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Summary This paper considers a moderately explosive AR(1) process where the
autoregressive root approaches unity from the right at a certain rate. We first develop a
test for the null of moderate explosiveness under independent and identically distribut-
ed errors. We show that the t statistic is asymptotically standard normal regardless of
whether the true process is dominated by the stochastic moderately-explosive trend or
the deterministic nonlinear drift trend. This result is in sharp contrast with the exist-
ing literature wherein nonstandard limiting distributions are obtained under different
model assumptions. When the errors are weakly dependent, we show that the t statistic
based on a heteroskedasticity and autocorrelation robust standard error follows Stu-
dent’s t distribution in large samples. Monte Carlo simulations show that our tests have
satisfactory size and power performances in finite samples. Applying the asymptotic t
test to ten major stock indexes in the pre-2008 financial exuberance period, we find
that most indexes are only mildly explosive or not explosive at all, which implies that
the bout of the irrational rise was not as serious as previously thought.

Keywords: Heteroskedasticity and autocorrelation robust standard error, Irrational
exuberance, Local to unity, Moderate explosiveness, Student’s t distribution, Unit root.

1. INTRODUCTION

Explosive processes have attracted much recent attention. Phillips and Magdalinos (2007a)
consider moderately explosive (ME) processes where the autoregressive (AR) root is
greater than unity but its deviation from unity decreases as the sample size increases.
Such triangular array data processes have been shown to capture the ME behaviour in
many economic and financial time series. The work of Phillips and Magdalinos (2007a,
hereafter PM) has stimulated many subsequent studies including Phillips and Magdali-
nos (2007b), Magdalinos and Phillips (2009), Phillips et al. (2010), Phillips et al. (2011),
Magdalinos (2012), Phillips et al. (2014, 2015a,b), and Arvanitis and Magdalinos (2018),
among others.

Research on explosive processes can be traced back to White (1958) and Anderson
(1959). For a simple Gaussian AR(1) process yt = ρyt−1 + ut (t = 1, 2, . . . , T ) with fixed
ρ > 1, y0 = 0, and independent and identically distributed (i.i.d.) Gaussian errors {ut},
White (1958) shows that ρT (ρ̂−ρ)/(ρ2−1) converges to a standard Cauchy distribution,
where ρ̂ is the ordinary least-squares (OLS) estimator of ρ. Anderson (1959) points out
that the normality of the error process is necessary for this result. This poses a challenge
in the application of explosive processes, as we have to use different reference distributions
for different distributions of the errors, which are often not known.

Phillips and Magdalinos (2007a) show that for an ME process wherein ρ is parametrized
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as ρ := ρT = 1 + c/kT for some c > 0 and kT = o(T ) → ∞ as T → ∞, the limiting
behaviour of the OLS estimator of ρ is invariant to the distribution of the errors. More
specifically, it is shown that the coefficient-based statistic kT ρ

T
T (ρ̂ − ρT )/(2c) converges

weakly to the standard Cauchy distribution, even if the errors are not Gaussian. Inference
can then be made without accounting for the exact distribution of the errors in large
samples. More importantly, compared with the original explosive processes of White
(1958) and Anderson (1959), ME processes are better able to capture the empirical
regularities found in many economic and financial data, such as the Dow Jones Industrial
Average.

In this paper, we generalize PM (2007a) to allow for an intercept in the AR(1) process
and develop an asymptotically valid test for moderate explosiveness. The ME process
under consideration, i.e., yt = µT + ρT yt−1+ut, has two components: the stochastic ME
component and the deterministic drift trend component, both of which can render the
process explosive. Generally, the deterministic trend component dominates the stochastic
trend component, but when the drift µT decreases to zero at a certain rate with the
sample size, e.g., µT

√
kT → 0, the stochastic trend will become stronger in relation to the

drift component. Regardless of which component dominates, this paper shows that under
the null of moderate explosiveness, the asymptotic distributions of the OLS t statistic
are the same, even though the asymptotic distributions of the underlying OLS estimator
of ρT are different. In particular, in the presence of i.i.d. errors, the OLS t statistic is
asymptotically standard normal regardless of whether the drift is large or small, or simply
equal to zero. This invariance property extends the existing literature on how the drift
specification affects the least squares limit theory of an explosive AR(1) model (see, e.g.,
Wang and Yu, 2015, Fei, 2018, and Liu and Peng, 2018), and releases us from having to
choose a reference distribution in practice. Compared with the nonstandard test of Wang
and Yu (2015), who also accommodate a drift but assume a fixed ρ greater than 1, our
asymptotic normal test is much easier to use, as critical values are readily available.

Our invariance result is in sharp contrast with the unit-root case and the conventional
local-to-unity case where the nonstandard limiting distribution of the t-type statistic is a
functional of Brownian motions. The nonstandard distribution is different depending on
whether an intercept is included in the regression or not. When an intercept is included,
a demeaning effect will emerge and will be retained in the limiting distribution. For more
detailed discussion, see Dickey and Fuller (1979, 1981) and MacKinnon (1996) in the unit
root setting, Phillips (1987) and Phillips and Perron (1988) in the local-to-unity setting,
and Phillips et al. (2014) and Phillips et al. (2015a,b) in the periodically collapsing
explosive bubble setting.

Another contribution of this paper is that we extend our basic results to allow for
weakly dependent errors. The limiting distribution of the OLS estimator of ρT is still
normal or mixed normal, but it now depends on the long-run variance (LRV) of the error
process. We employ the simple average of the first few periodograms to estimate the
LRV and construct the heteroskedasticity and autocorrelation robust (HAR) standard
error of the OLS estimator of ρT . Under the conventional asymptotics where the number
of periodograms grows but at a slower rate than the sample size, the LRV estimator is
consistent. In this case, the t statistic is still asymptotically standard normal, and our
invariance result continues to hold.

Given that the normal approximation is not very accurate when the error process has
high autocorrelation, we develop the t approximation theory using the fixed-smoothing
asymptotics. Under this type of asymptotics where the number of periodograms used in
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the LRV estimation is held fixed, we show that the t statistic based on the HAR standard
error follows Student’s t distribution in large samples. This result holds regardless of
whether a drift term is present or not. The asymptotic t test achieves double robustness:
it is asymptotically valid no matter whether the errors are autocorrelated or not, and
whether the drift is large, small, or is simply not present.

Monte Carlo (MC) simulations show that the asymptotic normal test under i.i.d. er-
rors and the asymptotic t test under weakly dependent errors have accurate size and
satisfactory power in finite samples. When it is not clear whether the errors are i.i.d., we
recommend using the HAR t test with a data-driven smoothing parameter.

To identify the degree of the moderate explosiveness of a time series in practice, we
propose a two-step empirical testing strategy that involves pretesting.1 The pretesting
aims at detecting whether the series is an explosive process. This is necessary, as the
asymptotic t test is based on the primitive condition ρT > 1, and the asymptotic t
theory does not hold when ρT = 1. For this reason, we have to exclude the nonexplosive
root at first. After finding evidence on explosive behaviour, we proceed to employ our
asymptotic t test to obtain a confidence interval for the explosiveness. The confidence
interval consists of all permissible null values of ρT that are not rejected by our t test.
Categorizing the seemingly severe or slight explosiveness according to ρT will be helpful
in bubble identification, classification, and provision of warning. We apply our empirical
testing strategy to ten major stock indexes in various countries/districts of the world in
a period before the 2008 financial crisis. Interestingly, we find that most indexes are only
mildly explosive, or not explosive at all. The pre-2008-financial-crisis bout of irrational
rise did not seem so serious as previously thought. This is consistent with Greenspan
(2008)’s perception that the financial bubble was not so large.

The rest of the paper is organized as follows. Section 2 establishes the limit theory
for ME processes with a sample-size dependent drift. The drift is allowed to be large
or small, or simply equal to zero. This section also compares our limit theory with the
limit theory developed by Wang and Yu (2015) for severely explosive processes. Section 3
extends the results in Section 2 by allowing weakly dependent errors. Section 4 contains
simulation evidence. Section 5 provides the empirical testing strategy and documents the
empirical application. The last section concludes. Appendix A presents some technical
lemmas that are used in the proofs of the key results, and Appendix B comprises the
proofs of the key results. Proofs of the technical lemmas and some additional simulation
results are relegated to the online supplement.

2. ASYMPTOTIC NORMAL TEST UNDER I.I.D. ERRORS

2.1. Preliminaries

Following PM (2007a), we consider an ME series {ξt}:

ξt = ρξt−1 + ut,

ρ = ρT = 1 +
c

kT
, c > 0, (2.1)

for t = 1, 2, . . . , T, where {ut} is a sequence of i.i.d. innovations with Eut = 0 and
Eu2

t = σ2 < ∞, and kT increases with T but at a slower rate, i.e., kT → ∞ but

1There will be some size distortion from pretesting. In principle, a Bonferroni correction can be used
to alleviate the problem.
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kT /T → 0 as T → ∞. Under the rate condition on kT , we can show that, for any a > 0,
ρaTT grows at an exponential rate in T/kT , which is faster than any polynomial rate in
T/kT ; see Lemma A.1 in Appendix A.

We further assume that the initial value of the ME process, ξ0, satisfies ξ0 = op(
√
kT )

and that ξ0 is independent of {ut, t = 1, . . . , T}. The triangular parametrization of ρT
and the assumption on ξ0 ensure that an invariance principle can be established for the
ME process. If ρ is a fixed value greater than 1, the effects of a nonzero initial value
would not disappear, even asymptotically. In this case, as shown in Anderson (1959), an
invariance principle is not applicable.

Define

XT := k
−1/2
T

T∑
t=1

ρ
−(T−t)−1
T ut and YT := k

−1/2
T

T∑
j=1

ρ−j
T uj . (2.2)

Let X and Y be independent random variables, each distributed as N(0, σ2
c ), where

σ2
c := σ2/(2c). PM (2007a) show that

(XT , YT )
′ ⇒ (X,Y )

′
. (2.3)

The symbol “⇒” signifies the weak convergence. Moreover, they show that

(
kT ρ

T
T

)−2
T∑

t=1

ξ2t−1 =
1

2c
Y 2
T + op (1) , (2.4)

(
kT ρ

T
T

)−1
T∑

t=1

ξt−1ut = XTYT + op (1) , (2.5)

and

kT ρ
T
T (ρ̂T,ξ − ρT ) ⇒ 2cX/Y, (2.6)

where ρ̂T,ξ is the OLS estimator of ρT andX/Y follows the standard Cauchy distribution.
See PM (2007a, page 122) for more details.

