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Abstract

The paper provides a new class of over-identi�cation tests that are robust to het-
eroscedasticity and autocorrelation of unknown forms. The tests are based on the
series long run variance estimator that is designed to pivotalize the moment restric-
tions. We show that when the number of terms used in the series long run variance
estimator is �xed, the conventional J statistic, after a simple correction, is asymptot-
ically F -distributed. We apply the idea of the F -approximation to the conventional
kernel-based J tests. Simulations show that the J� tests based on the �nite sample
corrected J statistic and the F approximation have virtually no size distortion, and yet
are as powerful as the standard J tests.

JEL Classi�cation: C12, C32

Keywords: F-distribution, Heteroscedasticity and Autocorrelation Robust, Long-run
variance, Over-identi�cation test, Robust standard error, Series Estimator

1 Introduction

In linear and nonlinear models with moment restrictions, it is standard practice to em-
ploy the generalized method of moments (GMM) to estimate the model parameters. The
method, introduced by Hansen (1982), has become a leading estimation technique in empir-
ical research. To test for the validity of the moment restrictions, we often use the popular
J test associated with Sargan (1958) and Hansen (1982). In the time series setting, the
J test can be made robust to heteroscedasticity and autocorrelation of unknown forms by
using an appropriate long run variance (LRV) estimator. While the heteroscedasticity and
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autocorrelation robust (HAR) J test has widespread use, Altonji and Segal (1996), and
Hall and Horowitz (1996), Lee and Kuan (2009), among others, have documented that it
frequently over-rejects in �nite samples.

In this paper, we introduce a new HAR J test called J� test that is easy to use and
accurate in size. The J� test is based on a nonparametric series type LRV estimator
considered in Phillips (2005) and Sun (2010a, 2010b). The basic idea behind the series LRV
estimator is to project the time series onto a set of basis functions designed to represent
the long-run behavior directly. The outer-product of the projection coe¢ cients is a direct
and asymptotically unbiased estimator of the LRV. The series LRV estimator is simply
an average of the direct estimators. The basis functions are required to be orthonormal
and integrate to zero on [0; 1]. The latter �zero mean� condition ensures that the series
LRV estimator is asymptotically invariant to the model parameters of interest. As a result,
it does not su¤er from the bias due to the estimation uncertainty of model parameters.
This is in contrast with the conventional kernel LRV estimator where this type of bias is
often present. See for example, Hannan (1957). Furthermore, the zero mean condition
automatically centers the moment conditions under the local alternative hypothesis. As a
result, the new J� test has the same power advantage as the test proposed by Hall (2000).

The smoothing parameter in the series LRV estimator is K; the number of basis func-
tions employed. When the number of basis functions K is �xed, the series LRV estimator
is inconsistent and converges in distribution to a scaled Wishart distribution. It is now
well known that in cases like robust hypothesis testing, consistent LRV estimates are not
needed in order to produce asymptotically valid tests, see for example, Kiefer, Vogelsang
and Bunzel (2000), Kiefer and Vogelsang (2002a, 2002b, 2005). Indeed, under the �xed-
K asymptotics where K is held �xed, we show that the modi�ed J statistic converges to
an F distribution. This is the main innovation of the paper. The modi�cation involves
multiplying the conventional J-statistic JT by (K � q + 1)=K, where q is the number of
over-identifying moment conditions. More speci�cally, J�T = (K � q + 1) JT =K converges in
distribution to F (q;K � q + 1) ; the F distribution with degrees of freedom q and K�q+1:
For convenience, we refer to the test based on the J�T statistic and using critical values from
the F distribution as the J� test.

The multiplicative factor in J�T can be regarded as a �nite sample correction under
the large K asymptotics where K grows with the sample size at certain rate. Under the
large K asymptotics, the series LRV estimator becomes consistent and the associated J�T
converges to the standard �2q=q distribution. This result can be also seen from the sequential
asymptotics where K is held �xed as T !1 followed by letting K !1: When K !1;
both the multiplicative correction factor and the random denominator of the F distribution
converge to one. In this case, the J� test reduces to the conventional J test. However, when
K is not large and q 6= 1; the �nite sample correction factor can be much smaller than one
and the random denominator in the F approximation may be far from degenerate. The
di¤erence between the J� test and the J test can be substantially large.

The �xed-K asymptotics captures the randomness of the LRV estimator and the result-
ing J� test is expected to have better �nite sample size properties than the conventional J
test. See Jansson (2004) and Sun, Phillips and Jin (2008) for related theoretical analysis
for testing model parameters in location models. In a more general setting, Sun (2010a)
shows that critical values from the �xed-K limiting distribution are higher order correct
under the large K asymptotics.
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We apply the idea behind the F limiting theory to the popular kernel-based J tests.
The underlying LRV estimator is based on the nonparametric kernel method with the
bandwidth parameter b equal to the ratio of the truncation lag (bandwidth) to the sample
size. When b is �xed, the kernel LRV estimator converges to a double stochastic integral
and the JT statistic has a nonstandard limiting distribution. The key idea is to observe
that the stochastic integral is equal to an in�nite weighted sum of independent Wishart
distributions. We can approximate the in�nite weighted sum by a �nite and unweighted
sum, that is, we can approximate the stochastic integral by a Wishart distribution with an
�equivalent degree of freedom.�With this approximation, the �xed-b limiting distribution of
a modi�ed J statistic becomes approximately F -distributed. As in the case with the series
LRV estimator, the kernel J� test is as easy to use as the standard J test, as the correction
factor is easy to compute and the critical values are readily available from statistical tables
and software packages.

A Monte Carlo study shows that both the series J� tests and the kernel J� tests have
much smaller size distortion than the conventional J test. Among the Bartlett, Parzen,
QS and Daniell kernels considered, the Parzen J� test is most accurate in size. The series
J� test is as accurate in size as the Parzen J� test. In terms of size-adjusted power, the
series J� test is as competitive as the conventional J tests. In fact, it is more powerful
than the J tests based on the Parzen, QS and Daniell kernels in some scenarios. In view
of its remarkable accuracy in size and competitiveness in power, we recommend the series
J� test for practical use. At the minimum, the kernel J� tests should be used in place of
the conventional J tests that often over reject.

The paper that is most closely related to the present one is Lee and Kuan (2009). Like
this paper, they consider testing over-identifying restrictions in the framework of time series
GMM and establish the nonstandard �xed-b asymptotics for the kernel-based J tests. Our
main focus here is on the series J� test, which is accurate in size and yet easy to use in
practice. There is no need to simulate nonstandard critical values. As an extension, we also
consider the kernel-based J� tests that use the conventional J statistic. To obtain their
�xed-b asymptotics, Lee and Kuan (2009) propose to modify the conventional J statistic
in order to avoid a singularity problem. We show that the modi�cation is unnecessary. In
addition, the new F approximation to the sampling distribution of the kernel J� statistic
is very convenient in econometric applications.

The remainder of the paper is organized as follows. Section 2 describes the testing
problem of concern and introduces the series LRV estimator. Section 3 studies the limiting
F -distribution theory under the �xed-K asymptotics. Section 4 investigates the local as-
ymptotic power of the series J� test. The next section applies the idea of F -approximation
to the kernel-based J� tests. Section 6 presents simulation evidence and the last section
concludes. Proofs are given in the Appendix.

2 GMM and Over-identi�cation Test

In this section, we present the GMM estimation and the over-identi�cation test in the time
series setting. We also provide an overview of the series LRV estimator.

We are interested in d � 1 vector of parameters � 2 � � Rd: Let vt denote a vector of
observations. Let �0 denote the true value and assume that �0 is an interior point of �:
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The moment conditions
Ef (vt; �) = 0; t = 1; 2; :::; T (1)

hold if and only if � = �0 where f (�) is an m � 1 vector of continuously di¤erentiable
functions. As a time series, f (vt; �0) may exhibit autocorrelation of unknown forms. We
assume thatm > d and rank E

�
@f (vt; �0) =@�

0� = d: That is, we consider an over-identi�ed
model with the degree of over-identi�cation q = m� d:

De�ne

gt (�) =
1

T

tX
j=1

f(vj ; �);

then the GMM estimator of �0 is given by

�̂GMM = argmin
�2�

gT (�)
0W�1

T gT (�)

where WT is a weighting matrix.
To obtain an initial �rst step estimator, we often choose a simple weighting matrix Wo

that does not depend on model parameters, leading to

~�T = argmin
�2�

g0T (�)W
�1
o gT (�) :

As an example, we may set Wo = Im in the general GMM setting. In the IV regression, we
may set Wo = Z

0Z=T where Z is the data matrix for the instruments. We assume that

Wo
p!Wo;1;

a positive de�nite matrix.
On the basis of ~�T ; we can use ~ut = f(vt; ~�T ) to construct an optimal weighting matrix.

According to Hansen (1982), the optimal weighting matrix WT is the long run variance of
the time series f (vt; �0) : Many nonparametric estimators of the LRV are available in the
literature. For kernel estimators, see Andrews (1991) and Newey and West (1987, 1994).

