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I would like to congratulate the authors (Lazarus, Lewis, Stock, and Watson, LLSW
hereafter) for the timely and authoritative practical recommendations for heteroskedasticity
and autocorrelation robust (HAR)1 inference. Such recommendations are long overdue.
There is substantial progress in the econometric theory literature on HAR inference in the
last two decades, but the theoretical research has not influenced empirical practices as much
as it should have, even though the new generation of HAR tests are more accurate than
the classical HAR tests by Newey and West (1987) and Andrews (1991) and are as easy to
use as the latter tests. LLSW’s paper has the potential to change the status quo in applied
research.

The literature on HAR inference has advanced on at least three fronts: fixed-smoothing
asymptotics, testing-optimal smoothing parameter choice, and asymptotic t and F tests.
LLSW provide practical recommendations on each of the three fronts. Below I discuss them
in turn; the references provided are by no means complete. I also provide links to some
Stata implementations of the new HAR tests.

1 Fixed-smoothing asymptotics

The first and most important advance is the development of the fixed-smoothing asymp-
totic theory, which includes as a special case the fixed-b asymptotic theory pioneered by
Kiefer and Vogelsang (2002a,b, 2005) in the time series setting. The idea of holding the
amount of smoothing fixed to develop new asymptotic approximations has been extended
to accommodate spatial data, spatial and temporal data, panel data, and clustered data.
From a broad perspective, the idea can be used in any setting where there is a need to
estimate the asymptotic variance nonparametrically.

It is now well known that fixed-smoothing asymptotic approximations are more accu-
rate than the normal and chi-square approximations. This has been confirmed by ample
simulation evidence and supported by higher order asymptotic theory in Jansson (2004)
and Sun, Phillips, and Jin (2008).

∗I would like to thank Xiaohong Chen, David Kaplan, Cheng Liu, and Peter Phillips for helpful comments.
The usual disclaimer applies.

1To the best of my knowledge, the acronym HAR was first introduced in Phillips (2005a) where he coined
the term to refer collectively to a group of methods that attempts robustification of inference and includes
all the methods that I discuss here.
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LLSW focus on location models and regression models. I would like to add that fixed-
smoothing approximations have been established for many more models and in more general
frameworks including both the GMM framework and the empirical likelihood framework.
In the former case, both the first-step GMM (e.g., (Kiefer and Vogelsang, 2005)) and the
two-step GMM (e.g., (Sun, 2014b)) have been considered.

Regression models are the most important models in any discipline. LLSW’s paper is,
therefore, well positioned to advocate the use of fixed-smoothing approximations in applied
research.

2 Testing-optimal smoothing parameter choice

The second important advance in HAR inference is the development of testing-optimal
rules for selecting the smoothing parameter. These rules target the fundamental quantities
in HAR testing and employ criteria that are different from the traditional mean squared
error (MSE) criterion.

For hypothesis testing, the fundamental quantities are arguably the type I error and
the type II error. In Sun, Phillips and Jin (2008), we suggest that one should choose the
smoothing parameter to minimize a loss function that is a weighted average of the type
I and type II errors with the weights reflecting the relative consequences of committing
these two types of errors. I will refer to this rule as the SPJ rule hereafter. Equivalently,
one could minimize one type of error subject to the control of the other type of error.
See Sun (2014a) for details of such a rule. LLSW propose an alternative rule to smoothing
parameter choice. Their rule is also oriented toward the testing problem at hand but strikes
an optimal balance between the absolute size distortion and the size-adjusted power loss
relative to an oracle who knows the true asymptotic variance.

LLSW’s rule and SPJ’s rule share some similarities. Both are oriented towards the
fundamental objectives of interest in a testing problem. Both rules result in smoothing
parameter choices that balance the asymptotic variance of the underlying LRV estimator
with its asymptotic bias. This is in sharp contrast with the MSE-based rule that balances
the asymptotic variance and the squared asymptotic bias. For this reason, when the moment
processes are persistent, both rules call for a larger truncation lag in order to achieve more
bias reduction than what is deemed optimal under the MSE criterion.

