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Abstract

This paper proposes tests of linear hypotheses when the variables may be continuous-time
processes with observations collected at a high sampling frequency over a long span. Utilizing
series long run variance (LRV) estimation in place of the traditional kernel LRV estimation,
we develop easy-to-implement and more accurate F tests in both stationary and nonstation-
ary environments. The nonstationary environment accommodates exogenous regressors that
are general semimartingales. Endogeneous regressors are allowed in a nonstationary envi-
ronment similar to cointegration models in the usual discrete-time setting. The F tests can
be implemented in exactly the same way as in the discrete-time setting. The F tests are,
therefore, robust to the continuous-time or discrete-time nature of the data. Simulations
demonstrate the improved size accuracy and competitive power of the F tests relative to
existing continuous-time testing procedures and their improved versions. The F tests are of
practical interest as recent work by Chang et al. (2018) demonstrates that traditional inference
methods can become invalid and produce spurious results when continuous-time processes are
observed on finer grids over a long span.

JEL Classification: C12, C13, C22
Keywords: continuous time model, F distribution, high-frequency regression, long run

variance estimation

1 Introduction

The advent of high-frequency data poses challenges for classical inference and modeling proce-
dures. For linear regression analysis with observations collected over time, as the grid of observed
times becomes finer, continuous-time properties of the underlying processes may conflict with tra-
ditional assumptions framed in a discrete-time setting. An immediate concern is the validity of
inference procedures when the data generating processes may be continuous-time in nature. An-
other concern is how we can automate inference procedures so that a researcher can make fewer
technical and theoretical modeling decisions. At what sampling frequency should a researcher
consider moving to an explicitly continuous-time framework? Should a researcher convert a
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high-frequency sample into a lower-frequency sample before conducting regression analysis in
a discrete-time framework? If continuous-time modeling requires accounting for the sampling
frequency, what measurement constitutes a single unit of time? An hour, a day, or a month?
Designing trustworthy inference procedures in realistic sample sizes is also a concern.

In this paper we propose statistical tests that aim to address the above concerns. Recently
Chang et al. (2018) considers statistical inference in this setting, highlighting how traditional
hypothesis tests can become spurious when observations are collected at a high frequency over a
long time span. They show that it is essential to use an autocorrelation-robust variance or long
run variance to construct test statistics and make valid inferences. They utilize the continuous-
time kernel LRV estimator developed in Lu and Park (2019). Adopting the traditional asymptotic
specification that ensures the consistency of the kernel LRV estimator, they show that the test
statistics are asymptotically chi-squared. One takeaway from Chang et al. (2018) is that not
all kernel-based LRV estimation procedures can be applied without explicitly accounting for
the continuous-time environment. A “high-frequency-compatible” bandwidth is desired. It is
interesting that the parametric plug-in bandwidth choice of Andrews (1991) is high-frequency-
compatible while the nonparametric analogue of Newey and West (1994) is not.

In this paper we build on Chang et al. (2018) and propose convenient and trustworthy tests
in regressions with high-frequency data collected over a long span. We consider both common
regressions with stationary regressors and cointegrating regressions with nonstationary regressors.
Due to self-normalization, our tests yield valid inference in the continuous-time setting and would
also be valid if the observations were generated from a discrete-time process satisfying standard
linear regression assumptions. A practitioner does not have to make any difficult decisions —
they can simply use all the observed data, and they can compute the test statistic and perform
hypothesis testing in exactly the same way in both the discrete-time and continuous-time settings.

We make several contributions along different dimensions. First, we adopt the more recent
fixed-smoothing asymptotic framework. In the discrete-time setting, it is well known that ran-
domness in LRV estimators can lead to significant size distortion of the associated chi-squared
tests in finite samples. The same problem is present in the continuous-time setting. By employ-
ing the fixed-smoothing asymptotic framework as in Sun (2011, 2013), we show that our test
statistics are asymptotically F distributed in both stationary and nonstationary settings. The F
approximations capture the randomness of the LRV estimators and are more accurate than the
chi-squared approximations.

Second, the asymptotic F theory is based on the series LRV estimator, and we characterize
its asymptotic bias and variance in the high-frequency setting. The series LRV estimator involves
projecting the discretized data onto a sequence of orthonormal basis functions and then taking
an average of the outer products of the projection coefficients. The number of orthonormal basis
functions, denoted by K, is the smoothing parameter in this type of nonparametric variance
estimator. Based on the asymptotic bias and variance, we develop a data-driven and automated
choice of K in the high-frequency setting. Our rule of selecting K extends that of Phillips
(2005), which considers the series LRV estimator in the low-frequency discrete-time setting1.
Furthermore, we allow for a general class of orthonormal basis functions while Phillips (2005)
focuses on sine and cosine functions. See Lazarus et al. (2018) for some practical guidance on
using the series LRV estimator with low-frequency discrete-time data.

1Typical examples of low-frequency discrete-time data include monthly and yearly data. The frequency here
refers to the sampling frequency, namely the number of times we can draw observations per unit of time. It does
not refer to the frequency in the frequency domain that measures the speed that a process completes a cycle.
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Third, in a discrete-time cointegrating model, it is common to accommodate endogenous re-
gressors. Following this practice, we allow the regressors to be endogenous in the continuous-time
nonstationary setting. This constitutes another departure from Chang et al. (2018) which con-
siders only the case with exogenous regressors. To deal with the endogeneity, we follow Hwang
and Sun (2018), but we have to introduce some modifications to facilitate the asymptotic analy-
sis. However, the continuous-time test statistic is computationally identical to the discrete-time
statistic in Hwang and Sun (2018), and they are shown to have the same limiting F distribution.

Fourth, in the nonstationary setting with exogenous regressors, we establish the asymptotic
F distribution for a wider class of regressor processes. The scaled regressor process may converge
to a general stochastic process that includes the Brownian motion as a special case. To a great
extent, our asymptotic F theory goes beyond its counterpart in the low-frequency discrete-time
setting where the nonstationary process is a unit root process and thus converges to a Brownian
motion after appropriate normalization.

Finally, we show that in both stationary and nonstationary settings, our F test remains
asymptotically valid when the regression error contains additional measurement noise that is of
discrete-time nature. In both settings, the measurement noise is dominated by the continuous-
time error component, and hence our asymptotic theory remains valid. Simulations show that
moderate measurement noise has virtually no effect on the finite sample performance of our F
test.

The class of series LRV estimators is closely related to the class of kernel LRV estimators; see,
for example, the discussion in Sun (2011). In essence, a series LRV estimator can be regarded
as a kernel LRV estimator with a generalized kernel function. The fixed-K approach adopted
here is analogous to the “fixed-b” approach employed in Kiefer and Vogelsang (2005). Fixed-b
asymptotics can be developed for the kernel-based test statistics in Chang et al. (2018). However,
the limiting distributions are nonstandard and hard to use. They can also be nonpivotal in the
nonstationary setting (see Vogelsang and Wagner (2014) for the possible nonpivotality). This
provides further justification for the use of series LRV estimation in designing convenient and
accurate inference procedures in finite samples.

The outline of the paper is as follows. In Section 2 we consider the case where the regressors
are stationary and consider a data-driven approach to selecting K. In Section 3 we consider
the nonstationary case with cointegration. Section 4 evaluates the finite sample performances of
the proposed F tests, Section 6 considers the impact of an additive error component of discrete
nature, and Section 7 concludes. Proofs are given in the appendix.

2 The Case with Stationary Regressors

2.1 The basic setting

Consider a continuous-time regression of the form

Yt = X ′tβ0 + Ut,

where each of Yt ∈ R, Xt ∈ Rd×1 and Ut ∈ R is a continuous-time process for t ∈ [0, T ] with
sample paths that are right continuous with left limits (cadlag). We assume that Ut is stationary
and E(Ut|Xs, s ∈ [0, T ]) = 0 for any t ∈ [0, T ]. In this section, we also assume that Xt is a
stationary process and defer the case with a nonstationary Xt to Section 3. An intercept can be
included in Xt in this section.
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We do not observe the processes continuously. Instead, for some small sampling interval δ,
we observe {(xi, yi)}ni=1 where

xi = Xiδ, yi = Yiδ

for i = 1, . . . , n and n = T/δ. Here, for notational simplicity, we have assumed that T/δ is an
integer. The discrete-time sample {(xi, yi)}ni=1 satisfies

yi = x′iβ0 + ui, i = 1, 2, . . . , n,

where ui = Uiδ is unobserved. We are interested in testing H0 : Rβ0 = r versus H1 : Rβ0 6= r for
some p× d matrix R with a full row rank p.

Given the discrete sample {(xi, yi)}ni=1 , we estimate β0 by

β̂D =

(
n∑
i=1

xix
′
i

)−1( n∑
i=1

xiyi

)
.

Our test of H0 against H1 is based on the above estimator.

2.2 The test statistic

To test whether Rβ0 is equal to r, we often first find the rate of convergence of β̂D−β0, establish
the asymptotic distribution of a rescaled version of β̂D − β0 and then construct the test statistic
based on an estimated asymptotic variance. Instead of following these conventional steps, we
use heuristic arguments and construct the test statistic directly. The approximate variance of
β̂D − β0 is (

n∑
i=1

xix
′
i

)−1

var

(
n∑
i=1

xiui

)(
n∑
i=1

xix
′
i

)−1

.

Based on this approximate variance formula, we construct the test statistic

FT = (Rβ̂D − r)′
R( n∑

i=1

xix
′
i

)−1

v̂ar

(
n∑
i=1

xiûi

)(
n∑
i=1

xix
′
i

)−1

R′

−1

(Rβ̂D − r)/p,

where ûi = yi−x′iβ̂D and v̂ar(
∑n

i=1 xiûi) is an estimator of the approximate variance of
∑n

i=1 xiui.
In the above, dividing by p does not affect the properties of the test.

We use the series estimator for the approximate variance. Let {φj (·)} be some basis functions
on L2[0, 1]. The series variance estimator is given by

v̂ar

(
n∑
i=1

xiûi

)
=

1

K

K∑
j=1

[
n∑
i=1

φj

(
i

n

)
xiûi

]⊗2

,

where a⊗2 = aa′ for any vector a and K is a tuning parameter. When the basis functions can
be paired naturally, we shall assume that K is even. Note that the basis functions are evaluated
at i/n instead of i/T. This is an important point, and our asymptotic theory relies crucially on
this construction. We have, therefore, effectively ignored the high-frequency nature of our time
series observations that are sampled from continuous time processes. The test statistic is then

FT = (Rβ̂D−r)′
R

(
n∑
i=1

xix
′
i

)−1
1

K

K∑
j=1

[
n∑
i=1

φj

(
i

n

)
xiûi

]⊗2( n∑
i=1

xix
′
i

)−1

R′


−1

(Rβ̂D−r)/p.

(1)
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The form of the test statistic is exactly the same as what we would use for a standard regres-
sion with discrete time series. Importantly, there is no rescaling by n or T. To construct the
test statistic, we can ignore the fact that our observations come from sampling continuous-time
processes.

The test statistic FT takes a self-normalized form. This will become more transparent if we
consider the special case that d = p = 1 and K = 1. In this case, we take R = 1 without loss of
generality, and the test statistic becomes

FT =

( ∑n
i=1 (xiui)∑n

i=1 φ
(
i
n

)
(xiûi)

)2

:= (tT )2 .

The numerator in the t statistic tT is a simple sum of xiui while the denominator is a weighted sum
of xiûi with non-diminishing and bounded weights. We expect the numerator and denominator
to be of the same order of magnitude no matter what δ is. As a result, tT and FT will be
stochastically bounded for any sampling interval δ. In this sense, the denominator normalizes
the numerator, and thus no additional normalization is needed. This form of self-normalization
leads to the invariance of our testing procedure to the sampling interval, which we will develop
in greater detail.

2.3 Assumptions for the fixed-smoothing asymptotics

We consider the asymptotics along the limiting sequence δ → 0 and T → ∞. The asymptotics
would best reflect the finite sample situation where the observations are collected at a high
frequency (δ → 0) over a long span (T → ∞). To develop the more accurate fixed-smoothing
asymptotic approximations, we hold K fixed as δ → 0 and T →∞.

The fixed-smoothing asymptotics are developed under several assumptions. First and fore-
most, for any process Z = {Zt : t ∈ [0, T ]} in this section, we assume that it can be decomposed
into a continuous part and a pure-jump part:

Zt = Zct + Zdt

where Zdt =
∑

0≤τ≤t ∆Zτ , ∆Zτ = Zτ −Zτ− and Zτ− = limt→τ− Zt. That is, we assume that {Zt}
is the sum of a continuous local martingale (i.e., Zct ) and a sum of jump terms (i.e., Zdt ).

Next, we present other technical assumptions and provide some discussion on each.

Assumption 2.1 For Zt = XtUt, X
′
tXt,∑

0≤τ≤T
E ‖∆Zτ‖ = O (T ) as T →∞,

where for a matrix M, ‖M‖ is the Frobenius norm of M.

Assumption 2.1 is the same as the first part of Assumption A of Chang et al. (2018). It
imposes a restriction on the number and sizes of the jumps in {Zt}. The assumption is not
stringent and is satisfied, for example, for processes with compound Poisson type jumps if the
jump sizes are bounded in L1 and the jump intensity is proportional to T .

Assumption 2.2 For j = 1, . . . ,K, each function φj(·) is twice continuously differentiable, and∫ 1
0 φj(t)dt = 0. Also, {φj (·)}Kj=1 form an orthonormal set in L2[0, 1].
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Assumption 2.2 is very mild and is often maintained in the literature on orthonormal series
variance estimation; see, for example, Assumption 1(b) in Sun (2014a). The Fourier basis func-
tions given later in (2) satisfy this assumption. For ease of presentation, we set φ0 (·) ≡ 1, the
constant function.

Lemma 2.1 Let Assumptions 2.1 and 2.2 hold. For Zt = XtUt, X
′
tXt and zi = Ziδ,

1

n

n∑
i=1

φj

(
i

n

)
zi =

1

T

∫ T

0
φj

(
t

T

)
Ztdt+Op (eδ,T (Z)) , j = 0, 1, . . . ,K

as δ → 0 and T →∞,2 where

eδ,T (Z) = ∆δ,T (Z) +
δ

T
sup
t∈[0,T ]

‖Zt‖+ δ

and
∆δ,T (Z) = sup

τ,t∈[0,T ]
sup
|τ−t|≤δ

‖Zcτ − Zct ‖

is the modulus of continuity of the continuous part of Z.

Lemma 2.1 shows that the discrete-time average is an approximation to the continuous-time
integral with the approximation error controlled by the modulus of continuity of Z, a technical
term δ supt∈[0,T ] ‖Zt‖ /T that captures the edge effects, and the sampling interval δ. In the proof
of Lemma 2.1, we show that under Assumption 2.1, the effect of jumps on the approximation
error is of order Op (δ) .

Assumption 2.3 For {φj} satisfying Assumption 2.2,

1

T

∫ T

0
φj

(
t

T

)
XtX

′
tdt = op (1) for j = 1, . . . ,K,

and
1

T

∫ T

0
XtX

′
tdt = S + op (1)

for a positive definite matrix S as T →∞.

To understand the assumption, let Xtk be the k-th element of Xt. Suppose Xt is stationary
and E |XtkXtlXskXsl| < ∞ for any k, l = 1, 2, . . . , d and any t, s ∈ [0, T ]. Assume further that
cov (XtkXtl, XskXsl) = fkl (t− s) for some bounded function fkl (·) satisfying fkl (τ) → 0 as
|τ | → ∞. Then, by the Fubini–Tonelli theorem,

E
1

T

∫ T

0
φj

(
t

T

)
XtX

′
tdt = E

(
XtX

′
t

)
· 1

T

∫ T

0
φj

(
t

T

)
dt = E

(
XtX

′
t

) ∫ 1

0
φj (r) dr,

2This should be understood in the following way:
∥∥∥n−1∑n

i=1 φj (i/n) zi − T−1
∫ T
0
φj (t/T )Ztdt

∥∥∥ =

Op (eδ,T (Z)) . We use the same convention when Op or op is used in matrix equalities.
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for all j = 0, 1, . . . ,K. By the Fubini–Tonelli theorem and the dominated convergence theorem,

var

(
1

T

∫ T

0
φj

(
t

T

)
XtiXtkdt

)
=

1

T 2

∫ T

0

∫ T

0
φj

(
t

T

)
φj

( s
T

)
cov(XtiXtk, XsiXsk)dtds

=
1

T 2

∫ T

0

∫ T

0
φj

(
t

T

)
φj

( s
T

)
fkl (t− s) dtds

=

∫ 1

0

∫ 1

0
φj (s)φj (t) fkl (T (t− s)) dtds→ 0

for j = 0, 1, . . . ,K. Hence Assumption 2.3 holds for S = E (XtX
′
t) .

Assumption 2.4 For {φj} satisfying Assumption 2.2,

1√
T

∫ T

0
φj

(
t

T

)
XtUtdt⇒ Ω1/2

∫ 1

0
φj (r) dWd (r) jointly for j = 0, 1, 2, . . . ,K

as δ → 0 and T →∞, where Wd (r) is the d× 1 standard Brownian motion process,

Ω = lim
T→∞

var

(
1√
T

∫ T

0
XtUtdt

)
=

∫ ∞
−∞

ΓXU (τ) dτ,

ΓXU (τ) = E
[
XtUtUt−τX

′
t−τ
]
, and Ω1/2 is a matrix square root of Ω so that Ω1/2

(
Ω1/2

)′
= Ω.

Assumption 2.4 is a multivariate CLT in the continuous-time setting. As in the discrete
time setting, there is a large body of literature on CLT’s for additive functionals in a continu-
ous time setting. For example, Rozanov (1960) establishes a CLT for additive functionals such

as T−1/2
∫ T

0 φj (t/T )XtUtdt. The sufficient conditions, which include a mixing condition and a
moment condition, are similar to those in the discrete time setting.

If a functional CLT (FCLT) holds such that T−1/2
∫ [Tr]

0 XtUtdt ⇒ Ω1/2Wd (r) , then using
integration by parts and the continuous mapping theorem, we can show that Assumption 2.4
holds. Sufficient conditions for the FCLT for the class of functions of continuous-time stationary
ergodic Markov processes can be founded in Bhattacharya (1982). For more discussions, see
Equations 1–3 and remarks in Section 2 of Lu and Park (2019). Note that an FCLT is stronger
than necessary, but the gap between an FCLT and the above multivariate CLT may be of the-
oretical interest only. Here we only need a multivariate CLT. This is an advantage of using a
series LRV estimator. If we use a kernel LRV estimator, then an FCLT is needed for developing
fixed-smoothing asymptotics.

Assumption 2.5 (i)
√
Teδ,T (XU) = op (1) and (ii) eδ,T (XX ′) = op (1) .

