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SUPPLEMENT A: PROOFS OF THE TECHNICAL LEMMAS IN APPENDIX A

Proof of Lemma A.1: For the first part of the lemma, we use limT→∞ ln (1 + 1/T )
T
= e

to obtain
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Therefore,
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)
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as desired. The second part of the lemma can be proved in the same way.�

Proof of Lemma A.2: Part (a). Using summation by parts, we have(
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by Lemma A.1. Therefore,
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k
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to 0, and we obtain
(
k
3/2
T ρTT

)−1∑T
t=1

∑T
j=t ρ

t−1−j
T uj = op (1) .

c⃝ Royal Economic Society 2018. Published by Blackwell Publishers Ltd, 108 Cowley Road, Oxford OX4
1JF, UK and 350 Main Street, Malden, MA, 02148, USA.



S2 G. Guo, Y. Sun and S. Wang

Part (b). We write(
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Now, using Lemma A.1, we have
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Proof of Lemma A.3: We have(
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by ξ0 = op
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)
and Lemma A.2(a). Now(
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Combining the above two results completes the proof of the lemma.�

Proof of Lemma A.4: Part (a). Note that
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by Lemma A.1. Part (a) follows, as convergence in L1 implies convergence in probability.
Part (b). Under Assumption 3.1, (S.1) still holds, and so(
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by Lemmas 3.1(b&c) and A.1.
Part (c). Under Assumption 3.1, (S.2) still holds, and we have(
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Proof of Lemma A.5: We prove Part (c) first.
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where we have used ξ0 = op
(√

kT
)
and Lemmas 3.1 and A.4(a).

Part (a). By squaring ξt = ρT ξt−1 + ut, we have

ξ2t − ξ2t−1 =
(
ρ2T − 1

)
ξ2t−1 + 2ρT ξt−1ut + u2

t ,

that is, (
ρ2T − 1

)
ξ2t−1 = ξ2t − ξ2t−1 − 2ρT ξt−1ut − u2

t .

So (
ρ2T − 1

) T∑
t=1

ξ2t−1 = ξ2T − ξ20 − 2ρT

T∑
t=1

ξt−1ut −
T∑

t=1

u2
t .

Using Part (c), we now have

(
kT ρ

T
T

)−2
T∑

t=1

ξ2t−1 =
1

k2T ρ
2T
T (ρ2T − 1)

ξ2T + op (1)

=
1

k2T ρ
2T
T (ρ2T − 1)

ρTT ξ0 +
T∑

j=1

ρT−j
T uj

2

+ op (1)

=
1

kT (ρ2T − 1)

k
−1/2
T

T∑
j=1

ρ−j
T uj

2

+ op (1) =
1

2c
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Part (b). The proof is similar to that of Lemma A.3. According to Lemma A.4(b),
equation (S.3) still holds under Assumption 3.1. So(
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Proof of Lemma A.6: Part (a). Since ϕℓ (·) is bounded, we have∣∣∣∣∣ 1
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= O
(
Tk2T

)
+O


T−1∑

j=1

(
j∑

t=1

ϕℓ

(
t

T

)
ρt−1−j
T

)2


= O
(
Tk2T

)
+O


T−1∑

j=1

(
j∑

t=1

ρt−1−j
T

)2


= O
(
Tk2T

)
+O

(
T 2k2T

)
= O

(
T 2k2T

)
.

So
T∑

j=1

(
j∑

t=1

ϕℓ

(
t

T

)
ρt−1−j
T

)
εj = Op

(√
TkT

)
= op

(√
TkT ρ

T
T

)
,

and

k−1
T

T−1∑
j=1

(
j∑

t=1

ϕℓ

(
t

T

)
ρt−1−j
T

)
ε̃j = Op (T ) = op

(√
TkT ρ

T
T

)
,

as desired.�

SUPPLEMENT B: MONTE CARLO SIMULATION EVIDENCE

As mentioned in the main text, we conduct two sets of Monte Carlo simulations. The first
set is based on i.i.d. errors while the second set is based on weakly dependent errors. The
main text has reported and discussed the simulation results for the case with α = 0.5 and
T = 100. In this section, we consider additional combinations of α and T , and provide
more evidence for the conclusions given in the main text.

