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1 On the Nearly-optimal Test

Müller applies the theory of optimal statistical testing to heteroskedasticity and autocor-
relation robust (HAR) inference in the presence of strong autocorrelation. As a starting
point, Müller uses Le Cam�s idea on the limits of experiments ingeniously and converts a
more complicated �nite sample testing problem into an asymptotically equivalent and sim-
pler testing problem. The main barrier to optimal testing is that both the null hypothesis
and alternative hypothesis are composite, even after the asymptotic reduction based on Le
Cam�s idea. So the Neyman-Pearson lemma does not directly apply.

To reduce the dimension of the alternative hypothesis space, it is standard practice to
employ a weighting function and take a weighted average of the probability distributions
under the alternative hypothesis. See, for example, Cox and Hinkley (1974, pp. 102). The
weighting function should re�ect a user�s belief about the likelihood of di¤erent parameter
values and the associated cost of false acceptance under the alternative. Selecting the
weighting function is as di¢ cult as selecting one point out of many possible parameter
values. A test that is designed to be optimal against a point alternative may not be
optimal for other alternatives. The nearly-optimality of Müller�s test should be interpreted
with this point in mind.

There are a number of ways to reduce the dimension of the null hypothesis space,
including the invariance arguments and the conditioning argument on su¢ cient statistics.
See, for example, Cox and Hinkley (1974, Ch. 5). In fact, Müller uses scale invariance
to remove one nuisance parameter. However, as in many other contexts, here the null
cannot be reduced to a point by using the standard arguments. Müller follows Wald,
Lehmann, Stein and other pioneers in statistical testing and construct the so-called least
favorable distribution over the null parameter space and use it to average the probability
distributions. This e¤ectively reduces the composite null into a simple one. However,
the least favorable distribution has to be found numerically, which can be a formidable
task. This is perhaps one of the reasons that the theory of optimal testing has not been
widely used in statistics and econometrics. A contribution of Müller�s paper is to �nd an
approximate least favorable distribution and construct a test that is nearly optimal.

The reason to employ the least favorable distribution is that we want to control the
level of the test for each point in the parameter space under the null. While we are content
with the average power under the alternative, we are not satis�ed with the control of the
average level under the null. In fact, the requirement on size control is even stronger: the
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null rejection probability has to be controlled uniformly over the parameter space under the
null. There is some contradiction here, which arises from the classical dogma that puts size
control before power maximization. The requirement that the null rejection probability has
to be controlled for each possible parameter value under the null, no matter how unlikely
a priori a given value is, is overly conservative. The test designed under this principle
can su¤er from a severe power loss. In fact, in the simulation study, Müller�s test often
has a lower (size-adjusted) power than some commonly used tests. I am sympathetic with
the argument that the power loss is the cost one has to pay to achieve the size accuracy
as size-adjustment is not empirically feasible. However, one can always design a test with
accurate size but no power. Ultimately, there is a trade-o¤ between size control and power
improvement. Using the least favorable distribution does not necessarily strike the optimal
trade-o¤. As a comprise, one may want to control the average level/size of the test over a
few empirically relevant regions in the parameter space.

There is some convincing simulation evidence that Müller�s test is much more accurate
than existing tests for some data generating processes (DGP). These are the DGP�s where
the �nite sample testing problem can be approximated very well by the asymptotically
equivalent testing problem. However, there is not much research on the quality of the
approximation. If the approximation error is large, Müller�s test, which is nearly optimal
for the asymptotically equivalent problem, may not be optimal for the original problem.
For example, when the error process in the location model is an AR(1) plus noise, Müller�s
simulation results show that his test can still over-reject considerably. As another example,
if the error process follows the AR(2) model ut = 1:90ut�1 � 0:95ut�2 + et where et s iid
N(0,1), then Müller�s test (and many other tests) su¤ers from under-rejection. In this
example, the modulus of the larger root is about 0:97, which is close to one. However, the
spectral density does not resemble that of an AR(1) process. It does not have a peak at
the origin. Instead, there is a speak near the origin. As a result, the quality of the AR(1)
approximation is low. If the periodograms used in the variance estimator include the peak,
then the variance estimator will be biased upward, leading to a smaller test statistic and
under-rejection.

2 Near-unity Fixed-smoothing Asymptotic Approximation

An attractive feature of Müller�s test is that the scenarios under which it is optimal or
nearly optimal are given explicitly. However, practitioners may �nd it unattractive because
of the computation cost, the unfamiliar form of the test statistic, and its applicability to
models beyond the simple Gaussian location model. An alternative approach to deal with
strong autocorrelation is to derive a new approximation for the conventional test statistic
that captures the strong autocorrelation. This has been recently developed in Sun (2014b).

