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Abstract

We propose a simple asymptotically F-distributed portmanteau test for diagnostically check-

ing whether the innovations in a parametric time series model are uncorrelated while allowing

them to exhibit higher-order dependence of unknown forms. A transform of sample residual au-

tocovariances removing the influence of parameter estimation uncertainty makes the test simple.

Further, by employing the orthonormal series variance estimator, a special sample autocovariances

estimator that is asymptotically invariant to parameter estimation uncertainty, we show that the

proposed test statistic is asymptotically F-distributed under fixed-smoothing asymptotics. The

asymptotic F theory accounts for the estimation error of the variance estimator that the asymp-

totic chi-squared theory ignores. Moreover, an extensive Monte Carlo study demonstrates that

the F test has more accurate finite sample size than existing tests with virtually no power loss.

An application to S&P 500 returns illustrates the merits of the proposed methodology.
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1 INTRODUCTION

In time series modeling, it is standard practice to use diagnostic tests to check whether the inno-

vations from a parametric model are uncorrelated, since a good time series model should capture

the dependence structure adequately, with no autocorrelation left in the innovations. One such

prominent diagnostic test is the Q test of Box and Pierce (1970) and Ljung and Box (1978) which

aims at checking whether the innovations in an ARMA model are uncorrelated. It has become a

routine to report the p-value of the Q test, based on a chi-squared distribution, in empirical appli-

cations of ARMA models; see, for example, Baillie and Bollerslev (1989) and Rosenberg and Engle

(2002). However, this practice could lead to misleading conclusions, because the chi-squared ap-

proximation of the Q statistic relies on a specific linear form of ARMA models (cf. Mcleod, 1978)

and the restrictive assumption that the innovations are independently and identically distributed

(iid). Francq, Roy, and Zaköıan (2005, FRZ hereafter) point out that if the innovations are merely

uncorrelated, the high-order dependence of innovations and the parameter estimation uncertainty

need to be considered when deriving the asymptotic distribution of the residual autocovariance or

autocorrelation1.

In this paper, we propose a simple asymptotically F-distributed portmanteau test for diagnostic

checking in parametric time series models with uncorrelated innovations. We introduce a family of

transforms and apply it to sample residual autocovariances to remove the influence of parameter

estimation uncertainty. Subject to this transformation, the sample residual and innovation auto-

covariances are asymptotically equivalent. To estimate the variance of the sample autocovariances,

we employ an orthonormal series (OS) variance estimator, which is not affected asymptotically by

parameter estimation uncertainty. Using this variance estimator to studentize the transformed sam-

ple autocovariances, we show that the resulting test statistic converges weakly to a convenient F

distribution under fixed-smoothing asymptotics. The asymptotic F theory accounts for the estima-

tion error in the underlying variance estimator that the conventional asymptotic chi-squared theory

ignores. Monte Carlo simulations reveal that the proposed F test has very accurate size and com-

petitive power in a number of finite sample settings. An application to S&P 500 returns illustrates

1The residuals are estimated versions of innovations.
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the merits of our methodology.

Our approach is an extension of Wang and Sun (2020) who propose an asymptotically F-

distributed portmanteau test for an observed time series. This extension is nontrivial, as parameter

estimation uncertainty has a nonnegligible effect on the behavior of the sample residual autocovari-

ances. The commonly used estimators of the variance of the autocovariance estimators are also

affected by the parameter estimation uncertainty, even in large samples. We need to find a new way

to construct the test statistic and employ a different proof to establish the asymptotic F theory.

Our paper contributes to a large body of the literature on testing the lack of innovation auto-

correlation in time series models. For an ARMA model with uncorrelated innovations, FRZ (2005)

derive the asymptotic variance of the sample residual autocorrelations when the model is estimated

by the ordinary least squares. They show that the asymptotic distribution of the Q test statistic

is a weighted sum of independent chi-squared distributions, where the weights are determined by

the eigenvalues of the variance matrix of the sample residual autocorrelations. Hence, its asymp-

totic distribution is not pivotal. To avoid estimating the complicated variance matrix of the sample

residual autocorrelations, Zhu (2016) proposes wild bootstrapping procedures for the Q test. On

the other hand, Delgado and Velasco (2011, hereafter DV) employ a distribution-free transform of

the sample residual autocorrelations and construct a Box-Pierce type test based on the transformed

sample residual autocorrelations. They show that the Box-Pierce type statistic follows a chi-squared

distribution asymptotically.

Both FRZ (2005) and DV (2011) rely on consistent variance matrix estimators. The consistency

requirement amounts to ignoring the error in the variance estimator completely in large sample

approximations. This may adversely affect the quality of the large sample approximations, especially

when the sample size is small or moderate. The bootstrap approximation proposed by Zhu (2016)

may be more accurate, but it often involves a user-chosen tuning parameter, which is difficult to pin

down in finite samples2, and the computational cost is high. To address these problems, Mainassara

and Saussereau (2018, hereafter MS) adopt the idea of self-normalization (see, e.g., Shao, 2010,

2015) and propose a new test in a VARMA setting. Their test is an extension of Lobato (2001)

2The cases that involve no tuning parameter are quite restrictive, cf. Assumption 4 on pp. 469 in Zhu (2016).
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and belongs to the class of the fixed-b tests developed by Kiefer, Vogelsang and Bunzel (2000).

The distribution of the test statistic is pivotal but nonstandard, requiring simulation to obtain the

critical values. In essence, their test statistic is a quadratic form of the residual autocorrelations

studentized by a nonparametric variance estimator with the bandwidth equal to the sample size.

However, as pointed out by FRZ (2005), this nonparametric variance estimator is likely noninvertible

in (V)ARMA models in finite samples. For example, this is the case when an AR(1) model is fitted

to a strong white noise process (see Corollary 1 in Sec. 4 of FRZ, 2005). Further, the Monte Carlo

simulations in Section 4 show that this test is quite conservative and not so powerful in finite samples.

Our approach differs from MS (2018) in two aspects. First, we employ a transformation to

remove the parameter estimation uncertainty. As a result, the asymptotic distribution of our test

statistic is not affected by the asymptotic distribution of the parameter estimator. Under stronger

conditions, any consistent parameter estimator leads to the same asymptotic distribution of our test

statistic. In contrast, the asymptotic theory in MS (2018) relies crucially on the
√
T -consistency and

asymptotic normality of the parameter estimator. The transformation we employ also removes the

potential nonsingularity problem pointed out by FRZ (2005). Second, we use an orthonormal series

variance estimator, while the approach of MS (2018) amounts to using a kernel variance estimator

based on the Bartlett kernel. The convenient F asymptotic theory we develop here is possible only

when an orthonormal series variance estimator is used.

The rest of this paper is organized as follows. Section 2 lays out the preliminaries. Section 3

introduces the transformation and the new portmanteau test statistic and establishes its asymptotic

properties. Section 4 reports the Monte Carlo evidence. An application to S&P 500 returns is

provided in Section 5. Section 6 concludes the paper. All proofs are given in the appendix.

We use the following notation throughout the paper: Im is the m ×m identity matrix. For an

m× d matrix A, PA = A (A′A)−1A′ and MA = Im−PA. “→p” indicates convergence in probability,

and “⇒” indicates convergence in distribution. We use “Osp” to represent a s × p matrix of zeros.

We often omit the dimension and use “O” to represent a matrix of zeros whose dimension(s) may

be different across different occurrences. For a symmetric matrix Ω > 0, Ω1/2 is a symmetric square

root of Ω such that Ω1/2
(
Ω1/2

)′
= Ω.
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2 PRELIMINARIES

Let {Xt}t∈Z be a time series process in Rk. For any θ ∈ Θ ⊂ Rp, consider the filtered process

εθ,t = U (. . . , Xt−1, Xt, . . . , εθ,t−2, εθ,t−1; θ) ∈ R for t ∈ Z, (1)

where U (·; θ) is a measurable function. Different time series models correspond to different forms of

U. As part of the definition, a time series model typically assumes that for some θ0 ∈ Θ, εθ0,t is an

iid sequence, a martingale difference (MD) sequence, or a white noise process. In all three cases, we

refer to {εθ0,t} as the innovations.

