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1 Introduction

In linear and nonlinear models with moment restrictions, it is standard practice to employ the gen-
eralized method of moments (GMM) to estimate model parameters. Consistency of the GMM
estimator in general does not depend on the dependence structure of the moment conditions.
However, we often want not only point estimators of the model parameters, but also their covari-
ance matrix in order to conduct inference. A popular covariance estimator that allows for general
forms of dependence is the nonparametric kernel estimator. The underlying smoothing parameter
is the truncation lag (or bandwidth parameter) or the ratio b of the truncation lag to the sample
size. See Newey and West (1987) and Andrews (1991). In econometrics, this covariance esti-
mator is often referred to as the heteroscedasticity and autocorrelation robust (HAR) estimator.
A major di�culty in using the HAR covariance estimator to perform hypothesis testing lies in
how to specify smoothing parameter b and how to approximate the sampling distribution of the
associated test statistic.

In terms of distributional approximations, both the conventional small-b asymptotics and
nonstandard �xed-b asymptotics are considered in the literature. In the former case, b is as-
sumed to be small in that it goes to zero at a certain rate with the sample size. In the latter
case, b is assumed to be held �xed at a given value. Under these two di�erent asymptotic speci-
�cations, the Wald statistic converges in distribution to the standard chi-square distribution and
a nonstandard distribution, respectively. See Kiefer, Vogelsang and Bunzel (2000), Kiefer and
Vogelsang (2002a, 2002b, 2005, hereafter KV). KV (2005) show by simulation that the nonstan-
dard �xed-b asymptotic approximation is more accurate than the conventional asymptotic �2

approximation. Jansson (2004) and Sun, Phillips, Jin (2008, hereafter SPJ) provide theoretical
analyses for location models.

In this paper, we propose a new F � test, which is based on the Wald statistic corrected by a
multiplicative factor and employs critical values from a standard F distribution. The correction
can be regarded as an example of the Bartlett or Bartlett-type correction. See Bartlett (1937,
1954). It corrects for the demeaning bias of the HAR estimator, which is due to the estimation
uncertainty of model parameters, and the dimensionality bias of the Wald statistic, which is
present when the number of joint hypotheses is greater than 1: The F � test is as easy to use as
the standard Wald test as both the correction factor and the critical values are easy to obtain.

The F � test can be motivated as an approximation to the nonstandard limiting distribution
given in KV (2005). Under the �xed-b asymptotics, the HAR covariance estimator converges in
distribution to a weighted sum of independent Wishart distributions. The weighted sum can be
approximated by a single Wishart distribution with equivalent degree of freedom K. A direct
implication is that the nonstandard �xed-b limiting distribution can be approximated by a scaled
F distribution. The scaled F distribution can be regarded as a high-order limiting distribution
under the sequential asymptotics where the sample size T !1 for a �xed b followed by letting
b! 0.

We show that critical values from the scaled F distribution are high-order correct under
the conventional joint small-b asymptotics where T ! 1 and b ! 0 jointly. So under both the
sequential asymptotics and the joint asymptotics, the F approximation is a high-order re�nement
of the conventional �2 approximation. This provides a theoretical justi�cation on the accuracy
of the F approximation derived in this paper.

On the basis of the F approximation, we provide a theoretical explanation on why the con-
ventional Wald test has severe size distortion when p; the number of hypotheses being jointly
tested or the dimension of the hypothesis space, is large. We show that the di�erence between the
high-order corrected F critical value and the �rst-order �2 critical value depends on the band-
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width parameter b, the number of joint hypotheses, and the kernel function used in the HAR
estimation. The conventional Wald test can be severely size distorted as it uses critical values
that do not depend on b and the kernel function and do not adequately capture the e�ect of the
dimension of the hypothesis space.

The remainder of the paper is organized as follows. Section 2 describes the testing problem
of concern and provides an overview of the �xed-b asymptotic theory. Section 3 establishes an
F-approximation to the nonstandard �xed-b asymptotic distribution. Section 4 develops a high-
order expansion of the Wald statistic and introduces the F � test. Section 5 presents simulation
evidence and last section concludes. Proofs are given in the Appendix.

2 Autocorrelation Robust Testing

The model we consider is the same as KV (2005). We are interested in a d�1 vector of parameters
� 2 � � Rd: Let vt denote a vector of observations. Let �0 be the true value and assume that �0
is an interior point of the compact parameter space �: The moment conditions

Ef (vt; �) = 0; t = 1; 2; :::; T

hold if and only if � = �0 where f (�) is an m � 1 vector of continuously di�erentiable functions
with m � d and rank E

�
@f (vt; �0) =@�

0� = d: De�ne

gt (�) = T�1
tX
j=1

f(vj ; �);

the GMM estimator of �0 is then given by

�̂T = argmin
�2�

gT (�)
0WT gT (�)

where WT is an m�m positive semide�nite weighting matrix.
Let

Gt(�) =
@gt (�)

@�0
=
1

T

tX
j=1

@f(vj ; �)

@�0
and G0 = E

@f(vj ; �0)

@�0
:

As in KV (2005), we make the following high level assumptions.

Assumption 1 plimT!1�̂T = �0 and �0 is an interior point of �:

Assumption 2 plimT!1G[rT ](~�T ) = rG0 uniformly in r for any ~�T whose elements are between

the corresponding elements of �̂T and �0:

Assumption 3 WT is positive semide�nite, plimT!1WT = W1; and G00W1G0 is positive
de�nite.

Under the above assumptions, we have, using element-by-element mean value expansions:

p
T
�
�̂T � �0

�
= �

�
G00W1G0

��1
G00W1

1p
T

TX
t=1

f(vt; �0) + op (1) : (1)

Consider the null hypothesis H0 : r(�0) = 0 and the alternative hypothesis H1 : r (�0) 6= 0
where r (�) is a p � 1 vector of continuously di�erentiable functions with �rst order derivative
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matrix R(�) = @r(�)=@�0: The Wald statistic is based on the di�erence r(�̂T ) � r (�0) : Under
Assumptions 1{3, we have, using (1):

p
T
h
r(�̂T )� r (�0)

i
=

1p
T

TX
t=1

�(vt; �0) + op (1)

where
�(vt; �0) = �R (�0)

�
G00W1G0

��1
G00W1f(vt; �0):

This can be regarded as an inuence function representation of
p
T [r(�̂T )� r (�0)]:

Assumption 4 T�1=2
P[Tr]
t=1 �(vt; �0)!d �Wp(r) where ��

0 = 
 =
P1
j=�1Eutut�j is the long

run variance (LRV) of ut := �(vt; �0) and Wp(r) is the p-dimensional standard Brownian motion.

Under Assumptions 1-4, we now have

p
T
h
r(�̂T )� r (�0)

i
!d �Wp(1) s N(0;
);

which provides the usual basis for robust testing: The F-test version of the Wald statistic for
testing H0 against H1 is

FT =
hp

Tr(�̂T )
i0

̂�1T

hp
Tr(�̂T )

i
=p;

where 
̂T is an estimate of 
: The kernel estimator 
̂T of 
 takes the form of


̂T =
1

T

TX
t=1

TX
�=1

kb

�
t� �
T

�
ûtû

0
� (2)

where ût is a plug-in estimator of ut given by

ût = �R
�
�̂T

��
G0T (�̂T )WTGT (�̂T )

��1
G0T (�̂T )WT f(vt; �̂T );

k (�) is a kernel function, and kb (x) = k (x=b) for x 2 [�1; 1]: Here b is the smoothing parameter
that a�ects the asymptotic properties of 
̂T and the associated test statistic.