Let

σ̂2
ρ,ξ = s2T,ξ

(
n∑

t=1

ξ2t−1

)−1

and s2T,ξ =
1

T − 1

T∑
t=1

(ξt − ρ̂T,ξξt−1)
2
.

Taking σ̂ρ,ξ as an estimator of the standard error of (ρ̂T,ξ − ρT ), we construct the OLS t
statistic as follows

tPM :=
ρ̂T,ξ − ρT

σ̂ρ,ξ
. (2.7)

Using (2.3)–(2.6), we can show that

tPM ⇒ 2cX/Y

σ/(Y/
√
2c)

=
X

σc

d
= N (0, 1) .

The symbol “
d
=” signifies the equivalence in distribution.
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2.2. Model and Test for ME Processes with Drift

We consider an ME process with drift (MED) defined by

yt = µT + ρyt−1 + ut,

ρ = ρT = 1 +
c

kT
, c > 0. (2.8)

We maintain the following assumption.

Assumption 2.1. (a) ut ∼ i.i.d.(0, σ2); (b) kT → ∞ and kT /T → 0 as T → ∞; (c)
µT

√
kT → ν ∈ [0,∞] as T → ∞; (d) y0 is independent of {ut, t = 1, . . . , T} and

y0 = op(
√
kT ).

As discussed earlier, by imposing an upper bound on the rate of divergence of kT , i.e.,
kT = o(T ), we assume that the AR root deviates more from the unity than the usual
local-to-unity specification under which ρT = 1 + c/T. The relatively larger deviation
leads to explosive behaviour. On the other hand, the deviation is decaying in T so that
the process is only mildly explosive.

The drift in our model can be both large or small. When µT

√
kT → ∞, we say that

the drift is large. When µT is a fixed constant, then µT

√
kT → ∞, and we have a large

drift. On the other hand, when µT

√
kT → ν ∈ [0,∞), we say that the drift is small. In

this case, µT approaches zero at a certain rate with the sample size. Note that ν can
be arbitrarily close to zero or just equal to zero. So our model allows for a small drift
or no drift at all. In practice, we do not know the size of the true drift. To avoid model
misspecification, it is advisable to include a drift in our model specification.

Expanding (2.8), we obtain

yt = ρtT y0 +
t∑

j=1

ρt−j
T uj + µT

(
ρtT − 1

)
/ (ρT − 1)

= ξt + µT

(
ρtT − 1

)
kT /c, (2.9)

where

ξt = ρtT ξ0 +
t∑

j=1

ρt−j
T uj for ξ0 = y0.

{ξt} satisfies model (2.1) and is an ME process without drift. So, the stochastic approx-
imations in (2.4) and (2.5) in Section 2.1 hold. When µT ̸= 0, the process {yt} has
two components: the stochastic ME component ξt and the deterministic nonlinear trend
component µT (ρ

t
T − 1)kT /c, both of which can render the process explosive.

Based on (2.9), we obtain Theorem 2.1 which characterizes the limits of the main
sample statistics of interest.

Theorem 2.1. Let Assumption 2.1 hold with ν ∈ (0,∞]. Define 1/∞ = 0. Then the
following convergence results hold jointly:

(a)
(
µ2
T k

3
T ρ

2T
T

)−1
T∑

t=1

y2t−1 ⇒ 1

2c

(
Y

ν
+

1

c

)2

;
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(b)
(
µT k

2
T ρ

T
T

)−1
T∑

t=1

yt−1 ⇒ 1

c

(
Y

ν
+

1

c

)
;

(c) (µT k
3/2
T ρTT )

−1
T∑

t=1

yt−1ut ⇒ X

(
Y

ν
+

1

c

)
.

When Assumption 2.1(c) holds with ν = ∞, the convergence rates of the sample
statistics in Theorem 2.1 are all higher than those obtained for the ME processes without
drift. The faster rates of convergence when the drift satisfies µT

√
kT → ∞ are due to

the accumulation of the drift term. In large samples, {yt} behaves like a deterministic
trending process with consequential effects on the asymptotic behaviour of the sample
statistics. This also explains why µT appears as a normalization factor in Theorem 2.1.

We proceed to investigate the asymptotic distribution of the OLS estimator ρ̂T of ρT .
Define

ZT := T−1/2
T∑

t=1

ut. (2.10)

Using the Lindeberg-Feller central limit theorem, we can show that ZT converges in
distribution to Z, where Z ∼ N(0, σ2). Moreover, the convergence holds jointly with the
convergence in (2.3) with Z independent of (X,Y ); see Wang and Yu (2015) or the proof
of Theorem 3.3 in Appendix B.

To characterize the rate of convergence of the OLS estimator ρ̂T of ρT , we let

DT =

(
T 1/2 0

0 µT k
3/2
T ρTT

)
.

Then, for xt = ( 1, yt−1 )′, we have

D−1
T

(
T∑

t=1

xtx
′
t

)
D−1

T =

 1
T

∑T
t=1 1

1

µT

√
Tk

3/2
T ρT

T

∑T
t=1 yt−1

1

µT

√
Tk

3/2
T ρT

T

∑T
t=1 yt−1

1
µ2
T k3

T ρ2T
T

∑T
t=1 y

2
t−1


=

 1 Op

(√
kT /T

)
Op

(√
kT /T

)
1

µ2
T k3

T ρ2T
T

∑T
t=1 y

2
t−1

⇒

(
1 0

0 1
2c

(
Y
ν + 1

c

)2
)
,

using Theorems 2.1(a) and (b). In addition, using Theorem 2.1(c), we have

D−1
T

T∑
t=1

xtut ⇒
(

Z, X (Y/ν + 1/c)
)′

.

It then follows that

µT k
3/2
T ρTT (ρ̂T − ρT ) = e′2

[
D−1

T

(
T∑

t=1

xtx
′
t

)
D−1

T

]−1 [
D−1

T

T∑
t=1

xtut

]

⇒ X (Y/ν + 1/c)

(Y/ν + 1/c)
2
/ (2c)

=
2cX

Y/ν + 1/c
, (2.11)

where e2 = ( 0, 1 )′.
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When ν = ∞, we have µT k
3/2
T ρTT (ρ̂T−ρT ) ⇒ 2c2X and so ρ̂T is asymptotically normal.

The rate of convergence of ρ̂T to ρT (i.e., µT k
3/2
T ρTT ) is faster than the rate of kT ρ

T
T in

PM (2007a). This result is consistent with Theorem 2.7(b) in Fei (2018) and Theorem
1(P7) in Liu and Peng (2018), both of which allow for a nonzero constant intercept in
the MED model such that µT

√
kT → ∞. On the other hand, when ν ∈ (0,∞), the limit

distribution is mixed normal. Like Theorem 4.3(b) in PM (2007a) and Theorem 1(P4) in
Liu and Peng (2018), it is a ratio of two independent normal random variables, but it is
not the Cauchy distribution. Depending on the value of ν, we obtain an asymptotically
normal or mixed-normal distribution.

We now construct the t statistic as follows:

tMED :=
ρ̂T − ρT

σ̂ρ
,

where

σ̂2
ρ = s2T e

′
2

(
T∑

t=1

xtx
′
t

)−1

e2 and s2T =
1

T − 2

T∑
t=1

(yt − µ̂T − ρ̂T yt−1)
2
.

Then we have

tMED ⇒ 2cX

Y/ν + 1/c

(
1

σ

Y/ν + 1/c√
2c

)
=

X

σc

d
= N (0, 1) .

The limiting distribution of tMED is the standard Gaussian distribution rather than
some nonstandard distribution that involves functionals of Brownian motions. The main
reason is that, after being normalized by the scaling matrixDT , the off-diagonal elements
of D−1

T (
∑T

t=1 xtx
′
t)D

−1
T vanish as T → ∞. A key assumption behind this result is that

kT = o(T ). In contrast, these elements converge weakly to a nonzero constant or random
variate in the conventional unit-root or local-to-unity framework.

The ME process can be regarded as an approximation to the unit root process from
the explosive side. When kT is of the same order as T , our parametrization resembles a
near unit-root parametrization but on the explosive side. Note that when kT = T , we
have limT→∞ ρTT = limT→∞(1 + c/T )T = ec. So when kT is of the same order as T and

µT is a constant, the orders of
∑T

t=1 y
2
t−1,

∑T
t=1 yt−1, and

∑T
t=1 yt−1ut become close to

T 3, T 2, and T 3/2, respectively. These convergence rates match those in the local-to-unity
case.

To investigate the asymptotic properties of the t test when ν = 0, we establish the
theorem below, which is a modified version of Theorem 2.1. Given that the proof is
essentially the same as that for Theorem 2.1 with only minor modifications, we omit it
here.

Theorem 2.2. Let Assumption 2.1 hold with ν = 0. Then the following convergence
results hold jointly:

(a)
(
k2T ρ

2T
T

)−1
T∑

t=1

y2t−1 ⇒ 1

2c
Y 2;

(b)
(
k
3/2
T ρTT

)−1 T∑
t=1

yt−1 ⇒ 1

c
Y ;

c⃝ Royal Economic Society 2018
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(c)
(
kT ρ

T
T

)−1
T∑

t=1

yt−1ut ⇒ XY .

The limiting behaviours of the sample statistics are the same as the case with no drift.
Combining Theorem 2.2 with the argument for the asymptotic normal result for the case
ν > 0, we obtain

kT ρ
T
T (ρ̂T − ρT ) ⇒ 2cX/Y, (2.12)

and

tMED ⇒ X/σc
d
= N (0, 1) .

We formalize our asymptotic standard normal limit theory in the theorem below.

Theorem 2.3. Let Assumption 2.1 hold. Then tMED ⇒ N(0, 1) as T → ∞.