Assumption 2.5 is the same as Assumption D1 of Chang et al. (2018). Assumption 2.5(i) holds
if
√
Tδ = o (1),

√
T∆δ,T (XU) = op (1) and supt∈[0,T ] ‖XU‖ = op(

√
T/δ). The first condition,

namely
√
Tδ = o (1) , requires that δ → 0 fast enough as T → ∞, that is, the continuous-time

process has to be sampled frequently enough. The second condition, namely
√
T∆δ,T (XU) =

op (1) , requires that the continuous part of {XtUt} does not fluctuate too much over the sampling
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intervals of length δ. Using the moment bounds in Fischer and Nappo (2009) and the Markov
inequality, we can obtain that

∆δ,T (XU) = Op

[(
δ log

2T

δ

)1/2
]

if (XtUt)
c is an Ito process whose drift and diffusion coefficients satisfy some mild conditions. So√

T∆δ,T (XU) = op (1) if Tδ log (T/δ) = o (1) . The third condition, namely supt∈[0,T ] ‖XU‖ =

op(
√
T/δ), requires that the maximum value of the process {XtUt} over [0, T ] does not ex-

plode too quickly as T grows. For example, if supt∈[0,T ] ‖XU‖ = Op (T ) and
√
Tδ = o (1) , then

supt∈[0,T ] ‖XU‖ = Op (T ) = Op(
√
Tδ ·

√
T/δ) = op(

√
T/δ) and the third condition holds. As-

sumption 2.5(ii) is of the same form as Assumption 2.5(i). With some obvious modifications, our
discussions on Assumption 2.5(i) can be applied to Assumption 2.5(ii).

2.4 Fixed-smoothing asymptotics

Define

β̂C =

[∫ T

0
XtX

′
tdt

]−1 [∫ T

0
XtYtdt

]
,

which is the least-square analogue of β̂D in the space L2 [0, T ] using the continuous-time data
{(Xt, Yt) , t ∈ [0, T ]}. β̂C is not feasible, and we use it only as a benchmark for comparison.

We first show that
√
T [β̂D − β] and

√
T [β̂C − β] are asymptotically equivalent. Letting

Zt = XtUt and j = 0 in Lemma 2.1, we have

1

n

n∑
i=1

xiui =
1

T

∫ T

0
XtUtdt+Op (eδ,T (XU)) .

Multiplying the above equation by
√
T , we obtain

1

Λ (n, δ)

n∑
i=1

xiui =
1√
T

∫ T

0
XtUtdt+ op (1) ,

where Λ (n, δ) =
√
n/δ and we have used Assumption 2.5(i).

Using Lemma 2.1 with Zt = XtX
′
t and j = 0 and Assumption 2.5(ii), we have

1

n

n∑
i=1

xix
′
i =

1

T

∫ T

0
XtX

′
tdt+ op (1) .

Hence,

√
T
[
β̂D − β0

]
= [n/Λ (n, δ)]

[
β̂D − β0

]
=

(
1

n

n∑
i=1

xix
′
i

)−1(
1

Λ (n, δ)

n∑
i=1

xiui

)

=

(
1

T

∫ T

0
XtX

′
tdt

)−1
1√
T

∫ T

0
XtUtdt+ op (1)

=
√
T (β̂C − β0) + op (1) .
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The above derivations show that Assumptions 2.1 and 2.5 ensure that
√
T (β̂D − β0) and√

T (β̂C − β0) are asymptotically equivalent. Invoking Assumptions 2.3 and 2.4, we obtain the
asymptotic distribution of

√
T (β̂D − β). We present this and another key result, which requires

Assumption 2.2, in the lemma below.

Lemma 2.2 Let Assumptions 2.1–2.5 hold. Then

√
T (β̂D − β0) =

√
T (β̂C − β0) + op (1)⇒ S−1Ω1/2Wd (1)

and
1

Λ (n, δ)

n∑
i=1

φj

(
i

n

)
xiûi ⇒ Ω1/2

∫ 1

0
φj (r) dWd(r)

jointly for j = 1, 2, . . . ,K.

Lemma 2.2 shows that β̂D converges to β0 at the rate of
√
T . For high-frequency data sampled

from a continuous-time process, the effective sample size is the time span T rather than the
number of observations n. We do not obtain the rate of

√
n, which is the typical rate for the

discrete-time data with a fixed sampling interval (e.g., δ is fixed to be 1) and n weakly dependent
observations. The difference can be traced back to the unusual rate in the weak convergence
result:

1

Λ (n, δ)

n∑
i=1

xiui ⇒ Ω1/2Wd (1) .

Because {xiui} becomes highly correlated as δ → 0, in order to obtain a well-defined weak limit,
we need to normalize the sum

∑n
i=1 xiui by Λ (n, δ) :=

√
n/δ, which is larger than the usual

normalization factor
√
n by an order of magnitude.

Using Lemma 2.2, we have, under the null hypothesis:

FT = δΛ (n, δ) (Rβ̂D − r)′

×

R( 1

δΛ (n, δ)2

n∑
i=1

xix
′
i

)−1
1

K

K∑
j=1

[
1

Λ (n, δ)

n∑
i=1

φj

(
i

n

)
xiûi

]⊗2(
1

δΛ (n, δ)2

n∑
i=1

xix
′
i

)−1

R′

−1

× δΛ (n, δ) (Rβ̂D − r)/p

⇒ [RS−1Ω1/2Wd (1)]′

RS−1Ω1/2 1

K

K∑
j=1

[∫ 1

0
φj (r) dWd(r)

]⊗2

Ω1/2S−1R′


−1

RS−1Ω1/2Wd (1) /p.

In the above, rescalings by δΛ (n, δ) , 1/Λ (n, δ) or 1/(δΛ (n, δ)2) in the first equality are for theo-
retical arguments only. In practice, the test statistic FT is computed according to the definition
in (1) without using any rescaling.

Note that RS−1Ω1/2Wd (r)
d
=
[
RS−1ΩS−1R′

]1/2
Wp (r) for a p×1 standard Brownian motion

process Wp (·) and that RS−1ΩS−1R′ is of a full rank. We have

FT ⇒ [Wp (1)]′

 1

K

K∑
j=1

[∫ 1

0
φj (r) dWp(r)

]⊗2

−1

Wp (1) /p.

9



Under Assumption 2.2,
[∫ 1

0 φj (r) dWp(r)
]⊗2

is iid Wishart distributed. The above limiting

distribution is equal to Hotelling’s T 2 distribution. In view of the relationship between the T 2

and F distributions (e.g., Bilodeau and Brenner (2010)), we have the following theorem.

Theorem 2.1 Let Assumptions 2.1 – 2.5 hold. Then, for a fixed K ≥ p,

FT ⇒
K

K − p+ 1
Fp,K−p+1,

where Fp,K−p+1 is the F distribution with degrees of freedom p and K − p+ 1.

If we use the OLS variance estimator that ignores the autocorrelation, we would construct
the test statistic as follows

FT,OLS =
(
Rβ̂D − r

)′
×

Rσ̂2
u

(
n∑
i=1

xix
′
i

)−1

R′

−1 (
Rβ̂D − r

)
/p

where σ̂2
u = n−1

∑n
i=1 û

2
i is an estimator of the variance σ2

u of Ut. Then

δFT,OLS =
√
T
(
Rβ̂D − r

)′
×

Rσ̂2
u

(
1

n

n∑
i=1

xix
′
i

)−1

R′

−1
√
T
(
Rβ̂D − r

)
/p

⇒
[
RS−1Ω1/2Wd (1)

]′
×
[
σ2
uRS

−1R′
]−1

[
RS−1Ω1/2Wd (1)

]
/p.

So, as δ → 0, FT,OLS → ∞ with probability approaching one. Consequently, using FT,OLS for
inference can lead to the spurious finding of a significant relationship that does not actually exist.
See Chang et al. (2018) for more details. Such a result is also related to the following result in
Sun (2004): the t-statistic can be made convergent in a spurious regression when high-order
autocorrelations are properly accounted for.

To illustrate the key difference between the variance estimators underlying FT and FT,OLS ,
consider the special case with K = d = p = 1. Then the ratio of the autocorrelation robust
variance estimator to the OLS variance estimator is

[∑n
i=1 φj

(
i
n

)
(xiûi)

]2
σ̂2
u

∑n
i=1 x

2
i

=
Λ (n, δ)2

n

[
1

Λ(n,δ)

∑n
i=1 φj

(
i
n

)
xiûi

]2

σ̂2
u

1
n

∑n
i=1 x

2
i

=
1

δ
·

[
1

Λ(n,δ)

∑n
i=1 φj

(
i
n

)
xiûi

]2

σ̂2
u

1
n

∑n
i=1 x

2
i

.

Note that the second factor converges to a nondegenerate distribution. So the ratio will diverge
at the rate of 1/δ. That is, by ignoring the high-order autocorrelations of xiui, especially when δ
is small, the OLS variance estimator under-estimates the true variation of the OLS estimator by
a factor of 1/δ. This explains why FT is stochastically bounded while FT,OLS explodes as δ → 0
and T →∞.
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2.5 Choice of the smoothing parameter K

In this subsection, we propose a rule for choosing K. Part of our theoretical analysis is the high-
frequency continuous-time counterparts of Phillips (2005), which develops a rule for choosing K
in LRV estimation for a fully observed discrete-time process. We allow for more general basis
functions while Phillips (2005) considers only sine and cosine basis functions. Thus, even for
usual discrete-time processes, our theoretical development goes beyond Phillips (2005).

To abstract away the technical issues that will not affect the practical implementation of the
proposed rule, we define the infeasible variance estimator:

Ω̂∗ =
1

K

K∑
j=1

[
1

Λ (n, δ)

n∑
i=1

φj

(
i

n

)
(xiui)

]⊗2

.

Ω̂∗ is infeasible because ui is not observed. We choose K to minimize the asymptotic MSE of
Ω̂∗. We could alternatively follow Andrews (1991) to find the approximate and truncated MSE
of the feasible estimator Ω̂ and use it to guide the choice of K. These two approaches will lead
to the same formula for the MSE-optimal K. Here we opt for the simpler approach.

Assumption 2.6 The following hold:

(i) var
[
vec(Ω̂∗)

]
= var

[
vec

(
Ω1/2 1

K

∑K
j=1

[∫ 1
0 φj (r) dWd (r)

]⊗2
Ω1/2

)]
(1 + o(1)) as T →∞

for both a fixed K and a growing K (i.e., K →∞).
(ii) Let ΓXU (τ) = E

(
XtUtUt−τX

′
t−τ
)
. For some ι > 0, there exists positive constants C1 and

C2 such that

‖ΓXU (τ)‖ ≤ C1 for all τ and ‖ΓXU (τ)‖ ≤ C1τ
−(3+ι) for all |τ | ≥ C2.

(iii) δ
∑n−1

k=−n+1 (kδ)m ΓXU (kδ)−
∫ T
−T τ

mΓXU (τ) dτ = O(δ) for m = 0, 2.

(iv) For some constant C > 0, supj∈[K] supr∈[0,1] max
{
|φj (r)| , |φ̇j (r) |/j

}
≤ C where φ̇j is

the first order derivative of φj and [K] := {1, . . . ,K} .
(v) If K →∞ as T →∞, then, for some constant cφ,2 6= 0,

lim
K→∞

− 1

K3

K∑
j=1

1

2

∫ 1

0
φj (r) φ̈j (r) dr

 = cφ,2,

where φ̈j is the second order derivative of φj .

Assumption 2.6(i) is a high-level assumption. When K is fixed and Assumptions 2.1–2.5 hold,

Ω̂∗ ⇒ Ω1/2 1

K

K∑
j=1

[∫ 1

0
φj (r) dWd (r)

]⊗2

Ω1/2.

So Assumption 2.6(i) says that the limit of the exact finite sample variance of vec(Ω̂∗) is equal
to the variance of its limiting distribution, namely the asymptotic variance. From a theoretical
point of view, this is plausible if we have enough moment conditions. Alternatively, we simply
use the asymptotic variance in place of the exact finite sample variance to obtain an approximate
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MSE. This is, in fact, a typical approach for smoothing parameter choice in a nonparametric
setting when the exact finite sample variance is difficult, if not impossible, to obtain. For both
a fixed K and a growing K, we can show that an assumption similar to Assumption 2.3(b) in
Lu and Park (2019), Assumption 2.2, and Assumptions 2.6(ii)-(iv) are sufficient for Assumption
2.6(i). The details and proof are given in the online supplementary appendix.

Assumption 2.6(ii) imposes that the covariance ‖ΓXU (τ)‖ is bounded above and decays
to zero at a certain rate. The assumption ensures that δ

∑∞
k=−∞ (kδ)2 ‖ΓXU (kδ)‖ < ∞ and∫∞

−∞ τ
2 ‖ΓXU (τ)‖ <∞ (see the proof Theorem 2.2). The summability condition can be regarded

as the continuous counterpart of the integrability condition. These conditions are often imposed
directly in the literature. For the latter condition, see, for example, Assumption 2.2 in Lu and
Park (2019) (pp. 239).

Assumption 2.6(iii) assumes that the discrete sum is a good approximation to the integral.
Note that

δ
n−1∑

k=−n+1

(kδ)m ΓXU (kδ)−
∫ T

−T
τmΓXU (τ) dτ

=
n−1∑

k=−n+1

[∫ (k+1)δ

kδ
[(kδ)m ΓXU (kδ)− τmΓXU (τ)] dτ

]
+O (δ)

=

[
n−1∑

k=−n+1

max
t∈[kδ,(k+1)δ]

∂ [tmΓXU (t)]

∂t
δ +O (1)

]
δ.

Therefore, Assumption 2.6(iii) holds if δ
∑n−1

k=−n+1 maxt∈[kδ,(k+1)δ]

∥∥∥∂[tmΓXU (t)]
∂t

∥∥∥ <∞.
Assumptions 2.6(iv) and (v) contain some additional mild conditions on the basis functions.

The assumptions are satisfied for the sine and cosine basis functions (i.e., Fourier bases) given by

φ2j−1(r) =
√

2 cos (2πjr) and φ2j(r) =
√

2 sin (2πjr) for j = 1, . . . ,K/2. (2)

For the above set of Fourier bases, we have

φ̈2j−1(r) = −
√

2 (2πj)2 cos (2πjr) and φ̈2j(r) = −
√

2 (2πj)2 sin (2πjr) for j = 1, . . . ,K/2,

and hence

cφ,2 = − lim
K→∞

1

K3

K∑
j=1

1

2

∫ 1

0
φj (r) φ̈j (r) dr

= lim
K→∞

1

K3

K/2∑
j=1

4π2j2

2

[∫ 1

0
2 sin (2πjr)2 dr +

∫ 1

0
2 cos (2πjr)2 dr

]

= lim
K→∞

1

K3

K/2∑
j=1

4π2j2 =

∫ 1/2

0
4π2x2dx =

π2

6
.

We will use the Fourier bases in our simulation study.
For a kernel function k (·) with Parzen exponent q, the asymptotic bias of the kernel LRV

estimator depends on the “Parzen parameter” ck,q defined by

ck,q = lim
x→0

1− k (x)

xq
.
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The parameter cφ,2 in Assumption 2.6(v) plays the same role in series LRV estimation as ck,q does
in kernel LRV estimation. Here, the assumptions imposed on the basis functions ensure that the
resulting series LRV estimator is analogous to a kernel LRV estimator with a second-order kernel
(i.e., its Parzen exponent q is equal to 2). There are other sets of basis functions such as Legendre
polynomials that deliver series LRV estimators with asymptotic properties similar to the kernel
LRV estimators based on a first-order kernel (e.g., the Bartlett kernel). See Lazarus et al. (2018)
for more discussion. Hwang and Sun (2018) discusses why the set of Legendre polynomials may
not be a good choice. We focus on second-order series LRV estimators in this paper.

Theorem 2.2 Let Assumption 2.6 hold.
(a) Under Assumption 2.6(i), as T →∞, the variance of Ω̂∗ satisfies

var
[
vec(Ω̂∗)

]
=

1

K
(Ω⊗ Ω) (Id2 + Kdd) (1 + o (1)) ,

where Id2 is the d2 × d2 identity matrix and Kdd is the d2 × d2 commutation matrix.
(b) Under Assumptions 2.6(ii)–(v), as T →∞ and K →∞, the bias of Ω̂∗ satisfies

E(Ω̂∗ − Ω) = −cφ,2
K2

T 2
B2 + o

(
K2

T 2

)
+O

(
δ +

(log n)2

T 2
+

1

T

)
,

where

B2 =

∫ ∞
−∞

τ2ΓXU (τ) dτ.

(c) Under Assumptions 2.6(ii)–(iv), as T →∞ for a fixed K, the bias of Ω̂∗ satisfies

E(Ω̂∗ − Ω) = − 1

T
cφ,1B1 + o

(
1

T

)
+O

(
δ +

(log n)2

T 2
+

1

n

)
,

where

cφ,1 = cφ,1 (K) :=
1

2

1

K

K∑
j=1

[
φ2
j (1) + φ2

j (0)
]

and B1 =

∫ ∞
−∞

τΓXU (τ) dτ.

When K → ∞ and T → ∞, the variance and bias expressions are similar to those in the
case with discrete-time data. Their interpretations are also similar. For example, when XtUt
is positively autocorrelated such that ΓXU (τ) > 0 for all τ, then B2 > 0 and Ω̂∗ is biased
downward. This is analogous to the discrete-time case. Note that the dominating bias is equal to
−cφK2T−2B2 instead of −cφK2n−2B2. The latter can be shown to be the dominating bias in the
usual discrete-time case for a fixed time interval (e.g., δ = 1) with n observations. A takeaway
from this comparison is that the effective sample size of a high-frequency sample (i.e., δ → 0) from
a continuous-time process is the time span T instead of the number of observations n over this
time span. When we use the effective sample size T in the bias expression, the asymptotic bias
depends only on B2, which is an intrinsic feature of the continuous-time process. In particular,
the asymptotic bias does not depend on δ. This may appear counter-intuitive. We may argue that
the process becomes more persistent for a smaller δ, and so we expect a larger absolute bias for
a smaller δ. Such an argument is valid if we represent the asymptotic bias in terms of n, namely
−cφ

(
K2n−2

) (
B2δ

−2
)
. Smaller δ indeed leads to a larger bias for a given n, but n becomes larger
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for a smaller δ. The net effect is that the asymptotic bias depends on the effective sample size T
but not n or δ separately.

Define3

MSE(Ω̂∗) = E
[
vec(Ω̂∗ − Ω)′vec(Ω̂∗ − Ω)

]
,

which is the mean square error of vec(Ω̂∗). It follows from Theorems 2.2 (i) and (ii) that

MSE(Ω̂∗)

= tr [{Ω⊗ Ω} (Id2 + Kdd)]
1

K
+ c2

φ,2vec (B2)′ vec (B2)
K4

T 4

+ o

(
1

K
+
K4

T 4

)
+O

(
δ2 +

(log n)4

T 4
+

1

T 2

)
.