A prominent example of our general setup is the ARMA model:

Example 1 Consider an ARMA(p̃, q̃) process:

Xt =

p̃∑
i=1

ai0Xt−i + εt +

q̃∑
j=1

bj0εt−j for εt ∼ (0, σ2
0),

where φ(z) = 1− a10z − · · · − ap̃0zp̃ and ψ(z) = 1 + b10z + · · ·+ bq̃0z
q̃ have no common root and all

roots lying outside the unit circle. Let θ =
(
a1, . . . , ap̃, b1, . . . , bq̃, σ

2
)

and define

εθ,t = Xt −
p̃∑
i=1

ai (θ)Xt−i −
q̃∑
j=1

bj (θ) εθ,t−j,

where ai (θ) = ai and bj (θ) = bj . Then εt = εθ0,t for θ0 =
(
a10, . . . , ap̃0, b10, . . . , bq̃0, σ

2
0

)
. We say

that {Xt}t∈Z follows a weak ARMA process when {εθ0,t}t∈Z is a white noise process, a semistrong

ARMA process when {εθ0,t}t∈Z is an MD sequence, and a strong ARMA process when {εθ0,t}t∈Z is

an iid sequence.

We note that there are a few commonly used processes that are white noises but not martingale

differences. Examples include all-pass ARMA processes3, certain forms of bilinear processes, and

some nonlinear moving average (NLMA) processes.

3All-pass ARMA processes are ARMA processes where the roots of the autoregressive polynomial are reciprocals
of roots of the moving average polynomial and vice versa.
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The autocovariance and autocorrelation functions of {εθ,t}t∈Z are

γθ (j) = Cov (εθ,t, εθ,t−j) , j ∈ Z,

ρθ (j) = γθ (j) /γθ (0) , j ∈ Z.

As in Box and Pierce (1970) and Ljung and Box (1978), we are interested in testing whether the

first s autocovariances are zero. Therefore, the null hypothesis is

H
(s)
0 : γ(s) (θ0) = 0 for some θ0 ∈ Θ,

where γ(s) (θ) = (γθ (1) , . . . , γθ (s))′.

Given the value of θ0, we assume that we can recover {εθ0,t, t = 1, . . . , T} from {Xt, t = 1, . . . , T}4.

Based on {εθ0,t, t = 1, . . . , T} , we can estimate the innovation autocovariance and autocorrelation

functions by γ̂θ0 (j) and ρ̂θ0 (j), j = 1, ..., s, such that

γ̂θ (j) =
1

T

T∑
t=j+1

(εθ,t − ε̄θ) (εθ,t−j − ε̄θ) , ρ̂θ (j) =
γ̂θ (j)

γ̂θ (0)
,

where ε̄θ = T−1
∑T

t=1 εθ,t. The above estimators are not feasible because we do not know θ0.

Given an estimator θ̂T of θ0, we can construct the residuals {εθ̂T ,t, t = 1, . . . , T} and estimate the

innovation autocovariance and autocorrelation functions by the sample residual autocovariance and

autocorrelation functions, namely, γ̂ θ̂T (j) and ρ̂θ̂T (j).

To test the null H
(s)
0 in an ARMA model, Box and Pierce (1970) and Ljung and Box (1978)

4In order to recover {εθ0,t} , we may need the initial values of Xt and εθ0,t for t ∈ [−k, 0] for some k ∈ Z. For
example, in the ARMA setting, we have

εθ0,t = Xt −
p̃∑
i=1

ai (θ0)Xt−i −
q̃∑
j=1

bj (θ0) εθ0,t−j .

With the initial values X0, ...X1−p̃ and εθ0,0, ..., εθ0,1−q̃, we can recover {εθ0,t} recursively. In practice, we do not
observe these values, and we can set them to zero. This will introduce some initialization error, but the error can be
ignored in large samples when the ARMA process is causal and invertible. For simplicity and clarity, we abstract away
the initialization error in this section.
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propose the so-called Q test. The Q statistic of Ljung and Box (1978) takes the form

Q
(s)
T (θ̂T ) = T (T + 2)

s∑
j=1

(T − j)−1 ρ̂2
θ̂T

(j) .

Let

γ̂
(s)
T (θ) = (γ̂θ (1) , . . . , γ̂θ (s))′ ,

and

ρ̂
(s)
T (θ) = (ρ̂θ (1) , . . . , ρ̂θ (s))′ .

Under some regularity conditions and the assumption that εθ0,t is iid, we can show that

√
T γ̂

(s)
T (θ0)⇒ N

(
0, γ2

θ0 (0) Is
)

and
√
T ρ̂

(s)
T (θ0)⇒ N (0, Is) .

Define Q
(s)
T (θ0) in the same way as Q

(s)
T (θ̂T ) is defined. It then follows that Q

(s)
T (θ0) converges in

distribution to χ2
s, the chi-squared distribution with s degrees of freedom.

The above result relies on the assumption that εθ0,t is iid. In the absence of any further restriction

on the dependence structure of the innovations apart from H
(s)
0 , we can only obtain that

√
T γ̂

(s)
T (θ0)⇒ N (0,Ω0) and

√
T ρ̂

(s)
T (θ0)⇒ N

(
0,

Ω0

γ2
θ0

(0)

)
,

where Ω0 is a s× s matrix given by Ω0 := Ω (θ0),

Ω (θ) =
[
ω

(i,j)
θ

]s
i,j=1

for ω
(i,j)
θ =

∞∑
`=−∞

E [εθ,tεθ,t+iεθ,t+`εθ,t+`+j ] , i, j = 1, . . . , s.

In general, because Ω (θ0) is not a diagonal matrix, Q
(s)
T (θ0) is not asymptotically chi-squared.

The estimation error in θ̂T complicates the asymptotic distribution of Q
(s)
T (θ̂T ) even more. By

the first-order Taylor expansion, for a
√
T -consistent estimator θ̂T of θ0, we can show that

√
T γ̂

(s)
T (θ̂T ) =

√
T γ̂

(s)
T (θ0) + Γ0

√
T
(
θ̂T − θ0

)
+ op (1) , (2)
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where

Γ0 := Γ (θ0) for Γ (θ) = plim ∂γ̂
(s)
T (θ) /∂θ′.

Thus, the asymptotic variance matrix of
√
T γ̂

(s)
T (θ̂T ), and hence that of

√
T ρ̂

(s)
T (θ̂T ), depend on

the model characteristics, the form of the estimator θ̂T , and perhaps the unknown parameter value

θ0. By accounting for the estimation error in an ARMA setting, FRZ (2005) show that Q
(s)
T (θ̂T )

converges in distribution to a weighted sum of independent chi-squared distributions with the weights

depending on the eigenvalues of the asymptotic variance matrix of
√
T ρ̂

(s)
T (θ̂T ). Hence, its asymptotic

distribution is nonpivotal.

FRZ (2005) do not consider the quadratic form of
√
T ρ̂

(s)
T (θ̂T ) weighted by the inverse of a con-

sistent covariance matrix estimator of
√
T ρ̂

(s)
T (θ̂T ), because this covariance matrix estimator tends

to be singular in ARMA models. Later, Duchesne and Francq (2008) suggest constructing port-

manteau tests using a generalized inverse of a consistent nonparametric estimator of the asymptotic

variance matrix. Subsequently, DV (2011) employ a transform to obtain an asymptotically pivotal

test statistic. Their transform allows for high-order dependence and accounts for the parameter

estimation error. All these papers require a consistent nonparametric estimator of an asymptotic

variance matrix. By invoking the consistency argument, these papers effectively approximate the

distribution of a nonparametric variance estimator by a degenerate distribution concentrated at the

true variance matrix. Therefore, the estimation error in the variance estimator has been completely

ignored. Even with a delicate choice of underlying smoothing parameter, the estimation error in the

nonparametric variance estimator can be substantial in finite samples.

Recently, the literature has introduced alternative asymptotics to address the aforementioned

problem. Unlike the conventional increasing smoothing asymptotics, the alternative asymptotics

hold the amount of nonparametric smoothing fixed, and are hence called the fixed-smoothing asymp-

totics. There is ample numerical evidence, along with theoretical results, on the higher accuracy of

the fixed-smoothing asymptotic approximations relative to the conventional asymptotic approxima-

tions, see, e.g., Sun, Phillips, and Jin (2008), and Zhang and Shao (2013) for location models, and

Sun (2014a, 2014b) for the generalized method of moments framework. Lobato (2001) is among the

first to consider this alternative asymptotics in testing serial uncorrelatedness. Later, MS (2018)
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extend this idea to test the lack of autocorrelation in VARMA models. Although the asymptotic

distributions of the Lobato (2001) and MS (2018) test statistics are pivotal under fixed-smoothing

asymptotics, they are not standard, and critical values have to be tabulated by Monte Carlo simu-

lations.

