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Syntax

har depvar [varlistl] (varlist2=inst list)[if] [in], kernel(string) [, noconstant level(#) ]

options Description

Model

kernel(string)  set the type of kernels: Bartlett; Parzen; Quadratic Spectral; Orthonormal Series
noconstant suppress constant term

Reporting

level(#) set confidence level; default is level(95)

kernel(string ) is required.
you must tsset your data before using har; see [TS] tsset.
time-series operators are allowed.

Menu

statistics>Time series >Regression with HAR standard errors

Description

The command estimates an IV regression in the presence of heteroskedasticity and autocorrelation.
Inferences are based on the fixed-smoothing asymptotics. The command is based on Sun (2013)
and Sun (2014). Sun (2013) develops heteroskedasticity and autocorrelation robust F and t tests
using an orthonormal series long run variance matrix estimator. The number of orthonormal
bases is selected by minimizing the type II error of the associated test while controlling for its type
I error. Sun (2014) introduces a new and easy-to-use asymptotic F test (and t test) based on kernel
long run variance matrix estimators. The proposed bandwidth selection rule is testing-optimal and
is similar to Sun (2013). The command allows for three types of kernels: the Bartlett, Parzen, and
Quadratic Spectral kernels.

For the sake of simplicity, we refer to the orthonormal series long run variance estimator in Sun
(2013) as the kernel long run variance estimator with kernel “Orthonormal Series.” In total, the
command allows for four types of kernels: Bartlett, Parzen, Quadratic Spectral, and Orthonormal
Series.



Options
— IModel

kernel(string)specifies the type of kernels (Bartlett; Parzen; Quadratic Spetral; Orthonormal Series)

to be used in the estimation of the covariance matrix.

noconstant; see [R] estimation options.

Reporting

level(#); see [R] estimation options.

Remarks and examples

Sun (2013) and Sun (2014) introduce simple and trustworthy inference procedures that are

robust to heteroskedasticity and autocorrelation. The HAR variance estimator in Sun (2013) is

based on an orthonormal series long run variance matrix estimator. The optimal number K of

orthonormal bases is selected by minimizing the type II error of the associated test subject to a

control of its type I error. The tests proposed by Sun (2013) are asymptotic F and t tests in an exact

sense: the asymptotic distributions of the adjusted F statistic and t statistic are standard F and t

distributions. The HAR variance estimator in Sun (2014) is based on the more conventional

kernel long run variance matrix estimators. The F and t tests in Sun (2014) are approximate tests.

The asymptotic distributions of the adjusted F and t statistic are not exactly F and t distributions,

but they can be well approximated by the standard F and t distributions.

Example 1

. webuse idle2
. tsset time
time wvariable: time, 1 to 30

delta: 1 unit

. har usr idle wio,kernel (bartlett)

Regression with HAR standard errors Number of cbs = 30
Kernel: Bartlett F( 2, 17) = 47 .66
Data-driven optimal lag: 2 Prob > F = 0.0000
HAR

usr Coef. 5td.Err. t df = | [95% Conf. Interwvall]

idle -.6670978 .0715786 -9.32 22 0.000 -.8155428 -.5186529

wio -.7792461 .11897 -6.55 13 0.000 -1.036265 -.522227

_cons 66.21805 6.984346 9.48 19 0.000 51.59965 80.83646




Example 2

. har usr idle wio, kernel (bartlett) 1(99) nocons

Regression with HAR standard errors Number of ohs = 30
Kernel: Bartlett F( Z, 3) = 8.88
Data-driven optimal lag: 13 Prob > F = 0.0549
HAR
usr Coef. Std.Err. T df P>|t| [95% Conf. Intervall]
idle .0186886 .0101968 1.83 5 0.126 -.0224265 .0598037
Wio .2759991 .0954198 2.89 5 0.034 -.1087473 .6607454
Example 3
. har usr idle wio,kernel (parzen)
Regression with HAR standard errors Number of obs = 30
Kernel: Parzen F( 2, 4) = 50.87
Data-driven optimal lag: 10 Prob > F = 0.0014
HER
usr Coef. Std.Err. t df P>|t] [85% Conf. Interval]
idle -.6670978 .071317 -9.35 15 0.000 -.8191065 -.5150892
wio -.7792461 .1143269 -6.82 12 0.000 -1.028343 -.5301492
_cons 66.21805 6.922399 9.57 14 0.000 51.37099 81.06512
Example 4
. har usr idle wio, kernel (quadratic)
Regression with HRR standard errors Number of obhs = 30
Kernel: Quadratic Spectral F( 2, 4) = 46.84
Data-driven optimal lag: 5 Prob > F = 0.0017
HER
usr Coef. Std.Err. t df P>|t| [55% Conf. Interwvall
idle -.6670978 .0697384 -9.57 16 0.000 -.8149366 -.5192591
wio -.7792461 .1131035 -6.89 13 0.000 -1.023591 -.5349009
_cons 66.21805 6.834698 9.69 15 0.000 51.65024 80.78587