Following KV (2005), we can show that under the assumptions given above:

FT !d F1(p; b)

for any �xed value of b; where

F1(p; b) =W 0
p (1)

�Z 1

0

Z 1

0
kb(r � s)dVp(r)dV 0p(s)

��1
Wp (1) =p; (3)

Wp (r) and Vp (r) are p-dimensional Brownian motion and Brownian bridge processes, respec-
tively.

F1(p; b) is the so-called �xed-b limiting distribution of FT : When there is no possibility
of confusion, we use F1(p; b) to denote a random variable with distribution F1(p; b) and the
distribution itself. Similarly, we use Fp;K to denote a random variable with F distribution Fp;K
and the distribution itself.
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3 F-Approximation to the Nonstandard Limits

This section develops an asymptotic expansion of the limit distribution given in (3) as the band-
width parameter b ! 0: On the basis of this expansion, we derive an F approximation to the
nonstandard �xed-b limiting distribution.

The asymptotic expansion and later developments in the paper make use of the following
kernel conditions:

Assumption 5 (i) k(x) is an even function satisfying k (0) = 1,
R1
�1 jk (x)xj dx < 1;R1

�1 k2(x)x2dx <1 (ii) The Parzen characteristic exponent de�ned by

q = maxfq0 : q0 2 Z+; gq0 = lim
x!0

1� k(x)
jxjq0 <1g (4)

is greater than or equal to 1.

We �rst establish di�erent representations of the �xed-b limiting distribution. These repre-
sentations help motivate the F approximation and are used in our proofs. De�ne

k�b (r; s) = kb(r � s)�
Z 1

0
kb(r � t)dt�

Z 1

0
kb(� � s)d� +

Z 1

0

Z 1

0
kb(t� �)dtd� ;

which is the \centered" version of the kernel function in the sense thatZ 1

0
k�b (r; s)dr =

Z 1

0
k�b (r; s)ds =

Z 1

0

Z 1

0
k�b (r; s)drds = 0 for any r and s:

Then it is easy to show thatZ 1

0

Z 1

0
kb(r � s)dVp(r)dV 0p(s) =

Z 1

0

Z 1

0
k�b (r; s)dWp(r)dW

0
p(s):

Note that while k (x) may be de�ned on R, kb(r � s) and hence k�b (r; s) are de�ned on [0; 1] �
[0; 1] for any given b: Under Assumption 5, k�b (r; s) is a symmetric and integrable function in
L2 ([0; 1]� [0; 1]) : So the Fredholm integral operator with kernel k�b (r; s) is self-adjoint and com-
pact. By the spectral theorem, e.g. Promislow (2008, page 199), we can expand k�b (r; s) as

k�b (r; s) =
1X
n=1

��nf
�
n(r)f

�
n(s); (5)

where the right hand side converges in L2 ([0; 1]� [0; 1]) : Here ��n is an eigenvalue of the centered
kernel and f�n(r) is the corresponding eigenfunction, i.e. �

�
nf

�
n(s) =

R 1
0 k

�
b (r; s)f

�
n(r)dr: It follows

from (5) that Z 1

0

Z 1

0
k�b (r; s)dWp(r)dW

0
p(s)

d
=

1X
n=1

��n�n�
0
n (6)

where �n =
R 1
0 f

�
n(r)dWp(r): Since f

�
n(s) is an orthonormal sequence of functions in L

2 [0; 1] ;
�n s iidN (0; Ip) and �n� 0n follows Wp (Ip; 1) ; a simple Wishart distribution. Hence the double
stochastic integral is equal in distribution to a weighted sum of independent Wishart distributions.

Using (6), we obtain our �rst representation of pF1(p; b) as

pF1(p; b)
d
= �0

" 1X
n=1

��n�n�
0
n

#�1
�; (7)
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where �n s iidN(0; Ip), � s N(0; Ip) and �n is independent of � for all n: That is, pF1(p; b) is
equal in distribution to a quadratic form of standard normals with an independent and random
weighting matrix.

Let H be an orthonormal matrix such that H = (�= k�k ;�)0 where � is a p� (p� 1) matrix,
then

pF1(p; b)
d
= (H�)0

 1X
n=1

��n (H�n) (H�n)
0
!�1

H�

d
= k�k2 e01

 1X
n=1

��n (H�n) (H�n)
0
!�1

e1

where e1 = (1; 0; 0; : : : ; 0; 0)
0. Note that k�k2 is independent of H and H�n has the same distri-

bution as �n; so we can write

pF1(p; b)
d
= k�k2 e01

 1X
n=1

��n�n�
0
n

!�1
e1:

Let 1X
n=1

��n�n�
0
n =

�
�11 �12
�21 �22

�
where �11 2 R and �22 2 R(p�1)�(p�1): Then

pF1(p; b)
d
=
k�k2

�11�2
for �11�2 = �11 � �12��122 �21: (8)

This is our second representation of pF1(p; b): It shows that pF1(p; b) is equal in distribution to
a chi-square variate scaled by an independent and almost surely positive random variable.

Using Lemma A.2 in the appendix and the Markov inequality, we can show that �11�2 !p 1
as b ! 0: So as b decreases, the e�ect of the randomness in �11�2 diminishes, and when b !
0, pF1(p; b) approaches the standard �2p distribution. In other words, under the sequential
asymptotics where T ! 1 for a �xed b followed by letting b ! 0; we obtain the standard �2p
approximation.

The standard �2p approximation may be regarded as the �rst-order sequential asymptotics.
To obtain a high-order approximation, we can re�ne the second stage approximation. A general
idea to improve the chi-square approximation is the Bartlett correction. See Bartlett (1937,
1954) for the original papers and Cribari-Neto and Cordeiro (1999) for a more recent survey. The
argument goes as follows. Suppose that X s pF1(p; b) and EX = pC for some constant C; then
as b ! 0; pF1(p; b)=C is closer to the �2p distribution than the original distribution pF1(p; b).

Since k�k2 and �11�2 in (8) are independent, we have EX = pE
�
��111�2

�
: So C = E

�
��111�2

�
or a

good approximation to E
�
��111�2

�
:

We can go one step further. Essentially, the Bartlett correction makes the mean of the
pF1(p; b) distribution closer to that of the �2p distribution. It takes into account only the �rst
moment of �11�2 but not its second moment. In view of (8), F1(p; b) is a ratio of a scaled
chi-square distribution to another chi-square type distribution. So it is natural to approximate
F1(p; b) by an F distribution. We can design an F distribution that matches both the �rst and
second moments of �11�2:
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It is more convenient to use the matrix representation in (7) to achieve moment matching.
Let

� =

 
E

1X
n=1

��n�n�
0
n

!�1 1X
n=1

��n�n�
0
n

where E
P1
n=1 �

�
n�n�

0
n = �1Ip for �1 =

P1
n=1 �

�
n =

R 1
0 k

�
b (r; r) dr: We want to match the second

moment of � with a scaled Wishart distribution 	 =Wp(Ip;K)=K for some integer K > 0. For
any symmetric matrix D; we have

E	D	 =
1

K
tr(D)Ip +

�
1 +

1

K

�
D: (9)

See Example 7.1 in Bilodeau and Brenner (1999). Using this result, we can show that

E�D� =
�2
�21
tr(D)Ip +

�
1 +

�2
�21

�
D (10)

where

�2 =
1X
n=1

(��n)
2 =

Z 1

0

Z 1

0
[k�b (r; s)]

2 drds:

In view of (9) and (10), we can set

K � �21
�2
=

R 1
0

R 1
0 k

�
b (r; r) k

�
b (s; s) drdsR 1

0

R 1
0 k

�
b (r; s)k

�
b (r; s)drds

:

That is, � �d Wp(Ip;K)=K for the above K value where �d denotes \is approximately equal to
in distribution." As a result

�1pF1(p; b) �d �0	�1�:

But �0	�1� is the Hotelling's T 2(p;K) distribution (Hotelling (1931)). By the well-known rela-
tionship between the F distribution and the T 2 distribution, we have

�1 (K � p+ 1)
K

F1(p; b) �d Fp;K�p+1: (11)

Using Lemma A.1 in the appendix, we can approximate the correction factor by

�1 (K � p+ 1)
K

= ��1 + o(b) (12)

where

� =
exp (b [c1 + (p� 1) c2]) + (1 + b [c1 + (p� 1) c2])

2
;

and

c1 =

Z 1

�1
k(x)dx and c2 =

Z 1

�1
k2(x)dx:

For the Bartlett kernel, c1 = 1; c2 = 2=3; For the Parzen kernel, c1 = 3=4; c2 = 0:539285; For the
quadratic spectral (QS) kernel, c1 = 1:25, c2 = 1.