3 MAIN RESULTS

3.1 The Test Statistic

To motivate our test, we rewrite (2) as

√
T γ̂

(s)
T (θ̂T ) ≈

√
Tγ(s) (θ0) + Γ0

√
T
(
θ̂T − θ0

)
+
√
T
[
γ̂

(s)
T (θ0)− γ(s) (θ0)

]
. (3)

For any s × p matrix Γ with column-rank p, we let A (Γ) be an s × s matrix with rank (s− p)

such that A (Γ)′ Γ = Osp ∈ Rs×p. Assume that the column rank of Γ0 is p and let A0 := A (Γ0) .

Premultiplying (3) by A′0 yields

A′0
√
T γ̂

(s)
T (θ̂T ) ≈

√
TA′0γ

(s) (θ0) +
√
TA′0

[
γ̂

(s)
T (θ0)− γ(s) (θ0)

]
.

The pre-multiplication has removed the effect of the estimation error of θ̂T . The first term in the

above approximation contains the main signal about the hypotheses of interest, and the second term

contains the noise. The asymptotic variance of the noise term is A′0Ω0A0.

To test the null of γ(s) (θ0) = 0, we consider a quadratic form in A′0
√
T γ̂

(s)
T (θ̂T ) using the inverse

of A′0Ω0A0 as the weighting matrix. This leads to

Q0 = T
[
A′0γ̂

(s)
t (θ̂T )

]′ [
A′0Ω0A0

]+ [
A′0γ̂

(s)
t (θ̂T )

]
= T γ̂

(s)
t (θ̂T )′G(A0,Ω0)γ̂

(s)
t (θ̂T ),

where

G(A,Ω) = A
[
A′ΩA

]+
A′
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is the weighting matrix and [A′ΩA]+ is the Moore–Penrose inverse of A′ΩA.

Since θ0 is not known, Ω0 = Ω (θ0) and A0 := A (Γ (θ0)) are not feasible, and therefore, G(A0,Ω0)

and hence Q0 are not feasible. To construct a test statistic, we need to estimate both Ω0 and A0.

In this paper, we adopt the OS approach to estimating Ω0. Let {Φ` (·) , ` = 1, . . . ,K} be a sequence

of basis functions in L2[0, 1]. Denote

ft(θ̂T ) =
(
f1t(θ̂T ), . . . , fst(θ̂T )

)′
,

with the j-th element given by fjt(θ̂T ) = (εθ̂T ,t − ε̄θ̂T )(εθ̂T ,t−j − ε̄θ̂T ). Define

Λ`(θ̂T ) =
1√
T

T∑
t=1

Φ`

(
t

T

)
ft(θ̂T ).

The OS variance estimator is given by

Ω̂(θ̂T ) =
1

K

K∑
`=1

Λ`(θ̂T )Λ`(θ̂T )′.

To ensure that Ω̂(θ̂T ) is positive semidefinite, we assume that K ≥ s.

In the econometrics literature, the OS variance estimator has recently been used by, for example,

Phillips (2005), Müller (2007), Sun (2011, 2013, 2014a,b,c), Liu and Sun (2019), and Lazarus, Lewis,

Stock, and Watson (2016, 2018). This estimator can be regarded as originating from the multiple-

window estimator developed by Thomson (1982) with {Φ` (·)} as the window functions. It also

belongs to the class of filter-bank estimators, and Ω̂(θ̂T ) is a simple average of the individual filter-

bank estimators Λ`(θ̂T )Λ`(θ̂T )′; see Stoica and Moses (2005, Ch. 5). It can also be regarded as

the sample variance of the projection coefficients; see Sun (2011) for more detailed discussions. By

construction, the OS variance estimator is automatically positive semidefinite, a desirable property

for practical use.

The simplest and most familiar example of the OS variance estimator is the average periodogram
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estimator, which takes a simple average of the first few periodograms. More specifically, let

Φ` (r) =


√

2 cos (π`r) , if ` is even,
√

2 sin (π (`+ 1) r) , if ` is odd.

Assuming that K is even, we can write the resulting OS variance estimator as

Ω̂(θ̂T ) =
2

K

K/2∑
`=1

Re
(

Υ`(θ̂T )Υ∗` (θ̂T )
)
,

where Υ∗` denotes the transpose and complex conjugate of Υ`, and

Υ`(θ̂T ) =
1√
T

T∑
t=1

exp

(
−2π`t

T
·
√
−1

)
ft(θ̂T ).

Note that Υ`(θ̂T ) is the finite Fourier transform of ft(θ̂T ). The computation of Ω̂(θ̂T ) is very fast

and convenient in popular programming environments such as Matlab and R. We will use the above

OS variance estimator in the simulation study.

In view of A0 = A (Γ0) , we can estimate A0 by plugging an estimator of Γ0 into A (·) . We

estimate Γ0 by

Γ̂(θ̂T ) =
∂γ̂

(s)
T

(
θ̂T

)
∂θ′

=
1

T

T∑
t=1

∂ft(θ̂T )

∂θ′

and A0 by Â(θ̂T ) := A(Γ̂(θ̂T )).

With the estimators Ω̂(θ̂T ) and Â(θ̂T ), we can estimate G(A0,Ω0) by

G(Â(θ̂T ), Ω̂(θ̂T )) = Â(θ̂T )
[
Â(θ̂T )′Ω̂(θ̂T )Â(θ̂T )

]+
Â(θ̂T )′.

We can then construct our test statistic as follows:

Q̃
(s)
T (θ̂T ) =

K − q + 1

Kq
· T γ̂(s)

T (θ̂T )′G(Â(θ̂T ), Ω̂(θ̂T ))γ̂
(s)
T (θ̂T )

=
K − q + 1

Kq

[
1√
T

T∑
t=1

ft(θ̂T )

]′
G(Â(θ̂T ), Ω̂(θ̂T ))

[
1√
T

T∑
t=1

ft(θ̂T )

]
, (4)
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where

q = s− p.

Note that (K − q + 1) /K is a finite sample correction term; it approaches 1 when K is large.

It remains to pin down A (·) . Let ∆ ∈ Rs×s be a nonsingular symmetric matrix. With some

abuse of notation, for any s× p matrix Γ with column-rank p, we consider

A (Γ) := A (Γ; ∆) = ∆−1/2 −∆−1Γ
(
Γ′∆−1Γ

)−1
Γ′∆−1/2 = ∆−1/2M∆−1/2Γ.

Such a choice satisfies the rank condition that A (Γ; ∆) is of column rank q and the orthogonal

condition that A (Γ; ∆)′ Γ = Osp.

Let UΞV ′ be a singular value decomposition (SVD) of Γ where

Ξ =

 D

O

 ∈ Rs×p,

D ∈ Rp×p is a diagonal matrix, and U ∈ Rs×s and V ∈ Rp×p are orthogonal matrices. We write

U = (Usp, Usq) where Usp ∈ Rs×p consists of the left singular vectors of Γ corresponding to the p

nonzero singular values and Usq ∈ Rs×q consists of the left singular vectors of Γ corresponding to

the zero singular value.

The following lemma gives a representation G(A (Γ; ∆) ,Ω).

Lemma 1 Assume that Γ ∈ Rs×p has column rank p, and ∆ ∈ Rs×s and Ω ∈ Rs×s are nonsingular

and symmetric. Then

G(A (Γ; ∆) ,Ω) = Usq ·
[
U ′sq · Ω · Usq

]−1 · U ′sq. (5)

Lemma 1 assumes that Γ, ∆ and Ω are deterministic matrices. If Γ, ∆ and Ω are random and the

rank conditions hold almost surely (or with probability approaching one as T →∞), it is easy to see

that the result of the lemma holds almost surely (or with probability approaching one as T →∞).

We will use stochastic extensions of Lemma 1 without further discussion.

Lemma 1 shows that G(A (Γ; ∆) ,Ω) depends only on Usq and Ω. In particular, it does not depend
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on ∆. Our test statistic is, therefore, invariant to the choice of ∆. If we set ∆ equal to the identity

matrix Is, we have

A (Γ; Is) = MΓ, Â(θ̂T ) = MΓ̂(θ̂T ),

and

G(Â(θ̂T ), Ω̂(θ̂T )) = MΓ̂(θ̂T )

(
MΓ̂(θ̂T )Ω̂(θ̂T )MΓ̂(θ̂T )

)+
MΓ̂(θ̂T ). (6)

If we set ∆ equal to Ω0, we have A (Γ; Ω0) = Ω
−1/2
0 ·M

Ω
−1/2
0 Γ

,

Â(θ̂T ) = Ω̂(θ̂T )−1/2 ·MΩ̂(θ̂T )−1/2Γ̂(θ̂T ),

and

G(Â(θ̂T ), Ω̂(θ̂T )) = Ω̂(θ̂T )−1/2MΩ̂(θ̂T )−1/2Γ̂(θ̂T )Ω̂(θ̂T )−1/2. (7)

By Lemma 1, the representations in (6) and (7) are numerically identical and hence give rise to an

identical test statistic. However, the representation in (7) is more convenient for practical imple-

mentations, as it does not involve a generalized inverse. Our test statistic can then be computed as

in (4) with G(Â(θ̂T ), Ω̂(θ̂T )) given in (7).