There are, however, some important differences between these two rules. Take the case
with kernel HAR estimation as an example. Let FT be the Wald statistic for testing m
joint restrictions and cαm,b be the fixed-b critical value for a level-α test. Let q be the order
of the kernel, and define

ω(q) = tr

 1

m

∞∑
j=−∞

|j|q ΓjΩ
−1

 ,

where Γj is the autocovariance of order j and Ω is the long run variance (LRV) of the
underlying time series. Then it follows from Sun (2014a) that under the traditional small-b
asymptotics:

PrH0(FT > cαm,b)=̇α+G′m (χαm)χαm · k(q)ω(q) · (bT )−q ,
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where higher order terms have been ignored. In the above, b is the ratio of the truncation
lag to the sample size T, k(q) is its Parzen exponent, and χαm is the (1− α)-quantile of the
chi-squared distribution with m degrees of freedom. The type I error and the size distortion
of the fixed-b test are then approximately measured by

eI(b) = α+G′m (χαm)χαm · k(q)ω(q) · (bT )−q ,

∆S (b) = G′m (χαm)χαm · k(q)ω(q) · (bT )−q ,

respectively. Only the nonparametric bias of the LRV estimator is reflected in the above
measures. The variance effect has been corrected by using the fixed-b critical value cαm,b,
which is larger than the chi-squared critical value χαm. We note that SPJ use eI(b) as a part
of their loss function, and LLSW use ∆S (b) as the counterpart.

While eI(b) and ∆S (b) differ only by a constant, i.e., the nominal level of the test, there
is a substantial difference between the approximate type II error and the approximate size-
adjusted power, which are employed respectively in SPJ’s and LLSW’s loss functions. In
the location model with long run variance Ω and under the local alternative

H1

(
δ2
)

: β = β0 +
Ω1/2c√
T

for c ∈ Rm that is uniformly distributed on a sphere with radius δ, the type II error can be
approximated by

eII
(
δ2, b

)
= Gm,δ2 (χαm)−G′

m,δ2
(χαm)χαm · k(q)ω(q) · (bT )−q +

δ2

2
G′

(m+2),δ2
(χαm)χαm · k2b,

where k2 is the integral of the squared kernel function and Gm,δ2 is the CDF of a non-

central chi-squared variate with noncentrality parameter δ2. The target behind eII
(
δ2, b

)
is PrH1(FT < cαm,b), the finite-sample type II error. Note that eII

(
δ2, b

)
is the first-order

approximation to PrH1(FT < cαm,b), that is

eII
(
δ2, b

)
=̇PrH1(FT < cαm,b).

To calculate the size-adjusted power, LLSW first adjust the fixed-b critical value cαm,b
to remove the bias effect in the null rejection probability so that the test has no first-order
size distortion. This gives rise to the infeasible critical value

cα,Tm,b = cαm,b

([
1 + ω(q)k(q) (bT )−q

])
.

Such a critical value is not supposed to be used in practice, as ω(q) is not known. It is
a theoretical construct for the purpose of calculating the size-adjusted power. The size-
adjusted power loss is based on the expansion

PrH1(δ
2)(FT > cα,Tm,b)=̇1−Gm,δ2 (χαm)− δ2

2
G′

(m+2),δ2
(χαm)χαm · k2b

and is given by

∆P

(
δ2, b

)
=
δ2

2
G′

(m+2),δ2
(χαm)χαm · k2b.
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The target behind ∆P

(
δ2, b

)
is the difference between 1 − Gm,δ2 (χαm) , the oracle power,

and the actual finite-sample size-adjusted power PrH1(FT > cα,Tm,b). That is

∆P

(
δ2, b

)
=̇ 1−Gm,δ2 (χαm)− PrH1(FT > cα,Tm,b)

= PrH1(FT < cα,Tm,b)−Gm,δ2 (χαm) .