In this paper, we consider a class of series LRV estimators considered by Phillips (2005)
and Sun (2010a, 2010b). As we show later, the series estimators are especially convenient
for constructing the J test. Let f�k(�); k = 1; 2; :::;Kg be a sequence of orthonormal basis
functions on L2[0; 1]: De�ne the projection coe¢ cient

�k (�) =
1p
T

TX
t=1

�k(
t

T
)f(vt; �) for k = 1; 2; :::;K:

Then the series LRV estimator is the average of the outer product of these projection
coe¢ cients evaluated at � = ~�T :

WT

�
~�T

�
=
1

K

KX
k=1

�k(~�T )�
0
k(
~�T ): (2)

In essence, each outer product �k(~�T )�0k(~�T ) is a direct estimator of the LRV and the
series LRV estimator is a simple average of these direct estimators. Here K is the smooth-

ing parameter underlying WT (~�T ): To ensure that WT

�
~�T

�
is positive semide�nite, it is
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necessary to assume that K � m: We maintain this assumption throughout the rest of the
paper. The series LRV estimator belongs to the class of multiple-window estimators (e.g.
Percival and Walden, 1993, ch. 7) and �lter-bank estimators (e.g. Stoica and Moses, 2005,
ch. 5). See Sun (2010a, 2010b) for more discussions.

With the LRV estimator WT (~�T ); the optimal two-step GMM estimator is:

�̂T = argmin
�2�

gT (�)
0W�1

T (~�T )gT (�) :

The standard method of testing over-identifying restrictions is to take the second step
estimator �̂T of the parameter �, and construct a test statistic JT :

JT = TgT (�̂T )
0W�1

T (~�T )gT (�̂T )=q:

The above de�nition is slightly di¤erent from the standard one in that the GMM objective
function is normalized by the degree of over-identi�cation. The normalization does not
have any impact on the properties of the test as long as critical values are appropriately
adjusted.

In the following we also consider

ĴT = TgT (�̂T )
0W�1

T (�̂T )gT (�̂T )=q:

That is, the test statistic with the updated weighting matrix.

3 Asymptotic Distribution of the Series J-statistic

In this section, we derive the asymptotic distribution of JT under the speci�cation that
K is �xed. We show that the asymptotic distribution is invariant to the initial �rst step
estimator used.

Denote

Gt(�) =
1

T

@gt (�)

@�0
=
1

T

tX
j=1

@f(vj ; �)

@�0
:

To analyze the asymptotic properties of ~�T and �̂T ; we make the following high-level as-
sumptions, which are the same as those in Kiefer and Vogelsang (2005) and Lee and Kuan
(2009).

Assumption 1 plimT!1�̂T = �0; plimT!1~�T = �0:

Assumption 2 plimT!1G[rT ] (�) = rG(�) uniformly in r and � 2 � where G(�) =
E@f(vj ; �)=@�

0 and G0 = G(�0) has rank d:

Assumption 3 T 1=2g[rT ](�0)
d! �Bm(r) where ��0 = 
 =

P1
j=�1 �j ; �j = Ef(vt; �0)f(vt�j ; �0)

0

and Bm(r) is a standard Brownian motion.

Under the above assumptions, �̂T satis�es:

�̂T � �0 = �
h
GT
�
��T
�0
W�1
T

�
~�T

�
GT
�
��T
�i�1

GT (�0)
0W�1

T

�
~�T

�
gT (�0) :
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where ��T is between �̂T and �0: Similarly

~�T � �0 = �
h
GT
�
��T
�0
W�1
o GT

�
��T
�i�1

GT (�0)
0W�1

o gT (�0) :

and ��T is between ~�T and �0:
To derive the limiting distribution of JT when K is �xed, we �rst establish the limiting

distribution of WT (~�T ): Under Assumptions 1-3, we have

p
T
�
~�T � �0

�
d! �

�
G00W

�1
o;1G0

��1
G00W

�1
o;1�Bm(1);

and for ���T between ~�T and �;

1p
T

[Tr]X
t=1

~ut =
1p
T

[Tr]X
t=1

ut +
1p
T

[Tr]X
t=1

@f(vt; ��
�
T )

@�0

�
~�T � �0

�

=
1p
T

[Tr]X
t=1

ut �
�
G[Tr]

�
��
�
T

�� h
GT
�
��T
�0
W�1
o GT

�
��T
�i�1

GT (�0)
0W�1

o

p
TgT (�0)

d! �Bm(r)� rG0
�
G00W

�1
o;1G0

��1
G00W

�1
o;1�Bm(1):

Hence by summation and integration by parts and the continuous mapping theorem, we
have

1p
T

TX
t=1

�k

�
t

T

�
~ut

d! �

Z 1

0
�k (r) dBm(r)�

�Z 1

0
�k (r) dr

�
G0
�
G00W

�1
o;1G0

��1
G00W

�1
o;1�Bm(1):

Here the second term re�ects the estimation uncertainty of ~�T : To remove this term,
we require

R 1
0 �k (r) dr = 0: In this case

1p
T

TX
t=1

�k

�
t

T

�
~ut

d! �

Z 1

0
�k (r) dBm(r)

and WT (~�T )
d!W1 where

W1 = � ~W1�
0 and ~W1 = K�1

KX
k=1

�Z 1

0
�k (r) dBm(r)

� �Z 1

0
�k (r) dBm(r)

�0
:

Using the same argument for proving proposition 7.3 in Bilodeau and Brenner (1999),
we can show that, when K � m; ~W1 is positive de�nite with probability one. As a

consequence, the continuous mapping theorem can be applied to obtain W�1
T (~�T )

d!W�1
1 :

The zero mean assumption
R 1
0 �k (r) dr = 0 ensures that the estimation uncertainty in

~�T will not a¤ect the asymptotic distribution of WT (~�T ): This is an important point as the
conventional kernel estimators often su¤er from the bias due to the estimation error in ~�T :
See for example, Hannan (1957). In fact, we have WT

�
��
�
T

� d! W1 for any
p
T consistent
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estimator ���T : For example, we have WT (�̂T )
d! W1: A direct implication is that JT and

ĴT have the same limiting distribution. More generally, the asymptotic distribution of JT
is invariant to the initial �rst step estimator ~�T ; provided that it is

p
T -consistent.

Next, we derive the asymptotic distribution of
p
TgT (�̂T ) = T

�1=2PT
t=1 ût; where ût =

f(vt; �̂T ): Under assumptions 1-3 and using the result W
�1
T (~�T )

d!W�1
1 ; we have

p
T
�
�̂T � �0

�
d! �

�
G00W

�1
1 G0

��1
G00W

�1
1 �Bm(1):

As a result,

1p
T

TX
t=1

ût =
1p
T

TX
t=1

ut +
1p
T

TX
t=1

@f(vt; ��T )

@�0

�
�̂T � �0

�
=

1p
T

TX
t=1

ut �
�
GT
�
��T
�� h

GT
�
��T
�0
W�1
T GT

�
��T
�i�1

GT (�0)
0W�1

T

p
TgT (�0)

d! �Bm(1)�G0
�
G00W

�1
1 G0

��1
G00W

�1
1 �Bm(1):

Now

JT =

 
1p
T

TX
s=1

ûs

!0 �
WT

�
~�T

���1 1p
T

TX
s=1

ûs

!
=q

d! J1

where

J1 =

�
Bm(1)�G�

h
G0� ~W

�1
1 G�

i�1
G0� ~W

�1
1 Bm(1)

�0
~W�1
1

�
�
Bm(1)�G�

h
G0� ~W

�1
1 G�

i�1
G0� ~W

�1
1 Bm(1)

�
=q

and
G� = �

�1G0:

De�ne the corrected J�T statistic:

J�T =
(K � q + 1)

K
JT : (3)

The following theorem gives the limiting distribution of J�T under the null of correct moment
speci�cations.

Theorem 1 Let Assumptions 1-3 hold. Further assume
(i)
R 1
0 �k(r)dr = 0 for all k = 1; 2; :::;K

(ii)
R 1
0 �k(r)�j (r) dr = �kj

(iii) �k(r) is continuously di¤erentiable.
Then for a �xed K � m;

J�T
d! F (q;K � q + 1): (4)
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There are several possible choices for �k (�) : First, we can start with zero mean polyno-
mials such as r�1=2; r2�1=3; r3�1=4; r4�1=5 and use the Graham-Schmidt procedure to
orthonormalize them. Second, we can let �k(r) =

p
2 cos (�kr). Following Phillips (2005),

one may consider using �k(r) =
p
2 sin (�kr) or

p
2 sin (� (k � 0:5) r) : However, these func-

tions do not satisfy the zero mean condition. We have to rule them out as we do not observe
the moment process but have to estimate it. Finally, we can let

�k (r) =

� p
2 cos (�kr) ; k is evenp
2 sin (� (k + 1) r) ; k is odd

Assuming that K is even, we can write the resulting LRV estimator as

WT

�
~�T

�
=

1

0:5K

0:5KX
k=1

Re (AkA�k) :

where � denotes transpose and complex conjugate and

Ak =
1p
T

TX
t=1

exp

�
� i2�kt

T

�
f(vt; �̂T ):

is the Finite Fourier transform (FFT) of the stochastic process f(vt; �̂T ): We will use this
estimator in our simulation study.