For our theoretical analysis, we employ A (Γ) := MΓ without loss of generality. We note that the

implied transformation is the same as that in Katayama (2008), which considers only the case with

iid innovations and hence does not allow for high-order dependence in the innovations. We could

also employ A (Γ) := A (Γ; Ω0) = Ω
−1/2
0 ·M

Ω
−1/2
0 Γ

in our theoretical analysis. In fact, this was done

in an earlier version of this paper. Consistent with Lemma 1, the theoretical results are identical.

We note that the right-hand side of (5) takes the same form as G(A,Ω). The only difference is

that A ∈ Rs×s, but Usq ∈ Rs×q. To reflect the dimensionality difference, we may write the right-hand

side of (5) as G̃(Usq,Ω). Note that the left null space of Γ is of dimension q when the column space

of Γ is of dimension p. It is clear that the columns of A are linearly dependent while those of Usq are

not. To remove the linear dependence, we could replace it by the s × q matrix Ã (Γ) that consists

of the left singular vectors of Γ corresponding to the zero singular value. The advantage of this

approach is that Ã (Γ)′ΩÃ (Γ) is not singular if Ω is not, and we do not need to take a generalized
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inverse. The disadvantage is that the test statistic involves a single value decomposition, which may

not be empirically appealing. We opt for a square A with a reduced rank in this paper, but exactly

the same results can be obtained using a non-square A with full column rank — the only difference

lies in technical details.

3.2 Fixed-Smoothing Asymptotics under the Null

To establish the asymptotic distribution of the generalized Q statistic Q̃
(s)
T (θ̂T ) when K is fixed as

T → ∞, we need to make the following high-level assumptions, all of which are standard in the

literature on fixed-smoothing asymptotics:

Assumption 1 For ` = 1, 2, . . . ,K, the basis functions Φ` (·) are piecewise monotonic, continuously

differentiable, and orthonormal in L2[0, 1], and satisfy
∫ 1

0 Φ` (x) dx = 0.

Assumption 2 For r ∈ (0, 1], T−1/2
∑[Tr]

t=1 ft (θ0) ⇒ Ω
1/2
0 Wf (r), where Wf (r) is a standard s-

dimensional Brownian motion process and Ω0 has full rank s.

Assumption 3 For any θ̃T = θ0 +Op
(
T−1/2

)
,

T−1

[Tr]∑
t=1

∂ft

(
θ̃T

)
∂θ′

p→ rΓ0

uniformly in r ∈ (0, 1] where Γ0 = Γ (θ0) for Γ (θ) = E∂ft(θ)
∂θ′

. In addition, Γ0 has a full rank p.

Assumption 4
√
T (θ̂T − θ0)⇒ Ψ0 for some distribution Ψ0.

Assumptions 2 and 3 are high-level assumptions. For vector ARMA models, sufficient conditions

for the FCLT in Assumption 2 and its proof can be found in MS (2018, the proof of Theorem 3 in

Section A.2). These sufficient conditions include a moment condition on {εθ0,t} and a strong mixing

condition; see Assumption A7 in MS (2018). For other time series models, we may impose similar

conditions and follow the same arguments to establish the FCLT.
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Assumption 3 is a form of the uniform law of large numbers (ULLN). Let Θ0 be a closed ball

with center θ0 and radius T−1/2+δ for some δ > 0. Assumption 3 holds if the pointwise LLN holds:

T−1

[Tr]∑
t=1

∂ft (θ)

∂θ′
p→ rΓ (θ) for each θ ∈ Θ0 and r ∈ [0, 1] ,

and the empirical process

HT (θ, r) = T−1
T∑
t=1

(
∂ft (θ)

∂θ′
− Γ (θ)

)
1 {t ≤ [Tr]}

is stochastically equicontinuous on Θ0 × [0, 1]. See Andrews (1992, Theorem 1). Like the FCLT in

Assumption 2, the above sufficient conditions hold under some moment and mixing conditions.

Assumption 4 requires only a
√
T -consistent estimator. The form of the asymptotic distribution

Ψ0 does not matter, as it will not affect the asymptotic distribution of the test statistic. Non-normal

Ψ0 is allowed, even though Ψ0 is typically a normal distribution. As we discuss later, the convergence

rate requirement on θ̂T can be relaxed.

Under Assumption 3, Â(θ̂T ) = MΓ̂(θ̂T ) →
p MΓ0 = A (θ0) := A0. Then, by the first-order Taylor

expansion, we have

A(θ̂T )′Λ`(θ̂T ) = A(θ̂T )′
1√
T

T∑
t=1

Φ`

(
t

T

)
ft(θ̂T )

= A (θ0)′
1√
T

T∑
t=1

Φ`

(
t

T

)
ft (θ0) (1 + op (1))

+

[
1

T

T∑
t=1

Φ`

(
t

T

)
A(θ̌T )′

∂ft
(
θ̌T
)

∂θ′

]
√
T
(
θ̂T − θ0

)
(1 + op (1)) ,

where θ̌T is a value between θ̂T and θ0. Using Assumptions 1, 3 and 4, we can show that

[
1

T

T∑
t=1

Φ`

(
t

T

)
A(θ̌T )′

∂ft
(
θ̌T
)

∂θ′

]
·
√
T
(
θ̂T − θ0

)
= op (1) . (8)
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See the proof of Lemma 1(b) in Sun (2014b) for details. Therefore,

A(θ̂T )′Λ`(θ̂T ) = A (θ0)′ Λ`(θ0) + op (1) .

A key assumption underlying this result is that
∫ 1

0 Φ` (x) dx = 0. It then follows that

A(θ̂T )′Ω̂(θ̂T )A(θ̂T ) = A (θ0)′ Ω̂(θ0)A (θ0) + op (1) .

Note that the rank A(θ̂T )′Ω̂(θ̂T )A(θ̂T ) remains the same as that of A (θ0)′ Ω̂(θ0)A (θ0) with

probability approaching 1 as T increases. Using Stewart (1969) and the continuous mapping theorem,

we have [
A(θ̂T )′Ω̂(θ̂T )A(θ̂T )

]+
=
[
A (θ0)′ Ω̂(θ0)A (θ0)

]+
+ op (1) . (9)

Next, by the first-order Taylor expansion, we have

A(θ̂T )′
1√
T

T∑
t=1

ft(θ̂T ) = A(θ0)′
1√
T

T∑
t=1

ft (θ0)

+

[
1

T

T∑
t=1

A(θ̌T )′
∂ft
(
θ̌T
)

∂θ′

]
√
T
(
θ̂T − θ0

)
(1 + op (1)) .

Invoking Assumptions 3 and 4, we have

[
1

T

T∑
t=1

A(θ̌T )′
∂ft
(
θ̌T
)

∂θ′

]
√
T
(
θ̂T − θ0

)
= A′0Γ0 (1 + op (1)) = op (1) , (10)

where we have used A′0Γ0 = 0, which is built into the construction of our test statistic. As a result,

A(θ̂T )′
1√
T

T∑
t=1

ft(θ̂T ) = A(θ0)′
1√
T

T∑
t=1

ft (θ0) + op (1) . (11)
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Combining (9) and (11), we obtain

Q̃
(s)
T (θ̂T ) =

K − q + 1

Kq

[
1√
T

T∑
t=1

ft (θ0)

]′
G(A(θ0), Ω̂(θ0))

[
1√
T

T∑
t=1

ft (θ0)

]
(1 + op (1))

= Q̃
(s)
T (θ0) (1 + op (1)) .

We present this result formally as a lemma.

Lemma 2 Let Assumptions 1–4 hold. Then, under H0,

Q̃
(s)
T (θ̂T ) = Q̃

(s)
T (θ0) (1 + op (1)) .

The lemma shows that Q̃
(s)
T (θ̂T ) and Q̃

(s)
T (θ0) are asymptotically equivalent: Q̃

(s)
T (θ̂T ) and Q̃

(s)
T (θ0)

will converge weakly to the same distribution. Hence, the weak limit of Q̃
(s)
T (θ̂T ) does not depend

on θ̂T . Every
√
T -consistent estimator θ̂T will lead to the same asymptotic distribution for Q̃

(s)
T (θ̂T );

all we need is the
√
T convergence rate of θ̂T . The estimator θ̂T can exploit the moment conditions

that E [ft (θ0)] = 0, but does not have to. Intuitively, our test statistic Q̃
(s)
T (θ̂T ) examines only the

directions orthogonal to those that the estimation error can have an asymptotic effect. This is a

consequence of using matrix Â(θ̂T ) to transform the residual sample autocovariances.