Ignoring the terms that will be shown to be of a smaller order and optimizing MSE(Ω̂∗) over K,
we obtain the formula4

K = κ (Ω, B2)1/5 T 4/5, (3)

where

κ (Ω, B2) :=

(
tr [{Ω⊗ Ω} (Id2 + Kdd)]

4c2
φ,2vec [B2]′ vec [B2]

)
.

When K = κ (Ω, B2)1/5 T 4/5, the first two terms in MSE(Ω̂∗) are of order T−4/5. To ensure
the terms that we ignore are indeed of a smaller order, we require that

δ2 +
(log n)4

T 4
+

1

T 2
= o

(
T−4/5

)
.

If we set δ = O(T−τ ), then we require τ to be large enough. Such a requirement is compatible
with the sufficient conditions for Assumption 2.5(i).

In the case of usual discrete time series data with a fixed sampling time interval and n
observations, the optimal choice of K is given by

KD = κ (ΩD, B2D)1/5 n4/5, (4)

where

κ (ΩD, B2D) :=
tr [{ΩD ⊗ ΩD} (Id2 + Kdd)]

4c2
φ,2vec [B2D]′ vec [B2D]

.

The formula is the same as that in (3) but with T replaced by n. See, for example, Phillips (2005).
In the above, ΩD and B2D are the discrete analogues of Ω and B2. If we use the formula for K
in (4) and set K = cn4/5 for some constant c > 0, then we obtain a sub-optimal rate of K for the
high-frequency data with a shrinking sample interval (i.e., δ → 0). The choice of K = cn4/5 is

3It is possible to weigh different elements of vec(Ω̂∗ − Ω) differently by defining

MSE(Ω̂∗) = E
[
vec(Ω̂∗ − Ω)′Wvec(Ω̂∗ − Ω)

]
for some matrix W. Here we have implicitly chosen W to be an identity matrix.

4Given that K is an integer, we should round κ (Ω, B2)1/5 T 4/5 up to the next integer and use it as K. We
ignore this for the theoretical analysis but implement it in the simulation study.
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too large for high-frequency data. For this type of data, the neighboring observations are highly
correlated, and a smaller K is desired.

Now suppose we pretend that {zi = xiui}ni=1 is a discrete-time process with a fixed time
interval (e.g., δ = 1) and n observations, and we use a parametric AR(1) plug-in approach to
implement (4). We fit an AR(1) model to each component zi,j of zi :

zi,j = ρjzi−1,j + ezj for j = 1, 2, . . . , d

with the AR parameter and error variance estimated by

ρ̂j =

∑n
i=2 zi,jzi−1,j∑n
i=2 z

2
i−1,j

and σ̂2
j =

1

n

n∑
i=2

(zi,j − ρ̂jzi−1,j)
2 .

On the basis of the above plug-in estimates, we compute

κ̂D =
1

8c2
φ,2

 d∑
j=1

ρ̂2
j σ̂

4
j

(1− ρ̂j)8

−1 d∑
j=1

σ̂4
j

(1− ρ̂j)4


and let

K̂D = κ̂
1/5
D n4/5. (5)

The above data-driven choice does not require the value of δ, and hence we do not need to pin
down the unit of time in measuring the sampling intervals. Whether the length of the sampling
intervals is measured in seconds, hours, days, or months does not affect how we compute K̂D.
The value of K̂D is invariant to the unit of time, and an applied researcher does not have to
choose a unit of time.

The question is whether the so-obtained K̂D is of the optimal order T 4/5 with probability
approaching one. On the surface, the answer is no, as K̂D is apparently of order n4/5. However,
under the AR(1) plug-in implementation, κ̂D is not a fixed constant. In fact, following Chang
et al. (2018) (Lemma 4.2), we can show that as δ → 0 and T →∞,

ρ̂j = 1− c1jδ + op (δ) and σ̂2
j = c2jδ + op (δ)

for some constants c1j > 0 and c2j > 0. Essentially, {zi,j} is a highly persistent process with the
autocorrelation approaching unity at the rate of δ. The smaller δ is, the higher the autocorrelation
is. As δ → 0, {zi,j} is effectively a near unit root process with the innovation variance proportional
to the sampling interval δ. Plugging the above results into κ̂D yields

κ̂D =
1

8c2
φ

 d∑
j=1

(c2j)
2 δ2

(c1jδ)
8

−1 d∑
j=1

(c2j)
2 δ2

(c1jδ)
4

 (1 + op (1))

=
1

8c2
φ

 d∑
j=1

c2
2j

c8
1j

−1 d∑
j=1

c2
2j

c4
1j

 δ4 (1 + op (1)) .
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As a result,

K̂D = κ̂
1/5
D n4/5 =

 1

8c2
φ,2

 d∑
j=1

c2
2j

c8
1j

−1 d∑
j=1

c2
2j

c4
1j

1/5

δ4/5n4/5 (1 + op (1))

=

 1

8c2
φ,2

 d∑
j=1

c2
2j

c8
1j

−1 d∑
j=1

c2
2j

c4
1j

1/5

T 4/5 (1 + op (1)) .

With probability approaching one, the rate of K̂D is the same as the optimal rate of T 4/5. So the
AR(1) plug-in implementation leads to a rate-optimal choice of K. Chang et al. (2018) call this
feature of the AR(1) plug-in implementation high-frequency compatible.

It should be noted that in the discrete-time setting it is typical to truncate the AR estimator
at 0.97. See footnote 8 of Andrews (1991). Here, we should not follow this practice, as we rely
on the convergence of 1− ρ̂j to zero at the rate of δ to achieve the high-frequency compatibility.
Had we truncated the initial AR estimator at 0.97 or any fixed number less than 1, κ̂D would be
bounded away from zero with probability approaching one. As a result, K̂D would be of order
n4/5 and we would lose the high-frequency compatibility. Computationally, without truncating
the initial AR estimator, we may have 1− ρ̂j = 0 and encounter the “divided by zero” problem.
To avoid this, we can truncate the AR estimator so that 1− ρ̂j is larger than the machine epsilon.
In practice, {ui}ni=1 is of course not observed, so K̂D in (5) is computed utilizing {ẑi = xiûi}ni=1

where ûi = yi − x′iβ̂D.
Note that the high-frequency compatible rate of K is of order T 4/5, which is smaller than n4/5

by an order of magnitude. So, when T is small, K may be small too, and the fixed-K asymptotics
may be more accurate.

The above MSE-optimal choice of K is obtained under the rate assumption that K →∞ but
at a slower rate than T. The so-obtained choice rule in (3) satisfies the rate assumption. One may
wonder whether we can obtain an MSE-optimal choice of K under the “fixed-K” assumption that
K is held fixed. The answer is no. Under the fixed-K asymptotics, Theorem 2.2 shows that the
variance of Ω̂∗ is proportional to 1/K and the squared-bias is proportional to 1/T 2. To minimize
the dominating terms in the MSE, we would make K as large as possible. Such an approach
would then drive K to infinity and make it incompatible with the “fixed-K” assumption to begin
with. As an example, consider the case when d = 1 and the Fourier basis functions in (2) are
used. By Theorem 2.2 (i) and (iii), the dominating terms in the MSE are

1

T 2
B1 +

2

K
Ω2,

as cφ,1 (K) = 1
2

1
K

∑K
j=1

[
φ2
j (1) + φ2

j (0)
]

= 1. It is now clear that there is no fixed-value of K

that minimizes the above: any fixed value of K is dominated by a larger value.
The above analysis shows that only the large-K asymptotic framework is theoretically co-

herent with an asymptotically optimal choice of K. Such an optimal choice of K is seemingly
incompatible with the distributional approximation obtained under the fixed-K asymptotic the-
ory. This is not the case, and we provide a justification here. Let Cα (p,K) be the (1− α)-quantile
of the fixed-K asymptotic distribution of FT , that is

Pr

(
K

K − p+ 1
Fp,K−p+1 > Cα (p,K)

)
= α.
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Note that K/(K + p − 1)Fp,K−p+1 ⇒ χ2
p/p as K → ∞. Letting K → ∞ in the above equation

and using the dominated convergence theorem, we obtain

Pr

(
χ2
p/p > lim

K→∞
Cα (p,K)

)
= α.

This shows that limK→∞ Cα (p,K) = χ2
p,α/p, where χ2

p,α is the (1− α)-quantile of the chi-squared
distribution χ2

p. Therefore, under the large K asymptotics, Cα (p,K) is an asymptotically valid
critical value, even though it is based on the fixed-K asymptotic distribution. In the literature
on the fixed-smoothing asymptotics for discrete-time data with a fixed δ, it has been proved that
for the location models and linear regression models, critical values based on the fixed-smoothing
asymptotic distribution (i.e., K is fixed for series LRV estimation) are second-order correct under
the increasing-smoothing asymptotics (i.e., K → ∞). See, for example, Sun (2013) for the case
with series LRV estimation and Sun (2014a) and Sun et al. (2008) for the case with kernel LRV
estimation.

To conclude this section, we have shown that, in the stationary case, we do not need to change
our estimation and inference methods to account for the fact that our observations are collected
at a high frequency with the sampling interval δ going to zero. We can use exactly the same
approach as we would do in the case with discrete-time observations where the time distance
between neighboring observations is fixed: the test statistic is constructed in the same way, and
the smoothing parameter is chosen in the same way. We do not need to choose a unit of time
to measure the sampling duration. The only caveat is that we should use a parametric AR(1)
plug-in to obtain the data-driven smoothing parameter. Using the nonparametric approach of
Newey and West (1994) will lead to a sub-optimal rate for the smoothing parameter. See Chang
et al. (2018) for the details.

3 The Nonstationary Case

3.1 Exogenous Regressors

In this subsection, we consider linear hypothesis testing for cointegrating regressions in the
continuous-time setting. The model is

Yt = α0 +X ′tβ0 + U0t (6)

where Xt ∈ Rd×1 is a nonstationary process, U0t ∈ R is a stationary process, {Xt} and {U0t}
are independent.5 As in the case with stationary regressors, only a discrete set of points
{xi = Xiδ, yi = Yiδ}ni=1 are observed. The discrete-time model is

yi = α0 + x′iβ0 + u0i

where u0i = U0,iδ. The object of interest is the slope parameter β0, and we aim at testing
H0 : Rβ0 = r against H1 : Rβ0 6= r where R ∈ Rp×d is of rank p. Note that here we single
the intercept out of the slope parameter, and the hypothesis of interest involves only the slope
parameter.

We consider the same limiting experiment where δ → 0 and T →∞ for a fixed K.

5We use U0t instead of Ut to denote the error process because in the next subsection we will use Ut to denote
(U ′0t, U

′
xt)
′. We shall use U0· to denote {U0t : t ∈ [0, T ]}.
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Assumption 3.1 For eδ,T (U0·) defined in the same way as in Lemma 2.1,∑
0≤τ≤T

E |∆U0τ | = O (T ) and eδ,T (U0·) = op (1) .

The above assumption is similar to Assumptions 2.1 and 2.5(i). It ensures that

Λ (n, δ)−1
n∑
i=1

u0i = T−1/2

∫ T

0
U0tdt+ op (1) .

Assumption 3.2 For a sequence of d×d diagonal matrices (ΛT ) with diverging diagonal elements(
Λ−1
T XTr

T−1/2
∫ Tr

0 U0sds

)
⇒
(

X◦ (r)
σ0W0(r)

)
for σ0 > 0 and r ∈ (0, 1]

as T → ∞, where X◦(·) is a continuous (a.s.) semimartingale, W0(·) is standard Brownian
motion, and X◦(·) and W0(·) are independent.

The weak convergence in Assumption 3.2 is defined on Dd+1[0, 1], the space of cadlag functions
from [0, 1] to R(d+1)×1 endowed with the Skorokhod topology. The assumption is the continuous-
time analogue of the traditional invariance principles. It is similar to Assumption C2 in Chang
et al. (2018) which points out that the assumption is satisfied for a wide class of continuous-
time processes. For general null recurrent diffusions and jump diffusions, Kim and Park (2017)
provides sufficient conditions under which Λ−1

T XTr ⇒ X◦ (r). As discussed after Assumption 2.4,

Lu and Park (2019) provides sufficient conditions under which T−1/2
∫ Tr

0 U0sds⇒ σ0W0(r).
For j = 1, . . . ,K, let

ηj =

∫ 1

0
φj(r)X

◦(r)dr,

and
η = (η1, . . . , ηK)′ ∈ RK×d.

Assumption 3.3 With probability one, η′η is of full rank d.

Assumption 3.3 requires that, with probability one, the L2[0, 1] projection coefficients of
components of X◦ in the directions φj , j = 1, . . . ,K, form d linearly independent vectors. For a
given choice of {φj}Kj=1, such as the first K Fourier basis functions, this is satisfied by virtually
all continuous-time processes used in practice when K is large enough.

Now we detail the testing procedure. Assume that K ≥ d+1. The testing steps are as follows:

1. Create the transformed data {Wy
j ,Wx

j }Kj=1 where

Wy
j =

1√
n

n∑
i=1

φj

(
i

n

)
yi, Wx

j =
1√
n

n∑
i=1

φj

(
i

n

)
xi. (7)

Denote the matrix forms of transformed data by

Wy = (Wy
1, . . . ,W

y
K)′

K×1

, Wx = (Wx
1 , . . . ,Wx

K)′

K×d
.
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2. Regress Wy on Wx without an intercept by OLS. This yields the transformed OLS estimator
β̂TOLS and the residual vector Ŵu0 :

β̂TOLS =
(
Wx′Wx

)−1 Wx′Wy, Ŵu0 = Wy −Wxβ̂TOLS . (8)

3. To test H0 : Rβ0 = r, we calculate the following test statistic

FTOLS =
1

σ̂2
0

(Rβ̂TOLS − r)′
[
R
(
Wx′Wx

)−1
R′
]−1

(Rβ̂TOLS − r)/p, (9)

where

σ̂2
0 =

1

K

K∑
j=1

(Ŵu0
j )2 =

1

K
Ŵu0′Ŵu0 . (10)

Define

Wu0
j =

1√
n

n∑
i=1

φj

(
i

n

)
u0i, Wu0 = (Wu0

1 , . . . ,Wu0
K )′

K×1

.

For j = 1, . . . ,K, let

νj = σ0

∫ 1

0
φj(r)dW0(r),

and
ν = (ν1, . . . , νK)′ ∈ RK×1.

The following lemma establishes the weak limits of Wx, Wu0 , and β̂TOLS .

Lemma 3.1 Let Assumptions 2.2, 3.1–3.3 hold. Then, as δ → 0 and T →∞,
(a) (n−1/2WxΛ−1

T ,
√
δWu0)⇒ (η, ν);

(b)
√
TΛT (β̂TOLS − β0)⇒ (η′η)−1 (η′ν) .

Let R (`, ·) and r` be the `-th rows of R and r, respectively. Since we do not require that all
elements of (XTr) converge at the same rate, the rate of convergence of R (`, ·) β̂TOLS depends on
the element of β̂TOLS that has the slowest rate of convergence among those elements appearing
in the `-th restriction. To capture this, for ` = 1, . . . , p, we define the sets

I` := {j : for j ∈ {1, 2, . . . , d} such that R (`, j) 6= 0},

which consists of the indices of the coefficients that appear in the `-th restriction. When T is
large enough, the rate of convergence of R (`, ·) β̂TOLS is given by

√
T minj∈I` ΛT (j, j) . Let

Λ̃T = diag

(
min
j∈I1

ΛT (j, j) , . . . ,min
j∈Ip

ΛT (j, j)

)
,

which is a p × p diagonal matrix.6 Then limT→∞ Λ̃TRΛ−1
T = R◦ for a matrix R◦ ∈ Rp×d whose

(`, j)-th element R◦ (`, j) is equal to

R◦ (`, j) = lim
T→∞

Λ̃T (`, `)R (`, j) /ΛT (j, j) = R (`, j) lim
T→∞

[
min
m∈I`

ΛT (m,m) /ΛT (j, j)

]
. (11)

6minj∈I` ΛT (j, j) should be interpreted as the minimum of ΛT (j, j) over j ∈ I` when T is large enough.
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That is, R◦ is the same as R after we zero out the elements in each row of R for which the
corresponding coefficients can be estimated at a faster rate than the slowest rate for the coefficients
involved in this row. We require that R◦ is of row rank p, a condition that is clearly satisfied
when there is no heterogeneity in the rates of convergence, for example, R◦ = R when ΛT is a
scalar matrix.

Theorem 3.1 Let Assumptions 2.2, 3.1–3.3 hold. If K ≥ d+ 1 and limT→∞ Λ̃TRΛ−1
T is of rank

p, then

FTOLS ⇒
K

K − d
· Fp,K−d,

where Fp,K−d is the F distribution with degrees of freedom p and K − d.

Note that the asymptotic F theory does not depend on the specific form of the limiting
process X◦(·). In the proof of the theorem, we show that the asymptotic distribution conditional
on X◦(·) is an F distribution, which does not depend on the conditioning process X◦(·). Hence,
the asymptotic distribution is also the F distribution unconditionally. Asymptotic F theory in
a regression with nonstationary and exogenous regressors has been recently developed in Sun
(2021) for discrete time series. Since the limiting process X◦(·) can be highly nonstandard and
goes beyond what has been considered in Sun (2021), Theorem 3.1 has widened the applicability
of the asymptotic F theory. See Kim and Park (2017) for the nonstandard forms that X◦(·) can
take when {Xt} is a null recurrent diffusion process.

To implement the F test, we need to choose K. Ideally we want to select K to tradeoff the
type I and type II errors of the F test, but this is well beyond the scope of this paper. Note that
the variance estimator in (10) takes a form similar to that in the stationary case. The infeasible
variance estimator can be written as

σ̂2
0 =

1

K

K∑
j=1

[
1

Λ(n, δ)

n∑
i=1

φj

(
i

n

)
u0i

]2

.

As a practical rule of thumb, we can adapt the data-driven procedure in the stationary case and
proceed as follows:

1. Estimate the model yi = α0 + x′iβ0 + u0i by OLS to obtain the residual

û0i = yi − α̂OLS − x′iβ̂OLS .

2. On the basis of {û0i} , use the series method to estimate the long run variance of {u0i} ,
computing the AR(1) data-driven K̂D using the formula in (5).

3. Let K̂∗ = max(K̂D, d+ 3) and use K̂∗ to construct the transformed regression. Taking the
maximum between K̂D and d+3 ensures that the limiting F distribution has a finite mean.

4. Compute the F test statistic in the TOLS regression. Perform the asymptotic F test using
K̂∗

K̂∗−d
· Fp,K̂∗−d as the reference distribution.