The zero mean assumption ensures that
R 1
0 �k (r) dBm(r) is independent of Bm (1) : The

independence allows us to represent J1 as

J1
d
= Bq(1)

0 [W (Iq;K) =K]
�1Bq(1)=q (5)

where W (Iq;K) is a Wishart random variable that is independent of Bq (1) : It is well
known that the right hand side of (5) is Hotelling�s (1931) T 2 distribution. The theorem
then follows from the relationship between the T 2 distribution and the F distribution. See
also Proposition 8.2 in Bilodeau and Brenner (1999).

It follows from Theorem 1 that

JT
d! K

K � q + 1
�2q=q

�2K�q+1=(K � q + 1)

where �2q and �
2
K�q+1 are independent �

2 random variables. Compared to the standard
�2q=q approximation, the �xed-K asymptotic distribution contains two extra factors: the
multiplicative factor K=(K � q + 1) and the random denominator �2K�q+1=(K � q + 1):
Since both shift the probability mass to the right, critical values from the F -approximation
are larger than those from the conventional �2q=q approximation. When K is not very large
relative to q; the degree of over-identi�cation, the di¤erence between the two sets of critical
values can be considerably large.

When q = 1; JT
d! �21=(�

2
K=K): In this case, the multiplicative correction factor equals

1 and becomes irrelevant. The adjustment comes from only the random denominator. The
multiplicative correction factor becomes more important when there are many moment
restrictions, a scenario that often appears in econometric applications.
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It is obvious that when K ! 1; J1 becomes the standard �2q=q distribution. That
is, under the sequential large-K limit theory where K is held �xed as T !1 followed by
letting K !1; JT converges in distribution to �2q=q: This is exactly the same as the con-
ventional limiting distribution. In fact, we can use the result in Sun (2010c) and show that
when K ! 1 and T ! 1 jointly such that K=T ! 0; WT (~�T ) is consistent for 
 under
some regularity conditions. Under this joint large-K asymptotics, JT also converges to the
standard distribution �2q=q: In other words, the sequential limiting distribution coincides
with the joint limiting distribution.

4 Local Asymptotic Power of the Series J* Test

In the section, we study the test performance under a sequence of alternatives representing
local departures from (1):

Ef (vt; �0) = �0=
p
T :

This con�guration is also known as the Pitman drift. Let G� = U�V 0 be the singular value
decomposition (svd) of G� := ��1G0; where

� =

�
A
O

�
;

A is a d � d diagonal matrix, O is a q � d matrix of zeros. By de�nition, U��0U 0 is the
spectral decomposition of G�G0�: We parametrize �0 by

�0 = �U�;

for some � =
�
�01; �

0
2

�0 2 Rm where �1 2 Rd and �2 2 Rq: In other words, � = U 0��1�0 is a
scaled version of �0 followed by a rotation.

Under the local alternatives, Assumptions 1 and 2 can be still valid. Assumption 3 has
to be replaced by the following assumption.

Assumption 4 T 1=2g[rT ](�0)
d! r�0 + �Bm(r) where ��0 = 
 =

P1
j=�1 �j ; �j =

Ef(vt; �0)f(vt�j ; �0)0 and Bm(r) is a standard Brownian motion.

Under Assumptions 1, 2 and 4, we have, under the local alternatives:

p
T
�
~�T � �0

�
d! �

�
G00W

�1
o;1G0

��1
G00W

�1
o;1 [�0 + �Bm(1)]

and

1p
T

[Tr]X
t=1

~ut
d! [r�0 + �Bm(r)]� rG0

�
G00W

�1
o;1G0

��1
G00W

�1
o;1 [�0 + �Bm(1)] :

As a result,

1p
T

TX
t=1

�k

�
t

T

�
~ut

d! �

Z 1

0
�k (r) dBm(r)

and WT (~�T )
d! W1. Similarly WT (�̂T )

d! W1: That is, WT (~�T ) and WT (�̂T ) have the
same �xed-K limiting distributions as before.
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Some comments are in order. Due to the zero mean condition, the limiting distribution
of the series LRV estimator is invariant to the initial �rst step estimator under both the
null and local alternative hypotheses. Imposing the zero mean condition is analogous to
employing �centering� for kernel LRV estimators as suggested in Hall (2000) and used in
Lee and Kuan (2009).

It is easy to see that under the local alternatives,

1p
T

TX
t=1

ût
d! [�Bm(1) + �0]�G0

�
G00W

�1
1 G0

��1
G00W

�1
1 [�Bm(1) + �0] :

Therefore, under the local alternatives, we have

JT
d! J1 (�0)

where

J1 (�0) =

�
Bm(1) + U� �G�

h
G0� ~W

�1
1 G�

i�1
G0� ~W

�1
1 [Bm(1) + U�]

�0
~W�1
1

�
�
Bm(1) + U� �G�

h
G0� ~W

�1
1 G�

i�1
G0� ~W

�1
1 [Bm(1) + U�]

�
=q:

The following theorem simpli�es the limiting distribution of JT under the local alter-
natives.

Theorem 2 Let Assumptions 1, 2 and 4 hold. Further assume that the basis functions
satisfy the assumptions in Theorem 1. Then under the local alternatives

J�T
d! F (q;K � q + 1; k�2k2)

where F (q;K � q + 1; k�2k2) is the noncentral F distribution with degrees of freedom
(q;K � q + 1) and noncentrality parameter k�2k2 :

The noncentrality parameter in Theorem 2 is the same as that in the conventional
noncentral �2 distribution under local mis-speci�cations. In the notation of this paper, the
noncentrality parameter in Hall (2005, Theorem 5.4) is given by the squared length of �O
where

�O =
h
Im �G�

�
G0�G�

��1
G0�

i
��1�0:

Note that

�O =
h
Im � U�V 0

�
V �0U 0U�V 0

��1
V �0U 0

i
��1�U�

= U
�
Im � �V 0

�
V �0�V 0

��1
V �0

�
�

= U
�
Im � �

�
A0A

��1
�0
�
� = U

h�
00; �02

�0i
;

so k�Ok2 = k�2k2 : That is, we obtain the same noncentrality parameter but the route to
it is di¤erent.
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If �0 2 R (G0) such that �0 = G0� for some � 2 Rd; then

� = U 0��1�0 = U
0��1G0� = �V

0�:

where we have used U 0��1G0 = �V 0, which follows from the de�nition ��1G0 = U�V 0:
In view of the de�nition of �; we know that �2 = 0 and k�2k2 = 0: Hence the test has no
power when the local departure is in the column space of G0: This result is qualitatively
the same as the conventional J test using the chi-square approximation.

5 F -Approximation to Kernel-based J Statistic

The kernel LRV estimator and the associated J test are very popular in practice. In this
section, we discuss the kernel J test under the so-called �xed-b asymptotics and show how
the �xed-b asymptotic distribution can be approximated by an F distribution.

We maintain the following mild kernel conditions that hold for commonly used positive
de�nite kernel functions.

Assumption 5 �(x) : R! [0; 1] is a symmetric and positive de�nite function with �(0) =
1;
R1
0 j�(x)j dx <1 and

R1
0 �2(x)dx <1.

For the given initial estimator ~�T , the kernel LRV matrix estimator is

W 0
T;�

�
~�T

�
=
1

T

TX
t=1

TX
�=1

�b(
t� �
T

)

"
~ut �

1

T

TX
s=1

~us

#"
~u� �

1

T

TX
s=1

~us

#0

where as before ~ut = f(vt; ~�T ) and �b(r) = �(r=b): Here we have followed Hall (2000) and
centered the estimated moment condition ~ut: De�ne the �centered� version of the kernel
function

~�b(t; �) := ~�(t=b; �=b) = �b(t� �)�
Z 1

0
�b(s� �)ds�

Z 1

0
�b(t� s)ds+

Z 1

0

Z 1

0
�b(r� s)drds:

While �b(t��) depends only on the di¤erence between t and � ; the centered kernel function
~�b(t; �) in general is not a function of only the di¤erence t� � : By de�nition,Z 1

0
~�b(r; �)dr =

Z 1

0
~�b(t; s)ds =

Z 1

0

Z 1

0
~�b(r � s)drds = 0 for any t and � :

It is easy to show that W 0
T;�(

~�T ) is asymptotically equivalent to

WT;�

�
~�T

�
=
1

T

TX
t=1

TX
�=1

~�b(
t

T
;
�

T
)~ut~u

0
� :

The asymptotic equivalence holds regardless whether b is a �xed constant or goes to zero
as T !1:

Now using sum and integration by parts and the continuous mapping theorem, we have

WT;�

�
~�T

�
d!W1;� and WT;�

�
�̂T

�
d!W1;� (6)

11



where

W1;� = � ~W1;��
0 and ~W1;� =

Z 1

0

Z 1

0
~�b(r; s)dBm (r) dB

0
m (s) :

The asymptotic equivalence of WT;�(~�T ) and WT;�(�̂T ) implies that the over-identi�cation
test has the same asymptotic properties whether WT;�(~�T ) or WT;�(�̂T ) is used in con-
structing the testing statistic.