To provide the context for further discussion, I give a brief summary of Sun (2014b)
here. Consider a p-dimensional time series yt of the form:

yt = � + et; t = 1; 2; : : :; T (1)

where yt = (y1t; : : : ; ypt)
0, � = (�1; : : : ; �p)

0, and et = (e1t; : : : ; ept)
0 is a zero mean process.

We are interested in testing the null H0 : � = �0 against the alternative H1 : � 6= �0: The
OLS estimator of � is the average of fytg ; i.e., �̂ = �y := T�1

PT
t=1 yt: The F test version of

2



the Wald statistic based on the OLS estimator is given by

FT = (�̂ � �0)0
̂�1(�̂ � �0)=p
where 
̂ is an estimator of the approximate variance of (�̂ � �0): When p = 1; we can
construct the t-statistic tT = (�̂ � �0)=
̂1=2:

A very general class of variance estimators is the class of quadratic variance estimators,
which takes the following form:
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where êt = et � �e for �e = T�1
PT
t=1 et and Qh (r; s) is a weighting function that depends

on the smoothing parameter h: When Qh (r; s) = k ((r � s) =b) for some kernel function
k (�) and smoothing parameter b; 
̂ is the commonly used kernel variance estimator. When
Qh (r; s) = K�1PK

j=1 �j (r)�j (s) for some basis functions
�
�j (r)

	
on L2[0; 1] satisfyingR 1

0 �j (r) dr = 0 and smoothing parameter K; we obtain the so-called series variance estima-
tor. This estimator has a long history. It can be regarded as a multiple-window estimator
with window function �k(t=T ). See Thomson (1982). It also belongs to the class of �lter-
bank estimators and 
̂ is a simple average of the individual �lter-bank estimators. For
more discussions along this line, see Chapter 5 of Stoica and Moses (2005). Recently there
has been some renewed interest in this type of variance estimators, see Phillips (2005), Sun
(2006, 2011, 2013), and Müller (2007).
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The Wald statistic is then equal to
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Similarly, the t-statistic becomes
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t=1 ethPT
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i1=2 :
The question is how to approximate the sampling distributions of FT and tT : If fetg is

stationary and T�1=2
P[Tr]
t=1 et converges weakly to a Brownian motion process, then under

some conditions on Qh; it can be shown that, for a �xed h :

FT !d F1 (h) :=Wp (1)
0
�Z 1

0

Z 1

0
Q�h (r; s) dWp (r) dW

0
p (s)

��1
Wp (1) =p; (4)

tT !d t1 (h) :=
Wp (1)qR 1

0

R 1
0 Q

�
h (r; s) dWp (r) dW 0

p (s)
; (5)
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where Wp(r) is a p� 1 vector of standard Wiener processes and

Q�h (r; s) = Qh (r; s)�
Z 1

0
Qh (�1; s) d�1 �

Z 1

0
Qh (r; �2) d�2 +

Z 1

0

Z 1

0
Qh (�1; �2) d�1d�2:

For easy reference, I refer to the above approximations as the stationary �xed-smoothing
asymptotic approximations. They are more accurate than the chi-square approximation or
the normal approximation. As pointed out by Müller�s paper, these approximations are
still not good enough when et is highly autocorrelated.

To model the high autocorrelation, we assume that et follows an AR(1) process of the
form:

et = �T et�1 + ut where e0 = Op(1) and �T = 1�
cm
T

for some sequence fcmg : This is in the spirit similar to Müller�s paper and many other
papers in the literature. See, for example, Phillips, Magdalinous and Giraitis (2010). Under
the assumption that

1p
T
e[Tr] ! �Jcm (r)

for some matrix �; where Jcm (r) is the Ornstein-Uhlenbeck process de�ned by

dJcm (r) = �cmJcm (r) dr + dWp(r)

with Jcm(0) = 0, we can obtain the following near-unity �xed-smoothing asymptotics when
cm and h are �xed:

FT ! dF1 (cm; h)

: =

�Z 1

0
Jcm (r) dr

�0 �Z 1

0

Z 1

0
Q�h (r; s) Jcm (r) J

0
cm (s) drds

��1 �Z 1

0
Jcm (r) dr

�
=p:

If we further assume that Qh (r; s) is positive de�nite, then for �xed cm and h :

tT !d t1 (cm; h) :=

R 1
0 Jcm (r) drhR 1

0

R 1
0 Q

�
h (r; s) Jcm (r) J

0
cm (s) drds

i1=2 :
If we let cm !1; then the near-unity �xed-smoothing asymptotic distributions F1 (cm; h)

and t1 (cm; h) approach the stationary �xed-smoothing asymptotic distributions given in
(4) and (5). On the other hand, if we let cm ! 0; then F1 (cm; h) and t1 (cm; h) approach
the unit-root �xed-smoothing asymptotic distributions, which are de�ned as F1 (cm; h)
and t1 (cm; h) but with Jcm (r) replaced by Wp (r) : Depending on the value of cm; the
limiting distributions F1 (cm; h) and t1 (cm; h) provide a smooth transition from the usual
stationary �xed-smoothing asymptotics to the unit-root �xed-smoothing asymptotics.

In my view, the chi-square/normal approximation, the stationary �xed-smoothing ap-
proximation and the near-unity �xed-smoothing approximation are just di¤erent approx-
imations to the same test statistic constructed using the same variance estimator. It is a
little misleading to talk about consistent and inconsistent variance estimators. The variance
estimator is actually the same but we embed it on di¤erent asymptotic paths. When the
�xed-smoothing asymptotics is used, we do not necessarily require that we �x the smooth-
ing parameter h in �nite samples. In fact, in empirical applications, the sample size T is
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usually given beforehand and the smoothing parameter h needs to be determined using
a priori information and/or information obtained from the data. Very often, the selected
smoothing parameter h is larger for a larger sample size but is still small relative to the
sample size. So the empirical situations appear to be more compatible with the conven-
tional increasing-smoothing asymptotics. The beauty of the �xed-smoothing asymptotics
is that �xed-smoothing critical values are still correct under the increasing-smoothing as-
ymptotics. In fact, in a sequence of papers (e.g. Sun, 2014a), I have shown that the
�xed-smoothing critical values are second order correct under the increasing-smoothing as-
ymptotics. In contrast, increasing-smoothing critical values are not even �rst order correct
under the �xed-smoothing asymptotics. Given this, the �xed-smoothing approximation
can be regarded as more robust than the increasing-smoothing approximation.

The same comment applies to the local-to-unity parameter cm: When we use the near-
unity �xed-smoothing approximation, we do not have to literally �x cm at a given value
in �nite samples. Whether we hold cm �xed or let it increase with the sample size can be
viewed as di¤erent asymptotic speci�cations to obtain approximations to the same �nite
sample distribution. In practice, we can estimate cm even though a consistent estimator is
not available. For a stationary AR(1) process with a �xed autoregressive coe¢ cient, the
estimator ĉm derived from the OLS estimator of �̂T;m necessarily converges to in�nity in
probability. The critical values from the near-unity �xed-smoothing asymptotic distribu-
tion are thus close to those from the stationary �xed-smoothing asymptotic distribution. So
the near-unity �xed-smoothing approximation is still asymptotically valid. For this reason,
we can say that the near-unity �xed-smoothing approximation is a more robust approxima-
tion. Compared to the chi-square or normal approximation, the near-unity �xed-smoothing
approximation achieves double robustness � it is asymptotically valid regardless of the lim-
iting behaviors of cm and h:

3 Some Simulation Evidence

To implement the near-unity �xed-smoothing approximation, we need to pin down the
value of cm; which cannot be consistently estimated. However, a nontrivial and informative
con�dence interval (CI) can still be constructed. I propose to construct a CI for cm and
use the maximum of the critical values, each of which corresponds to one value of cm in the
CI. An argument based on the Bonferroni bound can be used to determine the con�dence
level of the CI and the signi�cance level of the critical values. More speci�cally, for tests
with nominal level �, we could employ the critical value de�ned by

CV = sup
cm2CI1��+�

CV (cm; 1� �)

where � � �; CI1��+� is a lower con�dence interval for cm with nominal coverage prob-
ability 1 � � + �; and CV (cm; 1 � �) is the 100 (1� �)% quantile from the distribution
F1 (cm; h) or t1 (cm; h) : This idea of choosing critical values in the presence of unidenti-
�ed nuisance parameters has been used in various settings in statistics and econometrics.
See for example McCloskey (2012) and references therein.