Tables S.1–S.3 report the empirical size and power results of the tPM, tWY, and tMED

tests under i.i.d. errors for α = {0.3, 0.5, 0.8} and T ∈ {100, 150}. First, as is clear
from the tables, the size performance of the three tests based on i.i.d. Gaussian errors
is qualitatively similar to that based on i.i.d. uniform errors. For example, the empirical
size of the tPM test is 5.0% in the case wherein α = 0.3, T = 100, and µT = 0 under
i.i.d. Gaussian errors, while the corresponding size under i.i.d. uniform errors is 4.7%.
Similarly, the tMED test has a size of 5.1% under i.i.d. Gaussian errors and 5.3% under
i.i.d. uniform errors when α = 0.5, T = 150, and µT = T−α/4. This is in line with our
theoretical analysis that normality of the errors is not necessary for these tests.

The second feature is that when µT ̸= 0, both the tWY test and tMED test have quite
accurate size. Take the case with α = 0.5, T = 100, µT = T−α/4, and ut ∼ i.i.d.N(0, 1)
as an example. The empirical size of the tMED test is 5.5%, whereas the corresponding
size of the tWY test is 5.6%. Note that the asymptotic distribution of the tWY statistic is
simulated by employing the true parameter values. The standard normal approximation
to the distribution of the tMED statistic appears to be very accurate.

When µT = 0, as Tables S.1–S.3 show, the tPM test has satisfactory size performance
for at least the cases with α = 0.3 and α = 0.5. This is expected, as the tPM statistic
is based on a regression without an intercept. In such cases, we observe that the size
performance of the tMED test is not worse than that of the tPM test. For example, when
α = 0.5, T = 150, and µT = 0, the null rejection probabilities of the tPM and tMED tests
are around 5% for both Gaussian and uniform errors. We also notice that these two tests
have some size distortion when α is large and close to 1. This is not surprising because

c⃝ Royal Economic Society 2018
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when α → 1, the ME root ρT = 1+1/Tα will approach a near unit root, a scenario that
is not accommodated by our asymptotic theory. But the size distortion decreases as T
increases or as µT departs farther away from zero. In fact, as µT becomes larger, the tPM

test suffers from increasing size distortion while the tMED test enjoys a good size control.
For example, the empirical size of the tMED test is 5.4% when α = 0.8, T = 150, µT = 1,
and ut ∼ i.i.d.U(−

√
3,
√
3), which is much closer to the nominal level than that of the

tPM test. According to the size accuracy, the tMED test dominates the tPM test.
Finally, the tMED test is more powerful than the tPM test in our simulation experi-

ments. For example, when α = 0.8, T = 150, µT = T−α/4, and ut ∼ i.i.d.U(−
√
3,
√
3),

the size-adjusted power of the tPM test is 71.0% while that of the tMED test is 75.5%.
As α decreases, the local-to-unity alternative departs more from the null of moderate
explosiveness, and the power of the tests approaches 100%. This explains why the tPM

and tMED tests always reject when α = 0.3 and 0.5. Our simulation evidence clearly
shows that the tMED test outperforms the tPM test in terms of both size accuracy and
and power performance.

Tables S.4–S.6 report the empirical size and power results of the tMED and t̃MED tests
under both the AR design and MA design. The results for the sample size T = 100 are
similar to those for T = 150. In view of the size accuracy, the tMED test performs well
when θ = 0.00, as there is no autocorrelation. However, this test has large size distortion
when θ is different from 0. The size distortion increases significantly as θ becomes larger.
In contrast, the size distortion of the t̃MED test is substantially smaller than that of the
standard tMED test. For example, in the case wherein α = 0.3, T = 150, and θ = 0.75,
the size results of t̃MED are 4.0% under the AR design and 5.9% under the MA design,
respectively, both of which are quite smaller than 36.3% and 15.4%, the corresponding size
levels of tMED. Other parameter configurations also lead to the observation that the t̃MED

test is more accurate and is therefore preferred when the errors are serially correlated.
This result is consistent with our asymptotic theory. Ignoring the autocorrelation leads
to an inaccurate test.