We useWT;�(~�T ) as the weighting matrix to construct the second step GMM estimator:

�̂T;� = argmin
�2�

gT (�)
0W�1

T;�

�
~�T

�
gT (�) :

As before, we can show that

p
T
�
�̂T;� � �0

�
d! �

�
G00W

�1
1;�G0

��1
G00W

�1
1;��Bm(1)

and p
TgT

�
�̂T;�

�
d! �Bm(1)�G0

�
G00W

�1
1;�G0

��1
G00W

�1
1;��Bm(1): (7)

De�ne the J statistic in the usual way as

JT;�(�0) = TgT

�
�̂T;�

�0
W�1
T;�

�
~�T

�
gT

�
�̂T;�

�
=q:

Since (6) and (7) hold jointly, we have

JT;�
d! J1;�

where

J1;� =

�
Bm(1) + U� �G�

h
G0� ~W

�1
1;�G�

i�1
G0� ~W

�1
1;�Bm(1)

�0
~W�1
1;�

�
�
Bm(1) + U� �G�

h
G0� ~W

�1
1;�G�

i�1
G0� ~W

�1
1;�Bm(1)

�
=q:

The following theorem shows that J1;� is pivotal under the null hypothesis.

Theorem 3 Let Assumptions 1, 2, 4 and 5 hold. Then for a �xed b,

JT;� (�0)
d! J1;� (�0)

where

J1;� (�0) = [Bq(1) + �2]
0
�Z 1

0

Z 1

0
~�b (r; s) dBq(r)dB

0
q (s)

��1
[Bq(1) + �2] =q

and Bq (r) is a q-dimensional standard Brownian motion.

Under the null hypothesis, we have �0 = 0 and

J1;� := J1;� (0) = Bq(1)
0
�Z 1

0

Z 1

0
~�b (r; s) dBq(r)dB

0
q (s)

��1
Bq(1);
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which is pivotal. Lee and Kuan (2009) consider the kernel-based over-identi�cation test.
To achieve pivotality under the �xed-b asymptotics, they propose to modify the usual
J-statistic. It follows from Theorem 3 that the modi�cation is unnecessary.

Under Assumption 5, ~�b(r; s) 2 L2 ([0; 1]� [0; 1]) : So it has a Fourier series representa-
tion:

~�b(r; s) =
1X
i=1

1X
j=1

�ij�i (r)�j (s)

where
�
�i (r)�j (s)

	
is an orthonormal basis for L2 ([0; 1]� [0; 1]) and the convergence is

in the L2 space. Since
R 1
0 ~�b(r; s)dr =

R 1
0 ~�b(r; s)ds = 0; we know thatZ 1

0
�i (r) dr = 0 for i = 1; 2; :::

In addition, by the symmetry of ~�b(r; s); we can deduce that �ij = �ji:
Using the Fourier series representation, we can write

~W1;� =
1X
i=1

1X
j=1

�ij�i�
0
j

where �i =
R 1
0 �i (s) dBq(s) s iidN(0; Iq): To simplify the above representation, we note

that
1X
i=1

1X
j=1

�ij�i�
0
j = lim

N!1

NX
i=1

NX
j=1

�ij�i�
0
j = lim

N!1
� 0�N�

where �N�q = (�1; :::; �N )
0 and �N = (�ij) is an N � N symmetric matrix. Since � (�) is

positive de�nite, it can be shown that �N is a positive de�nite matrix. Let �N = HDNH 0

be the spectral decomposition of �N ; where DN = diag(�1; :::; �N ) and H 0H = IN : Then

lim
N!1

� 0�N� = lim
N!1

�
� 0H

�
DN

�
H 0�

�
=

1X
i=1

�i�i�
0
i

where H 0� = (�1; :::; �N )
0 or �i = H

0�i: So ~W1;� can be represented as

~W1;� =
1X
i=1

�i�i�
0
i: (8)

By de�nition, �i�
0
i follows a Wishart distribution Wq(Iq; 1); so

P1
i=1 �i�i�

0
i is an in�nite

weighted sum of independent Wishart distributions.
Using the representation in (8), we have

J1;� =
d �0

 1X
i=1

�i�i�
0
i

!�1
�=q (9)

where �i s iidN(0; Iq), � s N(0; Iq) and �i is independent of � for all i: That is, J1;� is
equal in distribution to a quadratic form in standard normal variates with an independent
and random weighting matrix.
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We approximate the weighted sum of independent Wishart distributions by a simple
Wishart distribution with an equivalent degree of freedom. That is, we approximate the
distribution of (

P1
i=1 �i)

�1P1
i=1 �i�i�

0
i by that of K

�1PK
i=1 �i�

0
i:With this approximation,

the distribution of J1;� is approximately the same as that of J1.
De�ne

�1 =

Z 1

0
~�b (r; r) dr and �2 =

Z 1

0

Z 1

0
[~�b(r; s)]

2 drds

and

K =
�21
�2
=

hR 1
0 ~�b (r; r) dr

i2
R 1
0

R 1
0 [~�b(r; s)]

2 drds
:

Theorem 4 (i) As b! 0; K = d(bc2)�1e+ o(b�1) where dxe denotes the smallest integer
that is larger than x:

(ii) Let J�1;� be the corrected variate de�ned by

J�1;� =
�1 (K � q + 1)

K
J1;�: (10)

Then, as b! 0; we have

P
�
J�1;� < z

�
= P (Fq;K�q+1 < z) + o(b):

The parameter K is the �equivalent degree of freedom (EDF)�of the kernel LRV esti-
mator. To the �rst order, the EDF is proportional to 1=b where the asymptotic variance of
the kernel LRV estimator is proportional to b: Hence, as b decreases, i.e. as the degree of
smoothing increases, the equivalent degree of freedom increases and the variance decreases.
In other words, the higher the degree of freedom, the larger the degree of smoothing and
the smaller the variance.

Compared to the correction factor in (3), the correction factor in (10) has an additional
multiplicative constant �1: This constant captures the e¤ect of centering in constructing
the kernel LRV estimator. For the series LRV, no centering is needed, and as a result this
factor does not appear.

In �nite samples, the correction factor may not be positive. It is easy to see that
Theorem 4 holds with an asymptotically equivalent correction:

J�1;� = exp f�b [c1 + (q � 1) c2]g J1;�

where

exp f�b [c1 + (q � 1) c2]g =
�1 (K � q + 1)

K
+ o (b) :

The new correction factor exp f�b [c1 + (q � 1) c2]g is guaranteed to be positive. We will
use this version in the simulation study. Equivalently, we can correct the test statistic and
de�ne

J�T;� = exp f�b [c1 + (q � 1) c2]g JT;�:

Then J�T;� is approximately distributed as Fq;K�q+1: We call the over-identi�cation test
based on this asymptotic approximation the kernel J� test.

While the correction is motivated from the �xed-b asymptotics, it is entirely justi�able
under the small-b asymptotics under which b! 0 at a certain rate with the sample size. The
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reason is that as b! 0; J�T;� converges to JT;� and critical values from Fq;K�q+1 converge to
those from �2q=q: So when b! 0 as T !1; the kernel J� test is asymptotically equivalent
to the conventional kernel J test.

6 Simulation Study

In this section, we study the �nite sample performance of the J� tests. We consider the
following data generating process:

yt = xt� + 
z1;t + "yt

where xt is a scalar process generated by

xt =

mX
i=1

zit + "xt:

We assume that zt = (z1t; :::; zmt)
0 follows either a VAR(1) process

zt = �zt�1 +
p
1� �2ezt;

or a VMA(1) process
zt = �ez;t�1 +

p
1� �2ezt;

where

ezt =

�
e1zt + e

0
ztp

2
; :::;

emzt + e
0
ztp

2

�0
and [e0zt; e

1
zt; :::; e

m
zt]
0 s iidN(0; Im+1): By construction, the variance of zit for any i =

1; 2; :::;m is 1: Due to the presence of the common shocks e0zt; the correlation coe¢ cient
between zit and zjt for i 6= j is 0:5: The DGP for "t = ("yt; "xt)0 is the same as that for zt
except the dimensionality di¤erence. The two vector processes "t and zt are independent
from each other. The model we consider reduces to that of Hall (2000) when � = 0 and
reduces to Lee and Kuan (2009) when m = 2:

In the notation of this paper, we have d = 1; f(vt; �) = zt (yt � �xt) where vt =
[yt; xt; z

0
t]
0: It is also easy to verify that

Ef(vt; �0) = 

�
1; 0:5`0m�1

�0
; G0 = Eztxt = [1 + :5 (m� 1)]`m

and


 =
1� �4

2 (1� �2)2
�
Im + `m`

0
m

�
where `m = (1; 1; :::; 1)

