation process (see, e.g., Romano and Thombs

(1996)). In this case, Romano and Thombs (1996) and Horowitz et al. (2006) used the Q

test statistic with critical values obtained by block bootstrapping procedures, such as the single

moving block and the blocks-of-blocks bootstraps. However, the difficulty in choosing the block

size and high computational costs limit the scope of bootstrap-based tests.

Lobato, Nankervis, and Savin (2002) later proposed a modified Q test based on a nonparamet-

ric estimator of the asymptotic variance matrix of the sample autocovariances. They considered
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the conventional increasing-smoothing asymptotics, whereas the amount of the nonparametric

smoothing is assumed to grow with the sample size, but at a slower rate. Under this type of

asymptotics, the proposed test statistic has a convenient asymptotic chi-squared distribution

under the null hypothesis. By invoking the consistency argument, the asymptotic chi-squared

theory approximates the distribution of the nonparametric variance estimator by a degenerate

distribution concentrated at the true variance matrix. Effectively, the theory completely ignores

the estimation error in the variance estimator. Even with a delicate choice of the underlying

smoothing parameter, the estimation error in the nonparametric variance estimator can still be

substantial in finite samples. This explains why the chi-square-based test often exhibits a large

size distortion in finite samples.

Recently, the literature has introduced alternative asymptotics to combat the aforementioned

problem. Unlike the conventional increasing-smoothing asymptotics, the alternative asymptotics

hold the amount of nonparametric smoothing to be fixed. Hence, they are also called the fixed-

smoothing asymptotics. There is ample numerical evidence, along with theoretical results, on the

higher accuracy of fixed-smoothing asymptotic approximations relative to conventional asymp-

totic approximations (see, e.g., Sun, Phillips, and Jin (2008) and Zhang and Shao (2013) for

location models, and Sun (2014a, 2014b) for the generalized method of moments framework).

In testing uncorrelatedness of time series, Lobato (2001) employed a different approach to stu-

dentization, but his approach can be regarded as employing the fixed-smoothing asymptotics

implicitly. Although the asymptotic distribution of Lobato’s (2001) test statistic is pivotal, it is

not standard, and critical values have to be tabulated by Monte Carlo simulations.

In this study, we employ the orthonormal series approach to variance estimation in the con-

struction of a new Portmanteau test for zero autocorrelations, while allowing the time series to be

otherwise serially dependent. This approach involves projecting the time series onto a sequence

of orthonormal basis functions, and then taking the simple average of the outer products of the

projection coefficients as the variance estimator. The number of basis functions is the smoothing

parameter that underlies this orthonormal series variance estimator.
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By employing the orthonormal series variance estimator of the asymptotic variance matrix

of the sample autocovariances, the new Portmanteau test statistic follows an F distribution

asymptotically under the fixed-smoothing asymptotics. The asymptotic F theory accounts for the

estimation error in the underlying variance estimator, which the asymptotic chi-squared theory

ignores. Monte Carlo simulations reveal that the F approximation is much more accurate than

the corresponding chi-squared approximation in finite samples. Compared with the nonstandard

test proposed by Lobato (2001), the asymptotic F test has the same ease of use as the chi-squared

test, since the critical values of the F distributions are readily available in standard programming

environments and software packages. Further, Monte Carlo simulations indicate that Lobato’s

(2001) test tends to be heavily undersized under the null and suffers from substantial power loss

under the alternatives.

The remaining article is organized as follows. In section 2, we lay out the preliminaries. In

section 3, we propose our new Portmanteau test and establish its asymptotic properties. In sec-

tion 4, we conduct comprehensive Monte Carlo simulations, followed by an empirical application

in section 5. In section 6, we conclude our study.

2 PRELIMINARIES

Let {yt}t∈Z be a real-valued covariance stationary time series with mean µ. Define the autoco-

variance and autocorrelation functions:

γ (j) = E [(yt − µ) (yt−j − µ)] , j ∈ Z,

ρ (j) =
γ (j)

γ (0)
, j ∈ Z\{0}.

Given the observations {yt}Tt=1, we can estimate γ (j) and ρ (j) by their sample analogues:

γ̂T (j) =
1

T

T∑
t=j+1

(yt − µ̄) (yt−j − µ̄) , j ∈ 0, . . . , T − 1,
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ρ̂T (j) =
γ̂T (j)

γ̂T (0)
, j ∈ 1, . . . , T − 1,

where µ̄ = T−1
∑T

t=1 yt is the sample mean.