Combining (11) and (12) and approximating Fp;K�p+1 by Fp;K if needed, we obtain Theorem
1.
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Theorem 1 Let Assumption 5(i) hold. Let K = K� � p+ 1 or K� for

K� = max(d1= (bc2)e ; p)

where d�e is the ceiling function. As b! 0; we have
(i) P (p�Fp;K � z) = Gp(z) +A(z)b+ o(b) where

A(z) = G00p(z)z
2c2 �G0p(z)z [c1 + c2 (p� 1)] ;

and Gp (�) is the cdf of the �2p distribution.
(ii) P (pF1(p; b) � z) = P (p�Fp;K � z) + o (b).

Theorem 1 adjusts the value of K� to ensure that K = K� � p + 1 � 1: The parameter
K or K� can be called the \equivalent degree of freedom (EDF)" of the LRV estimator. The
idea of approximating a weighted sum of independent Wishart distributions by a simple Wishart
distribution with equivalent degree of freedom can be motivated from the early statistical liter-
ature on spectral density estimation. In the scalar case, the distribution of the spectral density
estimator is often approximated by a chi-square distribution with equivalent degree of freedom;
see Priestley (1981, p. 467).

Note that the EDF K� is proportional to 1=b when b is small while the asymptotic variance
of the LRV estimator is proportional to b: Hence, as b decreases, i.e. as the degree of smoothing
increases, the EDF increases and the variance decreases. In other words, the higher the degree
of freedom, the larger the degree of smoothing and the smaller the variance.

A direct implication of Theorem 1 is that

P fpF1(p; b) � zg = Gp(z) +A(z)b+ o(b): (13)

There are two terms in A(z)b: The term G00p(z)z
2c2b arises from the asymptotic mean square

error E (�11�2 � 1)2 of �11�2; while the term �G0p(z)z [c1 + c2 (p� 1)] b arises from the asymptotic
bias E (�11�2 � 1) of �11�2: The bias term comes from two sources. The �rst is the estimating
uncertainty of model parameters. This is reected in the dependence of �11�2 on the transformed
kernel function k�b (�; �) rather than the original kernel function kb(�): This type of bias may be
referred to as the demeaning bias as k�b (�; �) can be regarded as a demeaned version of kb(�):
The second comes from a dimension adjustment. When p > 1; �11�2 is not equal to �11 but
its projected version, viz �11 � �12�

�1
22 �21: In contrast, when p = 1, �11�2 is equal to �11 and

there is no dimension adjustment. Given that this type of bias depends on the dimension of the
hypothesis space, we may refer to it as the dimensionality bias.

When p = 1; the expansion in (13) reduces to Theorem 1 in SPJ (2008). The main di�erence
between the scalar case and the multivariate case is the presence of the dimensionality bias.
This bias depends on p; the number of hypotheses being jointly tested or the dimension of the
hypothesis space. As p increases, the di�erence between the nonstandard limiting distribution
F1(p; b) and the standard distribution �2p=p becomes larger.

Let F�p;K and F�1(p; b) be the 1 � � quantiles of the standard Fp;K distribution and the
nonstandard F1 (p; b) distribution, respectively. Then

P
�
F1(p; b) > �F�p;K

�
= �+ o(b): (14)

In other words, F�1(p; b) = �F�p;K + o(b): So for the original F statistic, we can use �F�p;K as the
critical value for the test with nominal size �:
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Figure 1: Graph of P (F1(p; b) > �F�p;K) as a function of b for � = 5%, di�erent values of p; and
the Bartlett kernel

As an approximation to the nonstandard critical value, the scaled F critical value �F�p;K is
second-order correct as the approximation error in (14) is of smaller order o(b) rather than O(b)
as b! 0: The second-order critical value is larger than the standard critical value from �2p=p for
two reasons. First, F�p;K is larger than the corresponding critical values from �2p=p due to the
presence of a random denominator in the F distribution. Second, the correction factor � is larger
than 1: As b increases, both the correction factor and F critical value F�p;K increase. As a result,
the second-order correct critical value �F�p;K is an increasing function of b:

To evaluate the accuracy of the approximate critical values �F�p;K ; we compute the rejection
probability P (F1(p; b) > �F�p;K) via simulations and compare it with �: In our simulations, we
approximate the Brownian motion and Brownian bridge processes by normalized partial sums
of T = 1000 iid N(0; 1) random variables and the number of replications is 10,000. Figures 1{3
graph the rejection probability P (F1(p; b) > �F�p;K) as functions of b for the Bartlett, Parzen
and QS kernels with � = 5%: The results for � = 10% are qualitatively similar. For the Bartlett
kernel, we use K = K� and for the Parzen and QS kernels, we use K = K� � p + 1: These two
choices are asymptotically equivalent but make a di�erence when b is not small. For the Bartlett
kernel, using K = K� gives a more accurate approximation. The �gures show that the rejection
probabilities are very close to the nominal size � when b � 0:3: This is especially true for the
Bartlett kernel and p = 1 and 2:

Although the critical values from the nonstandard limiting distribution can be accurately
simulated, we develop the F approximation here for two reasons. First, the F approximation
is convenient to use for practical testing situations. Second, the F approximation helps shed
some new light on the nonstandard asymptotic theory. In the next section, we will show that
the critical values from the F distribution are also second-order correct under the conventional
asymptotics.
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Figure 2: Graph of P (F1(p; b) > �F�p;K) as a function of b for � = 5%, di�erent values of p; and
the Parzen kernel
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Figure 3: Graph of P (F1(p; b) > �F�p;K) as a function of b for � = 5%, di�erent values of p; and
the QS kernel
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4 Second-Order Correctness of the F Approximation

In this section, we show that the F approximation is high-order correct under the small-b asymp-
totics where b ! 0 and T ! 1 jointly. We employ a Gaussian location model to illustrate the
basic point. One justi�cation for using the Gaussian location model is that it is the limit of many
statistical experiments; see van der Vaart (1995, Corollary 9.5). Another justi�cation is that the
high-order terms for the Gaussian location model are expected to appear in more general setting.
See the working paper version of Sun (2010b). So it su�ces to show that the F approximation
is high-order correct in the simple Gaussian location model.

Consider a vector time series yt:

yt = � + vt; t = 1; 2; :::; T; (15)

where yt = (y1t; :::; ydt)
0, � = (�1; :::; �d)

0, vt = (v1t; :::; vdt)
0 is a stochastic process with zero mean.