0 2 Rm is a column vector of ones. We set 
 = c=
p
T with c = [0; 30]

so that �0 = c
�
1; 0:5`0m�1

�0
:

We take � = �0:8;�0:5; 0:0; 0:5; 0:8 and 0:95. We consider m = 2 and 5 and the
corresponding degrees of over-identi�cation are q = 1 and q = 4. For each test, we consider
two signi�cance levels � = 5% and � = 10% and two di¤erent sample sizes T = 100; 200:
For the kernel-based tests, we consider four kernel functions: Bartlett (B), Parzen (P),
Quadratic Spectral (Q) and Daniell (D) kernels. The number of simulation replications is
20000.
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We examine the �nite sample performances of J tests and J� tests for di¤erent LRV
estimator and reference distribution combinations. For each LRV estimator, we consider
two versions of the over-identi�cation test. The �rst version is the standard J test that
uses �2q=q as the reference distribution. These tests are referred to as S-J (series J test),
B-J, P-J, Q-J, and D-J in the tables and �gures below. The second version is the J�

test that is based on the modi�ed J-statistic and uses F (q;K � q + 1) as the reference
distribution. These tests are labeled as S-J� (series J� test); B-J�; P-J�;Q-J� and D-J�: For
all the tests, the initial estimator is the IV estimator with weight matrix Wo = (Z 0Z=T )
where Z = (z1; :::; zT )

0: We use MSE optimal smoothing parameters implemented using
the VAR(1) plug-in procedure in Andrews (1991) and Sun (2010b). For the smoothing
parameter b; the formula is given in Andrews (1991). For the smoothing parameter K; the
formula is given in Sun (2010b) and is reproduced here:

KMSE =

�
tr [(Im2 +Kmm) (

 
)]

4vec(B)0vec(B)

�1=5
T 4=5;

where B = ��2=6�
(2), 
(2) is the asymptotic bias of the series LRV estimator, and Kmm
is the m2 �m2 commutation matrix.

Table 1 gives the empirical size of the di¤erent testing methods for the VAR(1) case
with sample size T = 100. First, as it is clear from the table, the conventional J tests can
have a large size distortion. The size distortion increases with both the serial dependence
and the degree of over-identi�cation. The size distortion can be very severe. For example,
when � = 0:95, q = 4 and � = 5%, the empirical size of the conventional kernel-based J
test can be as high as 70%, which is far from 5%, the nominal size of the test. Second, the
size distortion of the J� test is substantially smaller than the corresponding J test. This
is because the J� test employs the asymptotic approximation that captures the estimation
uncertainty of the LRV estimator. Third, among the J� tests, the Parzen kernel-based
test and the series-based test have the smallest size distortion. The empirical size of these
two tests is also very close to the nominal size. The J� test based on the Bartlett kernel
tends to be over-sized, although it is signi�cantly less size distorted than the conventional
J test. To sum up, the table shows that the �nite sample correction combined with an F
approximation is very e¤ective in reducing the size distortion of conventional J tests.

Table 2 presents the simulated empirical size for the VMA(1) case. The qualitative
observations for the VAR(1) error remain valid. When the degree of over-identi�cation
is 1, the conventional J tests are relatively accurate in size. The J� tests are even more
accurate in size. When the degree of over-identi�cation is 4, the conventional J tests have
large size distortion. In contrast, the J� tests have virtually no size distortion. This table
provides further evidence that the F -distribution provides an accurate approximation to
the sampling distribution of the �nite sample corrected J-statistic.

Table 3 reports results for the case when the degree of over-identi�cation is 4 and the
sample size is 200. Compared to the cases with sample size 100, all tests become more
accurate in size. This is well expected. While the conventional J tests remain over-sized,
the J� tests are remarkably accurate in size. As before, the series J� test and the Parzen
J� test have virtually no size distortion. Other J� tests are only slightly over-sized with
the exception of the Bartlett J� test, which can still be somewhat over-sized.

Figures 1-2 present the �nite sample power in the VAR(1) case when the degree of
over-identi�cation is 1 and � = 5%: We compute the power using the 5% empirical �nite
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sample critical values obtained from the null distribution. So the �nite sample power is
size-adjusted and power comparisons are meaningful. The parameter con�guration is the
same as those for Table 1 except the DGP is generated under the local alternatives. Since
the size-adjusted power of a J� test is the same as that for the corresponding J test, we
report the power of the series J� test and that of the kernel J tests. We do so without
the loss of generality. It is clear from Figure 1 that when the number of over-identifying
restriction is 1, the power curves are very close to each other. In terms of the size-adjusted
power, no test stands out. Figure 2 reports the same power comparison but with 4 over-
identifying restrictions. Again, when j�j is in the intermediate range, the power curves are
indistinguishable. However, when j�j is large, the series J� test (or series J test) and the
Bartlett J� test (or the Bartlett J test) are more powerful than other J� tests and J tests.
The power advantage remains when the sample size is increased to 200. This is shown in
Figure 3 where the parameter con�guration is the same as Figure 2 except the sample size.

We do not report all power curves but summarize the main results here. For all the
DGP�s, the over-identi�cation tests have more or less the same power with the exception
that the series-based test and the Bartlett-kernel-based test are more powerful in some
scenarios.

7 Conclusions

The paper provides an easy-to-implement over-identi�cation test that is accurate in size.
The test is based on the series LRV estimator that involves projecting the moment con-
ditions onto a series of orthonormal basis functions. Since the basis functions have only
low frequency components, the projections capture the long run behavior of the moment
process and can therefore be used to estimate the asymptotic variance of its sample mean.
An advantage of using the series LRV estimator is that the conventional J statistic, after
a �nite sample correction, is asymptotically F distributed. This result completely removes
the computation burden of simulating critical values that is often required under the non-
standard asymptotics for kernel LRV estimators. Our simulation demonstrates that the
resulting series J� test using F critical values has virtually no size distortion in almost all
cases considered.

The paper uses the MSE criterion to select the smoothing parameter for the J� test.
The MSE criterion may be a reasonable choice but is not most suitable for hypothesis
testing problems. Sun, Phillips and Jin (2008), and Sun (2010a,b,c,d) consider selecting
the smoothing parameter to maximize the local asymptotic power while controlling for the
size of the test. It is interesting to extend their approach to the current setting.
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8 Appendix

8.1 Additional Technical Results

Lemma 1 As b! 0; we have
(a) �1 =

P1
i=1 �i =

R 1
0 ~�b (r; r) dr = 1� bc1 + o(b):

(b) �2 =
P1
i=1 (�i)

2 =
R 1
0

R 1
0 ~�

2
b (r; s) drds = bc2 + o(b):

(c) �j =
P1
i=1 (�i)

j = O(bj�1); for j � 2:

Proof of Lemma 1. Parts (a) and (b): We only need to show
P1
i=1 �i =

R 1
0 ~�b (r; r) dr

and
P1
i=1 (�i)

2 =
R 1
0

R 1
0 ~�b (r; s) drds as the last equalities in parts (a) and (b) hold by

Lemma 2 of Sun (2010d). By de�nition

1X
i=1

1X
j=1

�ij�i�
0
j =

1X
i=1

�i�i�
0
i

where �i s iidN(0; Iq) and �i s iidN(0; Iq): Taking expectations on both sides yields
1X
i=1

�ii =
1X
i=1

�i: (11)

It follows from the Fourier series expansion of ~�b(r; s) thatZ 1

0
~�b(r; r)dr =

1X
i=1

1X
j=1

�ij

Z 1

0
�i (r)�j (r) dr =

1X
i=1

�ii: (12)

Combining (11) and (12) yields
R 1
0 ~�b (r; r) dr =

P1
i=1 �i:

To show that
P1
i=1 (�i)

2 =
R 1
0

R 1
0 ~�b (r; s) drds; we note that

1X
i=1

(�i)
2 = lim

N!1
tr
�
�2N
�
= lim
N!1

NX
i=1

NX
j=1

�2ij

=
1X
i=1

1X
j=1

�2ij =

Z 1

0

Z 1

0
~�2b (r; s) drds

where the last equality follows from Parseval�s identity.
Part (c): Note that

�j =

1X
i=1

(�i)
j = lim

N!1
tr
�
�jN

�
=

X
i1;i2;:::;ij

�i1i2�i2i3 � � ��ij�1;ij�ij ;i1

=

Z 1

0

Z 1

0
� � �
Z 1

0

Z 1

0
~�b(r1; r2)~�b(r2; r3) � � � ~�b(rj�1; rj)~�b(rj ; r1)dr1dr2 � � � drj ;

so ���j�� �
Z 1

0

Z 1

0
� � �
Z 1

0

Z 1

0
j~�b(r1; r2)j j~�b(r2; r3)j � � � j~�b(rj�1; rj)j dr1dr2 � � � drj

�
�Z 1

0
sup
s
j~�b(r; s)j dr

�j�1
:
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In view of the de�nition

~�b(r; s) = kb(r � s)�
Z 1

0
kb(r � p)dp�

Z 1

0
kb(s� q)dq +

Z 1

0

Z 1

0
kb(p� q)dpdq;

we have Z 1

0
sup
s
j~�b(r; s)j dr � 4 sup

s

Z 1

0
jkb(r � s)j dr

= 4 sup
s2[0;1]

�Z 1�s

�s
jkb(x)j dx

�

= 4b sup
s2[0;1]

 Z (1�s)=b

�s=b
jk(x)j dx

!