Tables S.4–S.6 show that the size-adjusted power of the t̃MED test is close to that of
the tMED test in both the AR and MA cases. Take the case with α = 0.5, T = 100,
and θ = 0.75 as an example. The t̃MED test has a power of 97.1% under the AR design,
whereas the corresponding power of the tMED test is 99.3%. Under the MA design, the
power level of both the t̃MED and tMED tests reaches 100%. Given these observations, we
can conclude that the t̃MED test achieves size accuracy with only very small power loss.
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Table S.1. Size and power under i.i.d. errors: the case with α = 0.3.

Size (ρ = 1 + 1/Tα) Power (ρ = 1 + 1/T )

tPM tWY tMED tPM tMED

T = 100 (a) i.i.d. Gaussian errors

µT = 0 0.050 0.056 0.055 1.000 1.000

µT = T−α/2 0.254 0.058 0.055 1.000 1.000

µT = T−α/4 0.397 0.060 0.055 1.000 1.000

µT = 1 0.601 0.058 0.055 1.000 1.000

(b) i.i.d. uniform errors

µT = 0 0.047 0.049 0.046 1.000 1.000

µT = T−α/2 0.251 0.049 0.046 1.000 1.000

µT = T−α/4 0.393 0.048 0.046 1.000 1.000

µT = 1 0.596 0.048 0.046 1.000 1.000

T = 150 (a) i.i.d. Gaussian errors

µT = 0 0.050 0.052 0.051 1.000 1.000

µT = T−α/2 0.259 0.052 0.052 1.000 1.000

µT = T−α/4 0.428 0.053 0.051 1.000 1.000

µT = 1 0.663 0.057 0.052 1.000 1.000

(b) i.i.d. uniform errors

µT = 0 0.051 0.061 0.054 1.000 1.000

µT = T−α/2 0.253 0.057 0.054 1.000 1.000

µT = T−α/4 0.420 0.058 0.054 1.000 1.000

µT = 1 0.652 0.055 0.053 1.000 1.000

Note: This table reports the empirical size and size-adjusted power of 5% tests with 5,000 Monte

Carlo replications. In the i.i.d. Gaussian group, ut ∼ i.i.d.N(0, 1), while in the i.i.d. uniform group,

ut ∼ i.i.d.U(−
√
3,

√
3). Different parameter combinations are configured to conduct simulations for the

null of moderate explosiveness ρ = 1 + 1/Tα against the alternative of local-to-unity ρ = 1 + 1/T .
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Table S.2. Size and power under i.i.d. errors: the case with α = 0.5.

Size (ρ = 1 + 1/Tα) Power (ρ = 1 + 1/T )

tPM tWY tMED tPM tMED

T = 100 (a) i.i.d. Gaussian errors

µT = 0 0.050 0.053 0.056 1.000 1.000

µT = T−α/2 0.277 0.058 0.055 1.000 1.000

µT = T−α/4 0.641 0.056 0.055 1.000 1.000

µT = 1 0.969 0.058 0.055 1.000 1.000

(b) i.i.d. uniform errors

µT = 0 0.049 0.047 0.049 1.000 1.000

µT = T−α/2 0.276 0.049 0.049 1.000 1.000

µT = T−α/4 0.637 0.047 0.048 1.000 1.000

µT = 1 0.973 0.047 0.048 1.000 1.000

T = 150 (a) i.i.d. Gaussian errors

µT = 0 0.050 0.056 0.051 1.000 1.000

µT = T−α/2 0.289 0.054 0.051 1.000 1.000

µT = T−α/4 0.689 0.053 0.051 1.000 1.000

µT = 1 0.992 0.053 0.051 1.000 1.000

(b) i.i.d. uniform errors

µT = 0 0.051 0.053 0.053 1.000 1.000

µT = T−α/2 0.276 0.053 0.053 1.000 1.000

µT = T−α/4 0.678 0.053 0.053 1.000 1.000

µT = 1 0.991 0.053 0.053 1.000 1.000

Note: This table reports the empirical size and size-adjusted power of 5% tests with 5,000 Monte