Regardless of the size of the drift, the t statistic is asymptotically standard normal. This
is a very encouraging and convenient result. We obtain the same limiting distribution even
though the asymptotic distribution of the coefficient estimator is different for different
drift sizes. Note that the t test based on the PM regression (with no intercept included) is
asymptotically normal only in the absence of a drift term. The asymptotic normal t-test
based on the PM regression can have large size distortion if a drift is actually present.
When the nature of the drift is not known, we recommend employing the tMED test,
which is asymptotically valid no matter whether the drift is large or small.

Wang and Yu (2015, hereafter WY) develop the limit theory for the model

yt = µ+ ρyt−1 + ut, ut ∼ i.i.d.(0, σ2),

where both µ and ρ are fixed and ρ > 1. Compared with a moderate deviation from
unity, a fixed ρ value that is strictly greater than 1 can be viewed as a severely explosive
(SE) parametrization.

The t statistic tWY in WY (2015) is identical to tMED. Let

ẌT :=

T∑
t=1

ρ−(T−t)ut and ŸT := ρ

T−1∑
j=1

ρ−juj + ρy0.

WY (2015) show that (ẌT , ŸT ) ⇒ (Ẍ, Ÿ ) and that

tWY ⇒ tWY,∞
(
y0, ρ, σ

2, µ
)
:=

Ẍ

Ÿ + ρµ/ (ρ− 1)
·
∣∣∣∣Ÿ +

ρµ

ρ− 1

∣∣∣∣ · (ρ2 − 1

ρ2σ2

)1/2

. (2.13)

The limiting distribution is nonstandard. It is also not pivotal, as it depends on the
unknown parameters ρ, µ, and σ, and the initial value y0. This feature makes the limiting
distribution less convenient to use in empirical applications.

c⃝ Royal Economic Society 2018
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If we replace ρ with ρT = 1 + c/kT and maintain the same initial condition that y0 =

op(
√
kT ), we will have k

−1/2
T ẌT = XT (1 + op(1)) and k

−1/2
T ŸT = YT (1 + op(1)).

2 Then
the distribution of the random variable tWY,∞(y0, ρ, σ

2, µ) will become asymptotically
standard normal as T → ∞, viz.

tWY,∞
(
y0, ρ, σ

2, µ
)

=

√
kTX√

kTY + µkT /c+ µ
·
∣∣∣√kTY + µkT /c+ µ

∣∣∣ · (2c/kT
σ2

)1/2

(1 + op (1))

=
X

σc
·
∣∣√kTY + µkT /c+ µ

∣∣
√
kTY + µkT /c+ µ

(1 + op (1)) = ±X

σc
(1 + op (1)) ⇒ N (0, 1) ,

no matter whether (
√
kTY )/(µkT /c+µ) = Op(1) or (µkT /c+µ)/(

√
kTY ) = Op(1). This

is a type of informal sequential asymptotics. We first establish the limiting distribution
of the t statistic for a fixed ρ > 1 and a given initial value y0. We then investigate
the behaviour of the limiting distribution when ρ approaches 1 from the right-hand side
(i.e., ρ = 1 + c/kT ) and when the initial value becomes stochastically manageable (i.e.,
y0 = op(

√
kT )). There is a smooth transition from the limiting distribution in the severely

explosive case (i.e., ρ is fixed and greater than 1) to that in the moderately explosive
case (i.e., ρ = 1 + c/kT for c > 0 and kT = o(T )).

3. ASYMPTOTIC t TEST UNDER WEAKLY DEPENDENT ERRORS

The previous section has been confined to the case wherein the sequence of errors driving
the model is independently and identically distributed. A natural extension is to develop
a test for MED that does not rely on this strong assumption. Assumption 3.1 below
allows the error process to have a general dependence structure.

Assumption 3.1. (a) ut = C(L)εt with εt ∼ i.i.d.(0, σ2), C(L) =
∑∞

j=0 cjL
j , c0 = 1,

and L is the lag operator; (b) C(1) ∈ (0,∞) and
∑∞

j=0 j · |cj | < ∞; (c) E|εt|l < ∞ for

some l ≥ 4; (d) kT → ∞ and kT /T → 0 as T → ∞; (e) µT

√
kT → ν ∈ [0,∞] as T → ∞;

(f) y0 is independent of {ut, t = 1, . . . , T} and y0 = op(
√
kT ).

2The two results k
−1/2
T ẌT = XT (1 + op(1)) and k

−1/2
T ŸT = YT (1 + op(1)) hold because

k
−1/2
T ẌT = k

−1/2
T

T∑
t=1

ρ−(T−t)ut = k
−1/2
T ρT

T∑
t=1

ρ
−(T−t)−1
T ut

=
[
k
−1/2
T

(
1 + ck−1

T

)] T∑
t=1

ρ
−(T−t)−1
T ut = XT (1 + op (1)) ,

and

k
−1/2
T ŸT = k

−1/2
T

ρ

T−1∑
j=1

ρ−juj + ρy0

 = k
−1/2
T ρT

 T∑
j=1

ρ−j
T uj − ρ−T

T uT

+ k
−1/2
T ρT y0

=
[
k
−1/2
T

(
1 + ck−1

T

)] T∑
j=1

ρ−j
T uj +Op

(
k
−1/2
T ρ

−(T−1)
T

)
+ op

(
1 + ck−1

T

)
= YT (1 + op (1)) .
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Assumptions 3.1(a)–(c) are the same as those maintained in Phillips and Solo (1992)
and Phillips and Magdalinos (2007b). Under these assumptions, {ut} is weakly station-
ary.3 Assumption 3.1(b) ensures that {ut} has a martingale decomposition:

ut = C (1) εt + ε̃t−1 − ε̃t, (3.1)

where ε̃t =
∑∞

j=0 c̃jεt−j and c̃j =
∑∞

k=j+1 ck. In addition,
∑∞

j=0 c̃
2
j < ∞ and so var(ε̃t) <

∞. For more details, see Phillips and Solo (1992, Theorem 2.5). Using the martingale
decomposition, we have

T−1/2
T∑

t=1

ut ⇒ N
(
0, λ2

)
,

where λ2 is the LRV of {ut} defined by

λ2 := lim
T→∞

T−1E

(
T∑

t=1

ut

)2

= σ2C(1)2.

Define λ2
c := λ2/(2c). The above martingale decomposition also facilitates the proof of

Lemma 3.1 below.

Lemma 3.1. Let Assumption 3.1 hold. Then
(a)

X̃T := k
−1/2
T

T∑
t=1

ρ
−(T−t)−1
T ut = C (1) k

−1/2
T

T∑
t=1

ρ
−(T−t)−1
T εt + op (1) ;

(b)

ỸT := k
−1/2
T

T∑
t=1

ρ−t
T ut = C (1) k

−1/2
T

T∑
t=1

ρ−t
T εt + op (1) ;

(c) (X̃T , ỸT ) ⇒ (X̃, Ỹ ) where X̃ and Ỹ are independent N(0, λ2
c) random variables.

Lemma 3.1 shows that the effect of temporal dependence on the distribution of (X̃T , ỸT )
is to re-scale the distribution under i.i.d. errors by a constant C(1). As a result, the asymp-
totic distributions of the main sample statistics under ν ∈ (0,∞] and under ν = 0 follow
in a direct way from the approach that we pursue in Section 2. The proof of Theorem
3.1 is given in Appendix B while the proof of Theorem 3.2 is similar and is therefore
omitted.

Theorem 3.1. Let Assumption 3.1 hold with ν ∈ (0,∞]. Define 1/∞ = 0. Then the
following convergence results hold jointly:

(a)
(
µ2
T k

3
T ρ

2T
T

)−1
T∑

t=1

y2t−1 ⇒ 1

2c

(
Ỹ

ν
+

1

c

)2

;

(b)
(
µT k

2
T ρ

T
T

)−1
T∑

t=1

yt−1 ⇒ 1

c

(
Ỹ

ν
+

1

c

)
;

3We could also assume that {εt} is a martingale difference sequence satisfying a L1-mixingale condition
so that only second-moment conditions of {ut} are required; see, e.g., Magdalinos (2012) and Arvanitis
and Magdalinos (2018).
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(c)
(
µT k

3/2
T ρTT

)−1 T∑
t=1

yt−1ut ⇒ X̃

(
Ỹ

ν
+

1

c

)
.

Theorem 3.2. Let Assumption 3.1 hold with ν = 0. Then the following convergence
results hold jointly:

(a)
(
k2T ρ

2T
T

)−1
T∑

t=1

y2t−1 ⇒ 1

2c
Ỹ 2;

(b)
(
k
3/2
T ρTT

)−1 T∑
t=1

yt−1 ⇒ 1

c
Ỹ ;

(c)
(
kT ρ

T
T

)−1
T∑

t=1

yt−1ut ⇒ X̃Ỹ .

Note that
∑T

t=1 y
2
t−1,

∑T
t=1 yt−1, and

∑T
t=1 yt−1ut have the same convergence rates as

in the i.i.d. case. When ν ∈ (0,∞], the OLS estimator ρ̂T of ρT satisfies

µT k
3/2
T ρTT (ρ̂T − ρT ) ⇒

2cX̃

Ỹ /ν + 1/c
.

When ν = 0, the coefficient estimator satisfies

kT ρ
T
T (ρ̂T − ρT ) ⇒ 2cX̃/Ỹ .