As in Box and Pierce (1970) and Ljung and Box (1978), we are interested in testing whether

the first s autocorrelations or autocovariances are zero. That is, we are interested in the null

H
(s)
0 : γ(s) = 0,

where γ(s) = (γ (1) , . . . , γ (s))′.

The Q test statistic in Ljung and Box (1978) takes the following form:

Q̂T (s) = T (T + 2)

s∑
j=1

(T − j)−1 ρ̂2T (j) .

Denote γ̂
(s)
T = (γ̂T (1) , . . . , γ̂T (s))′ and ρ̂

(s)
T = (ρ̂T (1) , . . . , ρ̂T (s))′. Under the assumption that

yt ∼ iid as well as other mild regularity conditions, it can be shown that, under H
(s)
0 ,

√
T ρ̂

(s)
T ⇒ N (0, Is) and

√
T γ̂

(s)
T ⇒ N

(
0, Isγ (0)2

)
,

where Is is the identity matrix of dimension s. It then follows that Q̂T (s)⇒ χ2
s, the chi-squared

distribution with s degrees of freedom.

The chi-squared approximation is convenient. However, in the absence of further restrictions

on the dependence structure of the time series apart fromH
(s)
0 , we can only expect that

√
T γ̂

(s)
T ⇒

N (0,Ω) where Ω is a general nondiagonal matrix Ω =
[
ω(i,j)

]s
i,j=1

for

ω(i,j) =
∞∑

l=−∞
E [(yt − µ) (yt−i − µ) (yt+l − µ) (yt+l−j − µ)] .

In this case, Romano and Thombs (1996) pointed out that the Q test based on the chi-squared

critical values can deliver misleading results. They proposed using computer-intensive methods,
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such as bootstrapping and subsampling, to obtain more reliable critical values. See also Horowitz

et al. (2006).

On the other hand, Lobato et al. (2002) proposed a modified Q test, which is based on the

test statistic:

Q̃T (s) = T γ̂
(s)′
T Ω̂

−1
γ̂
(s)
T ,

where Ω̂ is a nonparametric estimator of Ω. To be precise, denote ft = (f1t, . . . , fst)
′ with the

jth element given by fjt = (yt − µ̄) (yt−j − µ̄) and f̃t = (f̃1t, . . . , f̃st)
′ with the jth element given

by

f̃jt = (yt − µ̄) (yt−j − µ̄)− γ̂T (j) .

Ω̂ takes the quadratic form of

Ω̂ =
1

T

T∑
t=1

T∑
j=1

wh

(
t

T
,
j

T

)
f̃tf̃
′
j ,

where wh (·, ·) is a weighting function and h is the smoothing parameter indicating the amount

of nonparametric smoothing. For example, we can take wh(t/T, j/T ) = k ((t− j) / (hT )) for

a kernel function k (·), leading to the usual kernel variance estimator. The Newey and West

(1987) estimator, for instance, has this form with k (·) equal to the Bartlett kernel k (x) =

max {1− |x| , 0}.

By allowing the amount of nonparametric smoothing in Ω̂ to grow with the sample size, but

at a slower rate, Lobato et al. (2002) established that Q̃T (s) is asymptotically chi-squared under

the null hypothesis. However, such an increasing-smoothing asymptotic approximation ignores

the estimation error in the variance estimator. As a result, it can be highly inaccurate in finite

samples.

6



Lobato (2001) proposed another test statistic:

L̂T (s) = T γ̂
(s)′
T

(
1

T 2

T∑
t=1

ΥtΥ
′
t

)−1
γ̂
(s)
T ,

where

Υt =
t∑

j=1

(
f1j − γ̂T (1) , . . . , fsj − γ̂T (s)

)′
.

We can show that T−2
∑T

t=1 ΥtΥ
′
t is asymptotically equivalent to Ω̂ with wh (t, τ) = 1−max(t/h, τ/h)

and h = 1. Effectively, Lobato (2001) employed a quadratic long run variance estimator with

the truncation lag parameter set equal to the sample size. This is in the same spirit of Kiefer

and Vogelsang (2002). Lobato (2001) can, therefore, be regarded as among the first to use the

fixed-smoothing asymptotics in testing serial uncorrelatedness.

