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1 Introduction

In linear and nonlinear models with moment restrictions, it is standard practice to employ

the generalized method of moments (GMM) to estimate model parameters. Consistency of

the GMM estimator in general does not depend on the dependence structure of the moment

conditions. However, we often want not only point estimators of the model parameters, but

also their covariance matrix in order to conduct inference. A popular covariance estimator

that allows for general forms of dependence is the nonparametric kernel estimator. The

underlying smoothing parameter is the truncation lag (or bandwidth parameter) or the

ratio b of the truncation lag to the sample size; see for example See Newey and West (1987)

and Andrews (1991). In econometrics, this covariance estimator is often referred to as

the heteroskedasticity and autocorrelation robust (HAR) estimator. A major di¢ culty in

using the HAR covariance estimator to perform hypothesis testing lies in how to select the

smoothing parameter b and how to approximate the sampling distribution of the associated

test statistic.

In terms of distributional approximations, both the conventional small-b asymptotics

and nonstandard �xed-b asymptotics are considered in the literature. In the former case, b

is assumed to be small in that it goes to zero at certain rate with the sample size. Under

this asymptotic speci�cation, the Wald statistic is asymptotically �2. In the latter case,

b is assumed to be held �xed at a given value, and the Wald statistic has a nonstandard

limiting distribution. See Kiefer and Vogelsang (2002a, 2002b, 2005, hereafter KV). KV

(2005) show by simulation that the nonstandard �xed-b asymptotic approximation is more

accurate than the conventional asymptotic �2 approximation. Jansson (2004) and Sun,

Phillips, Jin (2008, hereafter SPJ) provide theoretical analyses for location models.

This paper has several objectives and makes several contributions. The �rst objective is

to investigate the relationship between the small-b asymptotics and the �xed-b asymptotics.

We show that the �xed-b asymptotic approximation provides a higher order re�nement to

the �rst order small-b asymptotics. This result is established via a high order expansion of

the Wald statistic under the small-b asymptotics and an expansion of the �xed-b asymptotic

distribution around b = 0: Our theoretical result establishes the asymptotic validity of the

�xed-b critical values regardless of the asymptotic thought experiments we use.

The second objective is to approximate a modi�ed Wald statistic by a standard F

distribution. The modi�cation corrects for the demeaning bias of the HAR estimator,

which is due to the estimation uncertainty of model parameters, and the dimensionality

bias of the Wald statistic, which is present when the number of joint hypotheses is greater

than 1: We design an asymptotic F test that employs the modi�ed Wald statistic and

critical values from a standard F distribution. When b is not too large, more speci�cally,
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b � 0:4; 0:3; 0:2 for the Bartlett, Parzen and QS kernels respectively, the asymptotic F test
is as accurate in size as the nonstandard test of KV (2005) and yet is as easy to use as the

standard Wald test, as both the correction factor and the critical values are easy to obtain.

The third objective is to provide a theoretical explanation on why the conventional

Wald test has a severe size distortion when p; the number of restrictions being tested or the

dimension of hypothesis space, is large. We show that the di¤erence between the high-order

corrected F critical value and the �rst-order �2 critical value depends on the bandwidth

parameter b, the number of joint hypotheses, and the kernel function used in the HAR

estimation. The conventional Wald test can be severely size distorted as it uses critical

values that do not depend on b and the kernel function and do not adequately capture the

e¤ect of the dimension of the hypothesis space.

The fourth objective is to operationalize the asymptotic F test by determining suitable

values of the bandwidth parameter b: At present it is standard practice to use the bandwidth

parameter that is optimal for the point estimation of the covariance matrix of the parameter

estimator. This choice may not be optimal from a testing point of view. In hypothesis

testing, our ultimate goal is to minimize the type II error hence maximize the power of the

test while controlling for the type I error. This goal is di¤erent from the minimization of

the mean squared error of the covariance estimator. In this paper, we propose to select

the bandwidth parameter that is optimal for hypothesis testing. More speci�cally, the

testing-optimal bandwidth parameter minimizes the type II error subject to the constraint

that the type I error is bounded by �� where � is the nominal type I error and � > 1

is the permitted tolerance towards the type I error. The type I and type II errors are

approximately measured on the basis of higher order expansions.

The testing-optimal bandwidth is fundamentally di¤erent from the MSE-optimal band-

width in terms of both the rate of convergence and the parameters on which they depend.

The testing-optimal bandwidth is tailored to the testing problem at hand. As a result, it

depends on every aspect of the testing problem under consideration. For example, it de-

pends on the null and local alternative hypotheses, the signi�cance level, and the number of

restrictions being tested while the MSE-optimal bandwidth does not. When the permitted

tolerance towards the type I error is small, the testing-optimal bandwidth is larger by an

order of magnitude than the MSE-optimal bandwidth. In hypothesis testing, when the

type I error is of greater concern, we should employ under-smoothing in order to achieve

more bias reduction than that is required by the MSE criterion.

The �nal objective is to examine the �nite sample performance of the asymptotic F

test. We compare the asymptotic F test with testing-optimal bandwidth to the conventional

Wald test with MSE-optimal bandwidth. We also include the KV type of test with b = 1
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and using the nonstandard �xed-b asymptotics as the reference distribution. The simulation

result shows the asymptotic F test is only slightly more size distorted than the KV test

with b = 1. For all the kernels considered, the F test is much more accurate in size than the

conventional Wald test. In terms of the power, the F test is as powerful as the Wald test. As

expected, it is much more powerful than the KV test with b = 1:We can therefore conclude

that the F test with testing-optimal bandwidth has good size and power properties.

The papers that are closely related to the present one are SPJ (2008) and Sun and

Phillips (2009, unpublished). In SPJ (2008), a simple t test in a univariate location model is

considered. Here we generalize their result to the Wald test in a general GMM framework.

The generalization is far from trivial as it is much more di¢ cult to obtain high order

expansions in a GMM setting. In addition, the Wald test with multiple restrictions is

also harder to analyze than a simple t test as considered in SPJ (2008). Sun and Phillips

(2009) focuses only on the high order small-b asymptotics and optimal con�dence interval

construction under the small-b asymptotics.

A paper with conceptual ideas related to those presented here is Gao and Gijbels (2008).

In their seminal work, Gao and Gijbels consider testing for a parametric function form in

a nonparametric kernel regression. The test statistic depends on the kernel smoothing

bandwidth. They propose choosing the bandwidth to maximize the power of the test over

a set of bandwidth values under which the size is under control. This is conceptually similar

to our approach, although the problems considered and the technical machinery used are

fundamentally di¤erent.

The remainder of the paper is organized as follows. Section 2 describes the testing

problem of concern and provides an overview of the �xed-b asymptotic theory. Section 3

expands the �xed-b asymptotic distribution around b = 0. The expansion and the rep-

resentations that lead to it help deepen our understanding of the �xed-b approximation.

Section 4 develops a high order expansion of the Wald statistic. Section 5 introduces the

asymptotic F test. On basis of the high order expansion, the next section describes ap-

proximate measures of the type I and type II errors of the asymptotic F test. It also gives

an explicit and closed-form expression for the testing-optimal bandwidth for the F test.

Section 7 presents simulation evidence and last section concludes. Proofs are given in the

Appendix.

2 Autocorrelation Robust Testing

We employ a standard GMM framework. We are interested in a d� 1 vector of parameters
� 2 � � Rd: Let vt denote a vector of observations. Let �0 be the true value and assume
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that �0 is an interior point of the compact parameter space �: The moment conditions

Ef (vt; �) = 0; t = 1; 2; :::; T

hold if and only if � = �0 where f (�) is an m� 1 vector of twice continuously di¤erentiable
functions with m � d and rank E [@f (vt; �0) =@�0] = d: De�ne

gt (�) = T�1
tX
j=1

f(vj ; �);

the GMM estimator of �0 is then given by

�̂T = argmin
�2�

gT (�)
0WT gT (�)

where WT is an m�m positive semide�nite weighting matrix.

Let

Gt(�) =
@gt (�)

@�0
=
1

T

tX
j=1

@f(vj ; �)

@�0
and G0 = E

@f(vj ; �0)

@�0
:

The following high level assumptions are standard in the literature on the �xed-b asymp-

totics; See for example KV (2005), Lee and Kuan (2009), Bester, Conley, Hansen (2011),

Zhang and Shao (2012) and references therein.

Assumption 1 plimT!1�̂T = �0 and �0 is an interior point of �:

Assumption 2 plimT!1G[rT ](~�T ) = rG0 uniformly in r for any ~�T whose elements are

between the corresponding elements of �̂T and �0:

Assumption 3 WT is positive semide�nite, plimT!1WT = W1; and G00W1G0 is posi-

tive de�nite.

Under the above assumptions, we have, using element-by-element mean value expan-

sions:
p
T
�
�̂T � �0

�
= �

�
G00W1G0

��1
G00W1

1p
T

TX
t=1

f(vt; �0) + op (1) : (1)

Consider the null hypothesis H0 : r(�0) = 0 and the alternative hypothesis H1 : r (�0) 6=
0 where r (�) is a p � 1 vector of twice continuously di¤erentiable functions with �rst
order derivative matrix R(�) = @r(�)=@�0: The Wald statistic is based on the di¤erence

r(�̂T )� r (�0) : Under Assumptions 1�3, we have, using (1):

p
T
h
r(�̂T )� r (�0)

i
=

1p
T

TX
t=1

ut + op (1)
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where

ut := �(vt; �0) = �R0
�
G00W1G0

��1
G00W1f(vt; �0);

and R0 = R (�0) : �(vt; �0) can be regarded as an in�uence function representation ofp
T [r(�̂T )� r (�0)]:

Assumption 4 T�1=2
P[Tr]
t=1 ut !d �Wp(r) where ��0 = 
 =

P1
j=�1Eutu

0
t�j is the long

run variance (LRV) of ut and Wp(r) is the p-dimensional standard Brownian motion.

The FCLT in Assumption 4 holds for serially correlated and heterogeneously distributed

data that satisfy certain regularity conditions on moments and the dependence structure

over time. These primitive regularity conditions can be found in Davidson (1994), Tanaka

(1996), White (2001), among others. For example, Theorem 3.14 in Tanaka (1996, p. 98)

considers a linear process of the form: ut =
P1
`=0A`"t�` where "t s iid(0; Ip) and fA`g1`=0 is

a sequence of p�p matrices. Su¢ cient conditions for the FCLT are (i)
P1
`=0 ` kA`k <1 for

kA`k = [tr(A0`A`)]
1=2 ; (ii) A =

P1
`=0A` and A0 are nonsingular. Tanaka (1996) proves the

theorem using the linear process approach of Phillips and Solo (1992). The iid assumption

on "t can be replaced by the martingale di¤erence sequence assumption with additional

moment requirements. See Theorem 3.15 in Phillips and Solo (1992).

For processes that are not necessarily linear, mixing conditions are usually imposed to

obtain the FCLT. For example, Phillips and Durlauf (1986, Corollary 2.2) consider a mean

zero and weakly stationary sequence fut = (ut1; :::; utp)
0g: They show that the following

three conditions are su¢ cient for the FCLT:

(i) E ju1ij� >1 (i = 1; :::; p) for � � 2;

(ii) ut is '-mixing with mixing coe¢ cients satisfying
P1
`=1 '

1�1=�
` <1;

(iii) 
 =
P1
j=�1Eutu

0
t�j is positive de�nite.

Conditions (i) and (ii) can be replaced by

(i)�E ju1ij� >1 (i = 1; :::; p) for � > 2;

(ii)� ut is �-mixing with mixing coe¢ cients satisfying
P1
`=1 �

1�2=�
` <1.

Phillips and Durlauf (1986, Theorem 2.1) give another set of su¢ cient conditions with-

out assuming weak stationarity. See also Theorem 7.30 of White (2001) for a FCLT for

heterogenous mixing processes.

Note that the mixing properties are hereditary in the sense that, for any measurable

function m (�) ; the process m(vt) possesses the mixing property of vt: Hence, in our setting
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it su¢ ces to verify whether the mixing conditions hold for fvtg : Doukhan (1994, Section
1.3.2 and Chapter 2) provides examples of time series with various mixing properties.