These two results are analogous to (2.11) and (2.12), respectively.
To make an inference on ρT , we need to estimate the LRV λ2 of {ut}. Let

ût = yt − µ̂T − ρ̂T yt−1

be the estimated residual. The commonly-used estimator of λ2 takes the form

λ̂2
K =

1

T

T∑
t=1

T∑
s=1

QK(t, s)ûtûs,

where QK(·, ·) is a weighting function that depends on the smoothing parameter K. This
includes the kernel LRV estimator if we let QK(t, s) = κ((t − s)/(TK−1)) for a kernel
function κ(·). In this paper, we take a simple average of the first few periodograms to

construct λ̂2
K . More specifically, we let K be even and

QK(t, s) =
1

K

K∑
ℓ=1

ϕℓ

(
t

T

)
ϕℓ

( s

T

)
,

where ϕ2ℓ(x) =
√
2 sin(2πℓx) and ϕ2ℓ−1(x) =

√
2 cos(2πℓx) are the Fourier basis func-

tions. With the above weighting function, λ̂2
K takes the average form:

λ̂2
K =

1

K

K∑
ℓ=1

[
1√
T

T∑
t=1

ϕℓ

(
t

T

)
ût

]2
. (3.2)

Other basis functions can be used, leading to a new class of orthonormal series LRV
estimators. For theoretical developments of this type of LRV estimators and their advan-
tages, see, e.g., Phillips (2005), Müller (2007), and Sun (2011, 2013, 2014). For simplicity,
we opt for the Fourier basis functions here.
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On the basis of λ̂2
K in (3.2), we construct the t statistic as follows:

t̃MED :=
ρ̂T − ρT
σ̃ρ,K

,

where

σ̃2
ρ,K = λ̂2

Ke′2

(
T∑

t=1

xtx
′
t

)−1

e2.

The limiting distribution of the t̃MED statistic is given in the theorem below.

Theorem 3.3. Let Assumption 3.1 hold. Under the fixed-K asymptotics where T → ∞
for a fixed K, the following convergence results hold jointly:

(a) λ̂2
K/λ2 ⇒ χ2

K/K where χ2
K is a random variable following the chi-square distribu-

tion with K degrees of freedom;
(b) t̃MED ⇒ tK where tK is the Student’s t distribution with K degrees of freedom.

Theorem 3.3 indicates that if K → ∞, then λ̂2
K will become consistent, and the

asymptotic tK distribution approaches the standard normal distribution. This is a type
of sequential asymptotics. More rigorously, under the joint asymptotics under which
K → ∞ but K/T → 0 as T → ∞, we can establish that λ̂2

K is consistent for λ2 and
t̃MED is asymptotically standard normal. So, under the conventional asymptotics that
ensures the consistency of the standard error estimator, the asymptotic normality of the
t statistic holds for both i.i.d. errors and weakly dependent errors and for both small and
large drifts.

To understand the invariance of the asymptotic distribution of the t statistic, we
note that both Theorem 3.1 and Theorem 3.2 imply that T−1

∑T
t=1 y

2
t−1 stochasti-

cally dominates (T−1
∑T

t=1 yt−1)
2 and that T−1

∑T
t=1 yt−1ut stochastically dominates

(T−1
∑T

t=1 yt−1)(T
−1
∑T

t=1 ut). So, if λ̂K
p→ λ, then the t statistic t̃MED satisfies

t̃MED :=
1

λ̂K

1
T

∑T
t=1 yt−1ut −

(
1
T

∑T
t=1 yt−1

)(
1
T

∑T
t=1 ut

)
[

1
T

∑T
t=1 y

2
t−1 −

(
1
T

∑T
t=1 yt−1

)2]1/2
=

1

λ̂K

1
T

∑T
t=1 yt−1ut(

1
T

∑T
t=1 y

2
t−1

)1/2 (1 + op (1)) ⇒
X̃

λc

d
= N(0, 1)

by Theorem 3.1 or 3.2.
Theorem 3.3(b) shows that, under the fixed-K asymptotics, the HAR t statistic is

asymptotically t distributed. There is a growing literature showing that the fixed-K
asymptotic approximation for the studentized test statistic is more accurate than the
corresponding increasing-K asymptotic approximation. The reason is that the former
captures the randomness in λ̂2

K while the latter does not. Theorem 3.3 holds for ν ∈ [0,∞].
The asymptotic t approximation for the t̃MED statistic is valid regardless of whether the
drift is present or not. In this sense, the asymptotic t test achieves double robustness:
it is asymptotically valid no matter whether the errors are autocorrelated or not, and
whether the drift is large or small, or equal to zero.
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To establish the asymptotic t theory in Theorem 3.3(b), we have to show that the es-

timator error in ρ̂T is asymptotically independent of the LRV estimator λ̂2
K . The asymp-

totic independence is due to the explosive behaviour of the underlying time series. It is
similar to the asymptotic independence of (XT , YT ) from ZT , defined in (2.2) and (2.10),

respectively. We also have to show that {T−1/2
∑T

t=1 ϕℓ(
t
T )ût} forms an i.i.d. sequence

in large samples. The key driving forces behind this result are the orthonormality of the

basis functions {ϕℓ} on L2[0, 1] and the “zero mean” condition, i.e.,
∫ 1

0
ϕℓ(r)dr = 1.

For the asymptotic t theory to hold, it is necessary to employ the orthonormal series
LRV estimator. Using a kernel LRV estimator will not allow us to develop the convenient t
approximation. Nevertheless, it will enable us to make asymptotically pivotal inferences
— the limiting distribution of the associated t statistic will be a nonstandard mixed-
normal distribution that is nuisance parameter free. It is not very convenient to use a
nonstandard distribution, as critical values have to be simulated.

4. MONTE CARLO SIMULATION

4.1. Simulation Evidence Under i.i.d. Errors

In this subsection, we conduct MC simulations to evaluate the finite sample performance
of our asymptotic normal test, the tMED test, when the errors are independently and
identically distributed.

The data generating process (DGP) is given by

yt = µT + ρyt−1 + ut, t = 1, 2, . . . , T, (4.1)

where ρ = 1 + c/kT with c = 1 and kT = Tα for some α ∈ (0, 1).4 The initial value is
set to be y0 = µT . The intercept is set to be µT = 0, T−α/2, T−α/4, 1. Such a setting
is compatible with y0 = op(

√
kT ). We conduct two groups of MC simulations. The first

group employs i.i.d. Gaussian errors while the second group employs i.i.d. uniform errors.
That is, ut ∼ i.i.d.N(0, 1) or ut ∼ i.i.d.U(−

√
3,
√
3).

We examine the empirical size of the tMED test. For comparison we also examine the
empirical size of the tPM and tWY tests. The PM test based on the statistic in (2.7)
ignores the intercept, while the WY test assumes that ρ is fixed and strictly larger than
1. The null hypothesis of interest is H0 : ρ = 1 + 1/Tα for different configurations of α
and T , where 1/Tα represents the moderate deviation from unity for a sample of size T .
To save space, we discuss the case with α = 0.5 and T = 100 in the main text. This case is
representative of other configurations. More detailed simulation results are reported and
discussed in the online supplement. For the tPM test and tMED test, we use critical values
from the standard normal distribution. The tWY test is similar to the tMED test but uses
critical values from the asymptotic distribution shown in (2.13), which is simulated using
true parameter values. To a great extent, we give the tWY test some edge, as some of the
true parameter values are not known under the null. The nominal level is 5%, and the
number of simulation replications is 5,000.

We also examine the empirical power of the three competing tests. The parameter
configuration is the same as those for size calculations except the DGP is generated
under the local-to-unity alternative HA : ρ = 1+1/T . To avoid the size difference in the

4Other parameter configurations of c and kT , e.g., c = 0.1 and kT = log T , have also been examined.
The results are similar and are available upon request.
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14 G. Guo, Y. Sun and S. Wang

Table 1. Size and power under i.i.d. errors: α = 0.5 and T = 100.

Size (ρ = 1 + 1/Tα) Power (ρ = 1 + 1/T )

tPM tWY tMED tPM tMED

(a) i.i.d. Gaussian errors

µT = 0 0.050 0.053 0.056 1.000 1.000

µT = T−α/2 0.277 0.058 0.055 1.000 1.000

µT = T−α/4 0.641 0.056 0.055 1.000 1.000

µT = 1 0.969 0.058 0.055 1.000 1.000

(b) i.i.d. uniform errors

µT = 0 0.049 0.047 0.049 1.000 1.000

µT = T−α/2 0.276 0.049 0.049 1.000 1.000

µT = T−α/4 0.637 0.047 0.048 1.000 1.000

µT = 1 0.973 0.047 0.048 1.000 1.000

Note: This table reports the empirical size and size-adjusted power of 5% tests with 5,000 Monte Carlo

replications. The model used for the experiment is (4.1) with ut ∼ i.i.d.N(0, 1) in the i.i.d. Gaussian

group and with ut ∼ i.i.d.U(−
√
3,

√
3) in the i.i.d. uniform group. Different parameter combinations

are configured to conduct simulations for the null of moderate explosiveness ρ = 1 + 1/Tα against the

alternative of local-to-unity ρ = 1 + 1/T .

power comparison, we simulate and compare the size-adjusted power using the empirical
finite sample critical values obtained from the null distribution. Since the tWY and tMED

tests are based on the same test statistic, the size-adjusted power of these two tests is
identical. We report the power for the tMED test only.

Table 1 reports the size and power results of the tPM, tWY, and tMED tests under
Gaussian errors and uniform errors, respectively. The two groups of results are qualita-
tively similar, providing further evidence that normality of the errors is not necessary for
these tests. First, as can be seen from the table, both the tWY and tMED tests have quite
accurate size in all drift cases. Note that we employ the true parameter values to simulate
the asymptotic distribution of the tWY statistic. In an absolute and overall sense, the
standard normal distribution approximates the distribution of the tMED statistic very
well. Second, we observe that when µT = 0, the size performance of the tMED test is not
worse than that of the tPM test, while as µT departs farther away from zero, the tPM

test suffers from large size distortion but the tMED test still enjoys a good size control.
It is encouraging to see that the tMED test dominates the tPM test in terms of the size
accuracy. Finally, both the tPM and tMED tests have satisfactory power performance.
Simulation results in the online supplement show that the tMED test is generally more
powerful than the tPM test. Given the simulation evidence, we can conclude that the
tMED test succeeds in controlling size without power loss.

4.2. Simulation Evidence Under Weakly Dependent Errors

Using the same DGP in (4.1), we examine the finite sample performance of the t̃MED

test under two different experiment designs in this subsection: the AR design and the
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Table 2. Size and power in the presence of autocorrelated errors: α = 0.5 and T = 100.