We note in passing that an asymptotic F theory may also be developed based on the usual OLS
estimator in step 1 above rather than the transformed OLS estimator, but then a series variance
estimator with judiciously crafted basis functions has to be used. See Sun (2021) for more details
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in the discrete-time setting. We will not pursue this extension and choose to use a transformed
regression, which can be regarded as a special case of the transformed and augmented regression
in the next subsection. Hwang and Sun (2018) provides some discussion on the advantages of the
transformed approach, including its robustness to contaminations whose energy is concentrated
at high frequencies in the frequency domain.

3.2 Endogenous Regressors

We consider the same model Yt = α0 + X ′tβ0 + U0t as in the previous subsection, but we now
allow {Xt} to be endogenous. The cost of admitting endogeneity comes in the form of less
flexibility for the data generating process of the weak limit of Λ−1

T XTr, r ∈ [0, 1]. Namely, we
require that Λ−1

T = T−1/2Id and that the limiting process be Brownian motion. As we discuss
shortly, this requirement is a natural adaptation of the discrete time literature on inference in
cointegrating regressions. For example, it is similar to the discrete time framework adopted in
Vogelsang and Wagner (2014) and Hwang and Sun (2018). It is an open question whether an
asymptotic F theory can still be developed for other forms of nonstationarity. As before, we only
observe a discrete set of points {(xi, yi)}ni=1 satisfying yi = α0 + x′iβ0 + u0i. Again we want to
test H0 : Rβ0 = r against H1 : Rβ0 6= r.

We maintain Assumption 3.1 regarding the stationary process {U0t} but now allow for some
forms of dependence between {Xt} and {U0t}. Towards this end, the assumption below is similar
to and replaces Assumption 3.2.

Assumption 3.4 As T →∞, the following functional central limit theorem holds:(
1√
T

∫ Tr
0 U0sds

1√
T
XTr

)
⇒
(
B0 (r)
Bx (r)

)
:= Ω1/2

(
W0 (r)
Wx (r)

)
for r ∈ [0, 1]

where Ω1/2
(
Ω1/2

)′
= Ω,

Ω =

 σ2
0

1×1
σ0x
1×d

σx0
d×1

Ωxx
d×d

 ,

and W0(·) and Wx(·) are independent standard Brownian motions.

The weak convergence requirement in Assumption 3.4 is a natural counterpart to conditions
in the discrete-time literature on co-integrating regressions. For example, replacing a sum with
an integral in the discrete time setting of Vogelsang and Wagner (2014) might suggest modeling

Xt = X0 +

∫ t

0
Uxτdτ. (12)

for some stationary process
{
Uxt ∈ Rd×1, t ∈ [0, T ]

}
. Then Assumption 3.4 is equivalent to

an FCLT for the stationary process
{
Ut = (U ′0t, U

′
xt)
′ ∈ Rd+1, t ∈ [0, T ]

}
provided that X0 =

op(T
1/2). However, the form in (12) is not particularly desirable, and Assumption 3.4 is more

flexible. For example, the data generating process in the non-stationary simulation environment
of Section 4 satisfies Assumption 3.4. There, {Xt} follows a two-dimensional Brownian motion
and {U0,t} is a stationary Ornstein Uhlenbeck process that may not be independent of {Xt}.
Alternatively to (12), we may view the continuous-time generalization of the setting in Vogelsang
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and Wagner (2014) and Hwang and Sun (2018) as requiring that, up to terms that are op(T
1/2),

{Xt} possesses some form of stationary increments that may be correlated with U0t such that
Assumption 3.4 holds. Viewing continuous time I(1) processes as nonstationary processes with
stationary increments is adopted, for example, in Comte (1999).

In our asymptotic development, it is convenient to use the Cholesky form of Ω1/2 so that

B (·) =

(
B0(·)
Bx(·)

)
=

(
σ0·xW0(·) + σ0xΩ

−1/2
xx Wx(·)

Ω
1/2
xx Wx(·)

)
, (13)

where σ2
0·x = σ2

0 − σ0xΩ−1
xxσx0 and Ω

1/2
xx is a symmetric matrix square root of Ωxx such that

Ω
1/2
xx Ω

1/2
xx = Ωxx.

For j = 1, . . . ,K, define

ηj =

∫ 1

0
φj(r)Bx(r)dr, ξj =

∫ 1

0
φj(r)dBx(r),

ν̃j =

∫ 1

0
φj(r)dW0(r), νj =

∫ 1

0
φj(r)dB0(r) = σ0·xν̃j + ξ′jθ0,

for θ0 = Ω−1
xxσx0 and

η = (η1, . . . , ηK)′ ∈ RK×d, ξ = (ξ1, . . . , ξK)′ ∈ RK×d, ζ = (η, ξ) ∈ RK×2d,

ν̃ = (ν̃1, . . . , ν̃K)′ ∈ RK×1, ν = (ν1, . . . , νK)′ ∈ RK×1.

Then ν = ξθ0 + σ0·xν̃.
Next, we make an assumption similar to Assumption 3.3.

Assumption 3.5 With probability one, ζ ′ζ is of full rank 2d.

Let ∆̃xi = (xi − xi−1) /δ. Augmenting the discrete-time model by ∆̃xi, we obtain

yi = α0 + x′iβ0 + ∆̃x′iθ0 + u0·xi,

where u0·x,i = u0i−∆̃x′iθ0. Using the transformed variables {Wy
j ,Wα

j ,Wx
j ,W∆̃x

j ,Wu0·x
j }Kj=1 defined

similarly as in (7), we have

Wy
j = Wα

j α0 + Wx
jβ0 + W∆̃x

j θ0 + Wu0·x
j

where, for example, Wα
j = n−1/2

∑n
i=1 φj (i/n) and Wu0·x

j = n−1/2
∑n

i=1 φj (i/n)u0·x,i = Wu0
j −

W∆̃x
j θ0. Our test of H0 : Rβ0 = r is based on estimating the above transformed and augmented

regression by OLS. We call the estimator the TAOLS estimator. We outline the steps below:

1. Create the transformed variables {Wy
j ,Wx

j ,W∆̃x
j }Kj=1 and stack them to form the data

matrices Wy, Wx, and W∆̃x. For example, W∆̃x = (W∆̃x
1 , . . . ,W∆̃x

K )′ ∈ RK×d.

2. Regress Wy on Wx and W∆̃x by OLS. Do not include an intercept. Denote the coefficients
associated with Wx by β̂TAOLS , the coefficients associated with W∆̃x by θ̂TAOLS , and let
Ŵu0·x be the residual vector from this regression. Combining the matrices Wx and W∆̃x

into W̃ = (Wx,W∆̃x), we can write these objects as

γ̂
2d×1

≡
(
β̂TAOLS
θ̂TAOLS

)
= (W̃′W̃)−1W̃′Wy, Ŵu0·x := Wy − W̃γ̂. (14)
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3. Calculate the test statistic

FTAOLS =
1

σ̂2
0·x

(Rβ̂TAOLS − r)′
[
R
(
Wx′M∆̃xW

x
)−1

R′
]−1

(Rβ̂TAOLS − r)/p, (15)

where M∆̃x = IK −W∆̃x(W∆̃x′W∆̃x)−1W∆̃x′ and

σ̂2
0·x =

1

K

K∑
j=1

ˆ(W
u0·x
j )2 =

1

K
(Ŵu0·x)′Ŵu0·x . (16)

These three steps are identical to the procedure in Hwang and Sun (2018) except that ∆̃xi,
instead of ∆xi, is used in the augmented regression. Such a modification serves to facilitate
theoretical developments only. Since ∆̃xi is proportional to ∆xi, the modification has no effect
on the test statistic FTAOLS . For practical implementation, we can follow exactly the same
procedure as in Hwang and Sun (2018), utilizing ∆xi in place of ∆̃xi. There is no need to know
the value of δ or its unit. We note that the test statistic in (15) is constructed in the same way
as in the discrete-time setting.

Theorem 3.2 Let Assumptions 2.2, 3.1, 3.4, and 3.5 hold. Denote γ0 = (β′0, θ
′
0)′ and

ΥT =

T Id 0
d×d

0
d×d

Id

 .

(a) As T →∞ for a fixed K,[
(nT )−1/2 Wx, δ1/2W∆̃x, δ1/2Wu0

]
⇒ (η, ξ, ν).

(b) As T →∞ for a fixed K,

ΥT (γ̂ − γ0)⇒ σ0·x
(
ζ ′ζ
)−1

ζ ′ν̃.

In particular,

T (β̂TAOLS − β0)⇒ σ0·x
(
η′Mξη

)−1
η′Mξ ν̃

d
= MN

[
0, σ2

0·x
(
η′Mξη

)−1
]
,

where Mξ = IK − ξ(ξ′ξ)−1ξ′ and “MN” stands for “mixed normal”.

(c) If K ≥ 2d+ 1, then, as T →∞ for a fixed K,

FTAOLS ⇒
K

K − 2d
· Fp,K−2d,

where Fp,K−2d is the F distribution with degrees of freedom p and K − 2d.

Theorem 3.2 shows that the testing procedure of Hwang and Sun (2018) adapts to the
continuous-time setting without any modification: the asymptotic F test is, therefore, robust
to the sampling frequency of the data. From an applied point of view, we do not have to be
concerned about whether we have high-frequency data with a shrinking sampling interval (i.e.,
δ → 0) or discrete-time data with a fixed sampling interval (e.g., δ = 1). This gives us much
practical convenience.

To implement the above F test, we follow the procedure below, which is similar to that in the
exogenous case.
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1. Estimate the model yi = α0 + x′iβ0 + u0i by OLS to obtain the residual

û0i = yi − α̂OLS − x′iβ̂OLS .

2. On the basis of {û0i} , use the series method to estimate the long run variance of {u0i} ,
computing the AR(1) data-driven K̂D using the formula in (5).

3. Let K̂∗ = max(K̂D, 2d + 3) and use K̂∗ to construct the transformed and augmented
regression.

4. Compute the F test statistic in the TAOLS regression. Perform the asymptotic F test using
K̂∗

K̂∗−2d
· Fp,K̂∗−2d as the reference distribution.

4 Simulation Evidence

In this section we conduct simulations to evaluate the finite-sample size and power properties of
the proposed F tests. For the stationary setting, we consider the model

Yt = β01 +Xtβ02 + Ut, 0 ≤ t ≤ T,

with β01 = 0 and β02 = 1. We test H0 : (β01, β02)′ = (0, 1)′ versus H1 : (β01, β02)′ 6= (0, 1)′. (Xt)
and (Ut) are chosen as stationary Ornstein-Uhlenbeck (OU) processes described by

dXt = −κxXtdt+ σxdVt and dUt = −κuUtdt+ σudWt,

where (κx, σx) = (0.1020, 1.5514), (κu, σu) = (6.9011, 2.7566), and (Vt) and (Wt) are independent
standard Brownian motions. The parameter values of the OU processes are obtained from Chang
et al. (2018), who estimate (κx, σx) by fitting an OU process to 3-month T-bill rates from 1971
to 2016 and estimate (κu, σu) by fitting an OU process to the residuals obtained by regressing
3-month eurodollar rates on these T-bill rates. As an alternative to an OU explanatory variable
process, we also consider the process Xt = Ct − µc where

dCt = κx (µc − Ct) dt+ σx
√
CtdVt,

and Vt is again standard Brownian motion. This corresponds to Feller’s Square Root (SR) process.
In this setting, we keep the OU process {Ut} as described above (again with {Wt} independent
of Vt) and (µc, κx, σx) = (4.8196, 0.1794, 0.9367) where these parameters come from fitting the
SR process to 3-month T-bill rates from 1971 to 2016.

In the nonstationary setting, we consider the model

Yt = α0 +X1,tβ01 +X2,tβ02 + U0t, 0 ≤ t ≤ T,

with α0 = 0, β01 = 1, β02 = 1. We test H0 : (β01, β02)′ = (1, 1)′ versus H1 : (β01, β02)′ 6= (1, 1)′.
In this setting, we model (Xj,t), j ∈ {1, 2}, as Brownian motions and (U0t) as a stationary OU
process. In particular, for j ∈ {1, 2}, we have

dXj,t = σjdZj,t and dU0t = −κuU0tdt+ σudZ3,t,
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where σ1 = σ2 = 0.0998, (κu, σu) = (1.5717, 0.0097), and

Z1,t

Z2,t

Z3,t

 =


1 0 0

ϕ
√

1− ϕ2 0

ϕ ϕ−ϕ2√
1−ϕ2

√
1−

(
ϕ2 + (ϕ−ϕ2)2

1−ϕ2

)

W1,t

W2,t

W3,t

 .

Here W1,t, W2,t, and W3,t are independent standard Brownian motions and ϕ ≥ 0. In this
setup, each (Zj,t), j ∈ {1, 2, 3}, is a standard Brownian motion and Corr(Zk,t, Z`,t) = ϕ when
k 6= `. The parameter values here also originate from Chang et al. (2018); (σ1) comes from
fitting a Brownian motion process to log US/UK exchange rate spot price data from 1979 to
2017. (κu, σu) are estimated by fitting an OU process to the residuals from regressing log US/UK
exchange rate forward prices on the log US/UK exchange rate spot prices. We consider both
ϕ = 0 (the exogeneous case) and ϕ = 0.75 (the endogenous case).

In addition to the baseline values of κx and κu, we also multiply κx and κu by 4 and 1/4,
allowing for variation in the mean reversion parameters of the stationary elements of the simu-
lations. As the mean reversion parameter gets closer to zero, the stationary OU (or SR) process
becomes more persistent and in the OU case behaves more like a nonstationary Brownian motion.

In both the stationary and nonstationary settings, we consider T = 30 and T = 60. The
stochastic processes are generated using the transition densities of Brownian motion, OU, and
SR processes except in the nonstationary case when ϕ = 0.75. In this case, transition densities
are used to generate all processes except that Ut is constructed via Euler’s method once Z3,t is
generated. Discrete samples are collected at various frequencies between δ = 1/252 and δ = 1/4.
In each scenario, we replicate the simulation 5000 times.

To implement the testing procedures described in the earlier sections, we utilize the sine
and cosine basis functions given in (2) and choose K via the data driven procedures described
in Sections 2 and 3. In our figures described below, results corresponding to these tests are
denoted “Series F”, and there are different figures for the stationary and nonstationary settings.
As K increases, in both the stationary and nonstationary settings, the limiting distributions
of the test statistics approach the scaled chi-squared distribution χ2

p/p. The scaled chi-squared
approximation can also be obtained by letting K → ∞, δ → 0 and T → ∞ jointly7. Utilizing
the critical values from this distribution with our test statistics, we denote the resulting results
by “Series Chi2.” In the figures for the nonstationary setting, “Series F” and “Series Chi2” are
reserved for the procedure outlined in Subsection 3.2 that can accommodate endogeneity. These
labels are replaced by “S-EXO F” and “S-EXO Chi2” , respectively, for the procedures designed
where {Ut} is assumed exogenous described in Subsection 3.1.

To compare the F tests with some existing tests, we carry out the kernel-based tests of Chang
et al. (2018). For their tests, we employ the quadratic spectral (QS) kernel and utilize Andrews
(1991)’s bandwidth selection procedure, which is among the best performers in the simulations
in Chang et al. (2018). In our figures, the results corresponding to the QS kernel are denoted
“Kernel Chi2.” To include the fixed-b version of their tests, we note that the test statistics of
Chang et al. (2018) in the stationary setting and the nonstationary setting with exogeneous
regressors, without any change in form, have fixed-b counterparts in the discrete-time settings of
Kiefer and Vogelsang (2005) and Jin et al. (2006), respectively. Utilizing arguments similar to
what we present here and in Vogelsang and Wagner (2014), it is not difficult to ascertain that
the limiting distributions identified in these papers are also applicable in our simulation set up

7The scaling factor of 1/p arises because the test statistics are scaled by p.
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with exogenous regressors. In the cointegrating regression with endogenous regressors, the fixed-b
asymptotics of Jin et al. (2006) is not applicable to the test statistic of Chang et al. (2018), as
it does not account for endogeneity. To use the fixed-b asymptotics of Vogelsang and Wagner
(2014), which accounts for endogeneity, we have to run a different set of regressions and alter the
test statistic. This would require further theoretical development and is not considered in our
simulations. The tests utilizing the fixed-b approximations of Kiefer and Vogelsang (2005) and
Jin et al. (2006) for the test statistics in Chang et al. (2018) are denoted by “Kernel fixed-b” in
our figures.

4.1 Size study

Figures 2 – 5 display the empirical sizes (i.e., the null rejection probabilities) in the different
simulation scenarios.

Figures 2 and 3 show that in the stationary setting, the series-based F test exhibits less size
distortion than all chi-squared tests under consideration. The improvement in the size accuracy
of the F test over the chi-square tests is more visible when the underlying OU or SR processes
have smaller mean reversion parameters κx and κu and thus become more persistent. This is
consistent with the literature on HAR inference in the discrete-time setting. See, for example,
Sun (2013), Sun (2014b), Sun et al. (2008), and Kiefer and Vogelsang (2005) for simulation evi-
dence and theoretical developments. The F test performs similarly to the fixed-b version of the
test in Chang et al. (2018) adapted from Kiefer and Vogelsang (2005). This is expected, because
both types of tests utilize nonparametric LRV estimators, and both are based on fixed-smoothing
asymptotic approximations. The advantage of the series-based F test is that it is more convenient
to use, as critical values are readily available from statistical tables and standard programming
environments. There is no need to simulate a nonstandard fixed-smoothing asymptotic distribu-
tion, an unavoidable and formidable task if we use a kernel-based fixed-smoothing test. We note
in passing that all chi-squared tests have similar performances, regardless of whether series-based
or kernel-based LRV estimators are used. This provides further simulation evidence that the type
of LRV estimators used does not matter much. What matters more is the reference distribution
used in a testing procedure.

In the nonstationary setting with exogenous regressors, the performance of the F tests relative
to the fixed-b version of the test in Chang et al. (2018) adapted from Jin et al. (2006) and the
chi-squared tests is qualitatively similar to that in the stationary setting. In particular, the
F tests and the fixed-b test achieve more or less the same size control. However, the fixed-b
tests in this setting aren’t developed fully for the continuous-time setting. The validity of the
fixed-b test relies not only on the exogeneity of the regressors but also crucially on the premise
that the limiting process (X◦) is a Brownian motion process. Similarly, the F-test of Subsection
3.2 designed for potential endogeneity also relies on a Brownian motion limiting process for its
validity. While this does not cause problems in our simulation setting where the premise holds,
the fixed-b asymptotic distribution and that associated with the F-test in Subsection 3.2 are, in
general, functionals of (X◦), which may contain additional nuisance parameters beyond its scale.
A benefit of our approach in Subsection 3.1 is that the conditioning argument in the proof of
Theorem 3.1 bypasses reliance on the distributional form of (X◦). Such a conditioning argument
does not go through if we use a kernel LRV estimator.