In particular, the commonly-used ARMA process satis�es the �-mixing condition if it is

stationary and the innovations are iid and have a probability density with respect to the

Lebesgue measure.

While Assumption 4 holds for processes that may not be weakly stationary, it rules out

the case that ut is strongly persistent, i.e. each component of ut follows a unit root or near

unit root process. While it is possible to develop �xed-b asymptotics for these two cases,

the mechanics and details are su¢ ciently di¤erent to warrant a separate investigation.

Under Assumptions 1-4, we now have
p
T
h
r(�̂T )� r (�0)

i
!d �Wp(1) s N(0;
);

which provides the usual basis for robust testing. The F-test version of the Wald statistic

for testing H0 against H1 is

FT =
hp

Tr(�̂T )
i0

̂�1T

hp
Tr(�̂T )

i
=p; (2)

where 
̂T is an estimator of 
: The kernel estimator 
̂T of 
 takes the form of


̂T =
1

T

TX
t=1

TX
�=1

kb

�
t� �
T

�
ûtû

0
� (3)

where ût is a plug-in estimator of ut given by

ût = �R(�̂T )
�
G0T (�̂T )WTGT (�̂T )

��1
G0T (�̂T )WT f(vt; �̂T ); (4)

k (�) is a kernel function, and kb (x) = k (x=b) for x 2 [�1; 1]: Here b is the smoothing
parameter that a¤ects the asymptotic properties of 
̂T and the associated test statistic.

Following KV (2005) and using integration by parts, we can show that under the as-

sumptions given above:

FT !d F1(p; b)

for any �xed value of b; where

F1(p; b) =W 0
p (1)

�Z 1

0

Z 1

0
kb(r � s)dVp(r)dV 0p(s)

��1
Wp (1) =p; (5)

and Vp (r) = Wp (r) � rWp (1) is the p-dimensional Brownian bridge process. Note that

cov [Wp (1) ; Vp (r)] = cov [Wp (1) ;Wp (r)] � rcov [Wp (1) ;Wp (1)] = r � r = 0; so Wp (1) is

independent of the Brownian bridge process Vp (r) :

The distribution F1(p; b) is the so-called �xed-b limiting distribution of FT :When there

is no possibility of confusion, we use F1(p; b) to denote a random variable with distribution

F1(p; b) and the distribution itself. Similarly, we use Fp;K to denote a random variable

with F distribution Fp;K and the distribution itself.
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3 Representation and Expansion of the Nonstandard As-

ymptotic Distribution

This section presents alternative representations and develops an asymptotic expansion of

the limit distribution given in (5) as the bandwidth parameter b ! 0: The asymptotic

expansion and later developments in the paper make use of the following kernel conditions:

Assumption 5 (i) k(x) : R ! [0; 1] is symmetric, piecewise smooth with k(0) = 1 andR1
0 k(x)xdx <1. (ii) The Parzen characteristic exponent de�ned by

q = maxfq0 : q0 2 Z+; gq0 = lim
x!0

1� k(x)
jxjq0 <1g (6)

is greater than or equal to 1.

Assumption 5 imposes only mild conditions on the kernel function. All the commonly

used kernels satisfy (i) and (ii). The assumption
R1
0 k(x)xdx < 1 ensures the integrals

that appear in our proofs are �nite. It also enables us to use the Riemann-Lebesgue lemma.

For the Bartlett kernel, the Parzen characteristic exponent is 1: For the Parzen and QS

kernels, the Parzen characteristic exponent is 2. We focus on these three kernels as they are

positive semide�nite, a condition that ensures the positive semide�niteness of the associated

LRV estimator.

De�ne

k�b (r; s) = kb(r � s)�
Z 1

0
kb(r � t)dt�

Z 1

0
kb(� � s)d� +

Z 1

0

Z 1

0
kb(t� �)dtd�;

which is the �centered�version of the kernel function in the sense thatZ 1

0
k�b (r; s)dr =

Z 1

0
k�b (r; s)ds =

Z 1

0

Z 1

0
k�b (r; s)drds = 0 for any r and s:

Then it is easy to show thatZ 1

0

Z 1

0
kb(r � s)dVp(r)dV 0p(s) =

Z 1

0

Z 1

0
k�b (r; s)dWp(r)dW

0
p(s):

Note that while k (x) may be de�ned on R, kb(r � s) and hence k�b (r; s) are de�ned on

[0; 1] � [0; 1] for any given b: Under Assumption 5, k�b (r; s) is a symmetric and integrable
function in L2 ([0; 1]� [0; 1]) : So the Fredholm integral operator with kernel k�b (r; s) is self-

adjoint and compact. By the spectral theorem, e.g. Promislow (2008, p. 199), we can

expand k�b (r; s) as

k�b (r; s) =
1X
n=1

��nf
�
n(r)f

�
n(s); (7)
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where the right hand side converges in L2 ([0; 1]� [0; 1]) : Here ��n is an eigenvalue of the cen-
tered kernel and f�n(r) is the corresponding eigenfunction, i.e. �

�
nf

�
n(s) =

R 1
0 k

�
b (r; s)f

�
n(r)dr:

Since k�b (r; s) is centered, we have
R 1
0 f

�
n(r)dr = 0: It follows from (7) thatZ 1

0

Z 1

0
k�b (r; s)dWp(r)dW

0
p(s) =

1X
n=1

��n�n�
0
n (8)

where �n =
R 1
0 f

�
n(r)dWp(r): Since f�n(s) is an orthonormal sequence of functions in L

2 [0; 1] ;

�n s iidN (0; Ip) and �n� 0n follows Wp (Ip; 1) ; a simple Wishart distribution. Hence the
double stochastic integral is equal in distribution to a weighted sum of independent Wishart

distributions.

Using (8), we obtain our �rst representation of pF1(p; b) as

pF1(p; b)
d
= �0

" 1X
n=1

��n�n�
0
n

#�1
�; (9)

where �n s iidN(0; Ip), � s N(0; Ip) and �n is independent of � for all n: The independence
holds because cov (�n; �) = cov

hR 1
0 f

�
n(r)dWp(r);

R 1
0 dWp (r)

i
=
R 1
0 f

�
n(r)dr = 0 and both

�n and � are normal. That is, pF1(p; b) is equal in distribution to a quadratic form of

standard normals with an independent and random weighting matrix.

Let H be an orthonormal matrix such that H = (�= k�k ;�)0 where � is a p � (p� 1)
matrix, then by de�nition H� = k�k e1 and

pF1(p; b)
d
= (H�)0

 1X
n=1

��n (H�n) (H�n)
0
!�1

H�

d
= k�k2 e01

 1X
n=1

��n (H�n) (H�n)
0
!�1

e1

where e1 = (1; 0; 0; : : : ; 0; 0)0. Note that k�k2 is independent of H and H�n has the same
distribution as �n; so we can write

pF1(p; b)
d
= k�k2 e01

 1X
n=1

��n�n�
0
n

!�1
e1:

Let
1X
n=1

��n�n�
0
n =

 
�11 �12

�21 �22

!

where �11 2 R and �22 2 R(p�1)�(p�1): Then

pF1(p; b)
d
=
k�k2

�11�2
for �11�2 = �11 � �12��122 �21: (10)
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This is our second representation of pF1(p; b): It shows that pF1(p; b) is equal in distrib-

ution to a chi-square variate scaled by an independent and almost surely positive random

variable. So F1(p; b) is similar to an F distribution.

As b ! 0; we expect �11:2 to be concentrated around 1. By taking a Taylor expansion

Gp (z�11:2) around Gp (z) and computing the moments of �11:2, we can prove the following

theorem.

Theorem 1 As b! 0; we have

P fpF1(p; b) � zg = Gp(z) +A(z)b+ o(b) (11)

where

A(z) = G00p(z)z
2c2 �G0p(z)z [c1 + c2 (p� 1)] ;

c1 =

Z 1

�1
k(x)dx; c2 =

Z 1

�1
k2(x)dx:

There are two terms in A(z)b: The term G00p(z)z
2c2b arises from the asymptotic mean

square error E (�11:2 � 1)2 of �11:2 while the term �G0p(z)z [c1 + c2 (p� 1)] b arises from the
asymptotic bias E (�11:2 � 1) of �11:2: The bias term comes from two sources. The �rst

is the estimating uncertainty of model parameters. This is re�ected in the dependence of

�11:2 on the transformed kernel function k�b (�; �) rather than the original kernel function
kb(�): This type of bias may be referred to as the demeaning bias as k�b (�; �) can be regarded
as a demeaned version of kb(�): The second comes from a dimension adjustment. When

p > 1; �11:2 is not equal to �11 but its projected version, viz �11 � �12�
�1
22 �21: In contrast,

when p = 1, �11:2 is equal to �11 and there is no dimension adjustment. Given that this

type of bias depends on the dimension of the hypothesis space, we may refer to it as the

dimensionality bias.

When p = 1; Theorem 1 reduces to Theorem 1 in SPJ (2008). The main di¤erence

between the scalar case and the multivariate case is the presence of the dimensionality

bias. This bias depends on p; the number of restrictions being tested or the dimension of

the hypothesis space. As we show later, one of the reasons that the �xed-b approximation

is more accurate than the chi-square approximation is that it captures the dimensionality

bias.
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4 Second-order Correctness of the Fixed-b Approximation

under the Small-b Asymptotics

In this section, we show that the �xed-b approximation is high-order correct under the

small-b asymptotics where b! 0 and T !1 jointly. We �rst employ a Gaussian location

model to illustrate the basic point. We then extend the result to a general GMM setting.

4.1 Gaussian Location Model

Consider a vector time series yt:

yt = �0 + vt; t = 1; 2; :::; T; (12)

where yt = (y1t; :::; ydt)
0, �0 = (�10; :::; �d0)

0, vt = (v1t; :::; vdt)
0 is a stochastic process with

zero mean.

The OLS estimator of �0 is the average of fytg ; viz �̂OLS = T�1
PT
t=1 yt: To simplify the

presentation, we consider testing linear restrictions H0 : R0�0 = r0 against H1 : R0�0 6= r0

for some p�d matrix R0: It is easy to generalize the result to nonlinear restrictions. Under
the null hypothesis, we have

p
T
�
R0�̂OLS � r0

�
=

1p
T

TX
t=1

ut for ut = R0vt:

Let FT;OLS be the F -test version of the Wald statistic based on the OLS estimator:

FT;OLS =
hp

T (R0�̂OLS � r0)
i0

̂�1T

hp
T (R0�̂OLS � r0)

i
=p (13)

where 
̂T is de�ned as in (3) with ût = R0(yt � �̂OLS):
The Gaussian location model is a special case in the GMM setting. The underlying

moment condition is f(yt; �) = yt � �: The model is exactly identi�ed so m = d: The OLS

estimator is a GMM estimator withGT = �Id and any weighting matrixWT , sayWT = Id.

We maintain the following assumption.

Assumption 6 (i) ut is a stationary Gaussian process. (ii) For any c 2 Rd; the spectral
density of c0ut is bounded above and away from zero in a neighborhood around the origin.

(iii) The FCLT holds: T�1=2
P[Tr]
t=1 ut !d �Wp(r):

Let �̂GLS be the GLS estimator of � given by

�̂GLS =
�
(`T 
 Id)0
�1v (`T 
 Id)

��1
(`T 
 Id)0
�1v y

10



where 
v = var([v01; v
0
2; :::; v

0
T ]
0), y = [y01; y

0
2; :::; y

0
T ]
0 and `T is a vector of ones. Replacing


v by IT 
 Id leads to the OLS estimator �̂OLS introduced earlier. De�ne

� = �̂OLS � �0 � (�̂GLS � �0):

Under Assumption 6(i) and (ii), it follows from Grenander and Rosenblatt (1957) that �̂OLS

and �̂GLS are asymptotically equivalent. In addition, simple calculations show that E[(�̂GLS�
�0)�

0] = 0 and

E[(�̂GLS � �)û0t]

= cov
n�
(`T 
 Id)0
�1v (`T 
 Id)

��1
(`T 
 Id)0
�1v v;R0

��
IT � `T `0T =T

�

 Id

�
v
o

= E
�
(`T 
 Id)0
�1v (`T 
 Id)

��1
(`T 
 Id)0
�1v vv0

��
IT � `T `0T =T

�

 Id

�
gR0

= E
�
(`T 
 Id)0
�1v (`T 
 Id)

��1
(`T 
 Id)0

��
IT � `T `0T =T

�

 Id

�
gR0

= 0

for all t: So �̂GLS � �0 is independent of both � and ût.