Example 5

. har usr idle wic, kernel (orthoseries)

Regression with HAR standard errors Number of obs = 30
Kernel: Orthonormal Series F( 2, 3) = 43.17
Data-driven optimal K: 6 Prob > F = 0.0007
HAR

usr Coef. Std.Err. t df P>t [95% Conf. Interval]

idle -.6670978 .0706388 -9.44 14 0.000 -.8186029 -.5155927

wio -.7792461 .1122118 -6.94 12 0.000 -1.023735 -.5347576

_cons 66.21805 6.838414 9.68 14 0.000 51.55111 80.88499

Stored results

The command har uses ivregress command to get the estimated coefficient. So, in addition to the

standard stored results from ivregress, har also stores the following results in e():

the data-driven optimal number k of orthonormal bases

Scalars
e(N) the number of observations
*# e(fdf) the first value of degrees of freedom
*e(sF) the adjusted F statistic
*e(ssdf) the second value of degrees of freedom
*e(kopt)
#e(kF) the adjusted F statistic
#e(ksdf) the second degrees of freedom
#e(lag) the data-driven optimal truncation lag
Macros
e(cmd) har
e(cmdline) command as typed
e(varline) variable line as typed
e(carg) nocons or " " if specified
e(depvar) name of dependent variable
e(title) title in estimation output
e(veetype) title used to label Std. Err.
e(kerneltype) kernel in the estimation
Matrices
e(b) coefficient vector
*e(sstderr)

the adjusted std error for each individual coefficient



*e(sdf) the degrees of freedom of the approximating t distribution

*e(st) the t statistic

*e(sbetahat) the IV coefficient vector

#e(kbetahat) the IV coefficient vector

#e(kstderr) the adjusted std error for each individual coefficient
#e(kdf) the degrees of freedom of the approximating t distribution
#e(kt) the t statistic

Functions

e(sample) marks the estimation sample

note: for the other results in ereturn list see[R] ivregress;
* only for Orthonormal Series;
# only for Bartlett, Parzen, Quadratic Spectral.

Methods and formulas

Consider the regression model:
Y, = X0y +e,t=12,---T
where {e,} is a zero-mean process that may be correlated with the covariate process {X, € R**%}.
There are instruments {Z; € R1*™} such that the moment conditions:
EZ{(Y; — X:60) =0
hold if and only if 8 = 6,. We allow the process {Z;e;} to have the autocorrelation of unknown

forms. The model may be over-identified with the degree of over-identification g =m —d = 0.
Define:

1 1 1
Szx = ;Z{=1 Zi X, Szz = ;Z%;l ZiZy,  Szy = ;ZLlZZ Y.
Then the IV estimator of 8, is
b1y = [SzxWor'Szx1 ™ [SzxWor Szv]
Where WOT = SZZ € Rmxm, gllm WOT = Wo.
We are interested in testing the null Hy: ROy = r against the alternative H;: R6, # r, where

r € RP*1 and R € RP*? is a matrix of full row rank. Nonlinear restrictions can be converted into
linear ones via the delta method. Under some standard high-level conditions, we have

T
~ ~ 1
VTR(®,y — 6o) =VT(RO,y — 1) = \/_TZ ur + 0, (1)
t=1

where Gy = ES;zx € R™4 and u, = R(G\Wy51Gy) 1GiWy Zle, is the transformed moment
~ a =400 7 .
process. It then follows that VTR(8;, — 6,) = N(0,(), where Q = Y/~""F ugu;_; is the long

j=—o00

run variance of {u;}. The Wald statistic for testing H, against H; is

Fy = VT(RByy — 1) () VT (RO, — 1) /p.