Comparing the targets behind eII
(
δ2, b

)
and ∆P

(
δ2, b

)
, we can see that there are two

major differences. First, different critical values are used. While eII
(
δ2, b

)
is based on

the fixed-b critical value cαm,b, which is feasible, ∆P

(
δ2, b

)
is based on the adjusted fixed-

b critical value cα,Tm,b , which is not feasible. Second, there is an additional constant in

∆P

(
δ2, b

)
, namely, −Gm,δ2 (χαm) . The presence of such a constant does have an effect on

LLSW’s rule.
The testing-optimal b of SPJ minimizes a weighted average of the type I and type II

errors:
bSPJ = arg min

b

{
aeI (b) + (1− a)eII

(
δ2, b

)}
,

where a is the relative loss under the two types of errors. The loss function has both
economic and statistical interpretations. From an economic perspective, the loss function

characterizes the expected loss for the decision-making rule 1
{
FT > cαm,b

}
. To see this, let

the losses from committing type I error and type II error be 2a and 2 (1− a) , respectively
and assume that H0 and H1

(
δ2
)

are equally likely. Then the expected loss from the decision

rule 1
{
FT > cαm,b

}
is approximately aeI (b) + (1 − a)eII

(
δ2, b

)
, which is the same as the

loss behind the SPJ rule. From a statistical perspective, the above choice bSPJ can be
equivalently formulated as minimizing the type II error (or maximizing the raw power)
subject to the control of the type I error. So, the rule is in exactly the same spirit as the
classical Neyman–Pearson lemma.

The loss function that LLSW employ is a weighted average of the squared size distortion
and the squared size-adjusted power loss. Their choice of b is given by

bLLSW = arg min
b

{
κ [∆S (b)]2 + (1− κ)

[
∆P

(
δ2, b

)]2}
, (1)

where κ is a constant. LLSW consider using the worst-case power loss, and they replace
∆P

(
δ2, b

)
by maxδ2 ∆P

(
δ2, b

)
. However, to facilitate the comparison, I will use the version

in (1).
To see the difference between these two rules, we can examine their respective exact

finite-sample versions, namely

b∗SPJ = arg min
b

{
aPrH0(FT > cαm,b) + (1− a) PrH1(δ

2)(FT > cαm,b)
}
,

b∗LLSW = arg min
b

{
κ
[
PrH0(FT > cαm,b)− α

]2
+ (1− κ)

[
PrH1(δ

2)(FT < cα,Tm,b)−Gm,δ2 (χαm)
]2}

.

The LLSW rule insists that the type I error of the fixed-b test should be as close to α as
possible. Because of the quadratic form it uses, the rule treats over-rejection and under-
rejection symmetrically. Given that over-rejection corresponds to a larger type I error and
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under-rejection corresponds to a smaller type I error, the loss function designed by LLSW
appears to be incompatible with the preference for a smaller type I error. Fundamentally,
the LLSW loss function takes the absolute size distortion as an ingredient. As a result,
their optimal choice of b does not respect the direction of the asymptotic bias of the LRV
estimator. This aspect of smoothing parameter choice resembles the MSE-based rule. In
contrast, the SPJ rule allows positive and negative biases to have different effects on the loss
function. The difference between the SPJ rule and the LLSW rule may not be too large if the
underlying moment processes have positive autocorrelation. In this case, ω(q) > 0, so eI(b)

and [∆S (b)]2 move in the same direction as b changes. Similarly, eII
(
δ2, b

)
and

[
∆P

(
δ2, b

)]2
move in the same direction as b changes. However, in a regression setting or a more general
GMM setting, the moment processes are not necessarily positively autocorrelated, and the
difference between the SPJ rule and the LLSW rule can be large.

To a great extent, both SPJ and LLSW attempt to solve a multi-objective optimization
problem, but different sets of objectives are chosen. SPJ employ the type I and type II errors
as the objectives with zero as the ideal target for each of the two types of errors. LLSW
employ the absolute size distortion and the size-adjusted power as the objectives with the
exact nominal level α and the oracle power 1−Gm,δ2 (χαm) as the ideal and implicit targets.
Both rules involve scalarizing their respective multi-objective optimization problem into
a single objective. While we often examine the size-adjusted power alone in a simulation
study, I feel that it is not so natural to combine the size distortion and the size-adjusted
power in a simple loss function as they are computed under different critical values. There
may not exist any test that has the same size distortion with the unadjusted raw power
equal to the best size-adjusted power.