Let FT;GLS be the F -test version of the Wald statistic based on the GLS estimator:

FT;GLS =
hp

T (R0�̂GLS � r0)
i0

̂�1T

hp
T (R0�̂GLS � r0)

i
=p

where 
̂T is the same estimator as in FT;OLS given by (13).

Using the asymptotic equivalence of the OLS and GLS estimators and independence of

�̂GLS � �0 from � and ût, we can prove the following lemma.

Lemma 1 Let Assumption 6 hold. Then

(a) P (pFT;GLS � z) = EGp
�
z��1T

�
+O

�
T�1

�
;

(b) P (pFT;OLS � z) = P (pFT;GLS � z) +O
�
T�1

�
;

where

�T = e0T

h

1=2
̂�1T 


1=2
i
eT ; eT =



�1=2
T;GLS

p
T (R0�̂GLS � r0)
�1=2T;GLS

p
T (R0�̂GLS � r0)


and 
T;GLS is the variance of

p
T (R0�̂GLS � r0):

Lemma 1 shows that the estimation uncertainty of 
̂T a¤ects the distribution of the

Wald statistic only through �T : Taking a Taylor expansion, we have �
�1
T = 1+L+Q+err;

where err is the approximation error, L is linear in 
̂T �
 and Q is quadratic in 
̂T �
:
The exact expressions for L and Q are not important here but are given in the proof of

Theorem 2. Using this stochastic expansion and Lemma 1, we can establish a high-order

expansion of the �nite sample distribution for the case where b! 0 as T !1:

11



Theorem 2 Let Assumptions 5 and 6 hold. Assume that
P1
h=�1 jhj

q Eutu
0
t�h < 1: If

b! 0 such that bT !1, then

P (pFT;OLS � z) = Gp (z) +A(z)b+ (bT )
�q G0p (z) z �B + o (b) + o

�
(bT )�q

�
(14)

where

�B = tr
�
B
�1

	
=p; B = �gq

1X
h=�1

jhjq Eutu0t�h

and q and gq are given in Assumption 5 (ii).

The �rst term in (14) comes from the standard chi-square approximation of the Wald

statistic. The second term captures the demeaning bias, the dimensionality bias, and the

variance of the LRV estimator. The third term re�ects the usual nonparametric bias of the

LRV estimator. In view of its representation, �B can be regarded as a measurement of the

relative nonparametric bias.

Let X�p be the 1�� quantile from the �2p distribution, then, up to smaller order terms,

P
�
pFT;OLS > X�p

�
= ��A(X�p )b� (bT )

�q G0p
�
X�p
�
X�p �B: (15)

Since G00p
�
X�p
�
< 0 and G0p(X�p ) > 0; all terms in �A(X�p )b are positive. First, the variance

term �G00p(X�p )
�
X�p
�2
c2 is positive. This is expected. Using �2p as the reference distribution

does not take into account the randomness of the LRV estimator and the critical values from

it tend to be smaller than they should be. As a result, the rejection region is larger, leading

to over rejection. Second, the bias term �G0p(X�p )X�p c1 from demeaning is positive. This

type of bias is easier to understand in the scalar case where the LRV is positive. In this case,

demeaning e¤ectively dampens the low frequency components and introduces a downward

bias into the LRV estimator. The downward bias translates into an increase in the test

statistic and leads to over rejection. Finally, the bias term �G0p(X�p )X�p c2(p� 1) from the

dimension adjustment is positive. Intuitively, when p > 1; the p�p matrix 
̂T may become
singular in p� 1 di¤erent directions. When that happens, the Wald statistic will blow up
and we reject the null hypothesis. So the dimensionality bias also tends to give arise over-

rejection. On the other hand, the nonparametric bias term � (bT )�q G0p
�
X�p
�
X�p �B may be

positive or negative, leading to over-rejection or under-rejection.

Comparing Theorem 1 with Theorem 2, we �nd that the �xed-b asymptotics captures

some terms in the high order expansion of the small-b asymptotics. Let F�1(p; b) be the
1� � quantile from the distribution F1(p; b), i.e. P (F1(p; b) > F�1(p; b)) = �: According

to Theorem 1, we have 1�Gp(pF�1(p; b))�A (pF�1(p; b)) b+ o(b) = �: So as b! 0;

P (FT;OLS > F�1(p; b)) = �� (bT )�q G0p (pF�1(p; b)) pF�1(p; b) �B+ o (b)+ o
�
(bT )�q

�
: (16)
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Therefore, use of the nonstandard critical value F�1(p; b) removes the demeaning bias,
dimensionality bias and variance term from the higher order expansion. The size distortion

is then of order O
�
(bT )�q

�
: In contrast, if X�p =p is used as the critical value, the size

distortion is of order O
�
(bT )�q

�
+ O (b) : So when (bT )�q b�1 ! 0; using critical value

F�1(p; b) should lead to size improvements. We have thus shown that critical values from
the �xed-b asymptotics are second order correct under the small-b asymptotics.

4.2 General GMM Setting

To establish a high order expansion in the general GMM setting, we establish a stochastic

approximation in the appendix:

pFT � pFT;L +  T +  
�
T

where

pFT;L =

"
1p
T

TX
t=1

ut

#0
~
�1T

"
1p
T

TX
t=1

ut

#
is the dominated linear term in the approximation and

~
T =
1

T

TX
t=1

TX
�=1

k

�
t� �
bT

�"
ut �

1

T

TX
s=1

us

#"
u� �

1

T

TX
s=1

us

#0
is the kernel estimator of the long run variance of ut when the mean is assumed to be

unknown. In this stochastic approximation,  T = Op(1=
p
T ) does not depend on b and

 �T = Op([
p
b+ (bT )�q]=

p
T + 1=T ):

De�ne

yt � �+ ut

for some � 2 Rp: Then pFT;L is exactly the same as the Wald statistic for testing whether
the mean of yt satis�es E(yt) = � = 0: Using Theorem 2, we can prove Theorem 3 below.

Theorem 3 Assume (i) plimT!1�̂T = �0; (ii) for su¢ ciently large C; P (j T j > (log T ) =
p
T ) =

O(1=
p
T ) and P (j �T j > �T = log T ) = o (�T ) for �T = b + (bT )�q ; (iii) ut = �(vt; �0) sat-

is�es Assumption 6, (iv) WT = W1 + Op(1=
p
T ) and G00W1G0 is positive de�nite, (v)

G[rT ](~�T ) = rG0+Op(1=
p
T ) uniformly in r for any ~�T between �̂T and �0, (vi) Assumption

5 holds. If b! 0 such that bT !1, then

P (pFT � z) = Gp (z)+A(z)b+(bT )
�q G0p (z) z �B+O(T

�1=2 log T )+o (b)+o
�
(bT )�q

�
(17)

where the O
�
T�1=2 log T

�
term does not depend on b:
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Some comments on the assumptions are in order. Assumption (ii) is a high level as-

sumption. It holds with su¢ cient mixing and moment conditions. This type of result

can often be proved using results in Doukhan (1995, Section 1.2.2). The Gaussianity as-

sumption in (iii) is made for convenience. It greatly simpli�es the proof and makes our

arguments much more transparent. There is no need to use general Edgeworth expansion

techniques to establish the high order expansion. The Gaussianity assumption be relaxed

but at the cost of much greater complexity in terms of both proof strategies and technical

conditions. See Sun and Phillips (2009) for the expansion without the Gaussianity assump-

tion. The expansion there contains more terms but reduces to the above expansion when

the Gaussian assumption holds. Assumption (iv) requires the weighting matrix to converge

at the parametric rate. It rules out the two step GMM estimator with the weighting matrix

WT converging only at a nonparametric rate. Again, we make this assumption in order to

greatly simplify our proof. In practice, we may ignore the convergence rate ofWT even if it

is a nonparametric rate and use the formula derived here. Assumption (v) is stronger than

Assumption 2. It holds if
p
T [G[rT ] (�0)� rG0] satis�es a functional central limit theorem

and @GT (�)=@�0 satis�es a uniform law of large numbers.

Theorem 3 shows that the high order expansion for the location model remains valid

for GMM estimators. The only di¤erence is the term of order O
�
T�1=2 log T

�
. This term

re�ects, among others, the higher order terms in the linear representation of the GMM

estimator and the nonlinearity of the restrictions being tested. With more sophisticate and

tedious arguments as in Sun and Phillips (2009), the term O(T�1=2 log T ) can be reduced

to O(T�1=2): Here we are content with the weaker result as our main interest is to capture

the e¤ect of b on the sampling distribution of FT :

Given the similarity of the two expansions, the qualitative results for the location model

in the previous subsection apply to the GMM setting. In particular, the �xed-b critical

values are high order correct under the conventional small-b asymptotics.

5 Standard F Approximation

In this section, we establish a standard F approximation that is second order correct under

the conventional small-b asymptotics.

For some constant � to be determined, de�ne F �T = FT =� to be a modi�edWald statistic.

We want to approximate the distribution of F �T by a standard F distribution Fp;K . Like

in the conventional �2p approximation, the �rst degree of freedom of the approximating F

distribution is the number of joint hypotheses p: The second degree of freedom K together

with � will be chosen to capture the high order term in the expansion given in (14).
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Let F�p;K be the 1�� quantile of the F distribution Fp;K ; i.e. P (Fp;K > F�p;K) = �; we

choose � and K such that

1�Gp
�
�F�p;K

�
�A(�F�p;K)b = �+ o(b): (18)

That is, we choose � and K to remove the term of order O(b) in the expansion of P (F �T >

F�p;K).
To derive explicit expressions for � and K; we �rst expand the F critical value F�p;K

around the corresponding �2p critical value X�p =p. When K / 1=b; we have, by de�nition:

� = 1� EGp
�
pF�p;K

�2K
K

�
:

Taking a second order Taylor expansion, we immediately obtain

F�p;K =
X�p
p
�
G00p
�
X�p
� �
X�p
�2

pG0p
�
X�p
� 1

K
+ o(b):

Using this and expanding (18) around X�p ; we have:

G00p
�
X�p
� �
X�p
�2 � �

K
� c2b

�
�G0

�
X�p
�
X�p f�� 1� [c1 + c2 (p� 1)] bg = o(b):

So we can choose any � and K combination that satis�es

� = 1 + [c1 + c2 (p� 1)] b+ o(b) and K =
1

bc2
(1 + o (b)) :

For the Bartlett kernel, c1 = 1; c2 = 2=3; For the Parzen kernel, c1 = 3=4; c2 = 0:539285;

For the quadratic spectral (QS) kernel, c1 = 1:25, c2 = 1.

Theorem 4 Let assumptions in Theorem 2 or 3 hold. Let K = K� � p+ 1 or K� for

K� = max(d1= (bc2)e ; p)

and

� =
exp (b [c1 + (p� 1) c2]) + (1 + b [c1 + (p� 1) c2])

2

where d�e is the ceiling function. As b! 0; we have

P
�
FT > �F�p;K

�
= �+ o(b) +O

�
(bT )�q

�
+O

�
log T=

p
T
�
: (19)

The parameter � corrects for the demeaning bias and the dimensionality bias. It can

be motivated from a Bartlett type correction. See Bartlett (1937, 1954) for the original

papers and Cribari-Neto and Cordeiro (1999) for a more recent survey. The argument goes

as follows. Suppose that FT;L !d �2p=p and EFT;L = C for some constant C; then as b! 0;
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FT;L=C is closer to the �2p=p distribution than the original FT;L. When ut s iidN(0; �2);

we can show that C = � + o(b): So we can choose C = � to make the correction and

F �T = FT =� becomes a Bartlett-corrected Wald statistic.