In the nonstationary setting with endogenous regressors, to the best of our knowledge, the F
test in Subsection 3.2 appears to be the only asymptotically valid test in the literature. Unsurpris-
ingly, it exhibits better size properties than the alternative tests from the pre-existing literature,
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including the fixed-b version of the test in Chang et al. (2018). While the F-test of Subsection 3.1
which assumes the error process {Ut} is exogenous appears to maintain competitiveness against
the F test of Subsection 3.2, this unfortunately is an artifact of the particular DGPs in our sim-
ulation setting. In this simulation environment, it can be shown that the limiting distribution
of the exogeneity-based test is a noncentral F distribution that depends on nuisance parameters.
The F distribution used happens to be relatively close to the finite sample distribution but will
result in a poor approximation in general. We note that the presence of the endogeneity bias can
lead to large size distortion, especially when the chi-square approximation is used. For example,
when ϕ = 0.75, T = 30, and κu is 1/4 of the baseline value, the null rejection probability of the
5% chi-squared test of Chang et al. (2018) can be as high as 60%.

Figures 2 – 5 further show that the size properties of all tests are not sensitive to the sampling
interval δ, and all tests become more accurate when T increases. This is consistent with our
theoretical results that the effective sample size is T and is unrelated to δ. Intuitively, for a
given time span T, as δ decreases, the number of sampled observations n increases, but at the
same time, the sampled observations become more persistent. These two effects offset each other,
leading to an effective sample size of T.

4.2 Power study

Figures 6 – 8 investigate the empirical power properties of the test procedures in finite samples;
the power is size-adjusted. To evaluate the power of the tests, we use the baseline designs. When
generating the data, each of the parameters being tested is multiplied by 1 − ψ for a range of
ψ ∈ [0, 1]. To keep the visualization simple, we focus only on the frequencies δ = 1/252 and
δ = 1/4. As there are only two different test statistics, ours and that in Chang et al. (2018) and
the power is size-adjusted, there are only two different sized-adjusted power curves. The reported
figures only display the comparison for the series-based approach in Sections 2 and 3 and the
kernel-based approach in Chang et al. (2018). In the figures, the higher frequency δ = 1/252 is
denoted “h”, and the lower frequency δ = 1/4 is denoted “l.”

Figures 6 and 7 show that, in the stationary setting, all tests have almost indistinguishable
power curves. In the nonstationary setting with exogenous regressors, the series-based tests
have competitive power relative to the kernel-based tests, although when T = 30 the former
are slightly less powerful most noticeably in the procedure that allows for endogeneity. This
could be explained by the MSE-optimality of the QS kernel among the second-order positive-
definite kernels. In the nonstationary setting with endogenous regressors, the comparison is not
as meaningful, as the tests of Chang et al. (2018) have significant size distortion. Nevertheless,
the series-based tests still have competitive power, especially when T = 60. When T = 30, the
series-based tests are somewhat less powerful.

Figures 6 and 8 also show that the power properties of all tests are not sensitive to the choice
of δ. In each scenario, the power curves for δ = 1/252 and δ = 1/4 are virtually identical. This
echoes the finding that the size properties are not sensitive to δ. In each scenario, all tests
become more powerful when T is larger, reflecting that it is the time span T, not the number of
observations n, that is the effective sample size.

5 Empirical Application

Here we examine the series-based F test in an application to interest rate data that are available
at multiple sampling frequencies. In particular, we revisit an application appearing in Chang
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et al. (2018), which focuses on characterizing the co-movements of interest rates among securities
with different times to maturity. As discussed in Chang et al. (2018), the ability of the U.S.
Federal Reserve System (FED) to influence long-term interest rates via the short-term Federal
Funds Rate (FFR) was challenged during the Global Financial Crisis (GFC) of 2008 when the
zero lower bound for the FFR was reached. This partially motivated the FED’s adoption of
non-conventional policies such as quantitative easing. To investigate the dynamics between short
and long rates within their linear hypothesis testing methodology, Chang et al. (2018) test for
“parallel shifts” among securities with varying maturities. Here, “parallel shifts” refers to changes
in the yields of securities with different maturities tending to be of the same size and direction.
Chang et al. (2018) regress 10-year U.S. Treasury bond (T-bond) yields on 3-month Treasury bill
(T-bill) yields and consider data before and after the GFC separately. The existence of “parallel
shifts” would imply a slope coefficient near one, and Chang et al. (2018) find that, prior to the
GFC, there is no strong evidence against the null hypothesis of a unit slope coefficient. This is
consistent with the view that the FED was able to successfully influence long rates via short rate
policies prior to the GFC.

This regression setting, detailed below, is useful for evaluating our testing procedure because
it is simple and allows for the consideration of several hypothesis tests of varying theoretical
credibility. For example, the additional null hypothesis that the intercept coefficient is zero
states that, on average, the yield spread is zero. If the yields of U.S. government securities of
different duration differ based on compensation for interest rate risks and the expectations of
future interest rates, we may expect to reject this hypothesis. Additionally, as the setting has
been analyzed in Chang et al. (2018), we may contrast our methodology and results with theirs.
We find that the conclusions stemming from the F tests are largely in line with those from the
testing procedures of Chang et al. (2018). We observe, however, that the F test for one hypothesis
test of interest produces a less ambiguous result at the daily sampling frequency and also bypasses
a subjective modeling decision that can inflate one of the test statistics analyzed in Chang et al.
(2018).

The continuous-time regression of interest is given by

Yt = α+Xtβ + Ut,

where Yt is the yield (in percent) of 10-year T-bonds at time t and Xt is the yield of 3-month T-
bills. We observe {Xiδ}ni=1 and {Yiδ}ni=1 at three fixed sampling interval lengths, δ, corresponding
to daily, monthly, and quarterly frequencies. The number of observations n varies with δ as each
sample is derived from a fixed time span, but we do not complicate the notation here. Recall,
additionally, that the F test would be valid if applied to discrete time series under the standard
discrete-time assumptions. The two yield series of different maturities are available from the
Federal Reserve Economic Data (FRED) of the St. Louis FED. As in Chang et al. (2018), we
consider three null hypotheses independently of one another and we consider two different sample
windows. All hypothesis tests are performed twice, once utilizing data from each sample window
separately. The null hypotheses are Hα

0 : α = 0, Hβ
0 : β = 1, and Hα,β

0 : α = 0 and β = 1 jointly.
The first sample window includes data from 1962 to 2007 while the second contains observations
from 2008 to 2019.

The two interest rate series plotted at the various sampling frequencies are presented in
Figure 1. In Table 1, we present the test statistics associated with the various null hypotheses
for each sample window. Test statistics titled “Series-F” refer to the F test described in Section
2 designed around the stationary regression setting. Those under the header “Kernel-χ2” are
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performed utilizing the kernel-based χ2 test of Chang et al. (2018) which they refer to as the
H-test. The χ2 tests (i.e., H-tests) in Figure 1 are calculated using the Andrews (1991) bandwidth
procedure which is “high-frequency-compatible” as discussed in Chang et al. (2018) and utilizing
the QS kernel. Rejection of a null hypothesis at the 5% level is indicated by “∗” and rejection
at the 1% level is indicated by “∗∗”. P-values are included in brackets for testing the null of
“parallel shifts” Hβ

0 .

We can see from Table 1 that the results of the F tests are stable across all sampling frequency
choices. This is consistent with the theory developed earlier in the paper, namely that the tests
are valid for high-frequency observations over a long span and have direct counterparts that are
valid and familiar in the discrete-time setting when the sampling frequency is lower. For the F
tests, the statistical conclusions reached for each null hypothesis and sampling window remain
the same for each sampling frequency: all null hypotheses are rejected at the 1% level except that
we are unable to reject the “parallel shifts” hypothesis Hβ

0 at even the 5% significance level in any
frequency using data prior to the GFC. This evidence is consistent with the view that the FED
was able to control long rates via short-term policy rates prior to the GFC. Additionally, there
is evidence against the hypothesis of a zero average yield spread (Hα

0 , which is included in Hα,β
0 )

before and after the GFC of 2008. This is consistent with the stylized fact that the yield curve
tends to be upward sloping. The results and conclusions of the F tests are thus in agreement
with the findings of Chang et al. (2018) where χ2-based tests with “high-frequency compatible”
bandwidths are utilized. Note that their findings are mirrored by those for the kernel-based
χ2 tests reported in Figure 1 which are computed according to their methodology. In contrast,
Chang et al. (2018) show that in this regression setting, tests that are not robust to the sampling

frequency or utilize a bandwidth choice that is not “high-frequency compatible” will reject Hβ
0

at the daily frequency.

Lastly, we discuss some differences between the F test and the kernel-based χ2 test of Chang
et al. (2018) in this application that may be indicative of the benefits of the F test. First, note
that for the kernel-based χ2 test using pre-GFC observations at the daily sampling frequency,
the test statistic surpasses the critical value for a 5% test but not that of a 1% test. Chang et al.
(2018) choose to view this as failing to reject the null hypothesis, requiring that the test statistic
surpass the 1% critical value to take a more conservative stance. To this end, they note that the
nominal size may understate the empirical rejection probability as observed in their (and our)
simulations. On the other hand, the F test statistic here fails to surpass the critical value for a 5%
test, corresponding to a p-value of 0.0787. As seen in our simulations and discussed in relation to
the fixed-smoothing literature in Subsection 4.1, the F test can result in tests with more accurate
size. This example may be a case where some ambiguity regarding test significance is avoided.

Another point of interest for the F test in this example is as follows. Some of the test statistics
considered in Chang et al. (2018) may require/allow the researcher to determine a continuous-
time modeling parameter that could influence the test statistic’s magnitude. Such a test statistic
utilizes a (kernel-based) LRV estimator that, when utilizing the discrete-time counterpart LRV
estimator, requires a “high-frequency compatible” bandwidth parameter bn in order to produce a
valid test. One choice they consider is their continuous-time rule of thumb (CRT). This is given
by

bn = cna/δ1−a,
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Figure 1: 10-year Treasury bond and 3-month Treasury bill yields at the sampling frequencies
analyzed. A line at the beginning of 2008 demarcates the two sample windows.
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Sample: 1962-2007

Sampling Freq. Daily Monthly Quarterly
Test Stat. Series-F Kernel-χ2 Series-F Kernel-χ2 Series-F Kernel-χ2

Hα
0 18.73∗∗ 22.10∗∗ 18.77∗∗ 20.74∗∗ 19.96∗∗ 19.93∗∗

Hβ
0 3.69 4.30∗ 3.42 3.67 3.07 3.15

[0.0787] [0.03801∗] [0.0874] [0.0553] [0.1000] [0.0760]

Hα,β
0 17.75∗∗ 38.26∗∗ 18.97∗∗ 38.95∗∗ 21.26∗∗ 41.43∗∗

Sample: 2008-2019

Sampling Freq. Daily Monthly Quarterly
Test Stat. Series-F Kernel-χ2 Series-F Kernel-χ2 Series-F Kernel-χ2

Hα
0 87.19∗∗ 106.62∗∗ 87.68∗∗ 107.52∗∗ 129.07∗∗ 124.77∗∗

Hβ
0 81.44∗∗ 32.29∗∗ 81.59∗∗ 27.48∗∗ 37.94∗∗ 20.38∗∗

Hα,β
0 46.25∗∗ 113.73∗∗ 48.11∗∗ 116.19∗∗ 65.96∗∗ 127.73∗∗

Table 1: Test statistics computed with observations collected at different sampling frequencies.
Brackets contain p-values. Rejection of a null hypothesis at the 5% level is indicated by “∗” and
rejection at the 1% level is indicated by “∗∗”. p-values are included in brackets for testing the
null of “parallel shifts” Hβ

0 based on the pre-GFC observations.

where c > 0 and 0 < a < 1. In contrast to discrete-time rules of thumb for kernel-based LRV
bandwidth parameters, there is now a division by δ1−a. However, δ depends on the unit of time
that T is measured in, which may be subjective. Suppose we set c = 2.3019 and a = 1/5 and wish

to test Hβ
0 with daily observations between 1962 and 2007. These choices for a and c correspond

to a guideline in Andrews (1991) for the QS kernel in a discrete-time setting when considering an
AR(1) process with coefficient 0.5. (The observation below also holds with similar test statistics
and p-values if we choose the alternative discrete-time rule of thumb choices c = 3/4 and a = 1/3,
suggested in the undergraduate textbook Stock and Watson (2019); see equation (16.17) there).
If we assume T is measured in years, i.e., T = 46 years between 1962 and 2007, then δ = 1/252
for about 252 trading days in a year. Alternatively, suppose we think that T should be measured
in months so that T = 552 months. Then we may set δ = 1/21 for roughly 21 trading days in a
month. As we see below, this distinction changes the test conclusion.

Table 2 contains the test statistics computed from daily observations between 1962 and 2007
for the null hypothesis Hβ

0 . In addition to the test statistics considered earlier, it includes
two alternative calculations for the kernel-based χ2 test statistic, denoted by “Kernel-χ2-CRT,
δ = 1/252” and “Kernel-χ2-CRT, δ = 1/21.” These correspond to the choice of δ described
above. The corresponding test statistics from Table 1 are also included. The kernel-based χ2

test of Chang et al. (2018) reported earlier in Table 1 that is calculated utilizing the procedure of
Andrews (1991) is now denoted “Kernel-χ2-AD.” Note that, as the F test statistic, this version
of the test statistic does not feature a direct reliance on a user inputted δ. From Table 2, we see
that changing δ from 1/252 to 1/21 increases the CRT-based test statistic to surpass the critical
value for a 1% test. If δ is chosen too large, we get a bandwidth that is too small for a continuous-
time process that varies slowly at higher frequency observations. The effect is similar to using a
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Sample: 1962-2007, Daily Frequency

Test Stat. Series-F Kernel-χ2-AD Kernel-χ2-CRT, δ = 1/252 Kernel-χ2-CRT, δ = 1/21

Hβ
0 3.69 4.30∗ 4.46∗ 10.03∗∗

[0.0787] [0.0380] [0.0347] [0.0015∗∗]

Table 2: Test statistics computed with observations collected at a daily sampling frequency during
1962-2007 for the “parallel shifts” hypothesis Hβ

0 . In addition to the test statistics from earlier,
additional kernel-based χ2 test statistics of Chang et al. (2018) are presented when computed
with the CRT using δ = 1/252 and δ = 1/21. Rejection of a null hypothesis at the 5% level
is indicated by “∗” and rejection at the 1% level is indicated by “∗∗”. p-values are included in
brackets.

“high-frequency incompatible” bandwidth, a setting explored in Chang et al. (2018) that leads
to spurious tests with divergent test statistics. This example suggests that tests which do not
rely on a user choosing δ, such as the F test or the test of Chang et al. (2018) that utilizes the
Andrews (1991) bandwidth procedure, may be more robust against debatable modeling decisions
that could impact statistical significance. In addition to potential size-accuracy benefits, the F
test adds to the available tests with this feature, and only one such test is discussed in Chang
et al. (2018).

6 Robustness to Additive Measurement Noise

Here we consider the implications of including additional noises in the regression error. We
show that, under reasonable assumptions, the additive noises do not affect much of the theory
underlying the testing procedures of previous sections. This is done to address two potential
concerns. First, there may be covariates relevant to (Yt) that are not continuous-time in nature
and must be absorbed by the error term in the regression model. Depending on the observation
frequency, it may be reasonable to expect this sort of error in some or all discretized observations.
Second, this noise could alternatively be interpreted as microstructure noise. Particularly when
working with financial data at high frequencies, market frictions and transcription errors may
add noise to asset return data beyond the theoretical objects of interest such as returns satisfying
a no-arbitrage condition. Among several possible references, see Hansen and Lunde (2006) and
Barndorff-Nielsen et al. (2008) for discussions addressing microstructure noise in an alternative
setting where the objective is realized volatility measurement in asset returns.

One way to model the noise is to assume that at each observation time iδ, i = 1, . . . , n, the
true Yiδ is not observed. Instead, we observe Yiδ up to an additive noise term εi. That is, we
now observe yi = Yiδ + εi. The additive noises {εi}ni=1 are different from {ui}ni=1 in that there is
no continuous-time process that governs the sequence {εi}ni=1 no matter how small δ is. At each
time we measure the value of Yt, there is an additive noise attached to its true value. For easy
reference, we will call this additive noise the measurement noise, although the noise may come
from other sources.

For i = 1, . . . , n and n = T/δ, the observed discretized model in the stationary case is now

yi = x′iβ0 + ui + εi. (17)
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In the nonstationary setting, the observed discretized model is

yi = α0 + x′iβ0 + u0i + εi. (18)

We will work with the following assumption.

Assumption 6.1 (i) The process {εi}ni=1 is independent of the continuous-time processes (Xt)
and (Ut). (ii) As a discrete-time process in nature, {εi}ni=1 is stationary and strongly mixing with

mixing coefficients {ϕ`}∞`=1 that satisfy
∑∞

`=1 ϕ
1/2
` <∞. (iii) Eε1 = 0 and Eε21 <∞.

Assumption 6.1 allows for a weakly dependent noise process where the dependence is tied to
the distance in terms of sampling frequency units (i.e., i − k) rather than the distance in terms
of the units of T . In the limiting experiment of this setting, as δ becomes small, noises at nearby
sampling points exhibit dependence, but as the number of observations between any fixed time
points t1, t2 ∈ [0, T ] gets large, the dependence between εt1 and εt2 becomes small. This form
of dependence is consistent with microstructure noise assumptions in the literature on ex post
variation measurement with high-frequency data; see, for example, Barndorff-Nielsen et al. (2008)
and Aı̈t-Sahalia et al. (2008).

Lemma 6.1 Let Assumptions 2.2 and 6.1 hold. Assume that (Xt) is stationary and ΓX(τ) =
E(XtX

′
t−τ ), τ ≥ 0, is bounded. Then, as δ → 0 and T →∞,

n∑
i=1

φj

(
i

n

)
xiεi = Op(

√
n) for j = 0, 1, . . . ,K.

Whereas high serial correlation in {xiui}ni=1 for small δ leads to
∑n

i=1 φj
(
i
n

)
xiui = Op(

√
n/δ),

the tie between the noise dependence structure and the sampling frequency yields that
∑n

i=1 φj
(
i
n

)
xiεi

is an order of magnitude smaller (in probability) than
∑n

i=1 φj
(
i
n

)
xiui despite the persistence

in {xi}ni=1. Consequently, Lemma 2.2 and Theorem 2.1 from Section 2 continue to hold. More
specifically, when the observed {yi}ni=1 take the form in (17), we have

√
T
(
β̂D − β0

)
=

(
1

δΛ (n, δ)2

n∑
i=1

xix
′
i

)−1
1

Λ (n, δ)

n∑
i=1

xi(ui + εi).

In the series LRV estimator of Section 2, a key object now becomes

1

Λ (n, δ)

n∑
i=1

φj

(
i

n

)
xiûi =

1

Λ (n, δ)

n∑
i=1

φj

(
i

n

)
xi

[
ui + εi − x′i

(
β̂D − β

)]
.