Shao (2010) proposed a new test statistic L̃T (s), which is a variation of L̂T (s). Both L̂T (s)

and L̃T (s) take a self-normalization form (see, Shao (2015)). The difference between L̂T (s) and

L̃T (s) lies in the different forms of their self-normalization matrices. It has been shown that

L̂T (s) and L̃T (s) share the same asymptotic distribution under fixed-smoothing asymptotics.

Indeed, the alternative asymptotics here belong to the fixed-b asymptotics developed by Kiefer

and Vogelsang (2005). Although the fixed-smoothing asymptotic approximation for L̂T (s) and

L̃T (s) is more accurate than the chi-squared approximation, the asymptotic distribution is not

standard, and the associated critical values have to be simulated.

3 MAIN RESULTS

In this study, we employ an alternative variance estimator—the orthonormal series variance

estimator—such that

wh

(
t

T
,
j

T

)
=

1

K

K∑
`=1

Φ`

(
t

T

)
Φ`

(
j

T

)
,
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where K is the smoothing parameter for this estimator and Φ` (·) satisfies the following assump-

tion:

Assumption 1. For ` = 1, 2, . . . ,K, the basis functions Φ` (·) are continuously differentiable

and orthonormal in L2[0, 1] and satisfy
∫ 1
0 Φ` (x) dx = 0.

Denote

Λ` =
1√
T

T∑
t=1

Φ`

(
t

T

)
ft.

Then, we have

Ω̂OS =
1

K

K∑
`=1

Λ`Λ
′
`

after a straightforward rearrangement. Notably, demeaning is not necessary here, since
∫ 1
0 Φ` (x) dx =

0. To ensure that Ω̂ is positive semidefinite, we assume that K ≥ s.

For some recent use of the orthonormal series variance estimator in the econometric literature,

see Sun (2011, 2013, 2014a, 2014b) and references therein. The simplest and most familiar

example of this estimator is the average periodogram estimator, which involves taking a simple

average of a few periodograms. In this case,

Φ` (r) =


√

2 cos (π`r) , if ` is even,
√

2 sin (π (`+ 1) r) , if ` is odd.

We will use the above basis functions for an even K in our simulation study.

With the orthonormal series variance estimator Ω̂OS, we construct the test statistic:

Q̃∗T (s) =
K − s+ 1

Ks
T γ̂

(s)′
T Ω̂

−1
OSγ̂

(s)
T =

K − s+ 1

Ks
T γ̂

(s)′
T

(
1

K

K∑
`=1

Λ`Λ
′
`

)−1
γ̂
(s)
T .

Note that there is a multiplicative correction term (K − s+ 1) / (Ks). When s = 1, this term is

simply equal to 1. It becomes more important when s is larger.

Herein, we consider the fixed-smoothing asymptotics, wherein the number of basis functions
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K is held fixed, as the sample size increases.

3.1 Asymptotics under the null

To establish the fixed-smoothing asymptotics of Q̃∗T (s) under the null, we introduce the following

assumption:

Assumption 2. For r ∈ (0, 1], T−1/2
∑[Tr]

t=1 ft ⇒ Ω1/2Wf (r), where Wf (r) is a standard vector

Brownian motion process.

Assumption 2 requires that a functional central limit theorem holds for the partial sums

T−1/2
∑[Tr]

t=1 ft. Primitive sufficient conditions can be found in Lobato (2001) (Assumption 2, p.

1070) and the references therein.

Under Assumptions 1 and 2, we have

1√
T

T∑
t=1

Φ`

(
t

T

)
ft ⇒ Ω1/2

∫ 1

0
Φ` (r) dWf (r) := Ω1/2ηf,`. (1)

Note that ηf,` =
∫ 1
0 Φ` (r) dWf (r) is i.i.d. N(0, Is) over ` = 1, 2, . . . ,K. This holds because ηf,`

is normal and

cov [ηf,`1 , ηf,`2 ] =

∫ 1

0
Φ`1 (r) Φ`2 (r) dr = 1 {`1 = `2} .

using the orthonormality of {Φ` (·) , ` = 1, . . . ,K} on L2[0, 1]. Also, Wf (1) is independent of

{ηf,`} because Wf (1) and ηf,` are standard normals and for ` = 1, . . . ,K,

cov(ηf,`,Wf (1)) = E
[∫ 1

0
Φ` (r) dWf (r)Wf (1)′

]
= Is

∫ 1

0
Φ` (r) dr = 0.