Theorem 4 goes one more step beyond the Bartlett correction. Instead of approximat-

ing the distribution of F �T by the normalized chi-squared distribution �2p=p; Theorem 4

approximates it by the standard F distribution with degrees of freedom p and K.

Theorem 4 adjusts the value of K� to ensure that K = K��p+1 � 1: The parameter K
is asymptotically equivalent to the inverse of the asymptotic variance of the LRV estimator.

It can be called the �equivalent degree of freedom�of the LRV estimator. As b decreases,

i.e. as the degree of smoothing increases, the variance decreases and K increases. In other

words, the higher the degree of freedom is, the larger the degree of smoothing is, and the

smaller the variance is.

The scaled F critical value �F�p;K is larger than the standard critical value from �2p=p

for two reasons. First, F�p;K is larger than X�p =p; the corresponding critical value from �2p=p

due to the presence of a random denominator in the F distribution. Second, the correction

factor � is larger than 1: As b increases, both the correction factor and F critical value

F�p;K increase. As a result, the second-order correct critical value �F�p;K is an increasing

function of b:

In view of (16) and (19), both the nonstandard critical value F�1(p; b) and the corrected
F critical value �F�p;K are second order correct under the conventional small-b asymptotics.
Unreported numerical work shows that when b is small, the two critical values F�1(p; b)
and �F�p;K are very close to each other. See also the simulation study in Section 7.1.

For the adjusted F critical value �F�p;K ; the choices of K = K� � p + 1 and K� are

asymptotically equivalent but make a di¤erence when b is not small. For the Bartlett

kernel, using K = K� brings the F critical value �F�p;K closer to the nonstandard critical

value F�1(p; b): For the Parzen and QS kernels, K = K��p+1 leads to a smaller di¤erence
between �F�p;K and F�1(p; b):We will useK = K� for the Bartlett kernel andK = K��p+1
for the Parzen and QS kernels in our simulation study.

For convenience, we refer to the test based on the test statistic F �T and the F critical

value F�p;K as the asymptotic F test. This of course is the same as the test based on the

original Wald statistic and the scaled F critical value �F�p;K :
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As b! 0; some simple calculations show that

�F�p;K �X�p =p
X�p =p

= �

 
1�

G00p
�
X�p
�
X�p

G0p
�
X�p
� bc2

!
� 1 + o(b)

= [c1 + c2 (p� 1)] b�
�
1

2
p�X�p � 1

�
c2b+ o(b)

=

�
c1 +

1

2
c2

�p
2
+ X�p

��
b+ o(b):

Similarly,
F�1(p; b)�X�p =p

X�p =p
=

�
c1 +

1

2
c2

�p
2
+ X�p

��
b+ o(b):

So to the order of O(b); the percentage adjustment of the critical value increases with p:

This is true for both the scaled F critical value �F�p;K and the nonstandard critical value

F�1(p; b): Our result is especially interesting when the number of restrictions is large. In
this case, the size distortion of the usual Wald test is large. This is due to the presence of

the dimensionality bias. The nonstandard critical value and F critical value automatically

correct for the dimensionality problem. Our results provide an explanation of the �nite

sample results reported by Ravikumar, Ray and Savin (2004) who �nd that the �xed-b as-

ymptotic approximation can substantially reduce size distortion in tests of joint hypotheses

especially when the number of hypotheses being tested is large. See also Ray and Savin

(2008) and Ray, Savin and Tiwari (2009).

6 Testing-Optimal Bandwidth Choice

In this section, we consider selecting the bandwidth parameter b for the asymptotic F

test in the GMM setting. It is standard practice to select b to minimize the MSE of the

LRV estimator. However, the MSE-optimal b is not optimal for hypothesis testing. We

propose to select b to minimize the type II error while controlling for the type I error. Our

testing-orientated criterion addresses the central concern of hypothesis testing.

It follows from (17) that the type I error of the �-level F test can be approximated by

eI(b) = �� (bT )�q G0p
�
X�p
�
X�p �B:

For Gaussian location models, this approximation has an error of order o(b) and o
�
(bT )�q

�
as b! 0 such that bT !1: For Gaussian GMM models, there is an additional error term

of order O(log T=
p
T ). But this term does not depend on b and can thus be ignored for the

purpose of optimal b selection.
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To obtain the type II error of the F test, we have to �rst specify the alternative hy-

pothesis. We consider the standard local alternative hypothesis of the form:

H1
�
�2
�
: r (�0) = �~c=

p
T

for some vector ~c 2 Rp such that k~ck2 = �2. Under H1
�
�2
�
and the small-b asymptotics,

we have FT !d �2p
�
�2
�
=p; the normalized noncentral chi-square distribution with noncen-

trality parameter �2: Hence the type II error of the usual Wald test depends on the local

alternative parameter ~c only through its squared length k~ck2 : When we do not know the
direction of the local alternative, it is reasonable to assume that ~c is uniformly distributed

on the sphere Sp
�
�2
�
= f~c 2 Rp : k~ck2 = �2g: We will maintain this speci�cation. In other

words, the type II error we will obtain is the average of the type II error associated with

each point ~c on the sphere Sp
�
�2
�
:

It remains to specify the noncentrality parameter �2: Since it can not be consistently

estimated from the data, we choose �2 such that the local power of the standard Wald test

is 75% under the �rst order asymptotics. More speci�cally, �2 satis�es P ({ � X�p ) = 75%
where { s �2p

�
�2
�
: This strategy is similar to that used in the optimal testing literature. In

the absence of a uniformly most powerful test, it is often recommended to pick a reasonable

point under the alternative and construct an optimal test against this particular point

alternative. It is hoped that the resulting test, although not uniformly most powerful, is

reasonably close to the power envelope. Here we use the same idea and select the radius

of the sphere according to the power requirement. We hope that the smoothing parameter

that is optimal for the chosen radius also works well for other points under the alternative

hypothesis. This is con�rmed by our Monte Carlo study.

Theorem 5 Let the assumptions in Theorem 3 hold. Consider the local alternative hy-

pothesis H1
�
�2
�
: r (�0) = �~c=

p
T where ~c is uniformly distributed on Sp

�
�2
�
= f~c 2 Rp :

k~ck2 = �2g: Under the small-b asymptotics, the type II error of the asymptotic F test is

P (FT � �F�p;K) = eII(b) +O(log T=
p
T ) + o(b) + o

�
(bT )�q

�
where the O(log T=

p
T ) term does not depend on b;

eII(b) = Gp;�2
�
X�p
�
+ (bT )�q G0p;�2

�
X�p
�
X�p �B +

�2

2
G0(p+2);�2

�
X�p
�
X�p c2b

and G0l;�2 (z) is the pdf of noncentral �
2 distribution with degrees of freedom l and noncen-

trality parameter �2.

There are three terms in the type II error. The �rst term in eII re�ects the usual �rst

order approximation to the type II error. The second term is due to the nonparametric
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bias of the LRV estimator. This bias has opposite e¤ects on the type I and type II errors.

The third term re�ects the di¤erence in curvature of the null distribution and alternative

distribution at the critical value X�p :
Given the approximate measures of the type I and type II errors, we can select the

bandwidth parameter b to solve the constrained minimization problem:

b� = argmin eII(b) s.t. eI(b) � ��

for some parameter � > 1: The presence of � allows the approximate type I error to be

di¤erent from the nominal type I error. Depending on our tolerance towards this di¤erence,

we may choose � to be small or large. Hence we can call � the permitted tolerance.

Sun (2011) imposes a similar upper bound when selecting the smoothing parameter in

nonparametric series LRV estimation.

The constrained minimization problem is easy to solve. The testing-optimal bandwidth

is

b� =

8>>><>>>:
�
2qG0

p;�2
(X�

p )j �Bj
�2G0

(p+2);�2
(X�

p )c2

� 1
q+1

T
� q
q+1 ; �B > 0�

G0p(X�
p )X�

p j �Bj
(��1)�

�1=q
1
T ;

�B � 0

The testing-optimal b is fundamentally di¤erent from the MSE-optimal b: First, the

testing-optimal b depends on the direction of �B where the MSE-optimal b does not. The

direction of the bias has a di¤erent impact on the test statistic and as a result on the type

I and type II errors of the test. The testing-optimal b re�ects this. By construction, the

MSE-optimal b does not depend on the direction of the nonparametric bias. Second, the

testing-optimal b has a di¤erent decaying rate from the MSE-optimal b: The MSE-optimal

b is of order O(T�2q=(2q+1)): When �B > 0; the testing-optimal b is of larger order than the

MSE-optimal b: This is also true when �B � 0; provided that � is close enough to 1: More
speci�cally, when ��1 = o(T

�q=(2q+1)
); the testing-optimal b is larger than the MSE-optimal

b by an order of magnitude regardless of whether �B > 0 or not. So when the permitted

tolerance on the type I error is low, under-smoothing is required for hypothesis testing,

compared to the point estimation of the LRV matrix. Third, the testing-optimal b depends

on the null hypothesis and alternative hypothesis being considered. The dependence factors

in via the relative bias �B, which depends on the direction of the restriction matrix R0; and

the noncentrality parameter �2, which captures the departure of the alternative from the

null. By de�nition, the MSE-optimal b does not depend on the hypotheses being considered.

The testing-optimal bandwidth can be written as b� = b�( �B) where �B = tr
�
B
�1

�
=p:

The parameter �B is unknown but could be estimated by a standard plug-in procedure

based on a simple model like a VAR(1) or univariate AR(1). See Andrews (1991). This
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method achieves a valid order of magnitude and the procedure is obviously analogous to

conventional data-driven methods for HAR estimation.

7 Simulation Study

This section provides some simulation evidence on the �nite sample performance of the

asymptotic F test using the smoothing parameter that minimizes the approximate type II

error while controlling for the approximate type I error.

We consider the following data generating process:

yt =  + x0t� + "t

where xt is a 4� 1 vector process and xt and "t follow either an AR (1) process

xt;j = �xt�1;j +
p
1� �2et;j ; "t = �"t�1 +

p
1� �2et;0

or an MA(1) process

xt;j = �et�1;j +
p
1� �2et;j ; "t = �et�1;0 +

p
1� �2et;0:

The error term et;j s iidN(0; 1) across t and j. Throughout we are concerned with testing

for the regression parameter � and set  = 0 without the loss of generality. We take

� = 0:0; 0:25; 0:50 and 0:75:

Let � = (0; �0)0. We estimate � by the OLS estimator. Since the model is exactly iden-

ti�ed, the weighted matrix WT becomes irrelevant. Let ~x0t = [1; x
0
t] and ~X = [~x1; ::::; ~xT ]

0;

then the OLS estimator is �̂T � �0 = �G�1T gT (�0) where GT = � ~X 0 ~X=T , G0 = E(GT ),

gT (�0) = T�1
PT
t=1 ~xt"t.

We consider the following null hypotheses:

H0p : �1 = ::: = �p = 0

for p = 1; 2; 3; 4: The corresponding restriction matrix R0p = I5(2 : p+1; :); i.e., row 2 to row
p+1 of the identity matrix I5: The local alternative hypothesis is H1p

�
�2
�
: R0p� = cp=

p
T

where cp = �0p~c, �0p is the matrix square root of the LRV of R0pG�10 ~xt"t; and ~c is uniformly

distributed over the sphere Sp
�
�2
�
; that is, ~c = ��= k�k ; � s N(0; Ip): More speci�cally,

H1p
�
�2
�
: (�1; :::; �p) = cp=

p
T ; �p+1 = ::: = �4 = 0:

To explore the �nite sample size of the tests, we generate data under the null hypothesis.