� 4b
Z 1

�1
jk(x)j dx = O(b):

Therefore, �j = O(b
j�1):

Lemma 2 Let f�i := �i (b)g be a nonnegative weighting sequence satisfying
1X
i=1

�i = 1 and
1X
i=1

(�i)
j = O(bj�1) for j � 2:

De�ne
1X
i=1

�i�i�
0
i =

�
�11 �12
�21 �22

�
and �11�2 = �11 � �12��122 �21:

where �i s iidN(0; Iq), �11 is a scalar, and �22 is a (q� 1)� (q� 1) matrix. As b! 0; we
have

(a) E�11�2 = 1� (q � 1)
P1
i=1 �

2
i + o(b);

(b) E (�11�2)
2 = 1� 2 (q � 2)

P1
i=1 �

2
i + o(b);

(c) var (�11�2) = 2
P1
i=1 �

2
i + o(b):

Proof of Lemma 2. Part (a): Let �0i =
�
�0i1; �

0
i2

�
where �i1 2 R and �i2 2 Rq�1: Then

E�11�2

= E

1X
i=1

�i�i1�
0
i1 � E

 1X
i=1

�i�i1�
0
i2

! 1X
i=1

�i�i2�
0
i2

!�1 1X
i=1

�i�i2�i1

!

=
1X
i=1

�i � Etr

24 1X
i=1

�i�i2�
0
i2

!�1 1X
i=1

�i�i2�i1

! 1X
i=1

�i�i1�
0
i2

!035
=

1X
i=1

�i � Etr

24 1X
i=1

�i�i2�
0
i2

!�1 1X
i=1

�2i �i2�
0
i2

!35 :
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But

Etr

24 1X
i=1

�i�i2�
0
i2

!�1 1X
i=1

�2i �i2�
0
i2

!35
= Etr

"
Iq�1 �

1X
i=1

�i
�
Iq�1 � �i2�0i2

�#�1 1X
i=1

�2i �i2�
0
i2

!

= (q � 1)
1X
i=1

�2i + Etr
1X
j=1

" 1X
i=1

�i
�
Iq�1 � �i2�0i2

�#j  1X
i=1

�2i �i2�
0
i2

!

= (q � 1)
1X
i=1

�2i +O

24 1X
j=1

Cj
1X
i=1

�j+2i

35
= (q � 1)

1X
i=1

�2i +O

24 1X
j=1

Cjbj+1

35
= (q � 1)

1X
i=1

�2i + o(b): (13)

where C is a �xed constant and Cj is a bound for Etr
�
Iq�1 � �i12�

0
i12

�
:::
�
Iq�1 � �ij2�

0
ij2

�
�i2�

0
i2:

So

E�11�2 = 1� (q � 1)
1X
i=1

�2i + o(b)

Part (b): We write

E
�
�11 � �12��122 �21

�2
= E�211 + E�12�

�1
22 �21�12�

�1
22 �21 � 2E�11�12�

�1
22 �21:

Using the same argument as in (13), we have

E�211 =

 1X
i=1

�i

!2
+ 2

1X
i=1

�2i ;

E�11�12�
�1
22 �21 =

 1X
i=1

�i

!
Etr

 1X
k=1

�i�i2�
0
i2

!�1 1X
i=1

�2i �i2�
0
i2

!

+2Etr

 1X
i=1

�i�i2�
0
i2

!�1 1X
i=1

�3i �i2�
0
i2

!

=

1X
i=1

�2i (q � 1) + o(b);
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and

E�12�
�1
22 �21�12�

�1
22 �21

= Etr

0@" 1X
i=1

�i�i2�
0
i2

#�1 24 1X
j=1

�2j�j2�
0
j2

351A tr
0@" 1X

i=1

�i�i2�
0
i2

#�1 24 1X
j=1

�2j�j2�
0
j2

351A
+2Etr

8<:
" 1X
i=1

�i�i2�
0
i2

#�1 24 1X
j=1

�2j�j2�
0
j2

35" 1X
i=1

�i�i2�
0
i2

#�1 24 1X
j=1

�2j�j2�
0
j2

359=;
= o(b):

Hence

E (�11�2)
2 = 1� 2 (q � 2)

1X
i=1

�2i + o(b):

Part (c) follows from parts (a) and (b).

8.2 Proof of the Main Results

Proof of Theorem 1. Under Assumptions (i)-(iii) in the theorem, K ~W1 follows a
Wishart distribution W(Im;K) as

K ~W1 =
KX
k=1

�k�
0
k:

where �k =
R 1
0 �k (r) dBm(r) is iid N(0; Im). In addition, for any k; �k and Bm(1) are

independent because both are normal and

E

Z 1

0
�k (r) dBm(r)B

0
m(1) = E

Z 1

0
�k (r) dBm(r)

Z 1

0
dB0m(s)

= Im

Z 1

0
�k (r) dr = 0:

Consequently, ~W�1
1 is independent of Bm(1):

Let G� = Um�m�m�dV
0
d�d be the singular value decomposition of G� = ��1G0: By

de�nition, UU 0 = UU 0 = Im, V V 0 = V 0V = Id and

� =

�
Ad�d
Oq�d

�
where A is a diagonal matrix with singular values on the main diagonal and O is a matrix
of zeros. Now

Bm(1)�G�
h
G0� ~W

�1
1 G�

i�1
G0� ~W

�1
1 Bm(1)

= Bm(1)� U�V 0
h
V �0U 0 ~W�1

1 U�V 0
i�1

V �0U 0 ~W�1
1 Bm(1)

= U

�
U 0Bm(1)� �

h
�0U 0 ~W�1

1 U�
i�1

�0
�
U 0 ~W�1

1 U
�
U 0Bm(1)

�
:
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Since [U 0 ~W�1
1 U , U 0Bm(1)] has the same joint distribution as

h
~W�1
1 ; Bm(1)

i
; we can write

J1
d
=

�
Bm(1)� �

h
�0
�
~W�1
1

�
�
i�1

�0 ~W�1
1 Bm(1)

�0
~W�1
1

�
�
Bm(1)� �

h
�0
�
~W�1
1

�
�
i�1

�0 ~W�1
1 Bm(1)

�
=q

where d
= signi�es �is equal to in distribution�and ~W�1

1 remains independent of Bm(1):
Let

~W�1
1 =

�
C11 C12
C21 C22

�
where C11 is a d � d matrix, C22 is a q � q matrix and C12 = C 021. With this partition of
~W�1
1 ; we have

�
h
�0
�
~W�1
1

�
�
i�1

�0

=

�
A
O

���
A0 O0

�
~W�1
1

�
A
O

���1 �
A0 O0

�
=

�
C�111 O12
O21 O22

�
(14)

whereOij are matrices of zeros with compatible dimensions. LettingBm(1) = [B0d (1) ; B
0
q (1)]

0

and plugging (14) into J1 yields

J1
d
=

�
Bm(1)�

�
C�111 O12
O21 O22

��
C11 C12
C21 C22

�
Bm(1)

�0
~W�1
1

�
�
Bm(1)�

�
C�111 O12
O21 O22

��
C11 C12
C21 C22

�
Bm(1)

�
=q

=

�
Bm(1)�

�
Id C�111 C12
O21 O22

�
Bm(1)

�0
~W�1
1

�
�
Bm(1)�

�
Id C�111 C12
O21 O22

�
Bm(1)

�
=q

=

�
�C�111 C12Bq(1)

Bq(1)

�0�
C11 C12
C21 C22

��
�C�111 C12Bq(1)

Bq(1)

�
=q

=

�
�C�111 C12Bq(1)

Bq(1)

�0�
O�

C22 � C21C�111 C12
�
Bq(1)

�
=q

= Bq(1)
0 �C22 � C21C�111 C12�Bq(1)=q:

To see the distribution of J1; we note that

~W1 =

�
C11 C12
C21 C22

��1
:=

�
C11 C12

C21 C22

�
;

so by the partitioned inverse formula

C22 � C21C�111 C12 =
�
C22

��1
:
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But by de�nition KC22 s W (Iq;K) : Hence

1

K
J1

d
= Bq(1)

0 �KC22��1Bq(1)=q;
or

(K � q + 1)
K

J1
d
=

�2q=q

�2K�q�1= (K � q + 1) = F (q;K � q + 1):

The distributional equivalence follows from Proposition 8.2 in Bilodeau and Brenner (1999)
where the notation Fc denotes the canonical F distribution (Bilodeau and Brenner (1999),
page 42).

We have therefore shown that when K is �xed,

(K � q + 1)
K

JT
d! F (q;K � q + 1):

Proof of Theorem 2. We use the same notation as in the proof of Theorem 1.