Using the continuous mapping theorem, we now have

Q̃∗T (s)⇒ K − s+ 1

s
Wf (1)′

[
K∑
`=1

ηf,`η
′
f,`

]−1
Wf (1) .
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Note that
K∑
`=1

ηf,`η
′
f,`

d
= W (Is,K) ,

where W (Is,K) is a Wishart random variable that is independent of Wf (1). Then, by Propo-

sition 8.2 in Bilodeau and Brenner (1999), we have the theorem below.

Theorem 1. Let Assumptions 1 and 2 hold. Under H
(s)
0 , we have

Q̃∗T (s)⇒ F (s,K − s+ 1)

where F (s,K − s+ 1) is the standard F distribution with degrees of freedom s and K − s+ 1.

This result is intriguing. First, the asymptotic F test has the same ease of use as the chi-

squared test, since the critical values of F distributions are readily available in standard pro-

gramming environments. Second, the asymptotic F distribution is directly related to K. This is

different from the conventional chi-squared theory, wherein the smoothing parameter must grow

with the sample size, but does not influence the asymptotic distribution.

Let Fα (s,K − s+ 1) be the (1− α)-quantile of the F distribution F (s,K − s+ 1). Our

asymptotic F test is based on the statistic Q̃∗T (s) with Fα (s,K − s+ 1) as the critical value.

If we follow Lobato (2001) and Lobato et al. (2002) and use the test statistic of the standard

form, namely, T γ̂
(s)′
T Ω̂

−1
OSγ̂

(s)
T , we will obtain:

T γ̂
(s)′
T Ω̂

−1
OSγ̂

(s)
T ⇒

(Ks)

(K − s+ 1)
· F (s,K − s+ 1) .

Our asymptotic F test is equivalent to the test using T γ̂
(s)′
T Ω̂

−1
OSγ̂

(s)
T as the test statistic and

K

(K − s+ 1)
· sFα (s,K − s+ 1)

as the critical value. The above modified F critical value is larger than the corresponding chi-

squared critical value for two reasons. First, sFα (s,K − s+ 1) is larger than the corresponding
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chi-squared critical value, as the F distribution has a random denominator. Second, the extra

multiplicative factor K/(K−s+1) is greater than 1. This factor is larger for a larger s or a smaller

K. In finite samples, the difference between the chi-squared critical value and the modified F

critical value can be substantial, especially when s is large and K is small. On the other hand,

when K is large, the chi-squared critical value and the modified F critical value will become close

to each other.

In practice, we can choose K to minimize the mean square error of Ω̂OS. Phillips (2005)

proposed such a data-driven procedure. Although it is not necessarily best suited for hypothesis

testing, Monte Carlo simulations in the next section reveal that this choice of K delivers good

finite sample performances for the asymptotic F test.

3.2 Asymptotics under local alternative

We consider the following local alternative:

H
(s)
1T : γ(s) =

δ√
T
.

Under this local alternative, we assume that the following functional central limit theorem

(FCLT) holds:

Assumption 3. T−1/2
∑[Tr]

t=1 ft ⇒ rδ + Ω1/2Wf (r).

Under H
(s)
1T , we now have

Q̃∗T (s)⇒ K − s+ 1

s

[
Ω−1/2 δ+Wf (1)

]′ [ K∑
`=1

ηf,`η
′
f,`

]−1 [
Ω−1/2 δ+Wf (1)

]
.

Then, by Proposition 8.2 in Bilodeau and Brenner (1999), we obtain the following theorem:

Theorem 2. Under H
(s)
1T , and Assumptions 1 and 3, we have

Q̃∗T (s)⇒ Fλ2 (s,K − s+ 1) ,
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where λ =
∥∥∥Ω−1/2δ∥∥∥and Fλ2 (s,K − s+ 1) is the noncentral F distribution with noncentrality

parameter λ2 and degrees of freedom s and K − s+ 1.

The theorem establishes that the asymptotic F test based on Q̃∗T (s) has nontrivial testing

power for the Pitman local alternative. In particular, underH
(s)
1T , Pr(Q̃∗T (s) > Fαλ2 (s,K − s+ 1))→

1 as λ→∞ and so the test is consistent.