To compare the power of the tests, we generate data under the local alternative. Since our
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test statistic is invariant to the value of �, we can impose the null hypothesis given above

by setting �0 = 0: Let

FT (cp) =
hp

TR0p�̂T + cp

i0

̂�1T

hp
TR0p�̂T + cp

i
=p

where 
̂T is de�ned in (3) and all the estimates are computed under the null DGP. Then

FT (0) is the Wald statistic under the null H0p. Note that 
̂T is invariant to the value of �0;

FT (cp) has the same distribution as the Wald statistic under local alternative H1p: So for

the linear regression model, there is no need to simulate the data generating process under

both the null and the local alternative.

We consider two signi�cance levels � = 5% and � = 10% and three di¤erent sample

sizes T = 100; 200; 500: We employ three commonly-used positive semi-de�nite kernels:

Bartlett, Parzen, and QS kernels. The number of simulation replications is 10000.

7.1 A �xed sequence of smoothing parameters

In order to disentangle the e¤ect of smoothing parameter choices from that of distribution

approximations, we consider a sequence of �xed b values between 0:01 and 1 with incre-

ment 0:02: We compute FT (0) and employ three di¤erent critical values: X�p =p; �F�p;K
and F�1 (� F�1 (p; b))) ; which come from the standard �2 distribution, the standard F

distribution and the nonstandard �xed-b asymptotic distribution, respectively.

We focus on the size properties in this subsection. Figures 1 and 2 graph the empirical

type I errors of the three tests against the bandwidth parameter b when � = 0: The nominal

type I error is � = 0:05: Figure 1 reports the results for the Bartlett kernel. It is clear

that the empirical type I error of the F test is very close to that of the nonstandard

test when b � 0:4 and for all values of p considered. A direct implication is that the F

critical value �F�p;K is very close to the nonstandard critical value F�1 when b � 0:4 and

p = 1; 2; 3; 4: When b > 0:4 and p = 1; 2; the F critical value �F�p;K is too large compared

to the nonstandard critical value F�1: When p = 3 and 4; �F�p;K and F�1 are close to each

other even when b > 0:4:

Figure 2 reports the results for the Parzen kernel. The same pattern for the Bartlett

kernel holds when b � 0:3: The F critical value and the nonstandard critical value are very
close to each other for all p values considered. This remains to be true for the QS kernel

when b � 0:2: The �gure for the QS kernel is similar to that for the Parzen kernel and

is omitted. By simulating the nonstandard critical value and comparing it directly with

the corresponding �F�p;K ; we have also found direct evidence that these two sets of critical
values are close to each other when b is not large.
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Both Figure 1 and Figure 2 clearly demonstrate that the chi-square critical value is too

small. This is especially the case when the number of joint hypotheses is larger than 1.

To sum up, we �nd that the F critical value and the nonstandard critical value are

close to each other when b � 0:4; 0:3; 0:2 for the Bartlett kernel, the Parzen kernel and the
QS kernel, respectively. This is true for both � = 5% and 10% and for up to four joint

hypotheses. The di¤erence in the upper bounds of b re�ects the di¤erent shapes of three

kernels.

7.2 Data-driven smoothing parameter choice

In this subsection, we follow the recommendation in the previous section and consider

data-driven choices of b. We consider three di¤erent values of the tolerance parameter:

� = 110%; 115% and 120%; and set �o such that the power of the test when the LRV is

known is 75%: This choice of �o may not coincide with the true noncentrality parameters �:

We consider a sequence of ��s in order to obtain the power curve. In e¤ect, our procedure

aims at a particular local alternative H1p
�
�2o
�
:We hope the smoothing parameter obtained

under H1p
�
�2o
�
works well for other local alternatives H1p

�
�2
�
. This is con�rmed by our

simulation study.

We examine the �nite sample performance of the Wald type tests for di¤erent smoothing

parameter and reference distribution combinations. The �rst one is the asymptotic F

test, which is based on Wald statistic and uses the testing-optimal b and the F critical

value �F�p;K : The testing-optimal b is implemented via the VAR(1) plug-in procedure. The
second one is the conventional Wald test, which is based on the Wald statistic and uses the

MSE-optimal b and the chi-square critical value X�p =p: The MSE-optimal b is implemented
using the VAR(1) plug-in procedure in Andrews (1991). The last one sets b = 1 and uses

the nonstandard �xed-b critical value F�1. We also consider a hybrid testing procedure,
which is based on the Wald statistic FT and uses the MSE-optimal b and the critical

value �F�p;K : The di¤erence between the hybrid test and the asymptotic F test lies in the

bandwidth parameter b used. The di¤erence between the hybrid test and the standard

Wald test lies in the critical values used. The four methods are referred to as �b-opt�,

�b-mse�, �b-max�, �b-mix�respectively in the tables.

Table 1 gives the type I errors of the four testing methods for the AR(1) regressors and

error with sample size T = 100, tolerance parameter � = 115%: The signi�cance level is

5%, which is also the nominal type I error. Several patterns emerge. First, as it is clear

from the table, the conventional method has a large size distortion. The size distortion

increases with both the error dependence and the number of restrictions being tested. The

size distortion can be very severe. Second, the size distortion of the b-opt, b-max and b-mix
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tests is substantially smaller than the conventional method. This is because these three

tests employ asymptotic approximations that capture the estimation uncertainty of the LRV

estimator. Third, compared with the b-max test, the b-opt test has somewhat larger size

distortion than the b-max test, especially when the process has strong persistence and the

number of restrictions is relatively large. This is well expected as the b-max test is designed

to achieve the smallest possible size distortion at the cost of power loss. Nevertheless, when

the Bartlett kernel is used and p is large, the b-opt test is more accurate in size than the

b-max test.

Table 2 reports the average and standard deviation of the selected b values with the

same parameter con�gurations as in Table 1. The average and standard deviation are

computed over 10000 simulation replications. It is clear that for both the testing-oriented

criterion and the MSE criterion, the average of selected b values increases with the error

dependence. In general, the testing-optimal b is larger than the MSE-optimal b. This is

consistent with our theoretical prediction. It also partly explains why the type I error of the

b-opt test is smaller than that of the b-mix test. Furthermore, the range of selected b values

is in general within the range that the F critical value is very close to the corresponding

nonstandard �xed-b critical value.

In deriving the testing-optimal choice b, we impose an upper bound on the approximate

type I error. Due to the presence of approximation errors, this may not translate into

the same upper bound on the empirical type I error. This is demonstrated in Table 1, as

the asymptotic F test can still have some size distortion. The quality of approximation

depends on the persistence of the time series. When the time series is highly persistent, the

�rst order asymptotic bias of the LRV estimator may not approximate the �nite sample

bias very well. As a result, the approximate type I error, which is based on the �rst order

asymptotic bias, may not fully capture the empirical type I error. So it is important to

keep in mind that the empirical type I error may still be larger than the nominal type I

error even if we exert some control over the approximate type I error.

Table 3 presents the simulated type I errors for MA(1) regressors and error. The quali-

tative observations for the AR(1) case remain valid. In fact, these qualitative observations

hold for other parameter con�gurations such as di¤erent sample sizes and signi�cance lev-

els. All else being equal, the size distortion of the b-opt test for � = 120% is slightly larger

than that for � = 115%: This is expected as we have a higher tolerance for the type I error

when the value of � is larger. Similarly, the size distortion of the b-opt test for � = 110%

is slightly smaller than that for � = 115%:

To save space, we do not report the �gures that compare the size-adjusted power of

di¤erent tests, but make a few brief comments here. Since the test statistics di¤er only
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in terms of the bandwidths used and the size of each test is adjusted, the power compar-

ison e¤ectively compares the impact of bandwidth choice on power. Since the b-max test

employs the largest bandwidth, it is less powerful than the b-opt and b-mse tests. The

power loss can be substantial. However, there are cases where a larger bandwidth is called

for to reduce over-rejection. The power of the b-opt test is more or less the same as the

conventional Wald test, i.e. the b-mse test, which in turn has the same size-adjusted power

as the b-mix test. This can be explained by comparable bandwidths selected by the b-opt

and b-mse tests.

8 Conclusion

On the basis of the �xed-b asymptotics and higher order small-b asymptotics, the paper

proposes a new asymptotic F test in the GMM framework where the moment conditions

may exhibit general forms of serial dependence. The asymptotic F test employs a �nite

sample corrected Wald statistic and uses an F distribution as the reference distribution. It

is as easy to implement as the standard Wald test. There is no extra computing cost.

To make the F test operational, the paper develops a method for bandwidth choice

that addresses the central concern of hypothesis testing. The testing-optimal bandwidth

minimizes the asymptotic type II error while controlling for the asymptotic type I error.

Simulations show that the F test with data-driven testing-optimal bandwidth performs

very well in �nite samples. It has a much smaller size distortion than the conventional

Wald test while retaining the power of the latter test.

We recommend using the asymptotic F test with testing-optimal bandwidth parameter

in practical situations. At a minimum, when the MSE-optimal bandwidth is used, the

Wald statistic should be corrected and an F-distribution should be used as the reference

distribution.
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Figure 1: Empirical Type I errors of di¤erent 5% tests against the bandwidth parameter b
with the Bartlett kernel and for T = 100 and � = 0:
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Figure 2: Empirical Type I errors of di¤erent 5% tests against the bandwidth parameter b
with the Parzen kernel and for T = 100 and � = 0:
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Table 1: Empirical Type I error of di¤erent tests for AR(1) regressors and error with
T = 100; � = 1:15

b-OPT b-MAX b-MSE b-MIX b-OPT b-MAX b-MSE b-MIX
Bartlett

p=1 p=2
�=0 0.064 0.058 0.066 0.064 0.073 0.062 0.075 0.073
�=0.25 0.074 0.063 0.077 0.074 0.093 0.066 0.099 0.090
�=0.50 0.106 0.075 0.113 0.094 0.131 0.090 0.159 0.121
�=0.75 0.113 0.108 0.219 0.116 0.120 0.147 0.357 0.158

p=3 p=4
�=0 0.085 0.069 0.090 0.086 0.095 0.070 0.103 0.099
�=0.25 0.109 0.076 0.119 0.106 0.127 0.082 0.143 0.123
�=0.50 0.148 0.107 0.207 0.141 0.169 0.115 0.261 0.169
�=0.75 0.133 0.186 0.502 0.202 0.162 0.226 0.640 0.253
Parzen

p=1 p=2
�=0 0.061 0.059 0.068 0.061 0.068 0.054 0.081 0.066
�=0.25 0.067 0.058 0.075 0.066 0.079 0.058 0.102 0.078
�=0.50 0.082 0.066 0.106 0.082 0.098 0.066 0.151 0.101
�=0.75 0.119 0.088 0.173 0.121 0.139 0.096 0.271 0.153

p=3 p=4
�=0 0.074 0.054 0.098 0.074 0.079 0.057 0.112 0.080
�=0.25 0.087 0.056 0.129 0.087 0.095 0.063 0.154 0.094
�=0.50 0.111 0.069 0.200 0.116 0.119 0.078 0.258 0.130
�=0.75 0.150 0.105 0.374 0.179 0.149 0.124 0.484 0.204
QS

p=1 p=2
�=0 0.062 0.060 0.067 0.060 0.068 0.052 0.080 0.065
�=0.25 0.067 0.060 0.075 0.066 0.079 0.055 0.100 0.079
�=0.50 0.083 0.067 0.105 0.084 0.100 0.060 0.147 0.103
�=0.75 0.121 0.086 0.169 0.123 0.144 0.076 0.264 0.156

p=3 p=4
�=0 0.076 0.060 0.095 0.074 0.080 0.053 0.109 0.080
�=0.25 0.089 0.056 0.126 0.087 0.096 0.059 0.148 0.095
�=0.50 0.114 0.067 0.193 0.118 0.125 0.058 0.249 0.132
�=0.75 0.162 0.086 0.361 0.185 0.174 0.083 0.467 0.214

Note: b-OPT: the asymptotic F test with testing-optimal b implemented by a VAR(1) plug-in
procedure; b-MSE: the standard Wald test with MSE-optimal b implemented by a VAR(1) plug-in
procedure; b-MAX: the KV test with b=1; b-MIX: the asymptotic F test with MSE-optimal b.
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Table 2: Sample mean and standard derivation of the testing-optimal and MSE-optimal
bandwidths over simulation replications under AR(1) regressors and error with T =
100; � = 1:15