The OLS estimator of � is the average of fytg ; viz �̂OLS = T�1
PT
t=1 yt: We consider testing

H0 : R0� = r0 against H1 : R0� 6= r0 for some p � d matrix R0: This is a special case of tests
with nonlinear restrictions. The nonlinear function r(�) becomes linear in that r(�) = R0� � r0:
Under the null hypothesis, we have

p
T
�
R0�̂OLS � r0

�
=

1p
T

TX
t=1

ut for ut = R0vt:

Let FT;OLS be the F -test version of the Wald statistic based on the OLS estimator:

FT;OLS =
hp

T (R0�̂OLS � r0)
i0

̂�1T

hp
T (R0�̂OLS � r0)

i
=p (16)

where 
̂T is de�ned as in (2) with ût = R0(yt � �̂OLS):
The Gaussian location model is a special case in the GMM setting. The underlying moment

condition is f(yt; �) = yt � �: The model is exactly identi�ed so m = d: The OLS estimator is a
GMM estimator withGT = �Id and any weighting matrix WT , say WT = Id.

We maintain the following assumption.

Assumption 6 (i) vt is a stationary Gaussian process. (ii) For any c 2 Rd; the spectral density
of c0vt is bounded above and away from zero in a neighborhood around the origin. (iii) The
following FCLT holds:

1p
T

[Tr]X
t=1

ut ) 
1=2Wp(r)

where 
 is the long run variance matrix of futg and Wp (r) is a p-dimensional Brownian motion
process.

Let �̂GLS be the GLS estimator of � given by

�̂GLS =
�
(`T 
 Id)0
�1u (`T 
 Id)

��1
(`T 
 Id)0
�1u y

where 
u = var([u01; u
0
2; :::; u

0
T ]
0), y = [y01; y

0
2; :::; y

0
T ]
0 and `T is a vector of ones. De�ne

� = �̂OLS � � � (�̂GLS � �):
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Under Assumption 6(i) and (ii), it follows from Grenander and Rosenblatt (1957) that �̂OLS and
�̂GLS are asymptotically equivalent. In addition, simple calculations show that E[(�̂GLS��)�0] =
0 and E[(�̂GLS � �)û0t] = 0 for all t: So �̂GLS � � is independent of both � and ût.

Let FT;GLS be the F -test version of the Wald statistic based on the GLS estimator:

FT;GLS =
hp

T (R0�̂GLS � r0)
i0

̂�1T

hp
T (R0�̂GLS � r0)

i
=p

where 
̂T is the same estimator as in FT;OLS given by (16).

Using the asymptotic equivalence of the OLS and GLS estimators and independence of �̂GLS�
� from � and ût, we can prove the following lemma.

Lemma 1 Let Assumption 6 hold. Then
(a) P (pFT;GLS � z) = EGp

�
z��1T

�
+O

�
T�1

�
;

(b) P (pFT;OLS � z) = P (pFT;GLS � z) +O
�
T�1

�
;

where

�T = e0T

h

1=2
̂�1T 


1=2
i
eT ; eT =

(
T;GLS)
�1=2R0

p
T (�̂GLS � �)(
T;GLS)�1=2R0pT (�̂GLS � �)

and 
T;GLS is the variance of R0
p
T (�̂GLS � �):

Lemma 1 shows that the estimation uncertainty of 
̂T a�ects the distribution of the Wald
statistic only through �T : Taking a Taylor expansion, we have �

�1
T = 1 + L + Q + err; where

err is the approximation error, L is linear in 
̂T � 
 and Q is quadratic in 
̂T � 
: The exact
expressions for L and Q are not important here but are given in the proof of Theorem 2. Using
this stochastic expansion and Lemma 1, we can establish a high-order expansion of the �nite
sample distribution for the case where b! 0 as T !1:

Theorem 2 Let Assumptions 5 and 6 hold. Assume that
P1
h=�1 jhj

q Eutu
0
t�h < 1: If b ! 0

such that bT !1, then

P (pFT;OLS � z) = Gp (z) +A(z)b+ (bT )
�q G0p (z) z �B + o (b) + o

�
(bT )�q

�
(17)

where

�B = tr
�
B
�1

	
=p; B = �gq

1X
h=�1

jhjq Eutu0t�h

and q and gq are given in Assumption 5 (ii).

The �rst term in (17) comes from the standard chi-square approximation of the Wald statistic.
The second term captures the demeaning bias, the dimensionality bias, and the variance of the
LRV estimator. The third term reects the usual nonparametric bias of the LRV estimator.

Let X�p be the critical value from the �2p distribution, then, up to smaller order terms,

P
�
pFT;OLS > X�p

�
= ��A(X�p )b� (bT )

�q G0p
�
X�p
�
X�p �B: (18)

Since G00p
�
X�p
�
< 0 and G0p(X�p ) > 0; all terms in �A(X�p )b are positive. First, the variance

term �G00p(X�p )
�
X�p
�2
c2 is positive. This is expected. Using �

2
p as the reference distribution

does not take into account the randomness of the LRV estimator and the critical values from it
tend to be smaller than they should be. As a result, the rejection region is larger, leading to
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over-rejection. Second, the bias term G0p(X�p )X�p c1 from demeaning is positive. This type of bias
is easier to understand in the scalar case where the LRV is positive. In this case, demeaning
e�ectively dampens the low frequency components and introduces a downward bias into the
LRV estimator (e.g. Hannan (1957)). The downward bias translates into an increase in the test
statistic and leads to over-rejection. Finally, the bias term G0p(X�p )X�p c2(p�1) from the dimension
adjustment is positive. Intuitively, when p > 1; the p � p matrix 
̂T may become singular in
p� 1 di�erent directions. When that happens, the Wald statistic will blow up and we reject the
null hypothesis. So the dimensionality bias also tends to give rise to over-rejection. On the other
hand, the nonparametric bias term � (bT )�q G0p

�
X�p
�
X�p �B may be positive or negative, leading

to over-rejection or under-rejection. The overall e�ect of the high-order terms depends on the
sign of �B: When �B is negative, the F -test is likely to over-reject. When �B is positive, the F -test
may over-reject or under-reject.

Comparing Theorem 1 with Theorem 2, we �nd that the F approximation captures some
terms in the high-order expansion of the small-b asymptotics. By Theorem 1, we have 1 �
Gp(p�F�p;K)�A(p�F�p;K)b = �+ o(b): Using this result and noting that p�F�p;K = X�p +O(b); we
obtain

P
�
FT;OLS > �F�p;K

�
= P

�
pFT;OLS > p�F�p;K

�
= 1�Gp

�
p�F�p;K

�
�A(p�F�p;K)b� (bT )

�q G0p
�
p�F�p;K

�
p�F�p;K �B + o (b) + o

�
(bT )�q

�
= �� (bT )�q G0p

�
X�p
�
X�p �B + o (b) + o

�
(bT )�q

�
: (19)

Therefore, use of critical value �F�p;K removes the demeaning bias, dimensionality bias and vari-

ance term from the high-order expansion. The size distortion is then of order O
�
(bT )�q

�
: In

contrast, if X�p =p is used as the critical value, the size distortion is of order O
�
(bT )�q

�
+O (b) : So

when (bT )�q b�1 ! 0; using critical value �F�p;K should lead to size improvements. We have thus
shown that critical values from the F distribution are second-order correct under the conventional
small-b asymptotics.

Our result is especially interesting when the number of restrictions is large. In this case,
the size distortion of the usual Wald test is large. This is due to the presence of the dimen-
sionality bias. The F approximation and the �xed-b asymptotics automatically correct for the
dimensionality problem. Our results provide an explanation of the �nite sample results reported
by Ravikumar, Ray and Savin (2004) who �nd that the �xed-b asymptotic approximation can
substantially reduce size distortion in tests of joint hypotheses especially when the number of
hypotheses being tested is large. See also Ray and Savin (2008) and Ray, Savin and Tiwari
(2009).