It follows from Lemma 6.1 that

1

Λ (n, δ)

n∑
i=1

φj

(
i

n

)
xiεi = Op(

√
δ) = op(1).

Therefore, under the conditions of Lemma 6.1, the objects in Lemma 2.2 differ now only by
additive op(1) terms, and both objects there still jointly converge in distribution to the same
limits. It follows that under the conditions of Lemma 6.1, Theorem 2.1 remains valid, and this
is summarized in the following corollary to Lemma 6.1.
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Corollary 6.1 Consider the stationary setting and let the conditions of Lemma 6.1 hold. Theo-
rem 2.1 remains valid when the observed discretized model contains additive measurement noises
as in (17).

In the nonstationary setting, it is easy to see that arguments similar to those in the proof of
Lemma 6.1 yield the following lemma.

Lemma 6.2 Let Assumptions 2.2 and 6.1 hold. Then for j = 0, 1, . . . ,K,

n∑
i=1

φj

(
i

n

)
εi = Op

(√
n
)
.

As
√
δ

{
1√
n

n∑
i=1

φj

(
i

n

)
εi

}
=
√
δOp(1) = op(1),

the effect of the additive measurement noise is negligible. Lemma 3.1 remains valid provided that
Assumption 6.1 holds. Consequently, Theorem 3.1 still holds. Similarly, Theorem 3.2 remains
valid.

Corollary 6.2 Consider the nonstationary setting and let Assumption 6.1 hold. Then Theorems
3.1 and 3.2 remain valid when the observed discretized model contains additive measurement
noises as in (18).

Corollaries 6.1 and 6.2 show that key components of our asymptotic theory are robust to the
presence of additive measurement noises in {yi}ni=1. The estimation and inference procedures
of Sections 2 and 3 can be carried out without any modification. There are some caveats,
however. First, in finite samples, the magnitude of

∑n
i=1 φj (i/n)xiεi in the stationary setting,

or
∑n

i=1 φj (i/n) εi in the nonstationary setting, depends on the size of the measurement noise.
Only if var(εi) is not too large relative to the long run variance

∫∞
−∞ ΓXU (τ) dτ of {XtUt} or∫∞

−∞ ΓU (τ) dτ of {Ut} can we safely ignore the terms due to the additive measurement noise.
Second, when var(εi) is much larger than the variance of xiui or ui at high frequencies, this can
impact the procedure for selecting a high-frequency-compatible smoothing parameter K in our F
tests or the high-frequency-compatible bandwidth parameters in alternative testing methodologies
such as those in Chang et al. (2018).

In the supplementary online appendix, we revisit the simulation study in Section 4, now
including additive measurement noise. We design the simulations so that a measure of the
proportion of variation in the total regression error term ui + εi stemming from εi is 35%. This
measure is defined in the online appendix similarly to a noise-to-signal ratio analyzed in Aı̈t-
Sahalia and Yu (2009). There, it is reported that a typical noise-to-signal ratio for high-frequency
stock returns with microstructure noise is 36.6%. In our simulations reported in the online
appendix, the size and power properties of our tests in the presence of additive noise remain
very similar to those reported in Section 4, with only a very slight increase in the null rejection
probabilities when δ is very small. Additionally, the F test maintains its improved size properties
in the various simulation environments. We note here, however, that it is possible to increase
the variance of the additive noises enough that the size properties of all tests considered are
negatively impacted. What threshold of the additive noise variance is too large? How to choose
a high-frequency-compatible smoothing parameter when the additive noise may be large? We
leave these questions to future research.
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7 Conclusion

This paper provides a simple approach to linear hypothesis testing that is robust to potential
continuity of the underlying data generating processes. The test procedures demonstrate reduced
size distortion in finite samples relative to existing approaches and can accommodate endogeneity
in cointegration-type regressions. From a practical point of view, the tests have several desir-
able characteristics. Their direct correspondence to analogous discrete-time procedures clears the
practitioner from modeling choices that could influence test results. Additionally, the limiting dis-
tributions do not need any complicated simulations to derive critical values as some discrete-time
fixed-b approaches require; the tests rely only on standard F-distributions. In the cointegrating
regression setting with exogeneous regressors, more accurate tests are delivered while maintain-
ing greater generality with regard to the limiting behavior of the regressor process. Lastly, our
asymptotic F theory remains valid in the presence of additive measurement noises in the regressor
error.
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Figure 2: Empirical sizes in the stationary simulation setting when Xt follows an OU process
and (κu, κx) are multiplied by factors of 4, 1 and 1/4.

36



0.00

0.05

0.10

0.15

0.20

0.25

0.00 0.05 0.10 0.15 0.20 0.25

δ

E
m

p
ir

ic
a
l 
S

iz
e

(κu, κx) × 4; T =   30

0.00

0.05

0.10

0.15

0.20

0.25

0.00 0.05 0.10 0.15 0.20 0.25

δ

E
m

p
ir

ic
a
l 
S

iz
e

Series F

Series Chi2

Kernel Chi2

Kernel fixed−b

(κu, κx) × 4; T =   60

0.00

0.05

0.10

0.15

0.20

0.25

0.00 0.05 0.10 0.15 0.20 0.25

δ

E
m

p
ir

ic
a
l 
S

iz
e

(κu, κx) × 1; T =   30

0.00

0.05

0.10

0.15

0.20

0.25

0.00 0.05 0.10 0.15 0.20 0.25

δ

E
m

p
ir

ic
a
l 
S

iz
e

Series F

Series Chi2

Kernel Chi2

Kernel fixed−b

(κu, κx) × 1; T =   60

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.00 0.05 0.10 0.15 0.20 0.25

δ

E
m

p
ir

ic
a
l 
S

iz
e

(κu, κx) × 0.25; T =   30

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.00 0.05 0.10 0.15 0.20 0.25

δ

E
m

p
ir

ic
a
l 
S

iz
e

Series F

Series Chi2

Kernel Chi2

Kernel fixed−b

(κu, κx) × 0.25; T =   60

Figure 3: Empirical sizes in the stationary simulation setting when Xt follows an SR process and
(κu, κx) are multiplied by factors of 4, 1, and 1/4.
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Figure 4: Empirical sizes in the nonstationary simulation setting when κu is multiplied by factors
of 4 and 1.
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Figure 5: Empirical sizes in the nonstationary simulation setting when κu is multiplied by 1/4.
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Figure 6: Size-adjusted powers in the stationary setting when Xt is distributed according to the
OU process described in Section 4
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Figure 7: Size-adjusted powers in the stationary setting when Xt is distributed according to the
SR process described in Section 4
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Figure 8: Size-adjusted powers in the nonstationary setting. In the upper row, the explanatory
variables are exogenous (ϕ = 0). In the lower row the explanatory variables are endogenous
(ϕ = 0.75).
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8 Appendix of Proofs

Proof of Lemma 2.1. We start by writing

1

T

∫ T

0
φj

(
t

T

)
Ztdt =

1

T

n∑
i=1

∫ iδ

(i−1)δ
φj

(
t

T

)
Ztdt, (19)

and

1

n

n∑
i=1

φj

(
i

n

)
zi =

1

T

n∑
i=1

δφj

(
i− 1

n

)
Z(i−1)δ +

δ

T
[φj (1)ZT − φj (0)Z0]

=
1

T

n∑
i=1

δφj

(
i− 1

n

)
Z(i−1)δ +Op

(
δ

T
sup
t∈[0,T ]

‖Zt‖

)
.

So,

1

T

∫ T

0
φj

(
t

T

)
Ztdt−

1

n

n∑
i=1

φj

(
i

n

)
zi

=
1

T

n∑
i=1

∫ iδ

(i−1)δ

[
φj

(
t

T

)
Zt − φ

(
i− 1

n

)
Z(i−1)δ

]
dt+Op

(
δ

T
sup
t∈[0,T ]

‖Zt‖

)

=
1

T

n∑
i=1

∫ iδ

(i−1)δ
φj

(
t

T

)[
Zt − Z(i−1)δ

]
dt

+
1

T

n∑
i=1

∫ iδ

(i−1)δ

[
φj

(
t

T

)
− φj

(
i− 1

n

)]
Z(i−1)δdt+Op

(
δ

T
sup
t∈[0,T ]

‖Zt‖

)
.

Using ∥∥Zt − Z(i−1)δ

∥∥ ≤ ∥∥∥Zct − Zc(i−1)δ

∥∥∥+
∑

(i−1)δ<τ≤t

‖∆Zτ‖

and Assumptions 2.1 and 2.2, we have

1

T

n∑
i=1

∫ iδ

(i−1)δ

∥∥∥∥φj ( t

T

)[
Zt − Z(i−1)δ

]∥∥∥∥ dt
≤ 1

T

n∑
i=1

∫ iδ

(i−1)δ

∣∣∣∣φj ( t

T

)∣∣∣∣ sup
‖τ̃−τ‖≤δ

‖Zcτ̃ − Zcτ‖ dt+
1

T

n∑
i=1

∫ iδ

(i−1)δ

∣∣∣∣φj ( t

T

)∣∣∣∣ ∑
(i−1)δ<τ≤iδ

‖∆Zτ‖ dt

≤ 1

T

n∑
i=1

∫ iδ

(i−1)δ
sup

‖τ̃−τ‖≤δ
‖Zcτ̃ − Zcτ‖ dt+

δ

T

T∑
τ=0

‖∆Zτ‖ max
r∈[0,1]

|φj (r)|

= Op (∆δ,T (Z)) +Op (δ) .
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In addition, for some i∗ ∈ (i− 1, i],

1

T

n∑
i=1

∫ iδ

(i−1)δ

∥∥∥∥[φj ( t

T

)
− φj

(
i− 1

n

)]
Z(i−1)δ

∥∥∥∥ dt
≤ 1

T

n∑
i=1

∫ iδ

(i−1)δ

1

n

∣∣∣∣φ̇j ( t∗n
)∣∣∣∣ ∥∥Z(i−1)δ

∥∥ dt
≤ max

r∈[0,1]

∣∣∣φ̇j (r)
∣∣∣ · δ
T

sup
t∈[0,T ]

‖Zt‖ = Op

(
δ

T
sup
t∈[0,T ]

‖Zt‖

)
,

where φ̇j (·) is the first order derivative of φj (·) . Therefore,

1

n

n∑
i=1

φj

(
i

n

)
zi −

1

T

∫ T

0
φj

(
t

T

)
Ztdt = Op

(
∆δ,T (Z) +

δ

T
sup
t∈[0,T ]

‖Zt‖+ δ

)
= Op (eδ,T (Z)) .

Proof of Lemma 2.2. We have shown that
√
T (β̂D − β) =

√
T (β̂C − β) + op (1) . But

√
T (β̂C − β) =

[
1

T

∫ T

0
XtX

′
tdt

]−1 [
1√
T

∫ T

0
XtUtdt

]
⇒ S−1Ω1/2Wd (1) ,

using Assumptions 2.3 and 2.4. Hence
√
T (β̂D − β)⇒ S−1Ω1/2Wd (1) .

For the second part of the lemma, we use the first part of the lemma and Lemma 2.1 to obtain

1

Λ (n, δ)

n∑
i=1

φj

(
i

n

)
xiûi

=
1

Λ (n, δ)

n∑
i=1

φj

(
i

n

)
xi

[
ui − x′i

(
β̂D − β

)]
=

1

Λ (n, δ)

n∑
i=1

φj

(
i

n

)
xiui +

1

Λ (n, δ)

n∑
i=1

φj

(
i

n

)
xix
′
i ·Op

(
1√
T

)
.

=
1

Λ (n, δ)

n∑
i=1

φj

(
i

n

)
xiui +

1

n

n∑
i=1

φj

(
i

n

)
xix
′
i ·Op (1)

=
1√
T

∫ T

0
φj

(
t

T

)
XtUtdt+ op (1)

where we have used Λ (n, δ)
√
T = n, Assumption 2.3, and Assumption 2.5(i). Under Assumption

2.4, we then have

1

Λ (n, δ)

n∑
i=1

φj

(
i

n

)
xiûi ⇒ Ω1/2

∫ 1

0
φj (r) dWd(r)

for each j = 1, 2, . . . ,K. The joint convergence over j = 1, 2, . . . ,K holds by the Cramér–Wold
theorem.
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Proof of Theorem 2.2. Part (a): For notational simplicity, we assume that Ω1/2 is symmetric.
Note that

var

vec

Ω1/2 1

K

K∑
j=1

[∫ 1

0
φj (r) dWd (r)

]⊗2

Ω1/2


=

1

K2
var

(Ω1/2 ⊗ Ω1/2
)

vec

 K∑
j=1

[∫ 1

0
φj (r) dWd (r)

]⊗2


=
1

K2

(
Ω1/2 ⊗ Ω1/2

)
var

vec

 K∑
j=1

[∫ 1

0
φj (r) dWd (r)

]⊗2
(Ω1/2 ⊗ Ω1/2

)
=

1

K

(
Ω1/2 ⊗ Ω1/2

)
(Id2 + Kdd)

(
Ω1/2 ⊗ Ω1/2

)
=

1

K

(
Ω1/2 ⊗ Ω1/2

)(
Ω1/2 ⊗ Ω1/2

)
(Id2 + Kdd)

=
1

K
(Ω⊗ Ω) (Id2 + Kdd) .

Hence, under Assumption 2.6(i), we have

var
[
vec(Ω̂∗)

]
=

1

K
(Ω⊗ Ω) (Id2 + Kdd) (1 + o (1)) .

Part (b): Before computing the bias when T → ∞ and K → ∞, we first show that
δ
∑∞

k=−∞ |kδ|
m ‖ΓXU (kδ)‖ <∞ for m = 0, 1, 2. Using Assumption 2.6(ii), we have

δ
∑
|k|<n

|kδ|m ‖ΓXU (kδ)‖ = δ
∑
|kδ|≤C2

|kδ|m ‖ΓXU (kδ)‖+ δ
∑

C2<|kδ|<n

|kδ|m ‖ΓXU (kδ)‖

≤ δ
∑
|kδ|≤C2

Cm2 C1 + C1δ
∑

C2<|kδ|<n

|kδ|m (kδ)−(3+ι)

= 2Cm2 C1δ ·
C2

δ
+ C1δ

m−2−ε
∑

C2<|kδ|<n

|k|−(3−m+ι)

≤ 2Cm+1
2 C1 + C1δ

m−2−ε ·O
(
C2

δ

)1−(3−m+ι)

= 2Cm+1
2 C1 + C1 ·O

(
C

1−(3−m+ι)
2

)
= O (1) .

So we have δ
∑∞

k=−∞ |kδ|
m ‖ΓXU (kδ)‖ <∞. By the same argument, Assumption 2.6(ii) implies

that
∫∞
−∞ |τ |

m ‖ΓXU (τ)‖ <∞ for m = 0, 1, 2.

Next, we compute the bias of Ω̂∗ when T → ∞ and K → ∞. Denote E
[
(xiui) (x`u`)

′] =
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Γxu (i− `). Note that

E(Ω̂∗)

=
1

K

K∑
j=1

[
1

Λ (n, δ)2

n∑
i=1

n∑
`=1

φj

(
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n

)
φj

(
`

n

)
E (xiui) (x`u`)

′

]

=
1

K

K∑
j=1

1

Λ (n, δ)2

n∑
i=1

n∑
`=1

φj

(
i

n

)
φj

(
`

n

)
Γxu (i− `)

=
1

K

K∑
j=1

1

Λ (n, δ)2

n∑
i=1

i−1∑
k=i−n

φj

(
i

n

)
φj

(
i− k
n

)
Γxu (k)

=
1

K

K∑
j=1

n

Λ (n, δ)2

n−1∑
k=−n+1

{
1

n

n∑
i=1

1

{
1

n
≤ i− k

n
≤ 1

}
φj

(
i

n

)
φj

(
i− k
n

)}
Γxu (k)

=
1

K

K∑
j=1

δ
n−1∑

k=−n+1

ωj,n

(
k

n

)
Γxu (k)

where

ωj,n

(
k

n

)
=

1

n

n∑
i=1

1

{
1

n
≤ i− k

n
≤ 1

}
φj

(
i

n

)
φj

(
i− k
n

)
.

The bias is then equal to

Bn = EΩ̂∗ − Ω

=
1

K

K∑
j=1

δ

n−1∑
k=−n+1

[
ωj,n

(
k

n

)
− 1

]
Γxu (k) + δ

n−1∑
k=−n+1

Γxu (k)− Ω

:= B1n + B2n.

For B2n, we use Assumption 2.6(iii) with m = 0 to obtain:

B2n = δ
n−1∑

k=−n+1

Γxu (k)− Ω = δ
n−1∑

k=−n+1

ΓXU (kδ)− Ω

= δ

n−1∑
k=−n+1

ΓXU (kδ)−
∫ T

−T
ΓXU (τ) dτ +O

(
1

T 2

)
= O (δ) +O

(
1

T 2

)
,

where the O
(
T−2

)
term holds because under Assumption 2.6(ii),∥∥∥∥∫ ∞

−∞
ΓXU (τ) dτ −

∫ T

−T
ΓXU (τ) dτ

∥∥∥∥
=

∥∥∥∥∫ ∞
−∞

1 {|τ | ≥ T}ΓXU (τ) dτ

∥∥∥∥ ≤ 1

T 2

∫ ∞
−∞

τ21 {|τ | ≥ T} ‖ΓXU (τ)‖ dτ

≤ 1

T 2

∫ ∞
−∞

τ2 ‖ΓXU (τ)‖ dτ = O

(
1
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.
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For B1n, we have, using supr∈[0,1]

∣∣∣φ̇j (r)
∣∣∣ ≤ jC in Assumption 2.6(iv):

ωj,n (ς) =
1

n

n∑
i=1

1

{
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n
≤ i

n
− ς ≤ 1

}
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(
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φj (r)φj (r − ς) dr +O

(
j

n

)
:= ωj (ς) +O

(
j

n

)
,

uniformly over j = 1, 2, . . . ,K and ς ∈ [−1, 1] where

ωj (ς) =

∫ min(1+ς,1)

max(0,ς)
φj (r)φj (r − ς) dr.

Note that ωj (0) = 1. Then we have, as n→∞,
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j=1

δ

n−1∑
k=−n+1

[
ωj

(
k

n

)
− 1

]
Γxu (k) + δ

n−1∑
k=−n+1

 1

K

K∑
j=1

O

(
j

n

)Γxu (k)

=
1

K

K∑
j=1

δ

n−1∑
k=−n+1

[
ωj

(
k

n

)
− 1

]
Γxu (k) +O

(
K

n

)
δ

n−1∑
k=−n+1

‖ΓXU (kδ)‖

=
1

K

K∑
j=1

δ
n−1∑

k=−n+1

[
ωj

(
k

n

)
− 1

]
Γxu (k) +O

(
K

n

)

:= B̃1n +O

(
K

n

)
,

where

B̃1n =
1

K

K∑
j=1

δ

n−1∑
k=−n+1

[
ωj

(
k

n

)
− 1

]
Γxu (k) .