�bOPT std (bOPT ) �bMSE std (bMSE) �bOPT std (bOPT ) �bMSE std (bMSE)

Bartlett
p=1 p=2

�=0 0.003 0.006 0.004 0.002 0.004 0.005 0.004 0.002
�=0.25 0.005 0.011 0.011 0.008 0.007 0.010 0.011 0.008
�=0.50 0.029 0.049 0.046 0.029 0.039 0.049 0.046 0.029
�=0.75 0.262 0.265 0.217 0.154 0.356 0.277 0.216 0.154

p=3 p=4
�=0 0.005 0.005 0.004 0.002 0.006 0.005 0.004 0.002
�=0.25 0.008 0.010 0.011 0.008 0.009 0.010 0.011 0.008
�=0.50 0.046 0.048 0.046 0.029 0.052 0.047 0.046 0.030
�=0.75 0.422 0.284 0.216 0.153 0.474 0.285 0.216 0.154
Parzen

p=1 p=2
�=0 0.042 0.016 0.028 0.006 0.037 0.014 0.028 0.006
�=0.25 0.044 0.019 0.043 0.011 0.042 0.019 0.043 0.011
�=0.50 0.070 0.032 0.075 0.018 0.082 0.030 0.075 0.018
�=0.75 0.151 0.057 0.138 0.037 0.177 0.053 0.138 0.038

p=3 p=4
�=0 0.034 0.014 0.028 0.006 0.033 0.014 0.028 0.006
�=0.25 0.043 0.019 0.043 0.011 0.043 0.019 0.043 0.011
�=0.50 0.090 0.028 0.075 0.018 0.095 0.027 0.075 0.018
�=0.75 0.193 0.050 0.138 0.037 0.204 0.049 0.138 0.038
QS

p=1 p=2
�=0 0.021 0.008 0.014 0.003 0.018 0.007 0.014 0.003
�=0.25 0.022 0.009 0.021 0.006 0.021 0.009 0.021 0.006
�=0.50 0.034 0.015 0.037 0.009 0.040 0.015 0.037 0.009
�=0.75 0.073 0.028 0.069 0.018 0.086 0.027 0.069 0.019

p=3 p=4
�=0 0.017 0.007 0.014 0.003 0.016 0.007 0.014 0.003
�=0.25 0.021 0.009 0.021 0.006 0.021 0.009 0.021 0.006
�=0.50 0.044 0.014 0.037 0.009 0.046 0.013 0.037 0.009
�=0.75 0.094 0.024 0.069 0.018 0.099 0.024 0.069 0.019

Note: �bOPT and std (bOPT ) are the average and standard deviation of testing-optimal b�s across
10000 simulation replications. �bMSE and std (bMSE) are de�ned similarly. Parameter con�g-
uration is the same as in Table 1.
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Table 3: Empirical Type I error of di¤erent tests for MA(1) regressors and error with
T = 100; � = 1:15

b-OPT b-MAX b-MSE b-MIX b-OPT b-MAX b-MSE b-MIX
Bartlett

p=1 p=2
�=0 0.064 0.058 0.066 0.064 0.073 0.062 0.075 0.073
�=0.25 0.073 0.063 0.076 0.072 0.091 0.067 0.096 0.088
�=0.50 0.092 0.068 0.094 0.080 0.114 0.075 0.131 0.101
�=0.75 0.092 0.069 0.100 0.080 0.110 0.080 0.145 0.101

p=3 p=4
�=0 0.085 0.069 0.090 0.086 0.095 0.069 0.103 0.099
�=0.25 0.108 0.073 0.116 0.105 0.123 0.080 0.138 0.121
�=0.50 0.127 0.087 0.163 0.117 0.142 0.092 0.200 0.134
�=0.75 0.118 0.092 0.181 0.114 0.132 0.099 0.230 0.133
Parzen

p=1 p=2
�=0 0.061 0.059 0.068 0.061 0.068 0.053 0.081 0.066
�=0.25 0.064 0.057 0.075 0.063 0.076 0.055 0.101 0.076
�=0.50 0.069 0.060 0.091 0.069 0.081 0.059 0.128 0.085
�=0.75 0.071 0.063 0.095 0.072 0.081 0.060 0.138 0.086

p=3 p=4
�=0 0.074 0.055 0.098 0.074 0.079 0.058 0.112 0.080
�=0.25 0.085 0.058 0.128 0.085 0.094 0.064 0.151 0.093
�=0.50 0.090 0.065 0.164 0.091 0.098 0.069 0.205 0.102
�=0.75 0.089 0.068 0.177 0.092 0.097 0.070 0.228 0.106
QS

p=1 p=2
�=0 0.062 0.060 0.067 0.060 0.068 0.052 0.080 0.065
�=0.25 0.065 0.060 0.074 0.064 0.077 0.052 0.098 0.076
�=0.50 0.070 0.062 0.089 0.070 0.083 0.055 0.124 0.086
�=0.75 0.072 0.064 0.092 0.073 0.084 0.057 0.132 0.087

p=3 p=4
�=0 0.076 0.059 0.095 0.074 0.080 0.053 0.109 0.080
�=0.25 0.087 0.058 0.123 0.085 0.095 0.056 0.146 0.093
�=0.50 0.091 0.064 0.158 0.093 0.101 0.057 0.199 0.105
�=0.75 0.091 0.063 0.172 0.095 0.102 0.059 0.218 0.108

Note: b-OPT: the asymptotic F test with testing-optimal b implemented by a VAR(1) plug-in
procedure; b-MSE: the standard Wald test with MSE-optimal b implemented by a VAR(1) plug-in
procedure; b-MAX: the KV test with b=1; b-MIX: the asymptotic F test with MSE-optimal b.
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9 Appendix of Proofs

9.1 Additional Technical Results

Lemma 2 Let Assumption 5(i) hold. As b! 0; we have
(a) �1 =

P1
n=1 �

�
n = 1� bc1 +O(b2);

(b) �2 =
P1
n=1 (�

�
n)
2 = bc2 +O(b

2).

Proof of Lemma 2. Note that

�1 =

1X
n=1

��n =

Z 1

0
k�b (r; r)dr = 1�

Z 1

0

Z 1

0
kb(r � s)drds

and

�2 =
1X
m=1

(��m)
2 =

Z 1

0

Z 1

0
[k�b (r; s)]

2 drds

=

�Z 1

0

Z 1

0
kb(r � s)drds

�2
+

Z 1

0

Z 1

0
k2b (r � s)drds

� 2
Z 1

0

Z 1

0

Z 1

0
kb(r � p)kb(r � q)drdpdq:

To evaluate �1 and �2; we let

K1 (�) =
1

2�

Z 1

�1
k(x) exp(�i�x)dx; K2 (�) =

1

2�

Z 1

�1
k2(x) exp(�i�x)dx: (20)

Then

k(x) =

Z 1

�1
K1 (�) exp(i�x)d�; k2(x) =

Z 1

�1
K2 (�) exp(i�x)d�: (21)

For the integral that appears in both �1 and �2; we haveZ 1

0

Z 1

0
kb(r � s)drds

=

Z 1

�1
K1 (�)

�Z 1

0
exp

�
i�r

b

�
dr

� �Z 1

0
exp

�
� i�s

b

�
ds

�
d�

=

Z 1

�1
K1 (�)

b2

�2

"�
1� cos

�
�

b

��2
+

�
sin

�
�

b

��2#
d�

= b

Z 1

�1
K1 (�) b

 
sin �

2b
�
2

!2
d�

= 2�bK1(0) + 4b2
Z 1

�1

K1 (�)�K1 (0)
�2

�
sin

�

2b

�2
d�; (22)
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where the last equality holds becauseZ 1

�1

�
�

2b

��2�
sin

�

2b

�2
d� = 2b

Z 1

�1
x�2 sin2 xdx = 2�b: (23)

Now, Z 1

�1

K1 (�)�K1 (0)
�2

�
sin

�

2b

�2
d�

=

Z 1

�1

K1 (�)�K1 (0)
�2

 �
sin

�

2b

�2
� 1
2

!
d�+

1

2

Z 1

�1

K1 (�)�K1 (0)
�2

d�

= �1
2

Z 1

�1

�
K1 (�)�K1 (0)

�2

��
cos

1

b
�

�
d�+

1

2

Z 1

�1

K1 (�)�K1 (0)
�2

d�

=
1

2

Z 1

�1

�
K1 (�)�K1 (0)

�2

�
d�+ o(1) (24)

as b ! 0; where we have used the Riemann-Lebesgue lemma. In view of the symmetry of
k (x) ; K1 (�) = (2�)�1

R1
�1 k(x) cos(�x)dx, we have, using (22) and (24):Z 1

0

Z 1

0
kb(r � s)drds

= 2�bK1(0) + 2b2
Z 1

�1

�
K1 (�)�K1 (0)

�2

�
d�+ o(b2)

= 2�bK1(0) + b2
1

�

Z 1

�1

�Z 1

�1
k(x)

cos�x� 1
�2

dx

�
d�+ o(b2)

= 2�bK1(0)� 2b2
1

�

Z 1

�1

Z 1

�1
k(x)

sin2 (�x=2)

�2
dxd�+ o(b2)

= 2�bK1(0)� b2
Z 1

�1
k(x) jxj dx+ o

�
b2
�

= bc1 +O(b
2): (25)

Similarly, under the assumption that
R1
�1 k2(x)x2dx <1; we haveZ 1

0

Z 1

0
k2b (r � s)drds = bc2 +O(b

2): (26)

Next, Z 1

0
kb(r � s)ds

=
1

2

Z 1

�1
K1 (�)

Z 1

0

�
exp

�
i�(r � s)

b

�
+ exp

�
� i�(r � s)

b

��
dsd�

=

Z 1

�1
K1 (�)

Z 1

0
cos

�
�(r � s)

b

�
dsd� (27)

= �b
Z 1

�1
K1 (�)

1

�

�
sin

�
�(r � 1)

b

�
� sin

�
�r

b

��
d�

= �b
Z 1

�1
K1 (xb)

1

x
[sin (x(r � 1))� sin (xr)] dx;
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soZ 1

0

Z 1

0

Z 1

0
kb(r � p)kb(r � q)drdpdq

= b2
Z 1

0

�Z 1

�1
K1 (xb)

1

x
[sin (x(r � 1))� sin (xr)] dx

�2
dr

= b2K21 (0)
Z 1

0

�Z 1

�1

1

x
sin (x(r � 1)) dx�

Z 1

�1

1

x
sin (xr) dx

�2
dr (1 + o (1))

= b2K21 (0)
Z 1

0

�
�
Z 1

�1

sin (x(r � 1))
x(r � 1) d(x(r � 1))�

Z 1

�1

1

xr
sin (xr) d (xr)

�2
dr (1 + o (1))

= b2K21 (0)
Z 1

0

�
2

Z 1

�1

1

y
sin (y) dy

�2
dr (1 + o (1)) = c21b

2 + o(b2): (28)

Combining (25), (26), and (28) yields the lemma.