To sum up, testing-oriented rules to smoothing parameter choice should be used in HAR
testing, but there is room for debating which testing-oriented rule we should use. The SPJ
and LLSW rules share some similarities, but there are some important differences, reflecting
different preferences and loss functions.

3 Asymptotic t and F tests

The third recent advance in the HAR inference is the development of asymptotic t and F
tests. These tests are based on the orthonormal series (OS) HAR variance estimator. Such
an estimator has a long history. An early example is the average periodograms estimator
that involves taking a simple average of the first few periodograms. More recently, starting
from Phillips (2005b), Sun (2006), and Müller (2007), there is a renewed interest in this
type of estimator in econometrics. In the traditional increasing-smoothing framework,
there is no advantage of using the OS HAR estimator. In fact, it is suboptimal compared
to the kernel HAR estimator using the quadratic spectral kernel. However, in the fixed-
smoothing asymptotic framework, the asymptotic distributions for the t statistic and the
Wald statistics based on OS HAR variance estimators turn out to be the standard t and
F distributions, which are as convenient to use as the standard normal and chi-squared
approximations.

One of the reasons that the fixed-b asymptotic approximations have not been widely
used is that they are nonstandard, and critical values have to be simulated. In principle,
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critical values can be simulated and tabulated. However, it is encouraging to see that there
is an alternative class of HAR estimators that can deliver convenient, competitive, and
reliable tests.

LLSW include two OS HAR variance estimators as serious contenders in their extensive
simulation study. They find that the asymptotic t and F tests based on type II cosine series
can deliver superior performance, especially for testing a single restriction. This echoes the
results in Lazarus et al. (2017). LLSW’s paper may start a new tradition of using OS HAR
variance estimators and the associated t and F tests in applied research.

Here I would like to add that asymptotic t and F tests are nearly universally applicable.
In some situations, carefully crafted basis functions are needed to develop the asymptotic t
and F theory. As a partial list, the theory has been established in the following time series
settings:

1. Trend regression (Sun, 2011)

2. First-step GMM (Müller, 2007; Sun, 2013, 2014a; Lazarus et al., 2017)

3. Two-step efficient GMM (Sun and Phillips, 2009; Sun, 2014b; Hwang and Sun, 2017)

4. Overidentification testing (Sun and Kim, 2012; Chen and Liao, 2015)

5. Nonparametric and semiparametric models (Chen et al., 2014; Kim et al., 2017)

Asymptotic t and F tests that accommodate panel data and spatial data include Kim
and Sun (2013) and Sun and Kim (2015), among others. Liu and Sun (2018) develop an
asymptotic t test in a difference-in-differences regression.

From a more broad perspective, the idea of using orthonormal basis functions in HAR
inference is closely related to the use of trend sinusoidal regressors/instruments in extracting
long run variation of a single or multiple time series. To a great extent, the literature on
OS HAR inference is inspired from Phillips (1998, 2005b, 2014). See Müller and Watson
(2016) for further discussion on basis-function transformations and their applications in
econometrics.

4 Conclusion

Recent research on HAR inference after the seminal contributions by Newey and West
(1987) and Andrews (1991) has developed more accurate approximations. These approxi-
mations, combined with the smoothing parameter choice that targets the testing problem
at hand, lead to more trustworthy inferences. Through extensive simulations, especially
those with DGP’s estimated from macroeconomic data, LLSW provide compelling evidence
that the new generation of the HAR tests should become the standard practice in empirical
applications. Depending on the ultimate objectives, one can use the smoothing parameter
choice rule introduced by LLSW or a rule in the existing literature such as the one by SPJ.

I would like to take the opportunity to advertise some implementations of the fixed-
smoothing tests. For a Stata implementation of the fixed-b tests, readers are referred to Tim
Vogelsang’s web page at https://msu.edu/ tjv/working.html. For a Stata implementation
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of the fixed-smoothing asymptotic t and F tests, readers are referred to my web page
at http://www.econ.ucsd.edu/ yisun/har.html. The latter implementation includes the
testing-optimal smoothing parameter choice that balances type I and type II errors, and
we plan to incorporate the rule suggested by LLSW in a future edition. See Ye and Sun
(2018) for more details.
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