Now,

B̃1n =
1

K

K∑
j=1

δ
n−1∑

k=−n+1

[
ωj

(
k

n

)
− 1

]
Γxu (k)

= δ
∑

n/ logn<|k|≤n−1

 1

K

K∑
j=1

ωj

(
k

n

)
− 1

Γxu (k) + δ
∑

|k|≤n/ logn

 1

K

K∑
j=1

ωj

(
k

n

)
− 1

Γxu (k)

= B̃11,n + B̃12,n
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where

B̃11,n = δ
∑

n/ logn<|k|≤n−1

 1

K

K∑
j=1

ωj

(
k

n

)
− 1

Γxu (k)

≤ δ
∑

n/ logn<|k|≤n−1

∣∣∣∣∣∣ 1

K

K∑
j=1

ωj

(
k

n

)
− 1

∣∣∣∣∣∣
(

k

n/ log n

)2

‖ΓXU (kδ)‖

= C

(
log n

n

)2 1

δ2

[
δ

∞∑
k=−∞

(kδ)2 ‖ΓXU (kδ)‖

]
= O

(
(log n)2

T 2

)

and

B̃12,n =
1

K

K∑
j=1

δ
∑

|k|≤n/ logn

[
ωj

(
k

n

)
− 1

]
Γxu (k)

=
1

K

K∑
j=1

δ
∑

|k|≤n/ logn

[
ωj

(
k

n

)
− 1

]
ΓXU (kδ)

=
1

K

K∑
j=1

δ
∑

|k|≤n/ logn

[
ω̇j (0)

k

n
+

1

2
ω̈j

(
k̃

n

)(
k

n

)2
]

ΓXU (kδ)

=
1

nδ

 1

K

K∑
j=1

ω̇j (0)

 δ ∑
|k|≤n/ logn

kδΓXU (kδ)

+

(
1

nδ

)2 1

K

K∑
j=1

δ
∑

|k|≤n/ logn

[
1

2
ω̈j

(
k̃

n

)]
(kδ)2 ΓXU (kδ)

=
K2

T 2

1

K3

K∑
j=1

1

2
ω̈j (0) δ

∑
|k|≤n/ logn

(kδ)2 ΓXU (kδ) (1 + o (1)) +O

 1

nδ

1

K

K∑
j=1

ω̇j (0)


=
K2

T 2

 1

K3

K∑
j=1

1

2
ω̈j (0)

(∫ ∞
−∞

τ2ΓXU (τ) dτ

)
(1 + o (1)) +O

 1

nδ

1

K

K∑
j=1

ω̇j (0)

 .

Given that ωj (ς) =
∫ 1
ς φj (r)φj (r − ς) dr, we have

ω̇j (ς) = −φj (ς)φj (0)−
∫ 1

ς
φj (r) φ̇j (r − ς) dr,

ω̈j (ς) = −φ̇j (ς)φj (0) + φj (ς) φ̇j (0) +

∫ 1

ς
φj (r) φ̈j (r − ς) dr =

∫ 1

ς
φj (r) φ̈j (r − ς) dr.

So

ω̇j (0) = −φ2
j (0)− 1

2

[
φ2
j (1)− φ2

j (0)
]

= −1

2

[
φ2
j (1) + φ2

j (0)
]
,

ω̈j (0) =

∫ 1

0
φj (r) φ̈j (r) dr.
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Therefore, under Assumptions 2.6(iv) and (v), we have

B̃12,n =
K2

T 2

1

K3

K∑
j=1

1

2
ω̈j (0) δ

∑
|k|≤n/ logn

(kδ)2 ΓXU (kδ)

=
K2

T 2

 1

K3

K∑
j=1

1

2

∫ 1

0
φj (r) φ̈j (r) dr

∫ ∞
−∞

τ2ΓXU (τ) dτ (1 + o (1)) +O

(
1

T

)

= −K
2

T 2
cφ

∫ ∞
−∞

τ2ΓXU (τ) dτ (1 + o (1)) +O

(
1

T

)
as K →∞ and T →∞.

Combining the above results yields the asymptotic bias formula for the case where K → ∞
and T →∞.

Part (c): As in the proof of Part (b), we have

Bn = E(Ω̂∗)− Ω := B̃12,n +O

(
K

n
+ δ +

1

T 2
+

(log n)2

T 2

)
,

where

B̃12,n =
1

K

K∑
j=1

δ
∑

|k|≤n/ logn

[
ωj

(
k

n

)
− 1

]
ΓXU (kδ) .

For the rest of the proof, we use arguments different from that for Part (b). Using ωj (0) = 1

and ω̇j (0) = −1
2

[
φ2
j (1) + φ2

j (0)
]
, we have

B̃12,n =
1

K

K∑
j=1

δ
∑

|k|≤n/ logn

[
ωj

(
k

n

)
− 1

]
ΓXU (kδ)

=
1

K

K∑
j=1

1

n
δ

∑
|k|≤n/ logn

[
ω̇j

(
k̃

n

)
k

]
ΓXU (kδ)

=
1

K

K∑
j=1

1

n

1

δ
ω̇j (0)

[
δ
∞∑

k=−∞
[kδ] ΓXU (kδ) + o (1)

]

= −1

2

1

T

 1

K

K∑
j=1

[
φ2
j (1) + φ2

j (0)
]∫ ∞

−∞
τΓXU (τ) dτ (1 + o (1)) .

Therefore,

Bn = −1

2

1

T

 1

K

K∑
j=1

[
φ2
j (1) + φ2

j (0)
]∫ ∞

−∞
τΓXU (τ) dτ

+ o

(
1

T

)
+O

(
1

n
+ δ +

(log n)2

T 2

)
.
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Proof of Lemma 3.1. Part (a). We first consider n−1/2WxΛ−1
T . Let gn : Dd[0, 1]→ Dd[0, 1] be

defined by

gn(f)(t) =

n∑
i=1

f

(
i

n

)
1

{
t ∈
[
i− 1

n
,
i

n

)}
+ f(1)1{t = 1}.

If the functions fn ∈ Dd[0, 1] are such that fn → f for a continuous function f , then the continuity
of φj in Assumption 2.2 implies that φj (·) fn (·)→ φj (·) f (·) in Dd[0, 1] and φj (·) f (·) is a contin-
uous function. It follows from basic properties of the Skorokhod topology that gn(φjfn)→ φjf .
Using the weak convergence Λ−1

T XTr ⇒ X◦ (r) in Assumption 3.2 and the extended contin-
uous mapping theorem (c.f. Theorem 1.11.1 of van der Vaart and Wellner (1996)), we have
gn(φj(t)

(
Λ−1
T XTt

)
)⇒ φj(t)X

◦(t), t ∈ [0, 1]. Combining this with the continuous mapping theo-
rem, we have

1√
n

Λ−1
T Wx

j =
1

n

n∑
i=1

φj

(
i

n

)
Λ−1
T xi =

1

n

n∑
i=1

φj

(
i

n

)
Λ−1
T Xiδ

=
1

n

n∑
i=1

φj

(
i

n

)
Λ−1
T X i

n
T =

∫ 1

0
gn
(
φj(t)Λ

−1
T XTt

)
dt

⇒
∫ 1

0
φj (r)X◦(r)dr := ηj .

This holds jointly for j = 1, . . . ,K and therefore,

1√
n
WxΛ−1

T ⇒ η. (20)

Next, under Assumption 3.1, Lemma 2.1 holds with Zt = U0t. Hence,

√
δWu0

j =

√
δ√
n

n∑
i=1

φj

(
i

n

)
u0i =

1

Λ (n, δ)

n∑
i=1

φj

(
i

n

)
u0i

=
1√
T

∫ T

0
φj

(
t

T

)
U0tdt+ op (1) .

Let St = T−1/2
∫ t

0 U0rdr for t ∈ (0, T ] and S0 = 0. Using the continuous mapping theorem and
integration by parts, we obtain, jointly for j = 1, . . . ,K,

√
δWu0

j =

∫ T

0
φj

(
t

T

)
dSt + op (1)

=

∫ 1

0
φj (r) dSTr + op (1) = φj (1)ST − φj (0)S0 −

∫ 1

0
STrφ̇j (r) dr + op (1)

⇒ σ0φj (1)W0(1)− σ0φj (0)W0(0)− σ0

∫ 1

0
φ̇j (r)W0(r)dr

= σ0

∫ 1

0
φj (r) dW0(r),

where the weak convergence follows from Assumption 3.2. Therefore,

√
δWu0 ⇒ ν. (21)
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The joint convergence of Λ−1
T XTt and T−1/2

∫ Tt
0 U0rdr in Assumption 3.2 yields that (20) and

(21) hold jointly, i.e., (n−1/2WxΛ−1
T ,
√
δWu0)⇒ (η, ν).

Part (b). We write
Wy = Wxβ0 + Wu0 + α0Wα (22)

where

Wα = (Wα
1 , . . . ,Wα

K)′ with Wα
j =

1√
n

n∑
i=1

φj

(
i

n

)
.

Note that for each j = 1, . . . ,K we have

1√
n

n∑
i=1

φj

(
i

n

)
=
√
n

1

n

n∑
i=1

φj

(
i

n

)
=
√
n

(∫ 1

0
φj (r) dr +O

(
1

n

))
= O

(
1√
n

)
= o (1) .

Therefore,
Wy = Wxβ0 + Wu0 + op (1) . (23)

It then follows that

β̂TOLS =
(
Wx′Wx

)−1 (Wx′ [Wxβ0 + Wu0 + op (1)]
)
, (24)

and so
β̂TOLS − β0 =

(
Wx′Wx

)−1 (Wx′ [Wu0 + op (1)]
)
.

By Part (a) and Assumption 3.3, we then have

√
TΛT

[
β̂TOLS − β0

]
= n1/2ΛT

√
δ
[
β̂TOLS − β0

]
=

[(
n1/2ΛT

)−1 (
Wx′Wx

) (
n1/2ΛT

)−1
]−1 (

n1/2ΛT

)−1
Wx′Wu0

√
δ (1 + op (1))

⇒
(
η′η
)−1 (

η′ν
)
.

Proof of Theorem 3.1. By definition, Ŵu = Wy −Wxβ̂TOLS . Using (23) and (24), we then
have

Ŵu = Wxβ0 + Wu0 + op (1)−Wx
(
Wx′Wx

)−1 Wx′ [Wxβ0 + Wu0 + op (1)]

=
[
IK −Wx

(
Wx′Wx

)−1 Wx′
]

(Wu0 + op (1)) . (25)

Hence, by Lemma 3.1(i),

δ · σ̂2
0 =

1

K

√
δ (Wu0 + op (1))′

[
IK −Wx

(
Wx′Wx

)−1 Wx′
]√

δ (Wu0 + op (1))

⇒ 1

K
ν ′Mην.
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where Mη = IK − η(η′η)−1η′. Using Lemma 3.1(ii), we have, under H0,

√
T Λ̃T (Rβ̂TOLS − r) = (Λ̃TRΛ−1

T )
√
TΛT (β̂TOLS − β0)⇒ R◦

(
η′η
)−1 (

η′ν
)

and

nΛ̃−1
T

[
R
(
Wx′Wx

)−1
R′
]−1

Λ̃−1
T

= nΛ̃−1
T

{
Rn1/2Λ−1

T

[(
WxΛ−1

T n−1/2
)′

WxΛ−1
T n−1/2

]−1 (
Rn1/2Λ−1

T

)′}−1

Λ̃−1
T

=

{
Λ̃TRΛ−1

T

[(
WxΛ−1

T n−1/2
)′

WxΛ−1
T n−1/2

]−1 (
Λ̃TRΛ−1

T

)′}−1

⇒ [R◦
(
η′η
)−1

R′◦]
−1.

Therefore,

FTOLS =
1

σ̂2
0

(Rβ̂TOLS − r)′
[
R
(
Wx′Wx

)−1
R′
]−1

(Rβ̂TOLS − r)/p

=
1

p

1

δσ̂2
0

(Rβ̂TOLS − r)′
√
T Λ̃T

× nΛ̃−1
T

[
R
(
Wx′Wx

)−1
R′
]−1

Λ̃−1
T ×

√
T Λ̃T (Rβ̂TOLS − r)

⇒ K

p

[
R◦(η

′η)−1η′ν
]′ (

R◦ (η′η)−1R′◦

)−1 [
R◦(η

′η)−1η′ν
]

ν ′Mην

=
K

p

Q′
(
R◦ (η′η)−1R′◦

)−1
Q

ν ′Mην/σ2
0

, (26)

where Q = R◦(η
′η)−1η′ν/σ0. Now, conditional on η,

Q′
(
R◦
(
η′η
)−1

R′◦

)−1
Q

d
= χ2

p, and ν ′Mην/σ
2
0
d
= χ2

K−d.

Additionally, conditional on η, Mην and η′ν are independent, as both Mην and η′ν are normal
and the conditional covariance is

cov
(
Mην, η

′ν
)

= Mηη = 0.

Thus, conditional on η, the numerator and the denominator in (26) are independent chi-squared
variates. This implies that

K

p

Q′
(
R◦ (η′η)−1R′◦

)−1
Q

ν ′Mην/σ2
0

=
K

K − d

Q′
(
R◦ (η′η)−1R′◦

)−1
Q/p

ν ′Mην/
[
σ2

0(K − d)
] d

=
K

K − d
Fp,K−d

conditional on η. But the conditional distribution does not depend on the conditioning variable
η, so it is also the unconditional distribution. This proves the second statement of the theorem.
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Proof of Theorem 3.2. Part (a): Setting ΛT =
√
T Id and X◦ (r) = Bx (r) we can proceed

nearly identically to the proof of Lemma 3.1(a) to obtain that[
(nT )−1/2 Wx, δ1/2Wu0

]
⇒ (η, ν).

It remains to show that δ1/2W∆̃x ⇒ ξ jointly with the above convergence. The joint convergence
holds by the Cramér–Wold theorem. It remains to prove the marginal convergence δ1/2W∆̃x ⇒ ξ.
We have

δ1/2W∆̃x
j =

1√
nδ

n∑
i=1

φj

(
i

n

)
[xi − xi−1] =

n∑
i=1

φj

(
i

n

)
T−1/2[xi − xi−1]

=
1

n

n−1∑
i=1

[
φj
(
i
n

)
− φj

(
i+1
n

)]
1/n

T−1/2xi + φj(1)T−1/2xn − φj
(

1

n

)
T−1/2x0

= − 1

n

n−1∑
i=1

φ̇j

(
i

n

)
T−1/2X i

n
T + φj(1)T−1/2XT − φj

(
1

n

)
T−1/2X0

+Op

(
1

n

1

n

n−1∑
i=1

T−1/2
∥∥∥X i

n
T

∥∥∥) . (27)

Using the continuous mapping theorem and Assumption 3.4, we have n−1
∑n−1

i=1 T
−1/2

∥∥∥X i
n
T

∥∥∥⇒∫ 1
0 ‖Bx (r)‖ dr and hence the last term in (27) is of order Op (1/n) = op (1) . Therefore, using

integration by parts,

δ1/2W∆̃x
j

=
1

n

n−1∑
i=1

φ̇j

(
i

n

)
T−1/2X i

n
T + φj(1)T−1/2XT − φj

(
1

n

)
T−1/2X0 + op (1)

⇒ −
∫ 1

0
φ̇j(r)Bx(r)dr + φj(1)Bx(1)− φj(0)Bx(0)

=

∫ 1

0
φj(r)dBx(r) = ξj .

This holds jointly for j = 1, . . . ,K so that δ1/2W∆̃x ⇒ ξ.
Part (b). Following the same argument as in the proof Theorem 3.1, we can ignore the

intercept. To simplify the notation, we assume from the outset that there is no intercept in the
model so that

Wy = Wxβ0 + Wu0 .

Given this, we have

γ̂ −
(
β0

0

)
=

(
Wx′Wx Wx′W∆̃x

W∆̃x′Wx W∆̃x′W∆̃x

)−1(
Wx′Wu0

W∆̃x′Wu0

)
.
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Recall that ΥT = diag (T Id, Id) . Using Part (a) and noting that δ1/2/T = (nT )−1/2, we have

ΥT

[
γ̂ −

(
β0

0

)]

=

[
δ1/2Υ−1

T

(
(Wx)′Wx Wx′W∆̃x

(W∆̃x)′Wx W∆̃x′W∆̃x

)
Υ−1
T δ1/2

]−1

Υ−1
T δ1/2

(
Wx′Wu0δ1/2

W∆̃x′Wu0δ1/2

)

=

(
(nT )−1/2 Wx′Wx (nT )−1/2 (nT )−1/2 Wx′W∆̃xδ1/2

δ1/2W∆̃xWx (nT )−1/2 δ1/2W∆̃x′W∆̃xδ1/2

)−1(
(nT )−1/2 Wx′Wu0δ1/2

δ1/2W∆̃x′Wu0δ1/2

)

⇒
(
η′η η′ξ
ξ′η ξ′ξ

)−1(
η′ν
ξ′ν

)
.

Plugging ν = σ0·xν̃ + ξθ0 into the above limit, we have

ΥT

[
γ̂ −

(
β0

0

)]
⇒
(
η′η η′ξ
ξ′η ξ′ξ

)−1(
η′ξ
ξ′ξ

)
θ0 + σ0·x

(
η′η η′ξ
ξ′η ξ′ξ

)−1(
η′ν̃
ξ′ν̃

)
=

(
0
θ0

)
+ σ0·x

(
ζ ′ζ
)−1

ζ ′ν̃.

That is, ΥT (γ̂ − γ0) ⇒ σ0·x (ζ ′ζ)−1 ζ ′ν̃. The first block of this result is T (β̂TAOLS − β0) ⇒
σ0·x (η′Mξη)−1 η′Mξ ν̃.

Part (c). First, it follows from Part (b) that under H0,

T (Rβ̂TAOLS − r) = RT (β̂TAOLS − β0)⇒ σ0·xR
(
η′Mξη

)−1
η′Mξ ν̃. (28)

Next,

δ(Ŵu0·x)′Ŵu0·x = δWu0′
[
I − W̃(W̃′W̃)−1W̃′

]
Wu0

= (
√
δWu0)′

[
I − (W̃δ1/2Υ−1

T )
[
(W̃δ1/2Υ−1

T )(W̃δ1/2Υ−1
T )′

]−1
(W̃δ1/2Υ−1

T )′
]√

δWu0

⇒ ν ′
(
I − ζ

(
ζ ′ζ
)−1

ζ ′
)
ν = σ2

0·xν̃
′
(
I − ζ

(
ζ ′ζ
)−1

ζ ′
)
ν̃ = σ2

0·xν̃
′Mζ ν̃.