Lemma 3 Let Assumption 5(i) hold. As b! 0; we have
(a) E

�
�11 � �12��122 �21

�
= 1� bc1 � bc2 (p� 1) + o(b);

(b) E
h�
�11 � �12��122 �21

�2i
= 1� 2b (c1 � c2)� 2 (p� 1) bc2 + o(b);

(c) E
��
�11 � �12��122 �21

�
� 1
�2
= 2bc2 + o(b):

Proof of Lemma 3. (a) Let Wp(r) =
�
W 0
1(r);W

0
p�1 (r)

�0
; then

E�11 = E

Z 1

0

Z 1

0
k�b (r; s)dW1(r)dW

0
1(s) =

1X
n=1

��n = 1� bc1 + o(b)

by Lemma 2, and

E
�
�12�

�1
22 �21

�
= E

�Z 1

0

Z 1

0
k�b (r; s)dW1(r)dW

0
p�1(s)

��Z 1

0

Z 1

0
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0
p�1(s)

��1
�
Z 1

0

Z 1

0
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0
1(r)dWp�1(s)

= Etr
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0

Z 1
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0
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0
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0
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0
k�b (r; �1)k

�
b (r; �2) dr

�
dWp�1(�2)dW

0
p�1(�1):

Let �n =
R 1
0 f

�
n(r)dWp�1(r) 2 Rp�1; thenZ 1

0

Z 1

0
k�b (r; s)dWp�1(r)dW

0
p�1(s)

=

Z 1

0

Z 1

0

1X
n=1

��nf
�
n(r)f

�
n (s) dWp�1(r)dW

0
p�1(s)

=

1X
n=1

��n

�Z 1

0
f�n(r)dWp�1(r)

��Z 1

0
f�n(r)dWp�1(r)

�0
=

1X
n=1

��n�n�
0
n:
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Since Z 1

0
k�b (r; �1)k

�
b (r; �2) dr

=

Z 1

0

1X
m=1

��mf
�
m(r)f

�
m (�1)

1X
n=1

��nf
�
n(r)f

�
n (�2) dr

=

1X
m=1

1X
n=1

��m�
�
n

�Z 1

0
f�m(r)f

�
n(r)dr

�
f�m (�1) f

�
n (�2)

=
1X
n=1

(��n)
2 f�n (�1) f

�
n (�2) ;

we haveZ 1

0

Z 1

0

�Z 1

0
k�b (r; �1)k

�
b (r; �2) dr

�
dWp�1(�2)dW

0
p�1(�1) =

1X
m=1

(��m)
2 �m�

0
m:

Therefore

E�12�
�1
22 �21 = Etr

24 1X
n=1

��n�n�
0
n

!�1 1X
m=1

(��m)
2 �m�

0
m

!35
=
�2
�1
(p� 1) (1 + o(1)) = bc2 + o(b)

1� bc1 + o(b)
(p� 1) (1 + o(1))

= bc2 (p� 1) + o(b);

using Lemma 2.
(b) Note that

E
�
�11 � �12��122 �21

�2
= E�211 + E�12�

�1
22 �21�12�

�1
22 �21 � 2E�11�12�

�1
22 �21:

We consider each term in turn. First,

E�211 = E

�Z 1

0

Z 1

0
k�b (r1; s1)dW1(r1)dW

0
1(s1)

��Z 1

0

Z 1

0
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0
1(s2)

�
=

�Z 1

0
k�b (r; r)dr

�2
+ 2

Z 1

0

Z 1

0
(k�b (r; s))

2 drds

=

 1X
n=1

��n

!2
+ 2

1X
n=1

(��n)
2 = (1� bc1 + o(b))2 + 2bc2 + o(b);

= 1� 2b (c1 � c2) + o(b):
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Second,

E�11�12�
�1
22 �21
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Z 1

0

Z 1

0
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0
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0
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0
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0
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0
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0
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0
k�b (r; �1)k

�
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�
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�
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0
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0
k�b (r; s)dWp�1(r)dW

0
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+ 2E
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0
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0
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0
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�
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�
b (s; �2)drds

�
dW 0

p�1(�1)

�
�Z 1

0
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k�b (r; s)dWp�1(r)dW

0
p�1(s)

��1
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=
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��n

!
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 1X
k=1

��n�n�
0
n

!�1 1X
n=1

(��n)
2 �n�

0
n

!

+ 2Etr

 1X
n=1

��n�n�
0
n

!�1 1X
n=1

(��n)
3 �n�

0
n

!

where the last line follows becauseZ 1

0

Z 1

0
k�b (r; s)k

�
b (r; �1)k

�
b (s; �2)drds

=

Z 1

0

Z 1

0

1X
k1=1

��k1f
�
k1(r)f

�
k1 (s)

1X
k2=1

��k2f
�
k2(r)f

�
k2 (�1)

1X
k3=1

��k3f
�
k3(s)f

�
k3 (�2) drds

=
1X
k=1

(��k)
3 f�k (�1) f

�
k (�2) :

Using Lemma 2 and the fact that

1X
n=1

(��n)
3 = o

 1X
n=1

(��n)
2

!
= o(b);

we have
E�11�12�

�1
22 �21 = (p� 1) bc2 + o(b):
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Finally,

E�12�
�1
22 �21�12�

�1
22 �21

= E

�Z 1

0

Z 1
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0
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� �Z 1

0
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0
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�
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0
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0
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0
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0
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0
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0
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�
�
�Z 1

0
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0
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0
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0
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0
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�
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0
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0
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�
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p�1(s1)
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0

Z 1
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0
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�
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0
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0
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0
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�
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�
dW 0

p�1(s3)

� �Z 1

0

Z 1

0
k�b (r; s)dWp�1(r)dW

0
p�1(s)

��1
dWp�1(s4)

+ 2E

�Z 1

0

Z 1

0
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0
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�
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�
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p�1(s1)

� �Z 1

0

Z 1

0
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0
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��1
�
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0

Z 1

0
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0
k�b (r; s3)k

�
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�
dWp�1(s3)dW

0
p�1(s4)

�
�Z 1

0

Z 1

0
k�b (r; s)dWp�1(r)dW

0
p�1(s)

��1
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= Etr

0@" 1X
n=1

��n�n�
0
n

#�1 " 1X
m=1

(��m)
2 �m�

0
m

#1A tr

0@" 1X
n=1

��n�n�
0
n

#�1 " 1X
m=1

(��m)
2 �m�

0
m

#1A
+ 2Etr

8<:
" 1X
n=1

��n�n�
0
n

#�1 " 1X
m=1

(��m)
2 �m�

0
m

#" 1X
n=1

��n�n�
0
n

#�1 " 1X
m=1

(��m)
2 �m�

0
m

#9=;
=

24(p� 1)2 1X
n=1

��n

!�2 1X
m=1

(��m)
2

!2
+ 2 (p� 1)

 1X
n=1

��n

!�2 1X
m=1

(��m)
2

!235 (1 + o (1))
= o(b)

using Lemma 2.
Hence

E
�
�11 � �12��122 �21

�2
= 1� 2b (c1 � c2)� 2 (p� 1) bc2 + o(b)

Part (c) follows from parts (a) and (b).
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9.2 Proof of the Main Results

Proof of Theorem 1. Taking a Taylor expansion, we have

P fpF1(p; b) � zg = EGp
�
z
�
�11 � �12��122 �21

��
= Gp(z) +G

0
p(z)zE

��
�11 � �12��122 �21

�
� 1
�

+
1

2
G00p(z)z

2E
��
�11 � �12��122 �21

�
� 1
�2

+
1

2
E
�
G00p(~z)�G00p(z)

�
z2
��
�11 � �12��122 �21

�
� 1
�2

where ~z is between z and z
�
�11 � �12��122 �21

�
: Using Lemma 3, we have

P fpF1(p; b) � zg
= Gp(z)�G0p(z)z [c1 + c2 (p� 1)] b

+
1

2
G00p(z)z

2 [2� 2b (c1 � c2)� 2 (p� 1) bc2 � 2 (1� bc1 � bc2 (p� 1))] + o(b)

= Gp(z) +
�
G00p(z)z

2c2 �G0p(z)z [c1 + c2 (p� 1)]
	
b+ o(b)

= Gp(z) +A(z)b+ o(b)

as stated.

Proof of Lemma 1. Part (a). We write the statistic pFT;GLS as

pFT;GLS =

�h
R0T

1=2(�̂GLS � �0)
i0


�1=2
T;GLS

�


1=2
T;GLS
̂

�1
T 


1=2
T;GLS

n


�1=2
T;GLS

h
R0T

1=2(�̂GLS � �0)
io

=

�1=2T;GLS

h
R0T

1=2(�̂GLS � �0)
i2 � e0T
1=2T;GLS
̂�1T 
1=2T;GLSeT

� �T��T

where
�T =


�1=2T;GLS

h
R0T

1=2(�̂GLS � �0)
i2 ;

and
��T = e0T


1=2
T;GLS
̂

�1
T 


1=2
T;GLSeT :

Note that �T is independent of �T because (i) (�̂GLS � �0) is independent of 
̂T ; which
follows from the facts that 
̂T is a function of fûtg and that ût is independent of �̂GLS � �:
(ii) �T is the squared length of a standard normal vector and eT is the direction of this
vector. The length is independent of the direction. Hence

P [pFT;GLS � z] = P [�T�
�
T � z] = EGp

h
z (��T )

�1
i

= EGp

�
e0T


1=2
T;GLS
̂

�1
T 


1=2
T;GLSeT

�
:

It is not hard to show that e0T

1=2
T;GLS
̂

�1
T 


1=2
T;GLSeT =

e0T
1=2T;GLS
̂�1=2T

2 � c >

0 for some c with probability one. Let FT;
 (V ) be the CDF of 
̂T : Using 
T;GLS =
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�
1 +O

�
T�1

��
and the boundedness of G0p (x) for x � � > 0; we have
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Z
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�
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�1
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�
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 (V )
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�
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�
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�
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�
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�
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�
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�
as stated.

Part (b). Let

�1T = 2(R0T
1=2�)0
̂�1T 


1=2
T;GLSeT

�2T = (R0T
1=2�)0
̂�1T

�
R0T

1=2�
�

and �T =
p
�T �1T + �2T : Then
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h
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h
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=
h
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h
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+
h
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1=2�
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h
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i
+ 2(R0T
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h
R0T
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1=2(�̂GLS � �0)


p
�T

= pFT;GLS + �2T +
p
�T �1T

= pFT;GLS + �T :

Note that �T is independent of �1T ; �2T and �T ; we have

P [pFT;OLS � z] = P [(pFT;GLS + �T ) � z]

= P
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�T�

�
T +

p
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i
� z
o
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p
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i
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o
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�
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�
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�
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�
;

where
F (a; b; c) = P

nh
�T c+

p
�Ta+ b

i
� z
o
:

But

EF (�1T ; �2T ;�T )

= EF (0; 0;�T ) + EF
0
1 (0; 0;�T ) �1T +O

�
E�21T

�
+O (E j�1T �2T j) +O (E�2T )

= EF (0; 0;�T ) + EF
0
1 (0; 0;�T ) �1T +O

�
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�
:
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where F 01(a; b; c) = @F (a; b; c)=@a: Here we have used: O
�
E�21T

�
= O(1=T ) and O (E�2T ) =

O(1=T ); which follows from var(c0��0c) = O (1=T ) for any constant c: Next, let fe(x) be
the pdf of eT : Since eT is independent of 
̂T and �; we have

EF 01 (0; 0;�T ) �1T

=

Z
E
�
F 01 (0; 0;�T ) �1T jeT = x

�
fe(x)dx

=

Z
EF 01

�
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�
2
�
R0T

1=2�
�0

̂�1T 
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Note that 
̂T (u) = 
̂T (�u) and � = ��(�u), we have

EF 01

�
0; 0; x0
1=2
̂�1T 


1=2x0
�
2
�
R0T

1=2�
�0

̂�1T 


1=2
T;GLSx = 0 for all x:

As a result,
EF 01 (0; 0;�T ) �1T = 0:

So
EF (�1T ; �2T ;�T ) = EF (0; 0;�T ) +O

�
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�
:

We have therefore shown that

P [pFT;OLS � z] = EF (�1T ; �2T ;�T ) +O
�
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�
= EF (0; 0;�T ) +O

�
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�
= P [pFT;GLS � z] +O

�
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�
as desired.