[Bm(1) + U�]�G�
h
G0� ~W

�1
1 G�

i�1
G0� ~W

�1
1 [Bm(1) + U�]

= [Bm(1) + U�]� U�V 0
h
V �0U 0 ~W�1

1 U�V 0
i�1

V �0U 0 ~W�1
1 [Bm(1) + U�]

= U

��
U 0Bm(1) + �

�
� �

h
�0U 0 ~W�1

1 U�
i�1

�0
�
U 0 ~W�1

1 U
� �
U 0Bm(1) + �

��
:

Using the same argument as before, we can write

J1 (�0)
d
=

�
[Bm(1) + �]� �

h
�0
�
~W�1
1

�
�
i�1

�0 ~W�1
1 [Bm(1) + �]

�0
~W�1
1

�
�
[Bm(1) + �]� �

h
�0
�
~W�1
1

�
�
i�1

�0 ~W�1
1 [Bm(1) + �]

�
=q

= (Bq(1) + �2)
�
C22 � C21C�111 C12

�
(Bq(1) + �2) =q:

Hence
(K � q + 1)

K
J1 (�0)

d
= F (q;K � q + 1; k�2k2);

as desired.

Proof of Theorem 3. We prove the result under the null that �0 = 0: The proof under
the local alternatives is similar and is omitted here. As before, letting G� = U�V 0 be the
svd of G�; we have

Bm(1)�G�
h
G0� ~W

�1
1;�G�

i�1
G0� ~W

�1
1;�Bm(1):

= Bm(1)� U�V 0
h
V �0U 0 ~W�1

1;�U�V
0
i�1

V �0U 0 ~W�1
1;�Bm(1)

= U

�
U 0Bm(1)� �

h
�0U 0 ~W�1

1;�U�
i�1

�0
�
U 0 ~W�1

1;�U
�
U 0Bm(1)

�
d
= U

�
Bm(1)� �

h
�0 ~W�1

1;��
i�1

�0 ~W�1
1;�Bm(1)

�
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and

J1;�
d
=

�
Bm(1)� �

h
�0 ~W�1

1;��
i�1

�0 ~W�1
1;�Bm(1)

�0
� ~W�1

1;�

�
Bm(1)� �

h
�0 ~W�1

1;��
i�1

�0 ~W�1
1;�Bm(1)

�
=q:

Denote
~W�1
1;� =

�
C11;� C12;�
C21;� C22;�

�
and ~W1;� =

�
C11� C12�
C21� C22�

�
:

By de�nition
�
C22�

��1
= C22;� � C21;�C�111;�C12;�: Using exactly the same calculation as in

the proof of Theorem 1, we have

J1;�
d
= Bq(1)

0
h
C22;� � C21;�C�111;�C12;�

i
Bq(1)=q

= Bq(1)
0 �C22� ��1Bq(1)=q

= Bq(1)
0
�Z 1

0

Z 1

0
~�
�r
b
;
s

b

�
dBq(r)dB

0
q (s)

��1
Bq(1)=q

as desired.

Proof of Theorem 4. (i) It follows from Lemma 1 that

K =
�21
�2
=
[1� bc1 + o(b)]2

[bc2 + o(b)]
=

1

bc2

[1� bc1 + o(b)]2

1 + o(1)

=
1

bc2
(1 + o(1)) =

1

bc2
+ o

�
1

bc2

�
:

(ii) De�ne

T� =
(K � q + 1)

Kq
�0

 1X
i=1

�i�i�
0
i

!�1
�

for some weighting sequence � = (�1; �2; :::) satisfying
P1
i=1 �i = 1: Then J

�
1;� = T� when

� = �� =: (�1=�1; �2=�1; :::) ;

and Fq;K�q+1 = T� when

� = �K =
�
K�1;K�1; :::;K�1; 0; :::

�
:

Let H be an orthonormal matrix such that H = (�= k�k ;�)0 where � is a q � (q � 1)
matrix, then

T� =
(K � q + 1)

Kq
(H�)0

 1X
i=1

�iH�i (H�i)0
!�1

(H�)

=
(K � q + 1)

Kq
k�k2 e01

 1X
i=1

�iH�i (H�i)0
!�1

e1
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where e1 = (1; 0; 0; :::; 0; 0)0: Note that k�k2 is independent of H�i and H�i has the same
distribution as �i; we can write

T�
d
=
(K � q + 1)

K

k�k2

q
e01

 1X
i=1

�i�i�
0
i

!�1
e1:

As a result,

P (T� < z)

= P

0@(K � q + 1)
K

k�k2

q
e01

 1X
i=1

�i�i�
0
i

!�1
e1 < z

1A
= EGq

0@z K

K � q + 1

24e01
 1X
i=1

�i�i�
0
i

!�1
e1

35�11A ;
where Gq (�) is the CDF of the distribution �2q=q.

De�ne 1X
i=1

�i�i�
0
i =

�
�11 �12
�21 �22

�
where �11 is a scalar and �22 is a (q � 1)� (q � 1) matrix. Then24e01

 1X
i=1

�i�i�
0
i

!�1
e1

35�1 = �11 � �12��122 �21 = �11�2;
and so

P (T� < z) = EGq

�
z

K

K � q + 1�11�2
�
:

By Lemma 1, the weighting sequence �� satis�es the assumptions in Lemma 2. It is easy
to see that the weighting sequence �K also satis�es the assumptions. Hence, by Lemma 2,
when � = �� or �K ; we have

E�11�2 =
1X
i=1

�i �
1X
i=1

(�i)
2 (q � 1) + o (b)

= 1� �2
�21
(q � 1) + o (b) = 1� bc2 (q � 1) + o(b)

and

var (�11�2) =
1X
i=1

(�i)
2 [(2q � 2)� 2q + 4] + o(b)

= 2
�2
�21
+ o(b) = 2bc2 + o(b):
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That is, �11�2 concentrates around E�11�2: Let ~�11�2 be a random variable between �11�2 and
E�11�2: A Taylor expansion yields:

P (T� < z)

= Gq

�
z

K

K � q + 1E�11�2
�
+
1

2
G00q

�
z

K

K � q + 1E�11�2
�
var (�11�2)

+E

�
1

2
G00q

�
z

K

K � q + 1~�11�2
�
� 1
2
G00q

�
z

K

K � q + 1E�11�2
��
(�11�2 � E�11�2)2

= Gq

�
z

K

K � q + 1E�11�2
�
+
1

2
G00q

�
z

K

K � q + 1E�11�2
�
var (�11�2) + o(b): (15)

This result, combined with the observation that E�11�2 and var (�11�2) are the same across
� = �� and � = �K , up to order o(b); yields

P
�
J�1;� < z

�
= P (Fq;K�q+1 � z) + o(b):
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Table 1: Empirical size of di¤erent J tests and J* tests for the VAR(1) case with nominal
size �, degree of overidenti�cation q, and sample size T = 100

S-J S-J* B-J B-J* P-J P-J* Q-J Q-J* D-J D-J*
q = 1; � = 5%

�=-0.8 0.095 0.061 0.126 0.085 0.117 0.063 0.112 0.065 0.109 0.064
�=-0.5 0.071 0.058 0.083 0.067 0.078 0.058 0.076 0.059 0.077 0.059
�=0.00 0.052 0.047 0.054 0.049 0.056 0.048 0.054 0.047 0.054 0.047
�=0.50 0.073 0.060 0.084 0.068 0.079 0.060 0.078 0.061 0.078 0.061
�=0.8 0.097 0.062 0.128 0.086 0.118 0.064 0.113 0.066 0.111 0.065
�=0.95 0.160 0.065 0.243 0.120 0.243 0.077 0.228 0.082 0.221 0.080

q = 1; � = 10%
�=-0.8 0.164 0.126 0.207 0.160 0.193 0.128 0.187 0.130 0.183 0.131
�=-0.5 0.133 0.121 0.153 0.132 0.144 0.119 0.142 0.120 0.142 0.122
�=0.00 0.104 0.098 0.110 0.100 0.109 0.099 0.108 0.098 0.108 0.098
�=0.50 0.133 0.119 0.148 0.132 0.141 0.118 0.140 0.120 0.141 0.120
�=0.8 0.166 0.127 0.207 0.160 0.194 0.130 0.188 0.132 0.185 0.133
�=0.95 0.254 0.145 0.348 0.222 0.345 0.160 0.330 0.166 0.319 0.164

q = 4; � = 5%
�=-0.8 0.271 0.042 0.329 0.083 0.361 0.049 0.335 0.056 0.342 0.059
�=-0.5 0.135 0.047 0.153 0.060 0.158 0.050 0.147 0.052 0.148 0.052
�=0.00 0.086 0.044 0.094 0.045 0.096 0.044 0.090 0.044 0.093 0.045
�=0.50 0.142 0.050 0.160 0.063 0.165 0.051 0.153 0.052 0.155 0.053
�=0.8 0.283 0.044 0.342 0.087 0.371 0.052 0.347 0.058 0.352 0.061
�=0.95 0.506 0.081 0.650 0.113 0.730 0.039 0.710 0.066 0.718 0.072

q = 4; � = 10%
�=-0.8 0.370 0.100 0.438 0.170 0.461 0.115 0.436 0.125 0.440 0.125
�=-0.5 0.214 0.100 0.241 0.124 0.243 0.106 0.231 0.107 0.233 0.107
�=0.00 0.153 0.093 0.162 0.095 0.165 0.092 0.159 0.093 0.161 0.093
�=0.50 0.223 0.105 0.249 0.127 0.251 0.109 0.239 0.112 0.240 0.111
�=0.8 0.382 0.104 0.449 0.172 0.473 0.119 0.448 0.129 0.451 0.131
�=0.95 0.625 0.187 0.743 0.234 0.797 0.105 0.782 0.150 0.787 0.159