Size (ρ = 1 + 1/Tα) Power (ρ = 1 + 1/T )

tMED t̃MED tMED t̃MED

(a) AR design

θ = 0.00 0.053 0.057 1.000 1.000

θ = 0.25 0.134 0.068 1.000 1.000

θ = 0.50 0.242 0.070 1.000 0.998

θ = 0.75 0.413 0.081 0.993 0.971

(b) MA design

θ = 0.00 0.055 0.060 1.000 1.000

θ = 0.25 0.114 0.060 1.000 1.000

θ = 0.50 0.157 0.066 1.000 1.000

θ = 0.75 0.169 0.066 1.000 1.000

Note: This table reports the empirical size and size-adjusted power of 5% tests with 5,000 Monte Carlo

replications. The model used for the experiment is (4.1) with ut = θut−1 +
√
1− θ2e1,t under the

AR design and with ut = θe2,t−1 +
√
1− θ2e2,t under the MA design, where e1,t ∼ i.i.d.N(0, 1) and

e2,t ∼ i.i.d.N(0, 1). Different parameter combinations are configured to conduct simulations for the null

of moderate explosiveness ρ = 1 + 1/Tα against the alternative of local-to-unity ρ = 1 + 1/T .

moving average (MA) design. To save space, we only consider the case with µT = T−α/4.
In the AR design, ut follows an AR(1) process ut = θut−1 +

√
1− θ2e1,t, where e1,t ∼

i.i.d.N(0, 1). In the MA design, ut = θe2,t−1+
√
1− θ2e2,t, where e2,t ∼ i.i.d.N(0, 1). By

construction, the error has a unit variance in both designs. We take θ = 0.00, 0.25, 0.50,
and 0.75. The t̃MED statistic is based on the LRV estimator in (3.2). Following Phillips
(2005), we choose K based on the asymptotic mean squared error (AMSE) criterion
implemented using the AR(1) plug-in procedure. We round the data-driven value of K
to a closest even number between 4 and T. For both the AR and MA designs, we consider
different combinations of α and T ; see Table 2 for the case with α = 0.5 and T = 100
and the online supplement for more detailed simulation evidence. For comparison, we
also consider the tMED test, which ignores the autocorrelation in {ut}. The initial value
is set to be y0 = µT and the number of simulation replications is 5,000.

Table 2 reports the size and power results of the tMED and t̃MED tests. The table
shows that compared with the tMED test, the t̃MED test achieves a satisfactory size-
adjusted power performance with only relatively small size distortion in both the AR
and MA designs. This result is consistent with our theoretical analysis. Ignoring the
autocorrelation leads to an inaccurate test.

5. EMPIRICAL APPLICATION

5.1. Background and Data: Explosive Ups of the World Stock Indexes

Before the “Great Recession” of 2007–2009, led by the loose monetary policy and ir-
rational real estate boom, the U.S. stock market experienced a spectacular rise (Allen

c⃝ Royal Economic Society 2018



16 G. Guo, Y. Sun and S. Wang

et al., 2009; Taylor, 2009; Allen and Carletti, 2010; Stiglitz, 2010). The most impressive
phenomenon is that the Dow Jones Industrial Average (DJI) reached its peak at 14,198.1
points on October 12, 2007, after witnessing continuous gain. Most regard this type of
increase as an explosive process and as the first half of a financial bubble episode (Phillips
et al., 2015a). Shiller (2008) argued that the irrational prosperity was the root cause of
the subprime crisis, which was the crux of the financial crisis. Greenspan (1996) coined
the phrase “irrational exuberance” in his remark on December 5, 1996 to describe the
herd phenomenon in the stock market.

The global stock markets were also affected by such a rise. Different economies experi-
enced different degrees of the boom during the exuberance period, largely owing to their
corresponding global financial participation and dependence on the U.S. economy. China,
for instance, held massive foreign exchange reserves, especially the U.S. treasury bonds,
in the pre-2008 period (Woo et al., 2013). Along with the American economic prosper-
ity and appreciation of the dollar, a great deal of capital entered into China’s foreign
exchange market, stimulating the explosive growth of China’s major stock indexes.

Greenspan (2008) argued that not all of the increasingly growing processes should be
characterized by irrational exuberance and that the bubble was not so large. We are
sympathetic to this argument. Sometimes it may be better to describe a surge series as a
mildly explosive process instead of a severe explosion. Furthermore, some series may have
only a unit root or be trend-stationary and do not pertain to the so-called “explosive”
process.

In this study, we examine ten major stock indexes listed in Table 3. These ten in-
dexes are representatives of the world stock markets in different continents: Americas,
Asia-Pacific, Europe, and Africa. We select the most representative stock index for each
country/district and collect weekly observations. The data are taken from the Wind E-
conomic Database. To investigate the dynamics in the exuberance episode, which is our
focus here, we use a sample window that ends at the highest point of the exuberance
episode. More specifically, we choose each stock index’s highest point in the pre-2008-
financial-crisis period as the end point of the rise and take 100 periods before this highest
point. For the purposes of comparison, we employ the same sample window width for
different stock indexes. The window width T = 100 is roughly in line with Allen and
Carletti (2010)’s argument that the Federal Reserve’s low interest rate policy in 2005
is the most immediate and important reason to cause prices to take off. Other window
widths have also been examined, and the results are available upon request.

Figure 1 plots the ten stock indexes. All of the ten indexes experienced considerable
rises, revealing the co-movement among the major stock markets in the world. On the one
hand, several series display relatively pronounced explosive features, even though there
are some random ups and downs around their explosion paths; see, e.g., DJI, CSI300,
HSI, and CASE. On the other hand, some series, such as AS51 and ITLMS, are more like
difference-stationary processes with stochastic trends or even trend-stationary processes
with deterministic linear trends, rather than explosive processes. It is worth noting that
the stock indexes in three Western European countries — France, Germany, and Italy
— have similar growth patterns, as Figure 1 shows. However, further investigations are
required to detect whether they are explosive processes and, if they are, to identify their
degrees of explosiveness.
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Table 3. Description of stock indexes.

Region Country/District Stock index Peak date

Americas U.S. DJI Oct 12, 2007

Brazil IBOVESPA May 30, 2008

Asia-Pacific China CSI300 Oct 19, 2007

Hong Kong HSI Nov 02, 2007

Australia AS51 Nov 02, 2007

Europe France FCHI Jun 01, 2007

Germany GDAXI Jul 13, 2007

Italy ITLMS May 18, 2007

Africa Egypt CASE Apr 24, 2008

Nigeria NGSEINDX Mar 07, 2008
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Figure 1. Time series plots of different stock indexes.
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5.2. Empirical Testing Strategy

Our empirical study starts with a two-step empirical testing strategy. The first step
is a pretest aimed at confirming whether each index is an explosive process. This is
necessary, as the asymptotic t test is based on the primitive condition that the AR root
is greater than 1, and we must exclude the nonexplosive root at first. We propose to use
the right-tailed augmented Dickey-Fuller (RADF) method and the supremum augmented
Dickey-Fuller (SADF) method, both of which are adopted in Phillips et al. (2011) and
are designed to test the null hypothesis ρ = 1 against the alternative hypothesis ρ > 1.
The RADF test is the conventional augmented Dickey-Fuller (ADF) unit root test but
uses the right-tailed critical values. We use the RADF test in order to target at the
explosive-root alternative. The SADF method employs a sequence of forward recursive
RADF unit root tests, using subsets of the sample data increased by one observation at
each pass until the full sample is used. The SADF statistic is then the sup value of the
corresponding ADF statistic sequence, whose limiting distribution under the null ρ = 1
is obtained by Phillips et al. (2011, Section 2), viz.

SADF (r0) = sup
r∈[r0,1]

ADFr

⇒ tSADF,∞ := sup
r∈[r0,1]

[(∫ r

0

W̃ (s) dW (s)

)(∫ r

0

W̃ 2 (s) ds

)−1/2
]
, (5.1)

where r0 is the smallest window size and W (s) and W̃ (s) are the standard Brownian
motion and its demeaned version.

The second and main step of our empirical testing strategy is to perform the asymptotic
t test, t̃MED, on the indexes that are regarded as explosive according to the first step.
We invert the t̃MED test and construct a confidence interval (set) for each AR parameter
ρ. The confidence interval consists of all the values of ρ that are not rejected by our
asymptotic t test. Theoretically speaking, we should test for each possible AR value in
the region ρ ∈ [1 + cmin/kT , 1 + cmax/kT ] for some kT and positive numbers cmin and
cmax. Here we consider the following grid

{H0 : ρ ∈ {1.001, 1.002, . . . , 1.500}} .

We can also consider a more refined grid if needed.5 Conceptually, smaller values of
ρ correspond to low deviations of the AR roots from the unity and mildly explosive
behaviours. Larger values of ρ correspond to high deviations of the AR roots from the
unity and highly explosive behaviours. Following Phillips et al. (2011, Section 3), we label
the explosive AR roots not greater than 1.05 as mildly explosive. This informative label
will be useful in conveying the severity of bubbles, if they exist, to policy makers.

5Our “nonrejection” confidence set is essentially the same as the more conventional confidence interval
based on ρ̂T because the asymptotic approximation is the same for all null values under consideration.
In view that the region ρ ≤ 1 would be excluded when the unit-root null is rejected in the pretest step,
the confidence interval for each AR parameter can be, in practice, constructed as ρ ∈ [ρ̂L, ρ̂U ], where
ρ̂L = max{1.001, ρ̂T − tα/2,K σ̃ρ,K} and ρ̂U = ρ̂T + tα/2,K σ̃ρ,K and tα/2,K is the 1 − α/2 percentiles
in the Student’s t distribution with K degrees of freedom. The boundary 1.001 can be more refined if
needed.
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Table 4. Testing for moderately explosive behaviours.