For Lobato’s (2001) test, we can show that under H
(s)
1T ,

L̂T (s)⇒
[
Ω−1/2 δ+Wf (1)

]′ [∫ 1

0
[Wf (r)− rWf (1)]⊗2 dr

]−1 [
Ω−1/2 δ+Wf (1)

]
,

where for a column vector a, a⊗2 = aa′. Let H =

(
Ω−1/2δ

‖Ω−1/2δ‖ , H̃
)

be an orthogonal matrix. Then

L̂T (s)⇒
[
H ′(Ω−1/2 δ+Wf (1))

]′ [∫ 1

0

{
H ′ [Wf (r)− rWf (1)]

}⊗2]−1
H ′
[
Ω−1/2 δ+Wf (1)

]
= [λe1 +Wf (1))]′

[∫ 1

0
[Wf (r)− rWf (1)]⊗2 dr

]−1
[λe1 +Wf (1)] ,

where e1 = (1, 0, . . . , 0) is the first basis vector in Rs. So the asymptotic distributions of L̂T (s)

and Q̃∗T (s) under the local alternative depend on the same noncentrality parameter λ2.

Given that the asymptotic distribution of L̂T (s) is nonstandard, it is not easy to analytically

compare its local asymptotic power with that of the asymptotic F test. However, it is easy to

simulate the local asymptotic powers. Figure 1 reports the local asymptotic powers of the two

tests. For the asymptotic F test, we consider a few fixed K values starting with K = s + 4 so

that the approximating F distribution has a finite variance. The figure shows that the F test

has a higher local asymptotic power when K is large enough. When K is relatively small or s

is relatively large, Lobato’s (2001) test may have a higher local asymptotic power. Compared

to Lobato’s (2001) test, the asymptotic F test is more flexible in that the value of K can be

data-driven. In the next section, we show that with a data-driven choice of K, the F test is more

powerful than Lobato’s (2001) test in finite samples for almost all data generating processes
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under consideration.

4 MONTE CARLO EVIDENCE

We now examine the performance of the proposed F test in a set of Monte Carlo experiments.

The data generating processes (DGPs) used in the experiments include three MD processes and

three non-MD processes. To be more precise, let ηt ∼ iid N (0, 1). The six DGPs are

M1: i.i.d. normal process: {yt} is a sequence of i.i.d N(0, 1) random variables.

M2: generalized autoregressive conditional heteroskedasticity or GARCH (1,1) process: yt =

htηt, where h2t = 0.1 + 0.09y2t−1 + 0.9h2t−1.

M3: 1-dependent process: yt = ηtηt−1.

M4: non-MD-1 (non-martingale difference) process: yt = η2t ηt−1.

M5: nonlinear moving average (NLMA) process: yt = ηt−2ηt−1 (ηt−2 + ηt + 1).

M6: bilinear process: yt = ηt + 0.5ηt−1yt−2.

M1–M3 are MD sequences. More specifically, the i.i.d process in M1 is a basic benchmark.

The GARCH process in M2 is empirically relevant in the financial literature. The 1-dependent

process in M3 is considered by Romano and Thombs (1996), Lobato (2001), and Horowitz et al.

(2006); for this process, Ω is an identity matrix, except that ω(1,1) = 3. M4–M6 are non-MD

processes, but with zero autocorrelations. M5 and M6 are considered by Lobato (2001) and

Horowitz et al. (2006).

To examine the size property, we repeat the experiment 10, 000 times for sample sizes T = 100

and 200. The nominal level of all tests is 5%. We use values for s up to 10 and 15 for T = 100

and 200, respectively. Figures 2 and 3 report the empirical rejection probabilities of the Q̃∗T (s)

test, that is, the asymptotic F test based on test statistic Q̃∗T (s). As a comparison, the empirical

rejection probabilities are also reported for the Q̂T (s), Q̃T (s), L̂T (s) and L̃T (s) tests. The

Q̂T (s) and Q̃T (s) tests are based on the chi-squared approximations, and the L̂T (s) and L̃T (s)

test are based on the nonstandard distribution established in Lobato (2001). The Q̃T (s) test
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Figure 1: Local asymptotic power of the asymptotic F test based on the modified statistic Q̃∗T (s)

(this paper) and Lobato’s (2001) test based on L̂T (s) for different values of s.
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is implemented using the vector autoregression heteroskedasticity and autocorrelation consistent

procedure described in Lobato et al. (2002), with the vector autoregression (VAR) order selected

by the Bayesian information criterion. The maximum VAR order is set at 1.2T 1/3. For easy

references, we identify the tests with their test statistics Q̃∗T (s), Q̂T (s), Q̃T (s), L̂T (s) and

L̃T (s) with the understanding that different reference distributions are used for different tests.