De�ne the �nite sample corrected F statistic as

F �T;OLS = FT;OLS=�: (20)

Then, up to smaller order terms, it follows from (19) that

P
�
F �T;OLS > F�p;K

�
= �� (bT )�q G0p

�
X�p
�
X�p �B: (21)

So by adjusting both the test statistic and the critical value, we remove three high-order terms
that contribute to over-rejection. Only the nonparametric bias term remains. For convenience,
we refer to F �T;OLS as the F

� statistic and the associated test using F critical value F�p;K as the
F � test.

In the working paper of Sun (2010b), it is shown that the high-order term of order b; namely
A(z)b; also appears in the high-order expansion of the Wald statistic in a general GMM frame-
work. So the F approximation is high-order correct in more general settings.
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5 Simulation Study

This section provides some simulation evidence on the �nite sample performance of the F � test.
We consider the following data generating process (DGP)

yt = �0 + xt;1�1 + xt;2�2 + xt;3�3 + xt;4�4 + xt;0

where the regressors xt;j ; j = 1; 2; 3; 4 and regressor error xt;0 follow mutually independent
AR(1) processes, MA(1) processes or MA(m) processes with the same model parameters. We
normalize the regressors and regressor error to have unit variance. For the AR(1) process, let
ut;j = �ut�1;j + et;j , et;j s iidN(0; 1); then xt;j = ut;j=

p
1� �2, j = 0; :::; 4. We consider � =

�0:9;�0:6;�0:3; 0; 0:3; 0:6; 0:9. For the MA(1) process, let ut;j = et;j + et;j�1; et;j s iidN(0; 1);

then xt;j = ut;j=
p
1 +  2, j = 0; :::; 4. We consider  = �0:99;�0:9;�0:6;�0:3; 0; 0:3; 0:6; 0:9,

0:99. For the MA(m) process, let ut;j = et;j +
Pm
r=1  ret�r;j with  r = 1 � r=(m + 1) and

et;j s iidN(0; 1); then xt;j = ut;j=
q
1 +

Pm
r=1  

2
r : As in Andrews and Monahan (1992), we

consider m = 3; 5; 7; 9; 12; 15:
Let � = (�0; �1; :::; �4)

0. We estimate � by the OLS estimator. Since the model is exactly iden-
ti�ed, the weighted matrix WT becomes irrelevant. Let ~x

0
t = [1; x1t; :::; x4t] and

~X = [~x1; ::::; ~xT ]
0;

then the OLS estimator is �̂T � �0 = �G�1T gT (�0) where GT = � ~X 0 ~X=T , G0 = E(GT ),

gT (�0) = T�1
PT
t=1 ~xt"t.

We consider the following null hypotheses:

H0p : �1 = ::: = �p = 0

for p = 1; 2; 3; 4: The corresponding restriction matrix R0p = I5(2 : p + 1; :); i.e., row 2 to row
p + 1 of the identity matrix I5: For each test we consider two signi�cance levels � = 5% and
� = 10%; and two di�erent sample sizes T = 250; 500:We consider three commonly used positive
semi-de�nite kernels: Bartlett, Parzen, and QS kernels. The number of simulation replications is
5000.

To construct the Wald statistic, we have to select the bandwidth parameter b: Following Sun
and Phillips (2009), we select b to minimize the error in rejection probability of the standard
Wald test under the null. Equivalently, we select b to minimize the coverage probability error
(CPE) of the associated con�dence regions. That is

b�CPE = arg min
b2[0;0:5]

��P �pFT � X�p �� ���
The upper bound b = 0:5 is chosen to speed up the simulations. The simulation results remain
more or less the same when b is restricted to be in [0; 1]: For each parameter con�guration, we
can discretize [0; 0:5] and �nd the optimal b�CPE by simulation. In the Monte Carlo experiments,
we discretize [0; 0:5] into a regular grid with step size 0.005. This bandwidth choice is not feasible
in practice but it provides an ideal environment to evaluate the �nite sample performance of the
F approximation.

A feasible version of b�CPE can be obtained by approximating the coverage probability error.
According to (18) or the high-order expansion in the GMM framework given by Sun (2010b), we
have, up to smaller order:��P �pFT � X�p �� ��� =

��A(X�p )b+ (bT )�q G0p �X�p �X�p �B��
�

��A(X�p )�� b+ (bT )�q G0p �X�p �X�p �� �B�� : (22)
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The optimal b that minimizes the upper bound in (22) is given by

bCPE =

 
q
�� �B��

c1 + 0:5c2
�
X�p + p

�! 1
q+1

T
� q
q+1 :

The CPE-optimal bandwidth parameter can be written as bCPE = bCPE( �B) where �B = �B (B;
) :
The parameter �B is unknown but could be estimated by a standard plug-in procedure as in
Andrews (1991). We �t an approximating VAR(1) process to fûtg and use the estimated model
to compute �B (B;
).

We examine the �nite sample performance of the (modi�ed) Wald tests for di�erent smoothing
parameter and reference distribution combinations. We consider both the infeasible bandwidth
choice b�CPE and the feasible one bCPE : For each smoothing parameter choice, we consider three
di�erent reference distributions: �2p=p; �Fp;K and F1(p; b); leading to the conventional �2 test,
the F � test introduced in this paper, and the nonstandard test of KV(2005). There are six
di�erent testing procedures in total. We label them b�-CPE-�2; b�-CPE-F; b�-CPE-N; b-CPE-
�2; b-CPE-F; b-CPE-N in the �gures.

Figures 4-6 report the empirical size of the six di�erent tests for � = 5% and T = 250:
The results for the Bartlett kernel and the MA(1) regressors and errors are given in Figure 4;
the results for the Parzen kernel and MA(m) regressors and errors are given in Figure 5; the
result for the QS kernel and AR(1) regressors and errors are given in Figure 6. These �gures are
qualitatively representative of other scenarios. Several patterns emerge. First, it is clear that the
conventional �2 test can have a large size distortion, especially when the processes are persistent
and the number of joint hypotheses is large. Second, the size distortion of the F � test and the
nonstandard test is smaller than the conventional �2 test. This is because the F � test and the
nonstandard test employ asymptotic approximations that capture the estimation uncertainty of
the LRV estimator. Third, the empirical size of the tests is robust to the bandwidth choice rules.
This provides some evidence that the feasible and data-driven bandwidth parameter bCPE is a
reasonable proxy to the infeasible bandwidth parameter b�CPE : Figures for the selected bandwidths
not reported here show that the feasible and infeasible bandwidths are close to each other. Finally
and most importantly, the size di�erence between the F � test and the corresponding nonstandard
test is small. This is consistent with Figures 1{3.

In our simulations, we have combined di�erent testing procedures with the prewhitening HAR
estimators of Andrews and Monahan (1992). To conserve space, we do not report the results
here but comment on them briey. We �nd that prewhitening helps reduce the size distortion of
all tests considered. In addition, the F � test is as accurate in size as the nonstandard test.

6 Conclusion

On the basis of the �xed-b asymptotics and high-order small-b asymptotics, the paper proposes
a new F � test in the GMM framework where the moment conditions may exhibit general forms
of serial dependence. The F � test employs a �nite sample corrected Wald statistic and uses an F
distribution as the reference distribution. It is as easy to implement as the standard Wald test.