Stock index

Step 1: Step 2:

Explosive behaviour test Moderate explosiveness test

ADF SADF Confidence interval

DJI 0.201 1.506 ρ ∈ [1.001, 1.028]

IBOVESPA 0.078 3.592 ρ ∈ [1.001, 1.027]

CSI300 3.548 5.665 ρ ∈ [1.011, 1.039]

HSI 3.103 8.207 ρ ∈ [1.023, 1.079]

AS51 -0.012 0.557 Non-explosion

FCHI -0.148 0.313 Non-explosion

GDAXI 1.201 2.635 ρ ∈ [1.001, 1.032]

ITLMS -0.227 0.413 Non-explosion

CASE 1.050 1.638 ρ ∈ [1.001, 1.031]

NGSEINDX 0.210 7.544 ρ ∈ [1.001, 1.022]

Critical values

90% -0.440 1.100

95% -0.080 1.370

99% 0.600 1.880

Note: This table reports the results of the RADF and SADF tests and the results of the asymptotic t

test, t̃MED. The lag length for each regression in the RADF and SADF tests is selected by the Akaike

information criterion, with the maximum lag set to 8. The critical values for the RADF and SADF tests

are from Phillips et al. (2011) and Phillips et al. (2015a), respectively. For the asymptotic t test, we

report the confidence intervals for the AR parameter ρ.

5.3. Empirical Results

Table 4 reports the results of the RADF and SADF tests in the first step and the
asymptotic t test for those explosive stock indexes in the second step. In implementing the
SADF test, we follow the empirical rule recommended by Phillips et al. (2015a) to set the
user-chosen parameter, r0 = 0.01 + 1.8/

√
T , and accordingly use the asymptotic critical

values given in the same paper.6 At the 5% significance level, the combination of RADF
and SADF tests indicates that DJI, IBOVESPA, CSI300, HSI, GDAXI, CASE, and
NGSEINDX follow the explosive processes in their respective sampling periods. However,
the major stock indexes of some countries, such as Australia, France, and Italy, could
not be described by explosive processes.

For the seven explosive stock indexes, the results of the asymptotic t test in Table 4
show that their explosiveness degrees largely fall in the range ρ ∈ [1.001, 1.040]. This
indicates that most stock indexes during the pre-2008 exuberance period are only mildly

6In practice, we choose r0 = ⌊(0.01 + 1.8/
√
T )T ⌋/T to ensure that r0T is a positive integer. The

right-tailed critical values for the ADF statistic are available from Phillips et al. (2011, Table 1).
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explosive.7 Take the DJI and CSI300 as examples. The DJI in the 100 booming weeks
before October 12, 2007 could be described by an MED process with some AR parameter
ρ ∈ [1.001, 1.028]. This signifies that the U.S. stock market witnessed an explosive process
with a quite slow pace of explosion. For CSI300 — the main stock index in the largest
developing country (China) — we fail to reject the null of moderate explosiveness for
ρ ∈ [1.011, 1.039]. Again, while the process is explosive, it is only mildly explosive.

Similarly, for IBOVESPA and GDAXI, the confidence intervals of ρ are [1.001, 1.027]
and [1.001, 1.032], respectively. These two stock markets responded closely to the “exu-
berance” in the US. For CASE and NGSEINDX, two representative indexes in the African
stock markets, the degrees of explosiveness are also quite mild. African countries’ thin
market capitalization and shortage of liquidity led to the volatility and vulnerability of
the stock markets (Allen et al., 2011), making them easily affected by the mild exuberance
from external economies.

The HSI of Hong Kong is relatively special. We fail to reject the null for ρ ∈ [1.023, 1.079].
Thus, the Hong Kong market appeared to be more explosive. This could be due to the
smaller scale of the market, which made an explosive outburst relatively easier.

Finally, the three series, AS51, FCHI, and ITLMS, are neither explosive processes nor
MED processes. When the unit-root null against the explosive-root alternative is not
rejected by either the RADF or SADF method, we can use the conventional unit root
tests to examine these three indexes further. In this paper, we employ the ADF test and
Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test, the critical values of which are obtained
from MacKinnon (1996) and Kwiatkowski et al. (1992), respectively. Table 5 reports the
unit root test results. According to the ADF results, all three time series have a unit root
at the 5% level, but their differences have no unit root and appear to be stationary. The
KPSS results also provide significant evidence that the three time series are difference-
stationary instead of being trend-stationary. Thus, we may conclude that the AS51,
FCHI, and ITLMS are all I(1) processes during their respective sampling periods. These
quantitative testing results lend some supplementary support to the conclusion that the
rises in Australia, France, and Italy’s stock markets were not explosive.

In summary, we find evidence that seven of the ten major stock indexes under our
consideration are moderately explosive, while the remaining ones are nonexplosive and
difference-stationary processes. However, for the former group of indexes, the degree of
explosiveness is quite mild. This finding is consistent with the remark of Jagannathan
et al. (2013): the 2008 financial crisis was more like a symptom than the disease. Despite
the severity and ample effects (Martin and Ventura, 2012; Miao and Wang, 2015; Kunieda
and Shibata, 2016), this financial crisis was similar to past crises (Allen and Carletti,
2010) that did not show an extremely serious irrational explosion.

6. CONCLUSION

This paper considers a moderately explosive process wherein the AR root is greater than
one by a margin diminishing with the sample size. We allow for a drift in the model so
that the true process is driven by both the stochastic moderately-explosive trend and
the deterministic nonlinear drift trend. New asymptotic approximations are established
to test for the degree of the moderate explosiveness under i.i.d. errors and under weakly

7When we use other window widths such as T = 80 and 120, we obtain the same qualitative conclusion.
Details are not reported here to conserve space.
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Table 5. Testing for unit root.

ADF
KPSS

Level First difference

AS51 -0.012 -9.163 3.225

FCHI -0.148 -9.296 3.086

ITLMS -0.227 -4.778 3.002

Critical values

1% (99%) -3.498 -3.498 0.739

5% (95%) -2.891 -2.891 0.463

10% (90%) -2.583 -2.583 0.347

Note: This table reports the results of the ADF and KPSS tests. The lag length for the ADF test is

selected by the Akaike information criterion, with the maximum lag set to 8. The critical values for

the ADF (left-tailed) and KPSS (right-tailed) tests are from MacKinnon (1996) and Kwiatkowski et al.

(1992), respectively.

dependent errors. When the errors are weakly dependent, we show that under the fixed-
smoothing asymptotics, the HAR t statistic follows Student’s t distribution in large
samples. The asymptotic t test achieves double robustness: it is asymptotically valid
no matter whether the errors are autocorrelated or not, and whether the drift is large
or small, or simply equal to zero. Monte Carlo experiments lend some support to our
asymptotic results.

The paper also proposes a two-step empirical testing strategy that involves first iden-
tifying whether a time series is explosive or not and then employing our asymptotic t
test to measure the degree of moderate explosiveness if it is indeed explosive. We apply
our empirical strategy to ten major stock indexes in the world during the pre-2008 fi-
nancial exuberance period. The results show that seven of these indexes follow the MED
processes with AR roots slightly larger than unity. In addition, the other three stock
indexes are nonexplosive and difference-stationary processes. These results conform with
Greenspan (2008)’s perception and imply that the stock market boom before the 2008
financial crisis is not as explosive as in the existing literature.
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APPENDIX

Appendix A presents some technical lemmas that are used in the proofs of the key results
in Sections 2 and 3. The proofs of these lemmas are available from the online supplement.
Appendix B presents the proofs of the key results of the paper.
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Appendix A. Technical Lemmas

Lemma A.1. Let ρT = 1 + c/kT for some c > 0 and kT satisfy 1/kT + kT /T = o (1).
Then ρ−aT

T = o
(
kbT /T

b
)
for any a and b ∈ R+. In addition, if kT → ∞ and kT /T → 0

as T → ∞, then ρ−aT
T = o

(
1/T b

)
for any a and b ∈ R+.

Lemma A.2. Let Assumption 2.1 hold. Then

(a)
(
k
3/2
T ρTT

)−1 T∑
t=1

T∑
j=t

ρt−1−j
T uj = op (1) ;

(b)
(
k
3/2
T ρ2TT

)−1 T∑
t=1

T∑
j=t

ρ
2(t−1)−j
T uj = op (1) .

Lemma A.3. Let Assumption 2.1 hold. Then(
k
3/2
T ρTT

)−1 T∑
t=1

ξt−1 =
1

c
YT + op (1) .

Lemma A.4. Let Assumption 3.1 hold. Then

(a)
(
kT ρ

T
T

)−1
T∑

t=1

T∑
j=t

ρt−1−j
T ujut = op (1) ;

(b)
(
k
3/2
T ρTT

)−1 T∑
t=1

T∑
j=t

ρt−1−j
T uj = op (1) ;

(c)
(
k
3/2
T ρ2TT

)−1 T∑
t=1

T∑
j=t

ρ
2(t−1)−j
T uj = op (1).

Lemma A.5. Let Assumption 3.1 hold. Then

(a)
(
kT ρ

T
T

)−2
T∑

t=1

ξ2t−1 =
1

2c
Ỹ 2
T + op (1) ;

(b)
(
k
3/2
T ρTT

)−1 T∑
t=1

ξt−1 =
1

c
ỸT + op (1) ;

(c)
(
kT ρ

T
T

)−1
T∑

t=1

ξt−1ut = X̃T ỸT + op (1) .

Lemma A.6. Let Assumption 3.1 hold. Then

(a)

T∑
t=1

ϕℓ

(
t

T

)
ρtT = O

(
kT ρ

T
T

)
;

(b)
T∑

t=1

ϕℓ

(
t

T

) T∑
j=t

ρt−1−j
T uj = op

(√
TkT ρ

T
T

)
.
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Appendix B: Proofs of the Key Results

Proof of Theorem 2.1: Part (a). Using (2.9), we obtain

(
µ2
T k

3
T ρ

2T
T

)−1
T∑

t=1

y2t−1 =
(
µ2
T k

3
T ρ

2T
T

)−1
T∑

t=1

(
ξt−1 +

1

c
µT kT ρ

t−1
T − 1

c
µT kT

)2

=
(
µ2
T k

3
T ρ

2T
T

)−1

(
T∑

t=1

ξ2t−1 +
1

c2
µ2
T k

2
T

T∑
t=1

ρ2t−2
T +

2

c
µT kT

T∑
t=1

ξt−1ρ
t−1
T

+
1

c2
Tµ2

T k
2
T − 2

c
µT kT

T∑
t=1

ξt−1 −
2

c2
µ2
T k

2
T

T∑
t=1

ρt−1
T

)

=
(
µ2
T k

3
T ρ

2T
T

)−1
T∑

t=1

ξ2t−1 +
1

c2
(
kT ρ

2T
T

)−1 ρ2TT − 1

ρ2T − 1
+

2

c

(
µT k

2
T ρ

2T
T

)−1
T∑

t=1

ξt−1ρ
t−1
T

−2

c

(
µT k

2
T ρ

2T
T

)−1
T∑

t=1

ξt−1 +O
(
Tk−1

T ρ−2T
T + ρ−T

T

)
=

Y 2
T

2cµ2
T kT

+
1

2c3
+

2

c

(
µT k

2
T ρ

2T
T

)−1
T∑

t=1

ξt−1ρ
t−1
T + op (1) ,

by (2.4) and Lemmas A.1 and A.3.