S-J: J test based on the series LRV estimator and �2 approximation; S-J*: J* test based
on the series LRV estimator and F approximation.
B-J: J test based on the Bartlett kernel LRV estimator and �2 approximation; B-J*: J*
test based on the Bartlett kernel LRV estimator and F approximation.
P-J, P-J*,Q-J, Q-J*, D-J and D-J* are de�ned analogously.
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Table 2: Empirical size of di¤erent J tests and J* tests for the VMA(1) case with nominal
size �, degree of overidenti�cation q, and sample size T = 100

S-J S-J* B-J B-J* P-J P-J* Q-J Q-J* D-J D-J*
q = 1; � = 5%

�=-0.8 0.066 0.056 0.076 0.064 0.073 0.057 0.071 0.057 0.071 0.057
�=-0.5 0.063 0.053 0.071 0.059 0.068 0.053 0.067 0.053 0.066 0.054
�=0.00 0.053 0.048 0.055 0.049 0.057 0.048 0.056 0.048 0.055 0.048
�=0.50 0.067 0.057 0.075 0.063 0.074 0.058 0.071 0.058 0.070 0.058
�=0.8 0.069 0.058 0.079 0.065 0.074 0.059 0.074 0.059 0.073 0.059
�=0.95 0.061 0.055 0.067 0.058 0.065 0.055 0.065 0.055 0.065 0.055

q = 1; � = 10%
�=-0.8 0.125 0.112 0.140 0.122 0.133 0.112 0.131 0.113 0.132 0.113
�=-0.5 0.121 0.109 0.136 0.119 0.131 0.109 0.129 0.110 0.128 0.110
�=0.00 0.102 0.097 0.107 0.098 0.108 0.097 0.106 0.097 0.105 0.096
�=0.50 0.123 0.112 0.135 0.122 0.130 0.112 0.129 0.113 0.129 0.113
�=0.8 0.126 0.113 0.140 0.124 0.134 0.113 0.132 0.114 0.132 0.114
�=0.95 0.116 0.109 0.125 0.115 0.123 0.109 0.122 0.109 0.121 0.110

q = 4; � = 5%
�=-0.8 0.129 0.050 0.144 0.060 0.146 0.051 0.137 0.052 0.140 0.053
�=-0.5 0.118 0.048 0.131 0.058 0.135 0.051 0.126 0.051 0.130 0.051
�=0.00 0.084 0.043 0.094 0.044 0.096 0.044 0.091 0.044 0.091 0.044
�=0.50 0.122 0.048 0.136 0.058 0.137 0.051 0.127 0.051 0.132 0.051
�=0.8 0.130 0.047 0.146 0.057 0.149 0.048 0.139 0.049 0.141 0.049
�=0.95 0.104 0.047 0.115 0.052 0.118 0.048 0.112 0.048 0.113 0.049

q = 4; � = 10%
�=-0.8 0.203 0.104 0.228 0.122 0.227 0.107 0.218 0.109 0.220 0.108
�=-0.5 0.190 0.101 0.213 0.114 0.214 0.103 0.204 0.103 0.205 0.103
�=0.00 0.152 0.090 0.162 0.094 0.165 0.093 0.158 0.093 0.160 0.092
�=0.50 0.197 0.102 0.216 0.117 0.218 0.105 0.207 0.107 0.211 0.108
�=0.8 0.203 0.101 0.229 0.120 0.229 0.104 0.217 0.108 0.221 0.106
�=0.95 0.174 0.099 0.190 0.109 0.192 0.102 0.183 0.103 0.186 0.102

S-J: J test based on the series LRV estimator and �2 approximation; S-J*: J* test based
on the series LRV estimator and F approximation.
B-J: J test based on the Bartlett kernel LRV estimator and �2 approximation; B-J*: J*
test based on the Bartlett kernel LRV estimator and F approximation.
P-J, P-J*,Q-J, Q-J*, D-J and D-J* are de�ned analogously.
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Table 3: Empirical size of di¤erent J tests and J* tests for di¤erent DGPs with nominal
size �, degree of overidenti�cation 4, and sample size T = 200

S-J S-J* B-J B-J* P-J P-J* Q-J Q-J* D-J D-J*
q = 4; � = 5%;VAR(1) case

�=-0.8 0.185 0.048 0.221 0.082 0.218 0.054 0.203 0.056 0.205 0.057
�=-0.5 0.098 0.054 0.116 0.065 0.108 0.055 0.103 0.056 0.106 0.056
�=0.00 0.067 0.049 0.072 0.048 0.072 0.048 0.070 0.048 0.070 0.049
�=0.50 0.096 0.053 0.113 0.064 0.107 0.053 0.102 0.054 0.103 0.055
�=0.8 0.184 0.048 0.221 0.080 0.218 0.054 0.203 0.056 0.205 0.055
�=0.95 0.385 0.054 0.513 0.107 0.566 0.049 0.539 0.067 0.547 0.069

q = 4; � = 10%;VAR(1) case
�=-0.8 0.274 0.109 0.323 0.160 0.316 0.117 0.298 0.120 0.298 0.120
�=-0.5 0.168 0.112 0.190 0.130 0.180 0.113 0.176 0.114 0.179 0.114
�=0.00 0.127 0.099 0.133 0.100 0.134 0.099 0.130 0.099 0.131 0.099
�=0.50 0.170 0.112 0.193 0.127 0.183 0.112 0.178 0.113 0.179 0.113
�=0.8 0.278 0.106 0.325 0.157 0.317 0.115 0.300 0.118 0.301 0.117
�=0.95 0.498 0.126 0.620 0.214 0.660 0.118 0.635 0.143 0.638 0.148

q = 4; � = 5%;VMA(1) case
�=-0.8 0.089 0.051 0.103 0.061 0.098 0.052 0.093 0.053 0.094 0.052
�=-0.5 0.088 0.053 0.099 0.060 0.095 0.053 0.091 0.053 0.093 0.054
�=0.00 0.067 0.047 0.072 0.047 0.072 0.047 0.070 0.047 0.070 0.048
�=0.50 0.088 0.051 0.099 0.059 0.095 0.051 0.091 0.052 0.092 0.052
�=0.8 0.091 0.053 0.105 0.061 0.100 0.053 0.095 0.054 0.097 0.054
�=0.95 0.077 0.050 0.085 0.054 0.083 0.050 0.081 0.050 0.080 0.051

q = 4; � = 10%;VMA(1) case
�=-0.8 0.152 0.104 0.172 0.119 0.165 0.106 0.160 0.106 0.161 0.106
�=-0.5 0.151 0.107 0.169 0.119 0.163 0.108 0.157 0.108 0.159 0.108
�=0.00 0.126 0.098 0.133 0.099 0.133 0.098 0.130 0.098 0.131 0.099
�=0.50 0.151 0.106 0.168 0.118 0.162 0.107 0.157 0.108 0.159 0.107
�=0.8 0.157 0.108 0.176 0.121 0.169 0.108 0.163 0.109 0.164 0.109
�=0.95 0.136 0.102 0.149 0.108 0.146 0.103 0.143 0.103 0.142 0.103

S-J: J test based on the series LRV estimator and �2 approximation; S-J*: J* test based
on the series LRV estimator and F approximation.
B-J: J test based on the Bartlett kernel LRV estimator and �2 approximation; B-J*: J*
test based on the Bartlett kernel LRV estimator and F approximation.
P-J, P-J*,Q-J, Q-J*, D-J and D-J* are de�ned analogously.
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Figure 1: Size adjusted power of the series J� test and kernel J tests under the VAR(1)
case with sample size T = 100 and degree of overidenti�cation q = 1.
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Figure 2: Size adjusted power of the series J� test and kernel J tests under the VAR(1)
case with sample size T = 100 and degree of overidenti�cation q = 4.

33



0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1
(a) ρ = ­0.80

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1
(b) ρ = ­0.50

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1
(c) ρ = 0.00

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1
(d) ρ = 0.50

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1
(e) ρ = 0.80

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4
(f) ρ = 0.95

J* test
Bartlettχ2 test
Parzen χ2 test
QS χ2 test
Daniel lχ2 test

J* test
Bartlettχ2 test
Parzen χ2 test
QS χ2 test
Daniel lχ2 test

Figure 3: Size adjusted power of the series J� test and kernel J tests under the VAR(1)
case with sample size T = 200 and degree of overidenti�cation q = 4.
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