The F � test can be combined with any bandwidth selection rule. In the Monte Carlo ex-
periments, we employ a data-driven bandwidth selection that minimizes the error in rejection
probability or the coverage probability error. Simulations show that the F � test is as accurate in
size as the nonstandard test of KV(2005). We recommend using the F � test with a prewhitening
HAR variance estimator and testing-oriented bandwidth selection in practical situations. At a
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Figure 4: Empirical size of di�erent nominal 5% tests for the Bartlett kernel under MA(1)
regressors and errors with the number of joint hypotheses p = 1; 2; 3; 4 from left to right panels
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Figure 5: Empirical size of di�erent nominal 5% tests for the Parzen kernel under MA(m) re-
gressors and errors with the number of joint hypotheses p = 1; 2; 3; 4 from left to right panels
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Figure 6: Empirical size of di�erent nominal 5% tests for the QS kernel under AR(1) regressors
and errors with the number of joint hypotheses p = 1; 2; 3; 4 from left to right panels

minimum, when the MSE-optimal bandwidth is used, the Wald statistic should be corrected and
an F -distribution should be used as the reference distribution.

7 Appendix of Proofs

We �rst state two lemmas whose proofs are available in Sun (2010b) and an online appendix.

Lemma A.1 Let Assumption 5(i) hold. As b! 0; we have
(a) �1 =

P1
n=1 �

�
n = 1� bc1 +O(b2);

(b) �2 =
P1
n=1 (�

�
n)
2 = bc2 +O(b

2).

Lemma A.2 Let Assumption 5(i) hold. As b! 0; we have
(a) E

�
�11 � �12��122 �21

�
= 1� bc1 � bc2 (p� 1) + o(b);

(b) E
h�
�11 � �12��122 �21

�2i
= 1� 2b (c1 � c2)� 2 (p� 1) bc2 + o(b);

(c) E
��
�11 � �12��122 �21

�
� 1
�2
= 2bc2 + o(b):

Proof of Theorem 1. We prove the theorem by showing that P (pF1(p; b) � z) = Gp(z) +
A(z)b + o(b) and P (p�Fp;K � z) = Gp(z) + A(z)b + o(b). First, using (8) and taking a Taylor
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expansion, we have

P (pF1(p; b) � z) = EGp
�
z
�
�11 � �12��122 �21

��
= Gp(z) +G

0
p(z)zE

��
�11 � �12��122 �21

�
� 1
�

+
1

2
G00p(z)z

2E
��
�11 � �12��122 �21

�
� 1
�2

+
1

2
E
�
G00p(~z)�G00p(z)

�
z2
��
�11 � �12��122 �21

�
� 1
�2

where ~z is between z and z
�
�11 � �12��122 �21

�
: Using Lemma A.2, we have

P (pF1(p; b) � z)

= Gp(z)�G0p(z)z [c1 + c2 (p� 1)] b

+
1

2
G00p(z)z

2 [2� 2b (c1 � c2)� 2 (p� 1) bc2 � 2 (1� bc1 � bc2 (p� 1))] + o(b)

= Gp(z) +
�
G00p(z)z

2c2 �G0p(z)z [c1 + c2 (p� 1)]
	
b+ o(b)

= Gp(z) +A(z)b+ o(b):

Second, by de�nition,

P (p�Fp;K � z) = P

�
�2p �

z

�

�2K
K

�
= EGp

�
z

�

�2K
K

�
= Gp

� z
�

�
+
1

K
G00p

� z
�

� z2
�2
+ o

�
1

K

�
= Gp (z) +G

0
p (z) z

�
1

�
� 1
�
+G00p (z) z

2bc2 + o (b)

= Gp (z) +
�
G00p (z) z

2c2 �G0p(z)z [c1 + c2 (p� 1)]
	
b+ o (b)

= Gp(z) +A(z)b+ o(b);

as desired.
Proof of Lemma 1. Part (a). We write the statistic pFT;GLS as

pFT;GLS =
h
R0T

1=2(�̂GLS � �)
i0


�1=2
T;GLS

h


1=2
T;GLS
̂

�1
T 


1=2
T;GLS

i


�1=2
T;GLS

h
R0T

1=2(�̂GLS � �)
i

=

�1=2T;GLS

h
R0T

1=2(�̂GLS � �)
i2 � e0T h
1=2T;GLS
̂�1T 
1=2T;GLSi eT

� �T�T +Op
�
T�1

�
;

where

�T =

�1=2T;GLS

h
R0T

1=2(�̂GLS � �)
i2 :

Here we have used


T;GLS = var
h
R0
p
T
�
�̂GLS � �

�i
= 


�
1 +O

�
T�1

��
:

Note that �T is independent of �T because (i) (�̂GLS � �) is independent of 
̂T : (ii) �T is the
squared length of a standard normal vector and eT is the direction of this vector. The length is
independent of the direction. Hence

P [pFT;GLS � z] = P [�T�T � z] +O
�
T�1

�
= EGp

�
z��1T

�
+O

�
T�1

�
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as stated.
Part (b). Let

�1T = 2(R0
p
T�)0
̂�1T 


1=2
T;GLSeT

�2T = (R0
p
T�)0
̂�1T

�
R0
p
T�
�

and �T =
p
�T �1T + �2T : Then

pFT;OLS =
hp

T (R0�̂OLS � r0)
i0

̂�1T

hp
T (R0�̂OLS � r0)

i
=p

=
hp

T (R0�̂GLS � r0) +R0
p
T�
i0

̂�1T

hp
T (R0�̂GLS � r0) +R0

p
T�
i
=p

= pFT;GLS + �2T + 2
h
R0
p
T�
i0

̂�1T 


1=2
T;GLS

h


�1=2
T;GLS

p
TR0(�̂GLS � �)

i
=p

= pFT;GLS + �T :

Note that �T is independent of �1T ; �2T and �T ; we have

P [pFT;OLS � z] = P [(pFT;GLS + �T ) � z]

= P
nh
�T�T +

p
�T �1T + �2T +Op

�
T�1

�i
� z
o

= P
nh
�T�T +

p
�T �1T + �2T

i
� z
o
+O

�
T�1

�
� EF (�1T ; �2T ;�T ) +O

�
T�1

�
;

where
F (a; b; c) = P

nh
�T c+

p
�Ta+ b

i
� z
o
:

But

EF (�1T ; �2T ;�T )

= EF (0; 0;�T ) + EF
0
1 (0; 0;�T ) �1T +O

�
E�21T

�
+O (E j�1T �2T j) +O (E�2T )

= EF (0; 0;�T ) + EF
0
1 (0; 0;�T ) �1T +O

�
T�1

�
:

where F 01(a; b; c) = @F (a; b; c)=@a: Here we have used: O
�
E�21T

�
= O(1=T ) and O (E�2T ) =

O(1=T ): Next, let fe(x) be the pdf of eT : Since eT is independent of 
̂T and �; we have

EF 01 (0; 0;�T ) �1T

=

Z
E
�
F 01 (0; 0;�T ) �1T jeT = x

�
fe(x)dx

= 2

Z
E

�
F 01

�
0; 0; x0

h

1=2
̂�1T 


1=2
i
x
��

R0T
1=2�

�0

̂�1T 


1=2
T;GLSx

�
fe(x)dx

Note that 
̂T (u) = 
̂T (�u) and � = ��(�u), we have

E

�h
F 01

�
0; 0; x0

h

1=2
̂�1T 


1=2
i
x
� �

R0T
1=2�

�0

̂�1T 


1=2
T;GLSx

�
= 0

for all x: As a result, EF 01 (0; 0;�T ) �1T = 0 and so

EF (�1T ; �2T ;�T ) = EF (0; 0;�T ) +O
�
T�1

�
:
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We have therefore shown that

P [pFT;OLS � z] = EF (0; 0;�T ) +O
�
T�1

�
= P f�T�T � zg+O

�
T�1

�
= P [pFT;GLS � z] +O

�
T�1

�
as desired.