Note that

2

c

(
µT k

2
T ρ

2T
T

)−1
T∑

t=1

ξt−1ρ
t−1
T =

2

c

(
µT k

2
T ρ

2T
T

)−1
T∑

t=1

ρt−1
T ξ0 +

t−1∑
j=1

ρt−1−j
T uj

 ρt−1
T

=
2

c
ξ0
(
µT k

2
T ρ

2T
T

)−1
T∑

t=1

ρ2t−2
T +

2

c

(
µT k

2
T ρ

2T
T

)−1
T∑

t=1

t−1∑
j=1

ρ
2(t−1)−j
T uj

=
2

c

(
µT k

2
T ρ

2T
T

)−1
T∑

t=1

T∑
j=1

ρ
2(t−1)−j
T uj −

2

c

(
µT k

2
T ρ

2T
T

)−1
T∑

t=1

T∑
j=t

ρ
2(t−1)−j
T uj + op

(
µ−1
T k

−1/2
T

)

=
2

c

(
µT k

2
T ρ

2T
T

)−1
T∑

t=1

ρ
2(t−1)
T
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j=1

ρ−j
T uj + op

(
µ−1
T k

−1/2
T

)
=

2

c

(
µT k

2
T ρ

2T
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)−1 ρ2TT − 1

ρ2T − 1
k
1/2
T YT + op (1) =

YT

c2µT k
1/2
T

+ op (1) ,

by ξ0 = op

(
k
1/2
T

)
and Lemma A.2(b). The key assumption behind this result is that

µT k
1/2
T → ν > 0. Thus,

(
µ2
T k

3
T ρ

2T
T

)−1
T∑

t=1

y2t−1 ⇒ Y 2

2cν2
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1
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Part (b). The normalized sample mean is

(
µT k

2
T ρ

T
T

)−1
T∑

t=1

yt−1 =
(
µT k

2
T ρ

T
T

)−1
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(
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1

c
µT kT ρ

t−1
T − 1

c
µT kT

)

=
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2
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T
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c

(
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)−1 ρTT − 1
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− 1
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T ρ−T
T

=
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cµT k
1/2
T

+
1

c2
+ op (1) ⇒

1

c

(
Y

ν
+

1

c

)
,

by (2.3) and Lemmas A.1 and A.3.
Part (c). The normalized sample covariance is

(
µT k
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T ρTT

)−1 T∑
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yt−1ut =
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ut

=
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XTYT
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T 1/2k
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Y
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+

1

c

)
,

by (2.3), (2.5), and Lemma A.1.
The joint convergence of (a), (b), and (c) follows from the Cramér-Wold theorem.�

Proof of Lemma 3.1: Parts (a) and (b). We prove (b) first. Using the decomposition
in (3.1), we have

k
−1/2
T

T∑
t=1

ρ−t
T ut = k

−1/2
T

T∑
t=1

ρ−t
T C (1) εt + k

−1/2
T

T∑
t=1

ρ−t
T (ε̃t−1 − ε̃t)

= C (1) k
−1/2
T

T∑
t=1

ρ−t
T εt + k

−1/2
T

T∑
t=1

ρ−t
T (ε̃t−1 − ε̃t) .

But

T∑
t=1

ρ−t
T (ε̃t−1 − ε̃t) =

T∑
t=1

ρ−t
T ε̃t−1 −

T∑
t=1

ρ−t
T ε̃t =

T−1∑
t=0

ρ
−(t+1)
T ε̃t −

T∑
t=1

ρ−t
T ε̃t

= ρ−1
T ε̃0 − ρ−T

T ε̃T +
T−1∑
t=1

(
ρ
−(t+1)
T − ρ−t

T

)
ε̃t

= ρ−1
T ε̃0 − ρ−T

T ε̃T − ck−1
T

T−1∑
t=1

ρ
−(t+1)
T ε̃t.

Since var (ε̃t) < ∞, we have

k
−1/2
T ρ−1

T ε̃0 = op (1) and k
−1/2
T ρ−T

T ε̃T = op (1) .
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Now, using the Cauchy inequality, we obtain

var

(
T−1∑
t=1

ρ
−(t+1)
T ε̃t

)
=

(
T−1∑
t=1

ρ
−2(t+1)
T

)
var(ε̃t) + 2

T−1∑
t<s

ρ
−(t+s+2)
T cov (ε̃t, ε̃s)

=

(
T−1∑
t=1

ρ
−2(t+1)
T

)
var(ε̃t) +

2

T−1∑
t<s

∞∑
j=0

c̃j c̃(s−t)+jρ
−(t+s+2)
T

 var(εt)

= O

(
ρ−4
T − ρ

−2(T+1)
T

1− ρ−2
T

)
+O

T−1∑
t<s

 ∞∑
j=0

c̃2j

 ρ
−(t+s+2)
T


= O (kT ) +O

(T−1∑
t=1

ρ
−(t+1)
T

)2
 = O (kT ) +O

((
1

ρTT
− 1

ρT

)2

(ρT − 1)
−2

)
= O

(
k2T
)
.

Therefore,

k
−1/2
T

(
ck−1

T

T−1∑
t=1

ρ
−(t+1)
T ε̃t

)
= Op

(
k
−1/2
T

)
= op (1) .

Combining the above results yields

ỸT = k
−1/2
T

T∑
t=1

ρ−t
T ut = C (1) k

−1/2
T

T∑
t=1

ρ−t
T εt + op (1) .

To prove part (a), we use the same arguments, starting with

k
−1/2
T

T∑
t=1

ρ
−(T−t)−1
T ut = C (1) k

−1/2
T

T∑
t=1

ρ
−(T−t)−1
T εt + k

−1/2
T

T∑
t=1

ρ
−(T−t)−1
T (ε̃t−1 − ε̃t) .

But

T∑
t=1

ρ
−(T−t)−1
T (ε̃t−1 − ε̃t) = ρ−T

T ε̃0 − ρ−1
T ε̃T + (ρT − 1)

T−1∑
t=1

ρ
−(T−t)−1
T ε̃t

= ck−1
T

T−1∑
t=1

ρ
−(T−t)−1
T ε̃t +Op (1) .

By similar calculations, we have

var

(
T−1∑
t=1

ρ
−(T−t)−1
T ε̃t

)

=

(
T−1∑
t=1

ρ
−2(T−t+1)
T

)
var(ε̃t) + 2

T−1∑
t<s

ρ
−(T−t)−1
T ρ

−(T−s)−1
T cov (ε̃t, ε̃s)

=

(
T−1∑
t=1

ρ
−2(t+1)
T

)
var(ε̃t) +

2
T−1∑
t<s

∞∑
j=0

c̃j c̃(s−t)+jρ
−(T−t)−1
T ρ

−(T−s)−1
T

 var(εt)
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= O (kT ) +O

T−1∑
t<s

 ∞∑
j=0

c̃2j

 ρ
−(T−t)−1
T ρ

−(T−s)−1
T


= O (kT ) +O

(T−1∑
t=1

ρ
−(T−t)−1
T

)2
 = O

(
k2T
)
.

Therefore

k
−1/2
T

(
ck−1

T

T−1∑
t=1

ρ
−(T−t)−1
T ε̃t

)
= Op

(
k
−1/2
T

)
= op (1) .

Combining the above results yields

X̃T = k
−1/2
T

T∑
t=1

ρ
−(T−t)−1
T ut = C (1) k

−1/2
T

T∑
t=1

ρ
−(T−t)−1
T εt + op (1) .

Part (c). This follows immediately from Parts (a) and (b) and equation (2.3).�

Proof of Theorem 3.1: The proof is similar to that of Theorem 2.1, but we employ
Lemmas A.4(c) and A.5 which accommodate weak dependence in {ut} . For completeness,
we sketch the proof here.

Part (a). Using (2.9), we obtain

(
µ2
T k

3
T ρ

2T
T

)−1
T∑

t=1

y2t−1 =
(
µ2
T k

3
T ρ

2T
T

)−1
T∑

t=1

(
ξt−1 +

1

c
µT kT ρ

t−1
T − 1

c
µT kT

)2

=
(
k3T ρ

2T
T

)−1

(
µ−2
T

T∑
t=1

ξ2t−1 +
2

c
µ−1
T kT

T∑
t=1

ξt−1ρ
t−1
T − 2

c
µ−1
T kT

T∑
t=1

ξt−1 +
1

c2
k2T

T∑
t=1

ρ2t−2
T

)
+ o (1)

=
(
k3T ρ

2T
T

)−1

(
µ−2
T

T∑
t=1

ξ2t−1 +
2

c
µ−1
T kT

T∑
t=1

ξt−1ρ
t−1
T − 2

c
µ−1
T kT

T∑
t=1

ξt−1

)
+

1

2c3
+ o (1) .

It follows from Lemmas A.5(a&b) that

(
k3T ρ

2T
T

)−1

(
µ−2
T

T∑
t=1

ξ2t−1

)
=

Ỹ 2
T

2cµ2
T kT

+ op (1) ,

and (
k3T ρ

2T
T

)−1

(
2

c
µ−1
T kT

T∑
t=1

ξt−1

)
= Op

(
ỸT

µT k
1/2
T ρTT

)
= op (1) .