One drawback of the approach based on the Bonferroni correction is that the critical
value is often too large and the resulting test often under-rejects. There are sophisticated
ways to improve on the Bonferroni method. As a convenient empirical strategy, here I
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employ CV = supcm2CI90% CV (cm; 95%) for nominal 5% tests. I construct the CI for cm
using the method of Andrews (1993). Other methods such as Stock (1991) and Hansen
(1999) can also be used. See Mikusheva (2014) and Phillips (2014) for recent contributions
on this matter. Since CV (cm; 95%) is decreasing in cm; we only need to �nd the lower limit
of CI90% in order to compute CV: The computational cost is very low.

I consider a univariate Gaussian location model with AR(2) error et = �1et�1+�2et�2+
ut, where ut s iidN(0; 1): The sample size is 200. The initial value of the error process is
set to be standard normal. I generate a time series of length 400 and drop the �rst 200
observations to minimize the initialization e¤ect. This is similar to generating a time series
with 200 observations but with the initial value drawn from its stationary distribution. I
consider Müller�s test, the KVB test, and the test based the series variance estimator with
the basis functions: �2j�1(x) =

p
2 cos(2j�x), �2j(x) =

p
2 sin(2j�x); j = 1; : : : ;K=2. The

values of K = 12; 24; 48 correspond to the values of q = 12; 24; 48 in Müller�s paper. The
number of simulation replications is 20,000.

Table 1 reports the null rejection probabilities for various two-sided 5% tests. It is clear
that the tests based on the near-unity �xed-smoothing approximation are in general more
accurate than those based on the usual stationary �xed-smoothing approximation. This is
especially true when the process is highly autocorrelated. In term of size accuracy, Müller�
test is slightly better than the near-unity �xed-smoothing test. The size accuracy of the
latter test is actually quite satisfactory. As I mentioned before, the AR(2) process with
(�1; �2) = (1:9;�:95) posts a challenge to all tests considered.

Figure 1 plots the size-adjusted power against the noncentrality parameter �2 in the
presence AR(1) errors. The �gure is representative of other con�gurations. It is clear from
the �gure that the slightly better size control of Müller�s tests is achieved at the cost of
some power loss.

Table 1: Empirical null rejection probability of nominal 5% tests with T = 200 under AR(2)
errors

Stationary Fixed-Smoothing Near-Unity Fixed-Smoothing Nearly-Optimal Tests
(�1; �2) K12 K24 K48 KVB K12 K24 K48 KVB S12 S24 S48
(0, 0) 0.048 0.047 0.048 0.047 0.045 0.042 0.041 0.042 0.045 0.047 0.047
(.7,0) 0.058 0.083 0.148 0.058 0.040 0.035 0.032 0.040 0.046 0.047 0.047
(.9,0) 0.133 0.248 0.393 0.084 0.036 0.033 0.033 0.038 0.048 0.047 0.050
(.95,0) 0.258 0.412 0.553 0.125 0.039 0.037 0.036 0.039 0.048 0.049 0.050
(0.99,0) 0.630 0.738 0.816 0.333 0.079 0.079 0.079 0.071 0.045 0.044 0.045
(1.9,-.95) 0.005 0.002 0.015 0.015 0.000 0.000 0.000 0.000 0.025 0.001 0.000
(.8,.1) 0.146 0.272 0.417 0.089 0.050 0.051 0.052 0.045 0.049 0.048 0.052

4 Conclusion

Müller�s paper makes an important contribution to the literature on HAR inference. It
has the potential for developing a standard of practice for HAR inference when the process
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is strongly autocorrelated. The paper inspires us to think more about optimality issues
in hypothesis testing. Unfortunately, uniformly optimal tests do not exist except in some
special cases. This opens the door to a wide range of competing test procedures. In this
discussion, I have outlined an alternative test, which is based on the standard test statistic
but employs a new asymptotic approximation. The alternative test has satisfactory size but
is not as accurate as Müller�s test. However, Müller�s test is often less powerful. The trade-
o¤ between size accuracy and power improvement is unavoidable. A prewhitening testing
procedure with good size property may also be crafted. HAR testing is fundamentally
a nonparametric problem. A good test requires some prior knowledge about the data
generating process. In the present setting, the prior knowledge should include the range
of the largest AR root and the neighborhood around origin in which the spectral density
remains more or less �at. Equipped with this knowledge, a practitioner can select a testing
procedure to minimize their loss function.
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Figure 1: Size-adjusted Power of Di¤erent 5% Tests with sample size T = 200 (�K6�,
�K12�, �K24�, �K48�, and �KVB�are the Near-Unity Fixed-Smoothing tests while S12,
S24 and S48 are Müller�s tests)
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