Proof of Theorem 2. Writing �T = �T (
̂T ) and taking a Taylor expansion of �T (
̂T ) around
�T (
) = 1; we have h

�T

�

̂T

�i�1
= 1 + L+Q+ remainder (23)

where

L = Dvec
�

̂T � 


�
Q =

1

2
vec

�

̂T � 


�0
(J1 + J2) vec

�

̂T � 


�
and

D =
h
e0T (
)

�1=2
i


h
e0T (
)

�1=2
i
;

J1 = 2 (
)�1=2
�
eT e

0
T

�
(
)�1=2 
 (
)�1=2

�
eT e

0
T

�
(
)�1=2 ;

J2 = �
h
(
)�1=2 eT e

0
T (
)

�1=2 
 (
)�1
i
Kdd (Id2 +Kdd) ;

Kdd is the d2 � d2 commutation matrix, and remainder is the remainder term of the Taylor
expansion. It can be shown that the remainder term is of smaller order than Q:

We proceed to compute the moments of L and Q: First, extending Lemma 6 in Velasco and
Robinson (2001) to the vector case, we have

E
̂T � 
 = �bc1
+ (bT )�qB(1 + o(1)) + o (b) :

So

EL = E
�h
e0T (
)

�1=2
i


h
e0T (
)

�1=2
i�
vec

�

̂T � 


�
= Ee0T (
)

�1=2
�

̂T � 


�
(
)�1=2 eT

= (bT )�qEe0T

�1=2B
�1=2eT (1 + o (1))� bc1Ee0T (
)

�1=2 (
) (
)�1=2 eT + o (b)

= (bT )�qEtr(
�1=2B
�1=2eT e
0
T ) (1 + o (1))� bc1 + o(b)

= (bT )�qtr
h

�1=2B
�1=2

i 1
p
(1 + o (1))� bc1 + o(b)

= (bT )�q �B (1 + o (1))� bc1 + o(b)

where we have used the independence of eT from 
̂T and EeT e
0
T = Ip=p: Following Sun (2011),

we can show that
EL2 = 2c2b+ o

�
b+ (bT )�q

�
;

and
EQ = �bc2 (p� 1) + o

�
b+ (bT )�q

�
:

Hence h
�T

�

̂T

�i�1
= 1 + L+Q+ op

�
b+ (bT )�q

�
: (24)
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Using the above asymptotic expansion, we have

P (pFT;OLS � z) = P
�
�T � z��1T

�
+O

�
T�1

�
= EGp (z (1 + L+Q)) + o

�
b+ (bT )�q

�
= Gp (z) +G

0
p (z) zE (L+Q) +

1

2
EG00p (z) z

2
�
EL2

�
+ o

�
b+ (bT )�q

�
= Gp (z) + (bT )

�q G0p (z) z �B � bc1G0p (z) z
� bc2G0p (z) z (p� 1) + bc2G00p (z) z2 + o (b) + o

�
(bT )�q

�
= Gp (z) +A(z)b+ (bT )

�q G0p (z) z �B + o (b) + o
�
(bT )�q

�
as desired.
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Supplement to

\Asymptotic F Test in a GMM Framework"

by Yixiao Sun

This Supplement provides proofs to the two lemmas in the appendix of the
above paper.

Lemma A.1 Let Assumption 5(i) hold. As b! 0; we have
(a) �1 =

P1
n=1 �

�
n = 1� bc1 +O(b2);

(b) �2 =
P1
n=1 (�

�
n)
2 = bc2 +O(b

2).

Proof of Lemma A.1. Note that

�1 =
1X
n=1

��n =

Z 1

0
k�b (r; r)dr = 1�

Z 1

0

Z 1

0
kb(r � s)drds

and

�2 =
1X
m=1

(��m)
2 =

Z 1

0

Z 1

0
[k�b (r; s)]

2 drds

=

�Z 1

0

Z 1

0
kb(r � s)drds

�2
+

Z 1

0

Z 1

0
k2b (r � s)drds

� 2
Z 1

0

Z 1

0

Z 1

0
kb(r � p)kb(r � q)drdpdq:

To evaluate �1 and �2; we let

K1 (�) =
1

2�

Z 1

�1
k(x) exp(�i�x)dx; K2 (�) =

1

2�

Z 1

�1
k2(x) exp(�i�x)dx: (A.1)

Then

k(x) =

Z 1

�1
K1 (�) exp(i�x)d�; k2(x) =

Z 1

�1
K2 (�) exp(i�x)d�: (A.2)

For the integral that appears in both �1 and �2; we haveZ 1

0

Z 1

0
kb(r � s)drds

=

Z 1

�1
K1 (�)

�Z 1

0
exp

�
i�r

b

�
dr

� �Z 1

0
exp

�
� i�s

b

�
ds

�
d�

=

Z 1

�1
K1 (�)

b2

�2

"�
1� cos

�
�

b

��2
+

�
sin

�
�

b

��2#
d�

= b

Z 1

�1
K1 (�) b

 
sin �

2b
�
2

!2
d�

= 2�bK1(0) + 4b2
Z 1

�1

K1 (�)�K1 (0)
�2

�
sin

�

2b

�2
d�; (A.3)

1



where the last equality holds becauseZ 1

�1

�
�

2b

��2�
sin

�

2b

�2
d� = 2b

Z 1

�1
x�2 sin2 xdx = 2�b: (A.4)

Now, Z 1

�1

K1 (�)�K1 (0)
�2

�
sin

�

2b

�2
d�

=

Z 1

�1

K1 (�)�K1 (0)
�2

 �
sin

�

2b

�2
� 1
2

!
d�+

1

2

Z 1

�1

K1 (�)�K1 (0)
�2

d�

= �1
2

Z 1

�1

�
K1 (�)�K1 (0)

�2

��
cos

1

b
�

�
d�+

1

2

Z 1

�1

K1 (�)�K1 (0)
�2

d�

=
1

2

Z 1

�1

�
K1 (�)�K1 (0)

�2

�
d�+ o(1) (A.5)

as b! 0; where we have used the Riemann-Lebesgue lemma. In view of the symmetry of k (x) ;
K1 (�) = (2�)�1

R1
�1 k(x) cos(�x)dx, we have, using (A.3) and (A.5):Z 1

0

Z 1

0
kb(r � s)drds

= 2�bK1(0) + 2b2
Z 1

�1

�
K1 (�)�K1 (0)

�2

�
d�+ o(b2)

= 2�bK1(0) + b2
1

�

Z 1

�1

�Z 1

�1
k(x)

cos�x� 1
�2

dx

�
d�+ o(b2)

= 2�bK1(0)� 2b2
1

�

Z 1

�1

Z 1

�1
k(x)

sin2 (�x=2)

�2
dxd�+ o(b2)

= 2�bK1(0)� b2
Z 1

�1
k(x) jxj dx+ o

�
b2
�

= bc1 +O(b
2): (A.6)

Similarly, under the assumption that
R1
�1 k2(x)x2dx <1; we haveZ 1

0

Z 1

0
k2b (r � s)drds = bc2 +O(b

2): (A.7)

Next, Z 1

0
kb(r � s)ds

=
1

2

Z 1

�1
K1 (�)

Z 1

0

�
exp

�
i�(r � s)

b

�
+ exp

�
� i�(r � s)

b

��
dsd�

=

Z 1

�1
K1 (�)

Z 1

0
cos

�
�(r � s)

b

�
dsd� (A.8)

= �b
Z 1

�1
K1 (�)

1

�

�
sin

�
�(r � 1)

b

�
� sin

�
�r

b

��
d�

= �b
Z 1

�1
K1 (xb)

1

x
[sin (x(r � 1))� sin (xr)] dx;

2



so Z 1

0

Z 1

0

Z 1

0
kb(r � p)kb(r � q)drdpdq

= b2
Z 1

0

�Z 1

�1
K1 (xb)

1

x
[sin (x(r � 1))� sin (xr)] dx

�2
dr

= b2K21 (0)
Z 1

0

�Z 1

�1

1

x
sin (x(r � 1)) dx�

Z 1

�1

1

x
sin (xr) dx

�2
dr (1 + o (1))

= b2K21 (0)
Z 1

0

�
�
Z 1

�1

sin (x(r � 1))
x(r � 1) d(x(r � 1))�

Z 1

�1

1

xr
sin (xr) d (xr)

�2
dr (1 + o (1))

= b2K21 (0)
Z 1

0

�
2

Z 1

�1

1

y
sin (y) dy

�2
dr (1 + o (1)) = c21b

2 + o(b2): (A.9)

Combining (A.6), (A.7), and (A.9) yields the lemma.