Carlo replications. In the i.i.d. Gaussian group, ut ∼ i.i.d.N(0, 1), while in the i.i.d. uniform group,

ut ∼ i.i.d.U(−
√
3,

√
3). Different parameter combinations are configured to conduct simulations for the

null of moderate explosiveness ρ = 1 + 1/Tα against the alternative of local-to-unity ρ = 1 + 1/T .
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Table S.3. Size and power under i.i.d. errors: the case with α = 0.8.

Size (ρ = 1 + 1/Tα) Power (ρ = 1 + 1/T )

tPM tWY tMED tPM tMED

T = 100 (a) i.i.d. Gaussian errors

µT = 0 0.118 0.256 0.261 0.133 0.142

µT = T−α/2 0.180 0.121 0.123 0.175 0.196

µT = T−α/4 0.795 0.048 0.048 0.407 0.553

µT = 1 1.000 0.052 0.051 0.978 0.999

(b) i.i.d. uniform errors

µT = 0 0.113 0.241 0.257 0.136 0.142

µT = T−α/2 0.181 0.104 0.111 0.161 0.194

µT = T−α/4 0.807 0.044 0.047 0.399 0.527

µT = 1 1.000 0.048 0.053 0.982 1.000

T = 150 (a) i.i.d. Gaussian errors

µT = 0 0.118 0.240 0.246 0.207 0.192

µT = T−α/2 0.202 0.109 0.114 0.257 0.257

µT = T−α/4 0.883 0.051 0.054 0.695 0.741

µT = 1 1.000 0.051 0.055 1.000 1.000

(b) i.i.d. uniform errors

µT = 0 0.118 0.235 0.235 0.200 0.196

µT = T−α/2 0.197 0.114 0.114 0.273 0.282

µT = T−α/4 0.880 0.052 0.054 0.710 0.755

µT = 1 1.000 0.053 0.054 1.000 1.000

Note: This table reports the empirical size and size-adjusted power of 5% tests with 5,000 Monte

Carlo replications. In the i.i.d. Gaussian group, ut ∼ i.i.d.N(0, 1), while in the i.i.d. uniform group,

ut ∼ i.i.d.U(−
√
3,

√
3). Different parameter combinations are configured to conduct simulations for the

null of moderate explosiveness ρ = 1 + 1/Tα against the alternative of local-to-unity ρ = 1 + 1/T .
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Table S.4. Size and power in the presence of autocorrelated errors: the case with α = 0.3.

Size (ρ = 1 + 1/Tα) Power (ρ = 1 + 1/T )

tMED t̃MED tMED t̃MED

T = 100 (a) AR design

θ = 0.00 0.056 0.059 1.000 1.000

θ = 0.25 0.123 0.061 1.000 1.000

θ = 0.50 0.221 0.054 1.000 1.000

θ = 0.75 0.356 0.045 1.000 1.000

(b) MA design

θ = 0.00 0.055 0.059 1.000 1.000

θ = 0.25 0.108 0.056 1.000 1.000

θ = 0.50 0.143 0.058 1.000 1.000

θ = 0.75 0.155 0.056 1.000 1.000

T = 150 (a) AR design

θ = 0.00 0.052 0.055 1.000 1.000

θ = 0.25 0.119 0.056 1.000 1.000

θ = 0.50 0.215 0.053 1.000 1.000

θ = 0.75 0.363 0.040 1.000 1.000

(b) MA design

θ = 0.00 0.051 0.056 1.000 1.000

θ = 0.25 0.103 0.055 1.000 1.000

θ = 0.50 0.144 0.055 1.000 1.000

θ = 0.75 0.154 0.059 1.000 1.000

Note: This table reports the empirical size and size-adjusted power of 5% tests with 5,000 Monte Carlo

replications. In the AR design, ut = θut−1 +
√
1− θ2e1,t, while in the MA design, ut = θe2,t−1 +√

1− θ2e2,t, where e1,t ∼ i.i.d.N(0, 1) and e2,t ∼ i.i.d.N(0, 1). Different parameter combinations are

configured to conduct simulations for the null of moderate explosiveness ρ = 1 + 1/Tα against the

alternative of local-to-unity ρ = 1 + 1/T .
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Table S.5. Size and power in the presence of autocorrelated errors: the case with α = 0.5.