The main features of the results are as follows:

i. For the i.i.d. process, all tests except for the L̃T (s) test tend to work satisfactorily. The

L̃T (s) test is heavily oversized in this case.

ii. For the GARCH process, the empirical rejection probabilities of the Q̃∗T (s) test are close to

the nominal size of 5% for all s considered. On the other hand, both the Q̂T (s) and Q̃T (s)

tests are heavily oversized, and their empirical rejection probabilities tend to increase for

a larger s when T = 100. When T = 200, the empirical rejection probabilities of Q̃T (s)

come closer to the nominal size of 5%, while those of the Q̂T (s) tests are still far away

from the nominal size of 5%. In contrast, the L̂T (s) test is heavily undersized, especially

when s is large. The L̃T (s) test performs better than the L̂T (s) test when s is small, but

tends to be oversized when s is large.

iii. For the 1-dependent process, the size patterns of these tests are similar to those in the

case of the GARCH process. This is expected, since the covariance matrices of the sample

autocovariances of both processes are diagonal with heterogeneous diagonal elements.

iv. For the non-MD-1 process, the empirical rejection probabilities of the Q̃∗T (s) test are suf-

ficiently controlled. However, those of the Q̃T (s) test worsen for a larger s, while those

of the Q̂T (s) test improve for a larger s, albeit still far from the nominal size of 5%. On

the other hand, the L̂T (s) test is heavily undersized. In some cases, its empirical rejection

probabilities are quite close to 0. The empirical rejection probabilities of the L̃T (s) test is

closer to the nominal size than the L̂T (s) test, although it is still undersized.

15



v. For the NLMA process, the size patterns of these tests are reasonably similar to those in

the case of the non-MD-1 process.

vi. For the bilinear process, the L̂T (s) test performs well when s is small (s ≤ 3 for T = 100

and s ≤ 6 for T = 200). The Q̃∗T (s) test is slightly oversized for the sample sizes considered

here. On the other hand, the Q̂T (s), Q̃T (s) and L̃T (s) tests are all heavily oversized.

Overall, the Q̃∗T (s) test performs satisfactorily for all the processes considered here. The

Q̃T (s) test is not reliable for a sample size of 100 or 200. This is in accordance with the simulation

findings in Lobato et al. (2002). Finally, the L̂T (s) test tends to be heavily undersized, especially

when s is large. The empirical rejection probabilities of the L̃T (s) test are closer to the nominal

size in some cases, but it is heavily oversized in many other cases.

For the power comparison, we consider an MA(1) process, ut = yt + 0.25yt−1, where {yt}

are generated according to DGPs M1–M6. Since there exists a substantial difference in the null

rejection probabilities for different tests using the asymptotic critical values, in the power com-

parison we employ the size-adjusted critical values such that the empirical rejection probability

of each test under the null is exactly 5%. It should be noted that the critical-value adjustment

is not practically feasible.

The simulations are carried out using 1, 000 replications. Again, s ranges from 1 to 10 and 15

for T = 100 and 200, respectively. To save space, we only report the results for the case T = 100

in Figure 4. The main features of the results are as follows:

i. The Q̃∗T (s) test has substantial testing power, which is comparable to the Q̃T (s) and Q̂T (s)

tests in many cases. For example, for the non-MD experiments, the Q̃∗T (s) test is even more

powerful than the Q̃T (s) and Q̂T (s) tests when s is small.

ii. The L̂T (s) and L̃T (s) tests, however, suffer from substantial power loss, even after the

critical-value adjustment.
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Figure 2: Percentage of rejections of Portmanteau tests in terms of the lag s under the null
with T = 100. “Fixed-K” represents the asymptotic F test based on the modified statistic Q̃∗T (s)

(this paper); “Fixed-b-1” represents the nonstandard test based on the modified statistic L̂T (s)
(Lobato, 2001); “Fixed-b-2” represents the nonstandard test based on the modified statistic
L̃T (s) (Shao, 2010); “Chi-squared” represents the Chi-squared test based on the statistic Q̃T (s)
(Lobato et al., 2002); and “Ljung-Box” represents the Ljung–Box Q test.
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Figure 3: Percentage of rejections of Portmanteau tests in terms of the lag s under the null
with T = 200. “Fixed-K” represents the asymptotic F test based on the modified statistic Q̃∗T (s)