Lemma A.2 Let Assumption 5(i) hold. As b! 0; we have
(a) E

�
�11 � �12��122 �21

�
= 1� bc1 � bc2 (p� 1) + o(b);

(b) E
h�
�11 � �12��122 �21

�2i
= 1� 2b (c1 � c2)� 2 (p� 1) bc2 + o(b);

(c) E
��
�11 � �12��122 �21

�
� 1
�2
= 2bc2 + o(b):

Proof of Lemma A.2. (a) Let Wp(r) =
�
W 0
1(r);W

0
p�1 (r)

�0
; then

E�11 = E

Z 1

0

Z 1

0
k�b (r; s)dW1(r)dW

0
1(s) =

1X
n=1

��n = 1� bc1 + o(b)

by Lemma A.1, and

E
�
�12�

�1
22 �21

�
= E

�Z 1

0

Z 1

0
k�b (r; s)dW1(r)dW

0
p�1(s)

��Z 1

0

Z 1

0
k�b (r; s)dWp�1(r)dW

0
p�1(s)

��1
�
Z 1

0

Z 1

0
k�b (r; s)dW

0
1(r)dWp�1(s)

= Etr

�Z 1

0

Z 1

0
k�b (r; s)dWp�1(r)dW

0
p�1(s)

��1
�
Z 1

0

Z 1

0

�Z 1

0
k�b (r; �1)k

�
b (r; �2) dr

�
dWp�1(�2)dW

0
p�1(�1):

Let �n =
R 1
0 f

�
n(r)dWp�1(r) 2 Rp�1; thenZ 1

0

Z 1

0
k�b (r; s)dWp�1(r)dW

0
p�1(s)

=

Z 1

0

Z 1

0

1X
n=1

��nf
�
n(r)f

�
n (s) dWp�1(r)dW

0
p�1(s)

=
1X
n=1

��n

�Z 1

0
f�n(r)dWp�1(r)

��Z 1

0
f�n(r)dWp�1(r)

�0
=

1X
n=1

��n�n�
0
n:
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Since Z 1

0
k�b (r; �1)k

�
b (r; �2) dr

=

Z 1

0

1X
m=1

��mf
�
m(r)f

�
m (�1)

1X
n=1

��nf
�
n(r)f

�
n (�2) dr

=

1X
m=1

1X
n=1

��m�
�
n

�Z 1

0
f�m(r)f

�
n(r)dr

�
f�m (�1) f

�
n (�2)

=
1X
n=1

(��n)
2 f�n (�1) f

�
n (�2) ;

we have Z 1

0

Z 1

0

�Z 1

0
k�b (r; �1)k

�
b (r; �2) dr

�
dWp�1(�2)dW

0
p�1(�1) =

1X
m=1

(��m)
2 �m�

0
m:

Therefore

E�12�
�1
22 �21 = Etr

24 1X
n=1

��n�n�
0
n

!�1 1X
m=1

(��m)
2 �m�

0
m

!35
=

�2
�1
(p� 1) (1 + o(1)) = bc2 + o(b)

1� bc1 + o(b)
(p� 1) (1 + o(1))

= bc2 (p� 1) + o(b);

using Lemma A.1.
(b) Note that

E
�
�11 � �12��122 �21

�2
= E�211 + E�12�

�1
22 �21�12�

�1
22 �21 � 2E�11�12�

�1
22 �21:

We consider each term in turn. First,

E�211 = E

�Z 1

0

Z 1

0
k�b (r1; s1)dW1(r1)dW

0
1(s1)

��Z 1

0

Z 1

0
k�b (r2; s2)dW1(r2)dW

0
1(s2)

�
=

�Z 1

0
k�b (r; r)dr

�2
+ 2

Z 1

0

Z 1

0
(k�b (r; s))

2 drds

=

 1X
n=1

��n

!2
+ 2

1X
n=1

(��n)
2 = (1� bc1 + o(b))2 + 2bc2 + o(b);

= 1� 2b (c1 � c2) + o(b):
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Second,

E�11�12�
�1
22 �21

= E

Z 1

0

Z 1

0
k�b (r; s)dW1(r)dW

0
1(s)

Z 1

0

Z 1

0
k�b (r; �1)dW1(r)dW

0
p�1(�1)

�
�Z 1

0

Z 1

0
k�b (r; s)dWp�1(r)dW

0
p�1(s)

��1 Z 1

0

Z 1

0
k�b (r; �2)dW

0
1(r)dWp�1(�2)

= E

�Z 1

0
k�b (r; r)dr

�Z 1

0

Z 1

0

�Z 1

0
k�b (r; �1)k

�
b (r; �2)dr

�
dW 0

p�1(�1)

�
�Z 1

0

Z 1

0
k�b (r; s)dWp�1(r)dW

0
p�1(s)

��1
dWp�1(�2)

+2E

Z 1

0

Z 1

0

�Z 1

0

Z 1

0
k�b (r; s)k

�
b (r; �1)k

�
b (s; �2)drds

�
dW 0

p�1(�1)

�
�Z 1

0

Z 1

0
k�b (r; s)dWp�1(r)dW

0
p�1(s)

��1
dWp�1(�2)

=

 1X
n=1

��n

!
Etr

 1X
k=1

��n�n�
0
n

!�1 1X
n=1

(��n)
2 �n�

0
n

!

+2Etr

 1X
n=1

��n�n�
0
n

!�1 1X
n=1

(��n)
3 �n�

0
n

!

where the last line follows becauseZ 1

0

Z 1

0
k�b (r; s)k

�
b (r; �1)k

�
b (s; �2)drds

=

Z 1

0

Z 1

0

1X
k1=1

��k1f
�
k1(r)f

�
k1 (s)

1X
k2=1

��k2f
�
k2(r)f

�
k2 (�1)

1X
k3=1

��k3f
�
k3(s)f

�
k3 (�2) drds

=
1X
k=1

(��k)
3 f�k (�1) f

�
k (�2) :

Using Lemma A.1 and the fact that

1X
n=1

(��n)
3 = o

 1X
n=1

(��n)
2

!
= o(b);

we have
E�11�12�

�1
22 �21 = (p� 1) bc2 + o(b):
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Finally,

E�12�
�1
22 �21�12�

�1
22 �21

= E

�Z 1

0

Z 1

0
k�b (r; s)dW1(r)dW

0
p�1(s)

� �Z 1

0

Z 1

0
k�b (r; s)dWp�1(r)dW

0
p�1(s)

��1
�
�Z 1

0

Z 1

0
k�b (r; s)dW
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using Lemma A.1.
Hence

E
�
�11 � �12��122 �21

�2
= 1� 2b (c1 � c2)� 2 (p� 1) bc2 + o(b)

Part (c) follows from parts (a) and (b).
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