Let Gr = Szx, U = R(GiWortGr) G WortZ{, and 197¢ = T~1YT_ @i, . We consider the

estimator Q of the form

T T
0 1 st ~ ~ave\ (1 ~avey/
0= 0n(3.7) @ - @ - aey,
t=1s=1

where Q(r,s) is a weighting function, and h is the smoothing parameter. The above estimator
includes the kernel HAR variance estimators and the orthonormal series HAR variance estimator
as special cases.

For the kernel HAR variance estimator, we let Q,(r,s) = k((r —s)/b) and h =1/b for a
kernel function k(-) with M; = bT being the so-called truncation lag. Define

¢ = [T k()dx, ¢ = [T7 k2 (x)dx.

For the Bartlett kernel, ¢; = 1, ¢, = 2/3; For the Parzen kermel, ¢; = 3/4, ¢, = 0.539285;
For the Quadratic Spectral kernel, ¢c; = 1.25, ¢, = 1. Let

K= max([i],p) -p+1,
where [-] is the ceiling function, and
k=3 (exp(bley + (0 — Dea]) + (1 + bley + (0 — Dez))).
Based on the kernel estimator (2, Sun (2014) shows that
logT

P(Fyy > KF%¢) = a + o(b) + 0((bT)™7) + 0 (W)

where Fj is the 100(1 — @)% quantile of the standard Fy,  distribution.

Sun (2014) obtains the testing-optimal bandwidth b,

1
2qG', s2(¥3~*)|B| lert - _
[ Zq, p.8 (Xp 12]1 | ] Tei B> 0
826G 1252 (Up )2

l [G (") xp“IBI

bopt =

1

a1 _

=,B<0
(t—Da ]T

where 7 > 1 is the permitted tolerance, G’p_gz (2) is the pdf of the noncentral x? distribution with
degrees of freedom p and noncentrality parameter §2. In the above formula, )(,1,‘“ isthe 1 —a
quantile of the y? distribution with p degrees of freedom and §2is chosen to satisfy P{}{ >
Xp %} = 75%, where x~x5(82). In addition,
B =tr(BO)/p,B=—pg ) |jlEu,
j=—co

where ¢ is the order of the kernel used, and p, is the Parzen characteristic exponent of the kernel.
For the Bartlett kernel, ¢ = 1, p, = 1; For the Parzen kernel, q = 2, p, = 6; For the QS kernel,

q=2,p, = 1.421223.



The parameter B is estimated by a standard VAR(1) plug-in procedure. This is what we opt for in
the new command. Plugging the estimate of B into bopt yields bemp- The data-driven choice
of b is then given by Bopt = min(btemp, 0.5). We do not use a b larger than 0.5 in order to
avoid large power loss.

For the OS HAR variance estimator, we let Qp,(r,s) = K~} Zﬁ-(:l ¢;(r)pj(s),and h =K,
where {¢ j (-)};(zlare orthonormal basis functions on L?[0,1] satisfying fol ¢j(r)dr =0 for

j=1,2,---,K. Sun (2013) shows that the usual Wald statistic F;, satisfies
K-p+1 d Xs/D
————Fy =2 F g pi1 =
K v p,K—-p+1 Xlz(_p+1/(K _ p + 1)
where Fy,x_p,,q isthe F distribution with degrees of freedom(p, K —p + 1).

Sun (2013) obtains the testing-optimal K,,; as follows
{[5 G a2 (0p7%)
4G, 52(xp™%)IB|

[ (t—1Da
Gy~ )xp *|B|

1

3,
] T3,B >0
Kopt =

2 —_
]T,BSO

As before, the parameter B is estimated by a standard VAR(1) plug-in procedure. Plugging the
estimate of B into Kopt yields I?temp.We truncate I?temp to be between p +4 and 7. That

is, we take
p+4,  if Kemp <p+4
Etemp = Etemp' if Etemp E(@+4T]
T, if Keemp>T
Imposing the lower bound p + 4 ensures that the variance of the approximating distribution
F, k—p+1 18 finite and that power loss is not very large. Finally, we round Ktempto the greatest

even number less than Ktemp. We take this greatest even number, denoted by I?Optto be our

data-driven and testing-optimal choice for K.
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Also see

[TS]tsset—Declare data to be time-series data.