The keys to the asymptotic equivalence result and hence the invariance of the asymptotic distri-

bution of Q̃
(s)
T (θ̂T ) to θ̂T are (8) and (10). If we assume that

1√
T

[Tr]∑
t=1

A(θ̃T )′
∂ft

(
θ̃T

)
∂θ′

= Op (1) (12)

uniformly over r and for any θ̃T = θ0 + op (1) , then Lemma 2 holds for any consistent estimator θ̂T .

We do not even require a rate of convergence for θ̂T . Such a result resembles the result in a two-step

estimation framework where the first-step estimation error has no effect on the asymptotic distribu-

tion of the second-step estimator when an orthogonality condition holds. A sufficient condition for

(12) is that the empirical process 1√
T

∑[Tr]
t=1 A(θ)′ ∂ft(θ)

∂θ′
converges to a tight and continuous process

with zero mean at θ = θ0 for any r ∈ [0, 1].
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We proceed to use Lemma 2 to establish the asymptotic distribution of Q̃
(s)
T (θ̂T ). Under Assump-

tions 1 and 2, using summation and integration by part and the continuous mapping theorem, we

can obtain

A (θ0)′ Λ`(θ0) := A′0
1√
T

T∑
t=1

Φ`

(
t

T

)
ft (θ0)⇒ A′0Ω

1/2
0

∫ 1

0
Φ` (r) dWf (r) := A′0Ω

1/2
0 ηf,`, (13)

where

ηf,` =

∫ 1

0
Φ` (r) dWf (r) ∼ iidN(0, Is) over ` = 1, . . . ,K.

The fact that ηf,` is iid over ` = 1, . . . ,K follows from the assumption that {Φ` (·)} are orthonormal

in L2[0, 1].

Combining the above with

A(θ0)′
1√
T

T∑
t=1

ft (θ0)⇒ A′0Ω
1/2
0 Wf (1) ,

Lemma 2, and the continuous mapping theorem yields:

Q̃
(s)
T (θ̂T )⇒ K − q + 1

Kq

[
A′0Ω

1/2
0 Wf (1)

]′ [
A′0Ω

1/2
0 Π0Ω

1/2
0 A0

]+ [
A′0Ω

1/2
0 Wf (1)

]
=
K − q + 1

Kq

[
Ω

1/2
0 Wf (1)

]′
G
(
A0,Ω

1/2
0 Π0Ω

1/2
0

) [
Ω

1/2
0 Wf (1)

]
,

where

Π0 =
1

K

K∑
`=1

ηf,`η
′
f,`.

The asymptotic distribution of Q̃
(s)
T (θ̂T ) looks complicated. The following theorem shows that the

asymptotic distribution is actually a standard F distribution. This is an intriguing and convenient

result.

Theorem 2 Let Assumptions 1–4 hold. Then, under H0,

Q̃
(s)
T (θ̂T )⇒ F (q,K − q + 1) ,
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where F (q,K − q + 1) is the standard F distribution with q and K − q + 1 degrees of freedom.

This result is similar to Theorem 1 in Wang and Sun (2020). Here, the degrees of freedom

of the F distribution are adjusted according to the number of parameters estimated. The proof,

however, is more challenging than that in Wang and Sun (2020). We first use Lemma 1 to simplify

G(A0,Ω
1/2
0 Π0Ω

1/2
0 ) and then use the rotational invariance of the standard normal and Wishart

distributions and singular value decompositions to reduce the asymptotic distribution to the F

distribution.

Theorem 2 allows us to perform the test using F critical values. For easy reference, we call the

test the generalized F test, or simply the F test, when there is no confusion. The generalized F test

is as easy to use as the conventional Q tests based on chi-squared approximations. It is also more

convenient to use than the MS (2018) test, which is based on a nonstandard reference distribution.

To implement the generalized F test, we need to choose the smoothing parameter K. We can

follow Sun, Phillips and Jin (2008) and Sun (2014a) to choose a testing-optimal K that minimizes a

weighted average of the type I and type II errors of the proposed test. However, this approach requires

high-order expansions that have to be established under each specific data generating process. Given

that we maintain a general setting and the high-order expansions are highly technical, we opt for a

traditional approach here. Following Phillips (2005), we choose K to minimize the mean square error

of Ω̂(θ̂T ). Although the MSE-based approach is not best suited for hypothesis testing, Monte Carlo

simulations in the next section reveal that this choice of K delivers good finite sample performances

for the generalized F test.

3.3 Fixed-Smoothing Asymptotics under the Local Alternative

We consider the following local alternatives

H
(s)
1T : γ

(s)
θ0

=
δ√
T
.

Under the local alternatives, Assumptions 1, 3, and 4 can still be valid. Assumption 2 has to be

replaced by the following assumption.
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Assumption 5 For r ∈ (0, 1], T−1/2
∑[Tr]

t=1 ft (θ0)⇒ rδ + Ω
1/2
0 Wf (r).

Theorem 3 Let Assumptions 1, 3, 4, and 5 hold. Then, under H
(s)
1T ,

Q̃
(s)
T (θ̂T )⇒ Fλ (q,K − q + 1) ,

where

λ = δ′A (Γ0; Ω0) δ

= δ′
[
Ω−1

0 − Ω−1
0 Γ0

(
Γ′0Ω−1

0 Γ0

)−1
Γ′0Ω−1

0

]
δ

and Fλ (q,K − q + 1) is the noncentral F distribution with noncentrality parameter λ and q and

K − q + 1 degrees of freedom.

Note that the noncentrality parameter is not equal to δ′Ω−1
0 δ. If θ0 is known, we can show that

the noncentrality parameter will be δ′Ω−1
0 δ. Thus, the generalized F test has power against any

local departure of order 1/
√
T from the null. When θ0 is not known and has to be estimated, the

generalized F test can have trivial power in certain directions, that is, the directions with δ 6= 0 but

λ = 0. More specifically, if δ is in the space spanned by the columns of Γ0 such that δ = Γ0B for

any p× p matrix B, then

λ = BΓ′0

[
Ω−1

0 − Ω−1
0 Γ0

(
Γ′0Ω−1

0 Γ0

)−1
Γ′0Ω−1

0

]
Γ0B = 0,

and the test has only trivial power. Note that the effect of the estimation error in θ̂T on the residual

autocovariances is Γ0(θ̂T −θ0). If the local departure aligns perfectly with the effect of the estimation

error, our approach will not be able to detect this departure.

In general, we have λ ≤ δ′Ω−1
0 δ, and so the generalized F test becomes less powerful when the

model parameters have to be estimated. Thus, there is a cost of estimating the model parameters.

However, this is typical and similar to the problem in any over-identification test.
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4 MONTE CARLO EVIDENCE

4.1 ARMA Models

In this section, we investigate the finite sample performances of the generalized F test, that is, the

asymptotic F test based on the generalized Q statistic Q̃
(s)
T (θ̂T ).

We consider ARMA models with possible weak innovations. The null is an AR(1) model such

that

Xt = 0.9Xt−1 + εt.

For ηt ∼ iid N (0, 1), we consider the following error specifications:

M1: iid normal process: {εt} is a sequence of iid N(0, 1) random variables.

M2: GARCH (1,1) process: εt = htηt, where h2
t = 0.1 + 0.09ε2

t−1 + 0.9h2
t−1.

M3: GJR-GARCH process: εt = htηt, where

h2
t = 0.01 + 0.7h2

t−1 + 0.1ε2
t−1 + 0.03ε2

t−11 (εt−1 < 0) + 0.01ε2
t−31 (εt−3 < 0) .

M4: all-pass ARMA(1,1) process: εt = 0.8εt−1 + ηt − (1/0.8) ηt−1.

M5: bilinear process: εt = ηt + 0.5ηt−1εt−2.

M6: heteroskedastic bilinear process: εt = νt + 0.5νt−1εt−2, where νt = htηt and h2
t = 0.1 +

0.09ν2
t−1 + 0.9h2

t−1.

M7: non-MD-1 process: εt = η2
t ηt−1.

M8: NLMA process: εt = ηt−2ηt−1

(
ηt−2 + ηt + 1

)
.