Hence,

δσ̂2
0·x =

1

K
δ(Ŵu0·x)′Ŵu0·x ⇒ 1

K
σ2

0·xν̃
′Mζ ν̃. (29)

Combining (28) and (29), we have

FTAOLS

=
1

σ̂2
0·x

(Rβ̂TAOLS − r)′
[
R
(
Wx′M∆̃xW

x
)−1

R′
]−1

(Rβ̂TAOLS − r)/p

=
1

pδσ̂2
0·x

[RT (β̂TAOLS − β0)]′{R[(nT )−1/2 Wx′M∆̃xW
x (nT )−1/2]−1R′}−1RT (β̂TAOLS − β0)

⇒

[
R (η′Mξη)−1 η′Mξ ν̃

]′ [
R (η′Mξη)−1R′

]−1 [
R (η′Mξη)−1 η′Mξ ν̃

]
/p

ν̃ ′Mζ ν̃/K

=
K

p

Q′
(
R (η′Mξη)−1R′

)−1
Q

ν̃ ′Mζ ν̃
,
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where Q = R(η′Mξη)−1η′Mξ ν̃. Following the argument similar to that in the proof of Theorem
3.1, we can then show that FTAOLS ⇒ K

K−2d · Fp,K−2d.

Proof of Lemma 6.1. First, Assumptions 6.1 (ii) and (iii) imply (see, for example, Lemma 1,
p. 166 of Billingsley (1968))

|cov(εt, εt+`)| ≤ 2ϕ
1/2
` var(ε1).

It is sufficient to show that each coordinate of
∑n

i=1 φj
(
i
n

)
xiεi is Op(

√
n). So, without loss

of generality, we can assume that xi ∈ R. Let C be a constant greater than the absolute value of
ΓX(τ) for all τ ≥ 0. We have

E

[
1√
n

n∑
i=1

φj

(
i

n

)
xiεi

]2

= E

{
1

n

n∑
i=1

[
φj

(
i

n

)]2

ε2ix
2
i +

2

n

n−1∑
`=1

n−∑̀
i=1

εiεi+`xixi+`φj

(
i

n

)
φj

(
i+ `

n

)}

≤ 2 max
r∈[0,1]

φ2
j (r) var(ε1)

(
1

n

n∑
i=1

E
[
X2
iδ

]
+

2

n

n−1∑
`=1

n−∑̀
i=1

ϕ
1/2
`

∣∣E [XiδX(i+`)δ

]∣∣)

= 2 max
r∈[0,1]

φ2
j (r) var(ε1)

(
ΓX(0) +

2

n

n−1∑
`=1

n−∑̀
i=1

ϕ
1/2
` |ΓX(`δ)|

)

≤ 2C max
r∈[0,1]

φ2
j (r) var(ε1)

[
1 + 2

n−1∑
`=1

(
1− `

n

)
ϕ

1/2
`

]

≤ 2C max
r∈[0,1]

φ2
j (r) var(ε1)

(
1 + 2

∞∑
`=1

ϕ
1/2
`

)
<∞.

Then
∑n

i=1 φj
(
i
n

)
xiεi = Op(

√
n) follows by Markov’s inequality.
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Online Supplementary Appendix

In this appendix, we provide sufficient conditions for Assumption 2.6(i) and report the simulation
results for the setting with additive measurement noise.

S.1 Sufficient conditions for Assumption 2.6(i)

For notational simplicity, we consider the case that vi = xiui is a scalar. The vector case requires
only additional matrix algebra. The underlying continuous time process is Vt = XtUt. Let
v∗ = (v∗1, ..., v

∗
n) be a zero-mean Gaussian sequence with the same covariance as v = (v1, ..., vn) .

Then the fourth-order cumulant κv,4 (`1, `2, `3, `4) of {vi}ni=1 is defined to be

κv,4 (`1, `2, `3, `4) = E (v`1v`1+`2v`1+`3v`1+`4)− E
(
v∗`1v

∗
`1+`2v

∗
`1+`3v

∗
`1+`4

)
.

We need the following assumption.

Assumption S.1 (i) vi is fourth-order stationary with covariance Γv (k) = E (vivi−k) and
fourth-order cumulant κv,4 (`1, `2, `3, `4) ; (ii) there is a constant C that does not depend on δ
or n such that

δ3
n−1∑

`1=−n+1

n−1∑
`2=−n+1

n−1∑
`3=−n+1

|κv,4 (0, `1, `2, `3)| < C.

Assumption S.1(ii) is the discrete analogue of its continuous counterpart∫ T

−T

∫ T

−T

∫ T

−T
κV,4 (0, r1, r2, r3) dr1dr2dr3 <∞,

where κV,4 is the fourth order cumulant of {Vt} . The above condition is the same as Assumption
2.3(b) in Lu and Park (2019).

Proposition S.1 Let Assumptions 2.2, 2.6(ii)-(iv), and S.1 hold. If K2 = o(n) and K = o (T ) ,
then as δ → 0 and T →∞,

var(Ω̂∗) = var

 1

K

K∑
j=1

[
1

Λ (n, δ)

n∑
i=1

φj

(
i

n

)
vi

]⊗2
 =

1

K
2Ω2 (1 + o (1))

for both a fixed K and a growing K (i.e., K →∞).

Proof of Proposition S.1. In the following, we write
∑K

j1=1

∑K
j2=1 as

∑
j1,j2

when there is
no possibility of confusion. All results in this proof hold for both a fixed K and large K unless
stated otherwise. We have

var(Ω̂∗) = var

 1

K

K∑
j=1

[
1

Λ (n, δ)

n∑
i=1

φj

(
i

n

)
vi

]2


=
1

K2Λ (n, δ)2

∑
j1,j2

n∑
i1,i2,i3,i4

φj1(
i1
n

)φj1(
i2
n

)φj2(
i3
n

)φj2(
i4
n

)E [(vi1vi2 − Evi1vi2) (vi3vi4 − Evi3vi4)]

=
1

K2Λ (n, δ)2

∑
j1,j2

E

n∑
i1=1

i1−1∑
k1=i1−n

n∑
i2=1

i2−1∑
k2=i2−n

φj1(
i1
n

)φj1(
i1 − k1

n
)φj2(

i2
n

)φj2(
i2 − k2

n
)

× (vi1vi1−k1 − Evi1vi1−k1) (vi2vi2−k2 − Evi2vi2−k2) .
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Let

φj1,j2,j3,j4 (i1, i2, k1, k2) = φj1(
i1
n

)φj2(
i2
n

)φj3(
k1

n
)φj4(

k2

n
), φj1,j2, (i1, i2) = φj1(

i1
n

)φj2(
i2
n

),

µ4 (i1, i2, k1, k2) = E (vi1vi1−k1vi2vi2−k2) , µ∗4 (i1, i2, k1, k2) = E
(
v∗i1v

∗
i1−k1v

∗
i2v
∗
i2−k2

)
.

Recall that v∗ = (v∗1, ..., v
∗
n) is a zero-mean Gaussian sequence with the same covariance as

v = (v1, ..., vn) . We have

µ∗4 (i1, i2, k1, k2)

:= E
(
v∗i1v

∗
i1−k1v

∗
i2v
∗
i2−k2

)
= E

(
v∗i1v

∗
i1−k1

)
E
(
v∗i2v

∗
i2−k2

)
+ E

(
v∗i1v

∗
i2

)
E
(
v∗i1−k1v

∗
i2−k2

)
+ E

(
v∗i1v

∗
i2−k2

)
E
(
v∗i1−k1v

∗
i2

)
= E (vi1vi1−k1)E (vi2vi2−k2) + E (vi1vi2)E (vi1−k1vi2−k2) + E (vi1vi2−k2)E (vi1−k1vi2) .

By definition, µ4 (i1, i2, k1, k2)− µ∗4 (i1, i2, k1, k2) = κv,4 (i1,−k1, i2 − i1, i2 − k2 − i1) . So

var(Ω̂∗)

=
1

K2Λ (n, δ)4

∑
j1,j2

n∑
i1=1

i1−1∑
k=i1−n

n∑
i2=1

i2−1∑
k=i2−n

φj1,j1,j2,j2 (i1, i1 − k1, i2, i2 − k2)κv,4 (i1,−k1, i2 − i1, i2 − k2 − i1)

+
1

K2Λ (n, δ)4

∑
j1,j2

n∑
i1=1

i1−1∑
k=i1−n

n∑
i2=1

i2−1∑
k=i2−n

φj1,j1,j2,j2 (i1, i1 − k1, i2, i2 − k2)E (vi1vi2)E (vi1−k1vi2−k2)

+
1

K2Λ (n, δ)4

∑
j1,j2

n∑
i1=1

i1−1∑
k=i1−n

n∑
i2=1

i2−1∑
k=i2−n

φj1,j1,j2,j2 (i1, i1 − k1, i2, i2 − k2)E (vi1vi2−k2)E (vi1−k1vi2)

:= I1 + I2 + I3.

Using |φj1,j1,j2,j2 (i1, i2, k1, k2)| ≤ C for some constant C, which holds under Assumption 2.2,
we obtain

|I1|

≤ 1

K2Λ (n, δ)4

∑
j1,j2

n∑
i1=1

i1−1∑
k1=i1−n

n∑
i2=1

i2−1∑
k=i2−n

|φj1,j1,j2,j2 (i1, i2, k1, k2)| |κv,4 (i1,−k1, i2 − i1, i2 − k2 − i1)|

≤ C

K2Λ (n, δ)4

∑
j1,j2

n∑
i1=1

i1−1∑
k1=i1−n

n∑
i2=1

i2−1∑
k=i2−n

|κv,4 (i1,−k1, i2 − i1, i2 − k2 − i1)|

=
C

K2Λ (n, δ)4

∑
j1,j2

n∑
i1=1

i1−1∑
k1=i1−n

i1−1∑
`1=i1−n

i1+`1−1∑
k2=i1+`1−n

|κv,4 (0,−k1 − i1, k1 − 2i1, i2 − k2 − 2i1)|

≤ n/δ3

Λ (n, δ)4

C

K2

∑
j1,j2

δ3
n−1∑

`1=−n+1

n−1∑
`2=−n+1

n−1∑
`3=−n+1

|κv,4 (0, `1, `2, `3)|


= O

(
1

T

)
,

where we have used Assumption S.1.
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It remains to consider I2 and I3. Using change of variables repeatedly, we have

I2 =
1

K2Λ (n, δ)4

∑
j1,j2

n∑
i1=1

i1−1∑
k1=i1−n

n∑
i2=1

i2−1∑
k2=i2−n

φj1,j1,j2,j2 (i1, i1 − k1, i2, i2 − k2)

× Γv (i2 − i1) Γv (i2 − i1 − (k2 − k1))

=
1

K2Λ (n, δ)4

∑
j1,j2

n∑
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i1−1∑
k1=i1−n
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k2=i2−n
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φj1,j2 (i1, i1 − i)φj1,j2 (i1 − k1, i1 − i− k2)

× Γv (−i) Γv (−i− (k2 − k1))

=
1

K2Λ (n, δ)4

∑
j1,j2

{
n∑

i1=1

i1−1∑
i=i1−n

φj1,j2 (i1, i1 − i) Γv (i)

}2

=
δ2

K2

∑
j1,j2

{
n−1∑

i=−n+1

[
1

n

n∑
i1=1

1

{
1

n
≤ i1 − i

n
≤ 1

}
φj1

(
i1
n

)
φj2

(
i1 − i
n

)]
Γv (i)

}2

.

For any ς ∈ [0, 1], define

ωj1,j2,n (ς) =
1

n

n∑
i1=1

1

{
1

n
≤ i1
n
− ς ≤ 1

}
φj1

(
i1
n

)
φj2

(
i1
n
− ς
)
.

Then

I2 =
δ2

K2

∑
j1,j2

[
n−1∑

i=−n+1

ωj1,j2,n

(
i

n

)
Γv (i)

]2

.

Under Assumptions 2.2 and 2.6(iv), we have

ωj1,j2,n (ς) =
1

n

n∑
i1=1

1

{
1

n
+ ς ≤ i1

n
≤ 1 + ς

}
φj1

(
i1
n

)
φj2

(
i1
n
− ς
)

=

∫ min(1+ς,1)

max(0,ς)
φj1 (r)φj2 (r − ς) dr +O

(
max (j1, j2)

n

)
:= ωj1,j2 (ς) +O

(
max (j1, j2)

n

)
,

uniformly over j1, j2 ∈ [K] . That is, there exists a constant C not dependent on j1, j2, ς, or
K such that |ωj1,j2,n (ς)− ωj1,j2,n (ς)| ≤ C (j1 + j2) /n. We can choose C large enough so that
supj1,j2,ς |ωj1,j2 (ς)| ≤ C. Hence, for

I21 =
δ2

K2

∑
j1,j2

[
n−1∑

i=−n+1

ωj1,j2

(
i

n

)
Γv (i)
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,

S.3



we have

I2 = I21 +O

 δ2

K2

∑
j1,j2

(
max (j1, j2)

n

) n−1∑
i=−n+1

|Γv (i)|


= I21 +O

 δ

K2

∑
j1,j2

(
max (j1, j2)

n

)
δ

n−1∑
i=−n+1

|Γv (i)|


= I21 +O

(
δ

K2

K3

n

)
= I21 +O

(
1

K

TK2

n2

)
= I21 + o

(
1

K

)
,

as TK2/n2 = o (1) . In the above, we have used δ
∑n−1

i=−n+1 |Γv (i)| < ∞, which holds under
Assumption 2.6(ii).

Note that under Assumptions 2.2 and 2.6(iv), we have

ωj1,j2 (0) = 1 {j1 = j2} ,

ω̇j1,j2 (ς) = −φj1 (ς)φj2 (0)−
∫ 1

ς
φj1 (r) φ̇j2 (r − ς) dr,

where ωj1,j2 (0) = 1 {j1 = j2}, which follows from the orthonormality of {φj} . So supj1,j2,ς |ω̇j1,j2 (ς)| <
Cj2 for some constant C > 0.

Using the above expressions of the derivatives and taking a Taylor expansion, we have, for
i∗ (i) ∈ [0, i],

I21 =
δ2

K2

∑
j1,j2

[
n−1∑

i=−n+1

ωj1,j2

(
i

n

)
Γv (i)

]2

=
δ2

K2

∑
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[
n−1∑
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Γv (i) 1 {j1 = j2}+

n−1∑
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(
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n

)
i

n
Γv (i)

]2

=
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K2

∑
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(
n−1∑
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Γv (i) 1 {j1 = j2}

)2

+
2

K2

∑
j1=j2

(
n−1∑

i=−n+1

Γv (i)

)(
δ

n−1∑
i=−n+1

ω̇j1,j2

(
i∗ (i)

n

)
i

n
δΓv (i)

)

+
δ2

K2

∑
j1,j2

[
n−1∑

i=−n+1

ω̇j1,j2

(
i∗ (i)

n

)
i

n
Γv (i)

]2

=
1

K2
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(
δ
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+O

(
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=
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,
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where we have used δ
∑n−1

i=−n+1 |i| δ |Γv (i)| <∞, which holds under Assumption 2.6(ii).
Now under Assumption 2.6(iii) with m = 0 and Assumption 2.6(ii), we have

δ
n−1∑

i=−n+1

Γv (i) = δ
n−1∑

i=−n+1

ΓV (iδ)→ Ω.

Therefore, we have proved that I2 = 1
KΩ (1 + o (1)) . Similar arguments can be invoked to show

that I3 = 1
KΩ (1 + o (1)) . Details are omitted here. Combining the results for I1, I2, and I3 yields

the desired result: var(Ω̂∗) = 1
K 2Ω2 (1 + o (1)).

S.2 Simulations with Additive Measurement Noise

Here we report the impact of including an additive noise component in the simulation environ-
ments of Section 4. All simulations and the corresponding figures are reproduced. Now, however,
each observation yi also includes an additive noise component εi as described in Section 6. The
choice of data generating process for {εi}ni=1 in the various simulations environments is described
below. This is then followed by Figures S.1–S.7, which correspond to Figures 2–8 in the main
text, respectively.

Each simulation setting (endogenous, exogenous, etc.) considered in Section 4, now with
additive noise as in Section 6, involves a regression model of the form

yi = x′iβ0 + ui + εi, i = 1, . . . , n, (S.1)

where the continuous-time processes {Yt}, {Xt} and {Ut} are sampled at time t = iδ. Note that
in the nonstationary setting ui = Uiδ should be replaced by u0i = U0iδ, a distinction we ignore
here to simplify the notation.

In each simulation setting considered in Section 4, {Ut} follows a stationary Ornstein Uhlen-
beck (OU) process:

dUt = −κuUtdt+ σudWt,

where {Wt} is standard Brownian motion. There are different values of (κu, σu) for different
simulation settings.

In each setting, we let {εi}ni=1 be an i.i.d. sequence of random variables with εi ∼ N(0, a2)
for all i. We choose a differently for the various settings as follows. Let

zi = (ui+1 + εi+1)− (ui + εi) = U(i+1)δ − Uiδ + εi+1 − εi.

zi is then the change in all “error” terms of the regression model (S.1) between successive mea-
surements. It encapsulates evolution in the “error” terms coming from both the continuous-time
process {Ut} and the additive measurement noise {εi}. For a given sampling frequency δ, we
define the error noise to signal ratio (ENSRδ or ENSR) by

ENSRδ =
Var[εi+1 − εi]

Var[zi]
=

2a2

σ2
u
κu

(1− exp(−κuδ)) + 2a2
,

which is independent of i as both {Ut} and {εt} are stationary. We have used basic properties
of the OU process to derive the variance of zi. ENSRδ tells us how much of the variation in the
regression error terms between successive observations comes from the additive noise component
when observations are recorded at time increments of length δ. In each simulation environment,
a is chosen so that the ENSR at the highest sampling frequency (i.e., at the smallest δ) is equal
to 0.35, corresponding to 35% of this variation.

The simulation results mirroring those reported in Section 6 are reported in the figures below.
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Figure S.1: Empirical sizes in the stationary simulation setting with additive noise when Xt

follows an OU process and (κu, κx) are multiplied by factors of 4, 1 and 1/4.
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Figure S.2: Empirical sizes in the stationary simulation setting with additive noise when Xt

follows an SR process and (κu, κx) are multiplied by factors of 4, 1, and 1/4.
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Figure S.3: Empirical sizes in the nonstationary simulation setting with additive noise when κu
is multiplied by factors of 4 and 1.
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Figure S.4: Empirical sizes in the nonstationary simulation setting when κu is multiplied by 1/4.
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Figure S.5: Size-adjusted powers in the stationary setting with additive noise when Xt is dis-
tributed according to the OU process described in Section 4
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Figure S.6: Size-adjusted powers in the stationary setting with additive noise when Xt is dis-
tributed according to the SR process described in Section 4
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Figure S.7: Size-adjusted powers in the nonstationary setting with additive noise. In the upper
row, the explanatory variables are exogenous (ϕ = 0). In the lower row the explanatory variables
are endogenous (ϕ = 0.75).
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