Proof of Theorem 2. Writing �T = �T (
̂T ) and taking a Taylor expansion of �T (
̂T )
around �T (
) = 1; we haveh

�T

�

̂T

�i�1
= 1 + L+Q+ remainder (29)

where

L = Dvec
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�
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1

2
vec
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�
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�
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D =
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i


h
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;
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h
2
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�
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;
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h
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0
T
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�1
i
Kdd (Id2 +Kdd) ;

and remainder is the remainder term of the Taylor expansion. It can be shown that the
remainder term is of smaller order than Q:
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We proceed to compute the moments of L and Q: First, extending Lemma 6 in Velasco
and Robinson (2001) to the vector case, we have

E
̂T � 
 = �bc1
+ (bT )�qB(1 + o(1)) + o (b) :

So
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where we have used the independence of eT from 
̂T and EeT e0T = Ip=p: Following Sun
(2011), we can show that

EL2 = 2c2b+ o
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;
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:

Hence h
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= 1 + L+Q+ op
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: (30)

where the op (�) terms are also small in the root mean-square sense.
Note that

zG0p (z) =
1
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zp=2 exp(�z

2
) fz � 0g ;

and

z2G00p (z) = �
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z
1
2
p exp(�z

2
) fz � 0g

It is clear that there exists a constant C > 0 such that
��zG0p (z)�� � C and

��z2G00p (z)�� � C
for all z 2 (0;1): Using the asymptotic expansion in (30) and the boundedness of G0p (z) z
and G00p (z) z

2; we have

P (pFT;OLS � z) = P
�
�T � z��1T

�
+O(T�1)

= EGp (z (1 + L+Q)) + o
�
b+ (bT )�q

�
= Gp (z) +G

0
p (z) zE (L+Q) +

1

2
EG00p (z) z

2
�
EL2

�
+ o

�
b+ (bT )�q

�
= Gp (z) + (bT )

�q G0p (z) z �B � bc1G0p (z) z
� bc2G0p (z) z (p� 1) + bc2G00p (z) z2 + o (b) + o

�
(bT )�q

�
= Gp (z) +A(z)b+ (bT )

�q G0p (z) z �B + o (b) + o
�
(bT )�q

�
as desired.
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Proof of Theorem 3. For notational economy, letHT (�) = �R (�) (G0T (�)WTGT (�))
�1G0T (�)WT

and H0 = �R0 [G00W1G0]
�1G0W1: For any ~�T and ��T between �̂T and �0; it is easy to

show that when R (�) and f (vt; �) are twice continuously di¤erentiable in � on �,

R(~�T ) = R0 +Op(1=
p
T ); GT

�
��T
�
= G0 +Op(1=

p
T ):

Combining this with WT =W1 +Op(1=
p
T ); we have

HT (�) = H0 +Op(1=
p
T )

and
p
T
h
r(�̂T )� r (�0)

i
=
p
TR(~�T )

�
�̂T � �0

�
� R0

p
T
�
�̂T � �0

�
+ 1=

p
T ~ 0T

= �R0
�
G0T (�̂T )WTGT (��T )

��1
G0T (�̂T )WT

1p
T

TX
t=1

f(vt; �0) + 1=
p
T ~ 0T

= �R0
�
G00W1G0

��1
G00W1

1p
T

TX
t=1

f(vt; �0) +
1p
T
 1T +

1

T
 2T

= H0
1p
T

TX
t=1

f(vt; �0) +
1p
T
 1T +

1

T
 2T

where (1=
p
T ) 1T captures the terms of order Op(1=

p
T ) that do not depend on the smooth-

ing parameter b and (1=T ) 2T collects the higher order terms of order Op(1=T ):
Next, de�ne St =

Pt
j=1 f(vj ; �̂T ); S0 = 0; then we can show that


̂T =
1

T

TX
t=1

TX
�=1

D(t; �)
�
HT (�̂T )St

��
HT (�̂T )S�

�0
=
1

T

TX
t=1

TX
�=1

D(t; �)
�h
H0 +Op(1=

p
T )
i
St

��h
H0 +Op(1=

p
T )
i
S�

�0
� 1

T

TX
t=1

TX
�=1

D(t; �) (H0St) (H0S� )
0 +

1p
T
 3T +

1p
T

hp
b+ (bT )�q

i
 4T

where the term containing  3T captures terms of order Op
�
1=
p
T
�
that are independent

of b, the term containing  4T captures high order terms, and

D(t; �) = k(
t� �
bT

)� k( t+ 1� �
bT

)� k( t� � � 1
bT

) + k(
t� �
bT

):
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Under the assumption that G[rT ](~�T ) = rG0 +Op(1=
p
T ); we have

H0St = H0

tX
j=1

f(vj ; �0) +H0

tX
j=1

@f(vj ; ~�T )

@�0

�
�̂T � �0

�

= H0

tX
j=1

f(vj ; �0) + t�H0G0
�
�̂T � �0

�
+Op

�
1p
T

�

= H0

tX
j=1

f(vj ; �0)� t�R0
�
G0T (�̂T )WTGT (��T )

��1
G0T (�̂T )WT

1

T

TX
t=1

f(vt; �0) +Op

�
1p
T

�

= H0

tX
j=1

f(vj ; �0)�H0
t

T

TX
t=1

f(vt; �0) +Op

�
1p
T

�
+Op

�
1

T

�

� H0

tX
j=1

"
f(vj ; �0)�

1

T

TX
�=1

f(v� ; �0)

#
+

1p
T
 5T +

1

T
 6T

where  5T = Op (1) and  6T = Op(1): Hence


̂T = ~
T +
1p
T
 7;T +

1p
T

hp
b+ (bT )�q

i
 8;T :

Combining the above analyses yields:

pFT;L =

"
H0

1p
T

TX
t=1

f(vt; �0) +
1p
T
 1T +

1

T
 2T

#0

�
��
~
T +

1p
T
 7;T +

1p
T

hp
b+ (bT )�q

i
 8;T

���1
�
"
H0

1p
T

TX
t=1

f(vt; �0) +
1p
T
 1T +

1

T
 2T

#
� pFT;L +  T +  

�
T

where  T = Op(1=
p
T ) does not depend on b and  �T = Op([

p
b+ (bT )�q]=

p
T + 1=T ):

Note that pF dT;L is the exactly the same as the Wald statistic for testing whether the
mean of process �(vt; �0) satis�es E�(vt; �0) = 0: So we can invoke the asymptotic ap-
proximation established for the Gaussian location model to complete our proof. Under
assumption (ii) of the Theorem, we have

P (pFT � z) = P (pFT;L +  T +  
�
T � z)

= P
�
pFT;L +  T +  

�
T � z; j T j < C=

p
T ; j �T j < �T = log T

�
+ P

�
j T j � log T=

p
T
�
+ P (j �T j � �T = log T )

= P

�
pFT;L � z +

log Tp
T
+

�T
log T

�
+ o (�T ) +O

�
1p
T

�
= Gp (z) +A(z)b+ (bT )

�q G0p (z) z �B +O
�
T�1=2 log T

�
+ o (b) + o

�
(bT )�q

�
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where the O
�
T�1=2 log T

�
term does not depend on b:

Proof of Theorem 5. We �rst prove the theorem for the Gaussian location model. It is
easy to see that Lemma 1 holds for any given ~c: So

P (F �T;OLS � F�p;K jH1(~c)) = P (FT;OLS � �F�p;K jH1(~c))
= P (FT;GLS � �F�p;K jH1(~c)) +O

�
T�1

�
:

But

pFT;GLS =
h
R0T

1=2(�̂GLS � �0)
i0


�1=2
T;GLS

h


1=2
T;GLS
̂

�1
T 


1=2
T;GLS

i


�1=2
T;GLS

h
R0T

1=2(�̂GLS � �0)
i

=

�1=2T;GLS

h
R0T

1=2(�̂GLS � �0)
i
+ ~c
2 e0Tc
1=2
̂�1T 
1=2eTc +Op �T�1�

� �c�c +Op
�
T�1

�
;

where

eTc =


�1=2
T;GLS

h
R0T

1=2(�̂GLS � �0)
i
+ ~c
�1=2T;GLS

h
R0T 1=2(�̂GLS � �0)

i
+ ~c
 ;

and

�c =

�1=2T;GLS

h
R0T

1=2(�̂GLS � �0)
i
+ ~c
2 ;

�c = e0c

1=2
̂�1T 


1=2ec:

To compute the average type II error, we can expand the probability space so that ~c,
�̂GLS and 
̂T all live in this expanded space. In addition, ~c is a random vector uniformly
distributed on the sphere Sp

�
�2
�
; and c is independent of �̂GLS and 
̂T : Hence �c s �2p

�
�2
�

and ec is uniformly distributed on the unit sphere Sp (1) : Using the same calculation as in
the proof of Theorem 2, we have,

P (FT;GLS � �F�p;K jH1(�2)) = P (pFT;GLS � �F�p;K jH1(�2))
= EGp;�2

�
p�F�p;K��1c

�
+O

�
T�1

�
= Gp;�2

�
p�F�p;K

�
+ (bT )�q G0p;�2

�
p�F�p;K

�
p�F�p;K �B +A�2(p�F�p;K)b+ o (b) + o

�
(bT )�q

�
where

A�2 (z) = G00p;�2(z)z
2c2 �G0p;�2(z)z [c1 + c2 (p� 1)] :

Invoking a Cornish-Fisher type expansion, we can show that

pF�p;K = X�p �
c2G

00
p

�
X�p
� �
X�p
�2

G0p
�
X�p
� b+ o (b) :
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Using this, we have

Gp;�2
�
p�F�p;K

�
= Gp;�2

(
�

 
X�p �

c2G
00
p

�
X�p
� �
X�p
�2

G0p
�
X�p
� b+ o (b)

!)

= Gp;�2

(
�

 
X�p �

c2G
00
p

�
X�p
� �
X�p
�2

G0p
�
X�p
� b

!)
+ o(b)

= Gp;�2
�
X�p
�
+G0p;�2

�
X�p
�(
X�p [c1 + c2 (p� 1)]�

c2G
00
p

�
X�p
� �
X�p
�2

G0p
�
X�p
� )

b+ o(b);

and so

Gp;�2
�
p�F�p;K

�
+A�2(p�F�p;K)b

= Gp;�2
�
X�p
�
+G0p;�2

�
X�p
�(
X�p [c1 + (p� 1) c2]�

c2G
00
p

�
X�p
� �
X�p
�2

G0p
�
X�p
� )

b

+G00p;�2(X
�
p )
�
X�p
�2
c2b�G0p;�2(X

�
p )X�p [c1 + c2 (p� 1)] b

= Gp;�2
�
X�p
�
+

"
G00p;�2(X

�
p )
�
X�p
�2
c2 �G0p;�2

�
X�p
� G00p �X�p � �X�p �2 c2

G0p
�
X�p
� #

b

= Gp;�2
�
X�p
�
+

"
G00p;�2(X

�
p )�G0p;�2

�
X�p
� G00p �X�p �
G0p
�
X�p
�# �X�p �2 c2b:

Some simple calculation shows that

G00p;�2
�
X�p
�
�
G00p
�
X�p
�

G0p
�
X�p
�G0p;�2 �X�p � = �2

2X�p
G0(p+2);�2

�
X�p
�
:

Combining the above steps, we get

P (FT;GLS � �F�p;K jH1(�2)) = Gp;�2
�
X�p
�
+ (bT )�q G0p;�2

�
X�p
�
X�p �B

+
�2

2
G0(p+2);�2

�
X�p
�
X�p c2b+ o(b) + o

�
(bT )�q

�
:

Next, we prove the theorem in the GMM setting. As in the proof of Theorem 3, we can
write

pFT = pF cT;L +  
c
T +

1p
T

hp
b+ (bT )�q

i
 c�T

where

pF cT;L =

"
1p
T

TX
t=1

ut + �~c

#0
~
�1T

"
1p
T

TX
t=1

ut + �~c

#
;

 cT = Op(1=
p
T ) does not depend on b; and  c�T = Op([

p
b+ (bT )�q]=

p
T + 1=T ). pF cT;L is

equal to the Wald statistic of testing whether the mean of the process ut := �(vt; �0) is zero
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under the local alternative hypothesis. Using the same argument as the proof of Theorem
3, we have

P (F �T � F�p;K jH1(�2))
= Gp;�2

�
X�p
�
+ (bT )�q G0p;�2

�
X�p
�
X�p �B

+
�2

2
G0(p+2);�2

�
X�p
�
X�p c2b+O

�
log Tp
T

�
+ o(b) + o

�
(bT )�q

�
;

as stated.
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