In error specifications M1–M3, {εt} are MD sequences. The iid specification in M1 serves as a

basic benchmark. The GARCH specifications in M2 and M3 are empirically relevant in the financial

literature. M4–M8 are non-MD processes but have zero autocorrelations. M4 and M5 are examined

in Lobato et al. (2002). M6 allows for heteroskedasticity in the bilinear process and exhibits stronger

dependence than M5. M7 is examined in MS (2018), while M8 is examined in Horowitz et al. (2006).

We investigate the size properties for sample sizes T = 100 and 200. The number of simulation

replications is 10, 000. The ARMA models are estimated by the OLS method. The nominal level of
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all tests is 5%. For the maximum order of autocovariance s, we consider the values up to 10 and

15 for T = 100 and 200, respectively. Figures 1 and 2 report the empirical rejection probabilities of

the generalized F test. For comparison, these two figures also report the empirical rejection proba-

bilities of the transformed Box-Pierce test proposed by DV (2011), the Q test with the nonpivotal

distribution approximation proposed by FRZ (2005), the nonstandard test proposed by MS (2018)

and the bootstrapped Q tests proposed by Zhu (2016).

For the DV test, the first s + p autocorrelations are employed to transform the first s autocor-

relations, and the critical values of the resulting Box-Pierce type test are based on a chi-squared

distribution with s degrees of freedom. The test is implemented using two different variance ma-

trix estimators of sample innovation autocorrelations. The first estimator is a matrix with diagonal

elements equal to

1

T

T∑
t=j+1

ε̂2
θ̂T ,t

ε̂2
θ̂T ,t−j

/γ̂ θ̂T (0) , j = 1, . . . , s+ p.

The second estimator is the vector autoregressive heteroskedasticity and autocorrelation consistent

(VARHAC) variance estimator described in Lobato et al. (2002), with the VAR order selected by the

Bayesian information criterion. The maximum VAR order is set at 1.2T 1/3. This procedure differs

slightly from Den Haan and Levin (1997): it only conducts a global VAR order search, instead of

searching for a unique autoregression order for each series separately5. For the FRZ test, we follow

FRZ (2005) and employ Imhof’s (1961) algorithm to compute the critical values of the nonpivotal

asymptotic distribution of Q
(s)
T (θ̂T ). The reference distribution of the MS test is nonstandard, and

the critical values are obtained from Table 1 in Lobato (2001). We examine the finite properties

of Q
(s)
T (θ̂T ), employing the bootstrapped critical values from both the regular (i.e., non-blocking)

and blockwise procedures of Zhu (2016). The bootstrap sample size is J = 500, and the random

weights are generated from the standard exponential distribution. For the blockwise boostrapping

procedure, the block size is set equal to 3.

The main features of the results are as follows:

i. For the iid process, the empirical rejection probabilities of the generalized F test, the DV tests,

5In preliminary simulations, we also consider the Newey and West (1994) data-driven procedure, used by Delgado
and Velasco (2011), but the results are much worse than the VARHAC approach.
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Figure 1: Percentage of rejections of portmanteau tests in terms of lag s under the null with T = 100.

Fixed-K represents the generalized F test based on the modified statistic Q̃
(s)
T (θ̂T ) (this paper);

MS represents the nonstandard MS test; DV-Var represents the DV test with VARHAC variance
estimator; DV-Diag represents the DV test with diagonal variance estimator; FRZ represents the
Q test with a nonpivotal distribution approximation proposed by FRZ. Bootstrap represents the Q
test with a nonblock-bootstrapped critical value of Zhu (2016); Block-Bootstrap represents the Q
test with a block-bootstrapped critical value of Zhu (2016).
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Figure 2: Percentage of rejections of portmanteau tests in terms of lag s under the null with T = 200.

Fixed-K represents the generalized F test based on the modified statistic Q̃
(s)
T (θ̂T ) (this paper);

MS represents the nonstandard MS test; DV-Var represents the DV test with VARHAC variance
estimator; DV-Diag represents the DV test with diagonal variance estimator; FRZ represents the
Q test with a nonpivotal distribution approximation proposed by FRZ. Bootstrap represents the Q
test with a nonblock-bootstrapped critical value of Zhu (2016); Block-Bootstrap represents the Q
test with a block-bootstrapped critical value of Zhu (2016).
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and the Zhu tests are reasonably close to the nominal level of 5%. However, both the FRZ

and MS tests tend to be undersized, especially when s is large.

ii. For the GARCH process, the empirical rejection probabilities of the generalized F, DV, and

FRZ tests are close to the nominal level of 5% for all s considered, while the Zhu tests tend to

be slightly oversized when s is small. In contrast, the MS test is heavily undersized, especially

when s is large.

iii. For the GJR-GARCH and all-pass ARMA (1,1) processes, the empirical size patterns of these

tests are similar to those of tests with iid errors.

iv. For bilinear processes, the empirical rejection probabilities of the generalized F test are quite

close to the nominal level of 5%. However, those of the DV test with the VARHAC variance

estimator tend to exceed the nominal level of 5% and become much worse for the heteroskedas-

tic bilinear process, whereas the DV test with the diagonal variance estimator controls the size

sufficiently well. The Zhu tests tend to be oversized when s is small. On the other hand, the

FRZ test can be over-sized or under-sized, and the MS test is heavily under-sized.

v. For the non-MD-1 process and the NLMA process, the empirical rejection probabilities of the

generalized F test are reasonably close to the nominal level. The FRZ test is over-sized when

T = 100, but tends to be under-sized when T = 200. The DV test with the VARHAC variance

estimator is heavily over-sized, and the one with the diagonal variance estimator is under-sized.

The MS test is heavily under-sized, especially when s is large. The Zhu (2016) tests tend to

oversized, especially when s is small.

Overall, the generalized F test performs remarkably well for the uncorrelated error specifications

we consider here. The DV tests perform reasonably well with MD error specifications for both the

diagonal and VARHAC variance estimators, but tend to be heavily oversized with non-MD error

specifications for the VARHAC procedure. Interestingly, for the non-MD cases, the DV test performs

much better with the diagonal matrix procedure than with the VARHAC procedure, although the

former estimator is not consistent for the population variance matrix. This could, to a certain degree,
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indicate that increasing-smoothing asymptotic approximations do not work well in finite samples.

The Zhu tests tend to be oversized when s is small. Furthermore, for the MDS processes (M1-M3),

the blockwise bootstrapping procedure delivers worse size performances than the regular procedure,

this tendency is reversed when it comes to the non-MDS processes (M4-M8). As for other competing

tests, the MS test tends to be heavily undersized, while the FRZ test tends to be undersized in many

cases.

To investigate the power properties, we consider the following ARMA(1,1) model:

Xt = 0.7Xt−1 + εt + 0.2εt−1,

where the error specifications are again M1 to M8. The null hypothesis (i.e., the weak AR(1)) is

tested at the nominal level 5%. We use 1, 000 replications for sample sizes 100 and 200. For power

comparisons, the critical values are adjusted to make the empirical rejection probabilities of the

tests under the null exactly 5%, except for the Zhu tests. Note that empirical size adjustment is not

practically feasible. The empirical power curves are reported in Figures 3 and 4.

The main features of the results are as follows:

i. The generalized F test has substantial power and is comparable to the DV tests and the Zhu

tests in many cases.

ii. The FRZ and MS tests suffer from substantial power loss even after empirical size adjustment.

5 AN EMPIRICAL APPLICATION TO S&P500 RETURNS

In this section, we revisit the application to the daily returns of the S&P500 index, which is considered

by FRZ (2005) and Zhu (2016). The price index {Pt} ranges from January 3, 1979 to December 31,

2001, containing 5, 808 observations. The series of log-returns log (Pt/Pt−1) is denoted as {yt}5807
1 .