Moreover, using ξ0 = op

(
k
1/2
T

)
and Lemma A.4(c), we obtain

(
k3T ρ

2T
T

)−1

(
2

c
µ−1
T kT

T∑
t=1

ξt−1ρ
t−1
T

)
=

2

c

(
µT k

2
T ρ

2T
T

)−1
T∑

t=1

ρt−1
T ξ0 +

t−1∑
j=1

ρt−1−j
T uj

 ρt−1
T

=
2

c
ξ0
(
µT k

2
T ρ

2T
T

)−1
T∑

t=1

ρ2t−2
T +

2

c

(
µT k

2
T ρ

2T
T

)−1
T∑

t=1

t−1∑
j=1

ρ
2(t−1)−j
T uj
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=
2

c

(
µT k

2
T ρ

2T
T

)−1
T∑

t=1

T∑
j=1

ρ
2(t−1)−j
T uj −

2

c

(
µT k

2
T ρ

2T
T

)−1
T∑

t=1

T∑
j=t

ρ
2(t−1)−j
T uj + op

(
µ−1
T k

−1/2
T

)

=
2

c

(
µT k

2
T ρ

2T
T

)−1
T∑

t=1

ρ
2(t−1)
T

T∑
j=1

ρ−j
T uj + op

(
µ−1
T k

−1/2
T

)
=

2

c

(
µT k

2
T ρ

2T
T

)−1 ρ2TT − 1

ρ2T − 1
k
1/2
T ỸT + op (1) =

ỸT

c2µT k
1/2
T

+ op (1) ,

when ν ∈ (0,∞].
Combining the above results and Lemma 3.1(c) leads to

(
µ2
T k

3
T ρ

2T
T

)−1
T∑

t=1

y2t−1 ⇒ Ỹ 2

2cν2
+

Ỹ

c2ν
+

1

2c3
=

1

2c

(
Ỹ

ν
+

1

c

)2

.

Part (b). By Lemmas 3.1(c), A.1, and A.5(b), we have

(
µT k

2
T ρ

T
T

)−1
T∑

t=1

yt−1 =
(
µT k

2
T ρ

T
T

)−1
T∑

t=1

(
ξt−1 +

1

c
µT kT ρ

t−1
T − 1

c
µT kT

)

=
(
µT k

2
T ρ

T
T

)−1
T∑

t=1

ξt−1 +
1

c

(
kT ρ

T
T

)−1 ρTT − 1

ρT − 1
− 1

c
Tk−1

T ρ−T
T

=
ỸT

cµT k
1/2
T

+
1

c2
+ op (1) ⇒

1

c

(
Ỹ

ν
+

1

c

)
.

Part (c). It follows from Lemmas 3.1(c), A.1, and A.5(c) that

(
µT k

3/2
T ρTT

)−1 T∑
t=1

yt−1ut =
(
µT k

3/2
T ρTT

)−1 T∑
t=1

(
ξt−1 +

1

c
µT kT ρ

t−1
T − 1

c
µT kT

)
ut

=
(
µT k

3/2
T ρTT

)−1 T∑
t=1

ξt−1ut +
1

c

(
k
1/2
T ρTT

)−1 T∑
t=1

ρt−1
T ut +Op

(
T 1/2k

−1/2
T ρ−T

T

)
=

X̃T ỸT

µT k
1/2
T

+
X̃T

c
+ op (1) ⇒ X̃

(
Ỹ

ν
+

1

c

)
.

The joint convergence of the results in the theorem follows from the Cramér-Wold
theorem.�

Proof of Theorem 3.3: We prove the case with ν ∈ (0,∞] only. The proof for the case
with ν = 0 is essentially the same with only minor modifications. Detailed calculations
for the latter case are available upon request.

Part (a). Note that

ût = yt − µ̂T − ρ̂T yt−1 = ut −
(

1, yt−1

)( T∑
t=1

xtx
′
t

)−1 T∑
t=1

xtut.
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So

1√
T

T∑
t=1

ϕℓ

(
t

T

)
ût

=
1√
T

T∑
t=1

ϕℓ

(
t

T

)
ut −

1√
T

T∑
t=1

ϕℓ

(
t

T

)(
1, yt−1

)( T∑
t=1

xtx
′
t

)−1 T∑
t=1

xtut

=
1√
T

T∑
t=1

ϕℓ

(
t

T

)
ut

−

[
1√
T

T∑
t=1

ϕℓ

(
t

T

)(
1, yt−1

)
D−1

T

][
D−1

T

(
T∑

t=1

xtx
′
t

)
D−1

T

]−1

D−1
T

T∑
t=1

xtut,

where

1√
T

T∑
t=1

ϕℓ

(
t

T

)(
1, yt−1

)
D−1

T =

(
1

T

T∑
t=1

ϕℓ

(
t

T

)
,

1

µT

√
Tk

3/2
T ρTT

T∑
t=1

ϕℓ

(
t

T

)
yt−1

)

=

(
o (1) ,

1

µT

√
Tk

3/2
T ρTT

T∑
t=1

ϕℓ

(
t

T

)
yt−1

)
.

For the second element in the above vector, using Lemma A.6(a), we have

1

µT

√
Tk

3/2
T ρTT

T∑
t=1

ϕℓ

(
t

T

)
yt−1

=
1

µT

√
Tk

3/2
T ρTT

T∑
t=1

ϕℓ

(
t

T

)[
ξt−1 + µT

(
ρt−1
T − 1

)
kT /c

]
=

1

µT

√
Tk

3/2
T ρTT

T∑
t=1

ϕℓ

(
t

T

)
ξt−1 +

1

c
√
Tk

1/2
T ρTT

T∑
t=1

ϕℓ

(
t

T

)(
ρt−1
T − 1

)
=

1

µT

√
Tk

3/2
T ρTT

T∑
t=1

ϕℓ

(
t

T

)
ξt−1 + o (1) .

By Lemmas 3.1(b&c) and A.6(a&b), we have, for ν > 0,

1

µT

√
Tk

3/2
T ρTT

T∑
t=1

ϕℓ

(
t

T

)
ξt−1 =

1

µT

√
Tk

3/2
T ρTT

T∑
t=1

ϕℓ

(
t

T

)ρt−1
T ξ0 +

t−1∑
j=1

ρt−1−j
T uj


=

ξ0

µT

√
Tk

3/2
T ρTT

T∑
t=1

ϕℓ

(
t

T

)
ρt−1
T +

1

µT

√
Tk

3/2
T ρTT

T∑
t=1

ϕℓ

(
t

T

) t−1∑
j=1

ρt−1−j
T uj

=
1

µT

√
Tk

3/2
T ρTT

T∑
t=1

ϕℓ

(
t

T

) t−1∑
j=1

ρt−1−j
T uj + op

(
1

µT k
1/2
T

√
T/kT

)

=
1

µT

√
Tk

3/2
T ρTT

T∑
t=1

ϕℓ

(
t

T

) T∑
j=1

ρt−1−j
T uj −

1

µT

√
Tk

3/2
T ρTT

T∑
t=1

ϕℓ

(
t

T

) T∑
j=t

ρt−1−j
T uj + op (1)
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=
1

µT

√
TkT ρTT

[
T∑

t=1

ϕℓ

(
t

T

)
ρt−1
T

]
ỸT + op

(
µ−1
T k

−1/2
T

)
+ op (1)

= Op

(
1

µT k
1/2
T

√
T/kT

)
+ op (1) = op (1) .

Therefore

1

µT

√
Tk

3/2
T ρTT

T∑
t=1

ϕℓ

(
t

T

)
yt−1 = op (1) ,

and

1√
T

T∑
t=1

ϕℓ

(
t

T

)
ût =

1√
T

T∑
t=1

ϕℓ

(
t

T

)
ut + op (1) = C(1)

1√
T

T∑
t=1

ϕℓ

(
t

T

)
εt + op (1) .

Now under Assumption 3.1,

1√
T

[Tr]∑
j=1

ut ⇒ λW (r) .

Since ϕℓ (·) is continuously differentiable, using summation by parts and the continuous
mapping theorem, we have

1√
T

T∑
t=1

ϕℓ

(
t

T

)
ût ⇒ ληℓ for ηℓ =

∫ 1

0

ϕℓ (r) dW (r), (A.1)

jointly over ℓ = 1, . . . ,K. Since ϕℓ (·) are orthonormal bases, we have ηℓ ∼ i.i.d.N(0, 1).
It then follows that

λ̂2
K/λ2 ⇒ 1

K

K∑
ℓ=1

η2ℓ
d
=

1

K
χ2
K .

Part (b). Note that

µT k
3/2
T ρTT (ρ̂T − ρT )

=

(
1

µ2
T k

3
T ρ

2T
T

T∑
t=1

y2t−1

)−1

1

µT k
3/2
T ρTT

T∑
t=1

yt−1ut + op (1)

⇒
X̃
(
Ỹ /ν + 1/c

)
(
Ỹ /ν + 1/c

)2
/ (2c)

=
2cX̃

Ỹ /ν + 1/c
.

It is easy to show that the above convergence holds jointly with (A.1) for ℓ = 1, . . . ,K.
Moreover, using Lemma A.6(a), we have∣∣∣∣∣cov

(
1√
kT

T∑
t=1

ρ
−(T−t)−1
T εt,

1√
T

T∑
t=1

ϕℓ

(
t

T

)
εt

)∣∣∣∣∣
=

∣∣∣∣∣ σ2

√
TkT

T∑
t=1

ϕℓ

(
t

T

)
ρ
−(T−t)−1
T

∣∣∣∣∣ =
∣∣∣∣∣ σ2

√
TkT ρ

T+1
T

T∑
t=1

ϕℓ

(
t

T

)
ρtT

∣∣∣∣∣
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= O

(
1

√
TkT ρ

T+1
T

kT ρ
T
T

)
= o (1) .

This implies that X̃ is independent of {η1, . . . , ηK} .
Let η0 = X̃/λc. Then, η0 ∼ N(0, 1), and η0 is independent of {η1, . . . , ηK} . Now

ρ̂T − ρT
σ̃ρ,K

=
µT k

3/2
T ρTT (ρ̂T − ρT )√

λ̂2
K

√
e′2

[
D−1

T

(∑T
t=1 xtx′

t

)
D−1

T

]−1

e2

⇒
2cX̃

Ỹ /ν+1/c√∑K
ℓ=1 η2

ℓ

K λ2

Ỹ /ν + 1/c√
2c

=
η0√∑K
ℓ=1 η2

ℓ

K

d
= tK ,

as desired.�
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