(this paper); “Fixed-b-1” represents the nonstandard test based on the modified statistic L̂T (s)
(Lobato, 2001); “Fixed-b-2” represents the nonstandard test based on the modified statistic
L̃T (s) (Shao, 2010); “Chi-squared” represents the Chi-squared test based on the statistic Q̃T (s)
(Lobato et al., 2002); and “Ljung-Box” represents the Ljung–Box Q test.
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In summary, the Q̃∗T (s) test has the most accurate size among all four tests, with only a

minor compromise in testing power in some cases.

5 APPLICATION

We use the extended Nelson and Plosser (1982) economic data set for our empirical application.

The data set contains annual information of 15 relevant economic series for the U.S. economy.

Following Lobato (2001), we focus on two time series: the growth of employment and the returns

of the S&P 500 stock market index. The employment series covers the period from 1890 to 1988,

whereas the stock index covers that from 1871 to 1988. Hence, there are 99 and 118 observations,

respectively. Figures 5 plots the employment growth and the stock index returns.

We consider the null hypotheses H
(s)
0 up to s = 5 for both the employment growth series and

the S&P500 returns series. The p-values of the Q̃∗T (s), L̂T (s) and L̃T (s) tests are reported in

Table 11. For completeness, the sample autocorrelation coefficients and their standard errors are

also reported. For the employment growth series, the null hypotheses for s ≥ 2 are rejected at the

10% significance level by our F tests. However, they are not rejected at the 10% significance level

by the nonstandard tests of Lobato (2001) and Shao (2010). In macroeconomics, Blanchard et

al. (1989) developed a conceptual framework to interpret the dynamic behavior of employment,

and unemployment, vacancies and their interactions. So, from a theoretical point of view, the

serial dependence of employment growth is plausible. Empirically, the nonzero autocorrelation

of the employment growth series is in accordance with the results in Chinn et al. (2014). For the

S&P 500 returns, the null hypotheses are rejected at the 10% significance level by our F tests.

For Lobato’s (2001) and Shao’s (2010) tests, the null hypotheses are not rejected at the 10%

significance level for some values of s.

Our results show that different tests may lead to different conclusions in empirical appli-

1We use a sequence of i.i.d. standard normal random vectors with length 104 to approximate one realization of
the vector standard Brownian motion path. We employ 105 Monte-Carlo replications to simulate the nonstandard
distribution of L̂T (s) .
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Figure 4: Size-adjusted empirical powers of the 5% tests under an MA(1) process with T = 100.
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Figure 5: Time series plot of the employment growth and S& P500 returns.

Employment growth S&P500 returns

s 1 2 3 4 5 1 2 3 4 5

Q̃∗T (s) 0.11 0.02 0.08 0.01 0.02 0.10 0.05 0.06 0.04 0.09

L̂T (s) 0.12 0.23 0.56 0.24 0.18 0.10 0.08 0.18 0.13 0.24

L̃T (s) 0.12 0.16 0.28 0.46 0.63 0.08 0.08 0.11 0.08 0.16
ˆρ(s) 0.31 −0.06 −0.09 −0.16 −0.20 0.19 −0.14 −0.06 −0.11 −0.21

(0.17) (0.13) (0.13) (0.12) (0.12) (0.13) (0.08) (0.16) (0.15) (0.09)

Table 1: The p-values of the Q̃∗T (s), L̂T (s) and L̃T (s) tests. ρ̂ (s) is the sth sample autocorre-
lation coefficient, and the number in parentheses is the standard error of ρ̂ (s) .
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cations. A more accurate test is preferred in practice, as it helps us reach more trustworthy

conclusions.

6 CONCLUSION

We propose a new test to test zero serial autocorrelations in an otherwise dependent time series.

By employing the orthonormal series variance estimator of the covariance matrix of the sample

autocovariances, the new test follows an F distribution asymptotically under the fixed-smoothing

asymptotics. Monte Carlo simulations show that this convenient F test has accurate size and

highly competitive power. It would be interesting to extend this methodology to test the auto-

correlations of the residuals from parametric time series models. We will pursue this nontrivial

extension in future research.
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