FRZ (2005) and Zhu (2016) show that, at the 5% level of significance, the strong white noise

hypothesis is rejected, whereas the weak white noise hypothesis is not rejected.
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Figure 3: Power of the portmanteau tests in terms of lag s with T = 100. Fixed-K represents

the generalized F test based on the modified statistic Q̃
(s)
T (θ̂T ) (this paper); MS represents the

nonstandard MS test; DV-Var represents the DV test with VARHAC variance estimator; DV-Diag
represents the DV test with diagonal variance estimator; and FRZ represents the Q test with a
nonpivotal distribution approximation proposed by FRZ. Bootstrap represents the Q test with a
nonblock-bootstrapped critical value of Zhu (2016); Block-Bootstrap represents the Q test with a
block-bootstrapped critical value of Zhu (2016).
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Figure 4: Power of portmanteau tests in terms of lag s with T = 200. Fixed-K represents the

generalized F test based on the modified statistic Q̃
(s)
T (θ̂T ) (this paper); MS represents the non-

standard MS test; DV-Var represents the DV test with the VARHAC variance estimator; DV-Diag
represents the DV test with the diagonal variance estimator; and FRZ represents the Q test with
a nonpivotal distribution approximation proposed by FRZ. Bootstrap represents the Q test with a
nonblock-bootstrapped critical value of Zhu (2016); Block-Bootstrap represents the Q test with a
block-bootstrapped critical value of Zhu (2016).
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We check whether a (G)ARCH model is adequate to fit {yt}. We consider a GARCH(1,1) model:

yt = htηt,

h2
t = ω + αy2

t−1 + βh2
t−1,

where ω > 0, α ≥ 0, β ≥ 0. Under some assumptions that imply the second-order stationarity of

y2
t , it is easy to show that y2

t admits an ARMA(1,1) representation such that

Xt = (α+ β)Xt−1 + vt − βvt−1, (14)

where Xt = y2
t −E

(
y2
t

)
, vt = h2

t

(
η2
t − 1

)
. When {ηt} is iid, {vt} is an MDS; when {ηt} is an MDS,

{vt} is an uncorrelated sequence. Thus we can check the adequacy of a (G)ARCH model for {yt}

by checking whether {vt} is uncorrelated up to some fixed order in (14).

Let X̃t := y2
t − 1

T

∑T
τ=1 y

2
τ be the mean-corrected series. We first test the null that

{
X̃t

}
satisfies

a weak AR(1) model. The fitted AR(1) model is X̃t − 0.113X̃t−1 = vt. Table 1 reports the p-values

of the generalized F test, the Zhu test with the regular bootstrapping procedure, the FRZ test,

and the DV test. From the results of the generalized F test, we find that, up to order 15, the null

that
{
X̃t

}
satisfies a weak AR(1) model can be rejected at the 5% significance level when s > 3.

However, the Zhu test and the FRZ test would not reject the null at the 5% significance level, up to

order 15. The DV test would reject the null at the 5% significance level, when s > 12.

As a caveat, we note that all the diagnostic tests under consideration serve to test model adequacy.

If we reject the null of zero innovation autocorrelation up to any order s, then the model is deemed

inadequate as it does not absorb all autocorrelations. On the other hand, if we do not reject the

null for a given s, then we can not say that the model is adequate because the test only examines

autocorrelations up to the order s. Autocorrelation of order higher than s may be still present. Also,

due to the parameter estimation error, we may fail to reject the null even if the innovations are

autocorrelated. The choice of s is an empirical question that should reflect the maximum order of

innovation autocorrelation that we care about.
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Lag 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fixed-K 0.29 0.23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Bootstrap 0.73 0.25 0.27 0.28 0.25 0.25 0.25 0.29 0.25 0.25 0.25 0.25 0.24 0.24 0.26
FRZ 0.25 0.13 0.30 0.34 0.28 0.25 0.25 0.23 0.42 0.37 0.36 0.27 0.27 0.26 0.22
DV-Diag 0.28 0.13 0.24 0.25 0.30 0.39 0.35 0.26 0.26 0.10 0.08 0.06 0.02 0.02 0.02

Table 1: The p-values of the generalized F test (fixed-K), the bootstrapped Portmanteau test of Zhu
(2016) (Bootstrap), the FRZ test and the DV test (DV-Diag) for the null of a weak AR(1) model.

We next test the null that
{
X̃t

}
satisfies a weak ARMA(1,1) model. The fitted ARMA(1,1)

model is X̃t−0.832X̃t−1 = vt−0.727vt−1. Table 2 reports the p-values of our generalized F test, the

FRZ test6 and the Zhu test with the regular bootstrapping procedure. It shows that, up to order

15, a weak ARMA (1,1) model cannot be rejected at the 5% significance level. This is in accordance

with the conclusion in FRZ (2005) and Zhu (2016).

Lag 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fixed-K 0.32 0.61 0.69 0.62 0.59 0.78 0.83 0.90 0.87 0.91 0.94 0.79 0.54
FRZ 0.58 0.52 0.57 0.43 0.38 0.38 0.37 0.37 0.37 0.38
Bootstrap 0.59 0.72 0.65 0.51 0.51 0.52 0.51 0.51 0.51 0.51 0.51 0.52 0.51 0.52 0.53

Table 2: The p-values of the generalized F test (fixed-K) and the bootstrapped Portmanteau test of
Zhu (2016) (Bootstrap) for the null of a weak ARMA(1,1) model.

6 CONCLUSION

In this paper, we propose a simple and asymptotically F-distributed portmanteau test for diagnosing

a general parametric time series model. In this framework, the parameter estimation error can

have non-negligible effects on both the sample covariances of the residuals and the estimator of

the asymptotic variance of these sample covariances. We use a transform to remove its effect on

the sample covariances and employ the orthonormal series variance estimator, a special asymptotic

variance estimator that is not affected by the parameter estimation uncertainty in large samples. It

is the combination of the transform and the use of the orthonormal series variance estimator that

make the convenient asymptotic F theory possible. In an extensive Monte Carlo simulation study,

6As the same data set is used, we just replicate the p-values from Table 5 in FRZ (2005). So the values for
s = 10, 11, 13, 14, 15 are missing.
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we find that the proposed F test is more accurate than existing tests with competitive power in

finite samples. It would be interesting to extend this methodology to test the autocorrelations of

the residuals from multivariate time series models. We will pursue this extension in future research.

7 APPENDIX: PROOFS OF THE MAIN RESULTS

Proof of Lemma 1. We have

A (Γ; ∆) ·
[
A (Γ; ∆)′ · Ω ·A (Γ; ∆)

]+
A (Γ; ∆)′

= ∆−1/2M∆−1/2Γ ·
[
M∆−1/2Γ

(
∆−1/2Ω∆−1/2

)
M∆−1/2Γ

]+
M∆−1/2Γ∆−1/2,

where

M∆−1/2Γ = Is −∆−1/2Γ
(
Γ′∆−1Γ

)−1
Γ′∆−1/2.

Let

∆−1/2Γ = Ũ Ξ̃Ṽ ′

be the SVD of ∆−1/2Γ where

Ξ̃s×p =

 D̃

O

 ,

D̃ ∈ Rp×p is a diagonal matrix, and Ũ and Ṽ are orthogonal matrices. We write Ũ =
(
Ũsp, Ũsq

)
for

Ũsp ∈ Rs×p and Ũsq ∈ Rs×q. Then

M∆−1/2Γ = Is − Ũ Ξ̃Ṽ ′
(
Ṽ Ξ̃′Ũ ′Ũ Ξ̃Ṽ ′

)−1
Ṽ Ξ̃′Ũ ′ = Is − Ũ Ξ̃

(
Ξ̃′Ξ̃

)−1
Ξ̃′Ũ ′

= Ũ

[
Is − Ξ̃

(
Ξ̃′Ξ̃

)−1
Ξ̃′
]
Ũ ′ = Ũ

 O O

O Iq

 Ũ ′.
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Hence

[
A (Γ; ∆)′ · Ω ·A (Γ; ∆)

]+
=

[
M∆−1/2Γ

(
∆−1/2Ω∆−1/2

)
M∆−1/2Γ

]+

=

Ũ
 O O

O Iq

 Ũ ′
(

∆−1/2Ω∆−1/2
)
Ũ

 O O

O Iq

 Ũ ′


+

= Ũ

 O O

O
[
Ũ ′sq

(
∆−1/2Ω∆−1/2

)
Ũsq

]−1

 Ũ ′,

and

A (Γ; ∆) ·
[
A (Γ; ∆)′ · Ω ·A (Γ; ∆)

]+
A (Γ; ∆)′

= ∆−1/2M∆−1/2Γ ·
[
M∆−1/2Γ

(
∆−1/2Ω∆−1/2

)
M∆−1/2Γ

]+
M∆−1/2Γ∆−1/2

= ∆−1/2Ũ

 O O

O Iq


 O O

O
[
Ũ ′sq

(
∆−1/2Ω∆−1/2

)
Ũsq

]−1


 O O

O Iq

 Ũ ′∆−1/2

=

 O

Ũ ′sq∆
−1/2


′ O O

O
[
Ũ ′sq

(
∆−1/2Ω∆−1/2

)
Ũsq

]−1


 O

Ũ ′sq∆
−1/2


= ∆−1/2Ũsq

[
Ũ ′sq

(
∆−1/2Ω∆−1/2

)
Ũsq

]−1
Ũ ′sq∆

−1/2.