Size (ρ = 1 + 1/Tα) Power (ρ = 1 + 1/T )

tMED t̃MED tMED t̃MED

T = 100 (a) AR design

θ = 0.00 0.053 0.057 1.000 1.000

θ = 0.25 0.134 0.068 1.000 1.000

θ = 0.50 0.242 0.070 1.000 0.998

θ = 0.75 0.413 0.081 0.993 0.971

(b) MA design

θ = 0.00 0.055 0.060 1.000 1.000

θ = 0.25 0.114 0.060 1.000 1.000

θ = 0.50 0.157 0.066 1.000 1.000

θ = 0.75 0.169 0.066 1.000 1.000

T = 150 (a) AR design

θ = 0.00 0.052 0.053 1.000 1.000

θ = 0.25 0.127 0.064 1.000 1.000

θ = 0.50 0.243 0.064 1.000 0.999

θ = 0.75 0.430 0.074 0.998 0.996

(b) MA design

θ = 0.00 0.051 0.055 1.000 1.000

θ = 0.25 0.111 0.061 1.000 1.000

θ = 0.50 0.155 0.063 1.000 1.000

θ = 0.75 0.169 0.062 1.000 1.000

Note: This table reports the empirical size and size-adjusted power of 5% tests with 5,000 Monte Carlo

replications. In the AR design, ut = θut−1 +
√
1− θ2e1,t, while in the MA design, ut = θe2,t−1 +√

1− θ2e2,t, where e1,t ∼ i.i.d.N(0, 1) and e2,t ∼ i.i.d.N(0, 1). Different parameter combinations are

configured to conduct simulations for the null of moderate explosiveness ρ = 1 + 1/Tα against the

alternative of local-to-unity ρ = 1 + 1/T .
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Table S.6. Size and power in the presence of autocorrelated errors: the case with α = 0.8.

Size (ρ = 1 + 1/Tα) Power (ρ = 1 + 1/T )

tMED t̃MED tMED t̃MED

T = 100 (a) AR design

θ = 0.00 0.049 0.051 0.556 0.545

θ = 0.25 0.121 0.061 0.525 0.468

θ = 0.50 0.250 0.077 0.398 0.346

θ = 0.75 0.459 0.111 0.272 0.195

(b) MA design

θ = 0.00 0.048 0.051 0.552 0.550

θ = 0.25 0.099 0.056 0.531 0.488

θ = 0.50 0.144 0.065 0.489 0.427

θ = 0.75 0.157 0.065 0.483 0.404

T = 150 (a) AR design

θ = 0.00 0.055 0.057 0.763 0.748

θ = 0.25 0.126 0.069 0.666 0.631

θ = 0.50 0.252 0.074 0.512 0.461

θ = 0.75 0.465 0.103 0.330 0.266

(b) MA design

θ = 0.00 0.054 0.055 0.740 0.733

θ = 0.25 0.106 0.062 0.688 0.656

θ = 0.50 0.150 0.066 0.630 0.577

θ = 0.75 0.163 0.066 0.615 0.561

Note: This table reports the empirical size and size-adjusted power of 5% tests with 5,000 Monte Carlo

replications. In the AR design, ut = θut−1 +
√
1− θ2e1,t, while in the MA design, ut = θe2,t−1 +√

1− θ2e2,t, where e1,t ∼ i.i.d.N(0, 1) and e2,t ∼ i.i.d.N(0, 1). Different parameter combinations are

configured to conduct simulations for the null of moderate explosiveness ρ = 1 + 1/Tα against the

alternative of local-to-unity ρ = 1 + 1/T .
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