Now, using the SVD’s of Γ and ∆−1/2Γ, we have

∆−1/2Γ = ∆−1/2U

 D

O

V ′ and ∆−1/2Γ = Ũ

 D̃

O

 Ṽ ′,

and so

∆−1/2U

 D

O

V ′ = Ũ

 D̃

O

 Ṽ ′.
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Since both Ũ and V ′ are orthogonal matrices, we obtain

Ũ ′∆−1/2U

 D

O

 =

 D̃

O

 Ṽ ′V.

That is,  Ũ ′sp∆
−1/2Usp Ũ ′sp∆

−1/2Usq

Ũ ′sq∆
−1/2Usp Ũ ′sq∆

−1/2Usq


 D

O

 =

 D̃

O

 Ṽ ′V.
It follows from the second block of the above equation that

(
∆−1/2Ũsq

)′
Usp = Oqp.

Therefore, ∆−1/2Ũsq lies in the orthogonal complement of the space spanned by the columns of Usp.

Given that {Usq} are complete orthogonal bases for this space and ∆−1/2Ũsq has a full column rank

q, we have

∆−1/2Ũsq = UsqC̃

for some nonsingular q × q matrix C̃. Using this, we have

A (Γ; ∆) ·
[
A (Γ; ∆)′ · Ω ·A (Γ; ∆)

]+
A (Γ; ∆)′

= ∆−1/2Ũsq

[
Ũ ′sq

(
∆−1/2Ω∆−1/2

)
Ũsq

]−1
Ũ ′sq∆

−1/2

= UsqC̃
[
C̃ ′U ′sqΩUsqC̃

]−1
C̃ ′U ′sq = Usq

[
U ′sqΩUsq

]−1
U ′sq,

as desired.

Proof of Theorem 2. Under Assumptions 1–4, we have proven in the main text that

Q̃
(s)
T

(
θ̂T

)
⇒ K − q + 1

Kq
Wf (1)′Ω1/2A0

[
A′0Ω

1/2
0 Π0Ω

1/2
0 A0

]+
A′0Ω

1/2
0 [Wf (1)]

=
K − q + 1

Kq
Wf (1)′Ω1/2U0,sq

[
U ′0,sqΩ

1/2
0 Π0Ω

1/2
0 U0,sq

]+
U ′0sqΩ

1/2
0 [Wf (1)] ,
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where U0,sq contains the left singular vectors of Γ0 corresponding to the zero singular value. Here

the equality follows from Lemma 1.

Note that ηf,` is normal and

cov
[
ηf,`1 , ηf,`2

]
=

∫ 1

0
Φ`1 (r) Φ`2 (r) dr = 1 {`1 = `2} ,

using the orthonormality of {Φ` (·) , ` = 1, . . . ,K} on L2[0, 1]. So ηf,` ∼ iidN(0, Is) over ` = 1, . . . ,K.

As a result, KΠ0 ∼ W (Is,K), a Wishart random variable.

Because Wf (1) and ηf,` are standard normals and for ` = 1, . . . ,K,

cov(ηf,`,Wf (1)) = E
[∫ 1

0
Φ` (r) dWf (r)Wf (1)′

]
= E

[∫ 1

0
Φ` (r) dWf (r)

∫ 1

0
dW ′f (v)

]
= Is

∫ 1

0
Φ` (r) dr = 0,

we know that
{
ηf,`, ` = 1, . . . ,K

}
is independent of Wf (1). As a result, KΠ0 is independent of

Wf (1).

We partition Π0 as

Π0 =
1

K

K∑
`=1

ηf,`η
′
f,` =

 Πpp Πpq

Πqp Πqq

 ,

where Πij denotes i× j matrices. Let Ũ0
s×s

Ξ̃0
s×q

Ṽ ′0
q×q

be a singular value decomposition of Ω
1/2
0 U0,sq. By

definition, Ũ ′0Ũ0 = Is, Ṽ ′0 Ṽ0 = Iq, and

Ξ̃0 =

 O

D̃0


where D̃0 is diagonal and all diagonal elements are positive almost surely. Then

Wf (1)′Ω
1/2
0 U0,sq

[
U ′0,sqΩ

1/2
0 Π0Ω

1/2
0 U0,sq

]+
U ′0,sqΩ

1/2
0 Wf (1)

= Wf (1)′ Ũ0Ξ̃0Ṽ
′

0

[
Ṽ0Ξ̃′0Ũ

′
0 ·Π0 · Ũ0Ξ̃0Ṽ

′
0

]+
Ṽ0Ξ̃′0Ũ

′
0Wf (1)

=
[
Ũ ′0Wf (1)

]′
Ξ̃0

[
Ξ̃′0 · Ũ ′0Π0Ũ0 · Ξ̃0

]+
Ξ̃′0

[
Ũ ′0Wf (1)

]
= d [Wf (1)]′ Ξ̃0

[
Ξ̃′0Π0Ξ̃0

]+
Ξ̃′0 [Wf (1)]
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where the distributional equivalence in the last line holds because
(
Ũ ′0Π0Ũ0, Ũ

′
0Wf (1)

)
has the same

joint distribution as (Π0,Wf (1)). Some simple algebra shows that

Ξ̃0

[
Ξ̃′0Π0Ξ̃0

]+
Ξ̃′0

=

 O

D̃0


( O D̃0

) Πpp Πpq

Πqp Πqq


 O

D̃0




+(
O D̃0

)

=

 O

D̃0

(D̃0ΠqqD̃0

)−1
(
O D̃0

)
=

 O O

O Π−1
qq

 .

Let

Wf (1) =

 Wf,p (1)

Wf,q (1)

 .

Then

[Wf (1)]′ Ξ̃0

[
Ξ̃′0Π0Ξ̃0

]+
Ξ̃′0 [Wf (1)]

=

 Wf,p (1)

Wf,q (1)


′ O O

O Π−1
qq


 Wf,p (1)

Wf,q (1)


= W ′f,q (1) Π−1

qq Wf,q (1) .

So

Q̃
(s)
T

(
θ̂T

)
⇒ K − q + 1

Kq
Wf,q (1)′Π−1

qq Wf,q (1) .

By Proposition 8.2 in Bilodeau and Brenner (1999), we have

Wf,q (1)′ (KΠqq)
−1Wf,q (1)

d
= Fc (q,K − q + 1) ,

where Fc (·, ·) is a canonical F distribution. Finally, with some degrees-of-freedom adjustment, we

obtain

Q̃
(s)
T

(
θ̂T

)
⇒ F (q,K − q + 1) .
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Proof of Theorem 3. By Assumption 5 and the similar arguments in the proof of Theorem 2,

we have

Q̃
(s)
T

(
θ̂T

)
⇒ K − q + 1

Kq

[
Ω

1/2
0 Wf (1) + δ

]′
A0

[
A′0Ω

1/2
0 Π0Ω

1/2
0 A0

]+
A′0

[
Ω

1/2
0 Wf (1) + δ

]
=

K − q + 1

Kq

(
Wf (1) + δ̃

)′
Ω1/2U0,sq

[
U ′0,sqΩ

1/2
0 Π0Ω

1/2
0 U0,sq

]+
U ′0sqΩ

1/2
0

[
Wf (1) + δ̃

]

=
K − q + 1

Kq

(
Wf (1) + Ũ ′0δ̃

)′ O O

O Π−1
qq

[Wf (1) + Ũ ′0δ̃
]

=
K − q + 1

Kq

(
Wfq (1) +

[
Ũ ′0δ̃

]
q

)′
Π−1
qq

(
Wfq (1) +

[
Ũ ′0δ̃

]
q

)
,

where δ̃ = Ω
−1/2
0 δ and

[
Ũ ′0δ̃

]
q

is the last q elements of Ũ ′0δ̃. Then, by Proposition 8.2 in Bilodeau

and Brenner (1999), we have

Q̃
(s)
T

(
θ̂T

)
⇒ Fλ (q,K − q + 1) ,

where

λ =

∥∥∥∥[Ũ ′0δ̃]q
∥∥∥∥2

= δ′A0

[
A′0Ω0A0

]+
A′0δ.

By Lemma 1, λ will not change if we replace A0 := A (Γ0; Is) by A (Γ0; Ω0). But

A (Γ0; Ω0) = Ω
−1/2
0 M

Ω
−1/2
0 Γ0

,

and so

λ = δ′Ω
−1/2
0 M

Ω
−1/2
0 Γ0

[
M

Ω
−1/2
0 Γ0

]+
M

Ω
−1/2
0 Γ

Ω
−1/2
0 δ

= δ′Ω
−1/2
0 M

Ω
−1/2
0 Γ

Ω
−1/2
0 δ

= δ′
[
Ω−1

0 − Ω−1
0 Γ0

(
Γ′0Ω−1

0 Γ0

)−1
Γ′0Ω−1

0

]
δ.
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