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Syntax 

Basic syntax 

hart coeflist 

hart exp=exp[=…] 

 

options        Description                                                   

Model 

kernel(string)   set the type of kernels: Bartlett; Parzen; Quadratic Spectral; Orthonormal Series 

accumulate     test the hypothesis jointly with previously tested hypotheses 

level(#)        set the confidence level; default is level(95) 

                                                                             

kernel(string ) is required. 

time-series operators are allowed. 

 

Syntax 1 tests that the coefficients are 0. 

Syntax 2 tests that the linear expressions are equal. 

 

Menu 

statistics>Postestimation>Tests> Test linear hypotheses after har estimation 

 

Description 

hart performs Wald tests of simple and composite linear hypotheses about the parameters in the 

most recently estimated har model. See Sun (2013) and Sun (2014). 

 

Options 

Model 
kernel(string) specifies the type of kernels (Bartlett; Parzen; Quadratic Spectral; Orthonormal 

Series) to be used in the estimation of the long run covariance matrix. 

accumulate allows a hypothesis to be tested jointly with the previously tested hypotheses. 

Reporting 

level(#); see [R] estimation options. 

 

 



Remarks and examples 

Sun (2013) and Sun (2014) introduce simple and trustworthy inference procedures that are 

robust to heteroskedasticity and autocorrelation. The HAR variance estimator in Sun (2013) is 

based on an orthonormal series long run variance matrix estimator. The optimal number K of 

orthonormal bases is selected by minimizing the type II error of the test subject to a control of the 

type I error. The tests in Sun (2013) are asymptotic F and t tests in an exact sense: the asymptotic 

distribution of the adjusted F statistic and t statistic are standard F and t distributions.  The HAR 

variance estimator in Sun (2014) is based on the more conventional kernel long run variance 

matrix estimators. The F and t tests in Sun (2014) are approximate tests. The asymptotic 

distributions of the adjusted F and t statistic are not exactly F and t distribution, but they can be 

well approximated by the standard F and t distributions.  

 

ΔExample 1: Test for a single coefficient against zero 

We estimate the following regression: 

 

We can test the hypothesis that the coefficient on idle is zero by typing: 

 
The F statistic is 86.86. The degrees of freedom of the approximating F distribution are (1,22).  

The p-value of the test is 0%. We can reject the null hypothesis at the 1% level. 

 

 

ΔExample 2: Testing that a coefficient is equal to a given value 

 

We can test the hypothesis that the coefficient on idle is -0.6670978 by typing:  

 
We find that we cannot reject that hypothesis. 

 

ΔExample 3: Testing the equality of two coefficients 

Now let’s test something a bit more difficult: whether the coefficient on idle is the same as the 



coefficient on wio: 

 

We find that we cannot reject the equality hypothesis at the 5% level, but we can at the 10% level. 

 

ΔExample 4: 

hart allows us to test any linear restrictions.  For example,  

 
However, hart does not deal with nonlinear restrictions directly. If you attempt to test a nonlinear 

hypothesis, you will be told that it is not possible.  

 

This is not a problem specific to the command hart. Stata’s command “test” exhibits the same 

behavior. In fact, hart uses Stata’s command “test” to parse the null hypothesis. To test nonlinear 

restrictions, we have to convert them into linear ones before using hart. 

 

ΔExample 5: Testing joint hypotheses 

We wish to test whether idle and wio, taken as a whole, are significant by testing whether the 

coefficients on idle and wio are simultaneously zero. The command hart allows us to specify 

multiple conditions to be tested, each embedded within parentheses. 

 

hart displays the set of conditions and reports an F statistic of 47.66. hart also reports the degrees 

of freedom of the approximating F distribution, which are 2 and 17. The p-value of the test is 

reported to be around 0. So we can strongly reject the hypothesis of no difference between the two 

coefficients.  

 

□Technical note 

An alternative method to test simultaneous hypotheses is to specify a test for the first constraint 

and then accumulate it with the second constraint: 

 
We first test the hypothesis that the coefficient on idle is zero by typing hart idle=0. We then test 

whether the coefficient on wio is also zero by typing hart wio=0, accumulate. The accumulate 



option tells hart that this is not the start of a new test but a continuation of the previous one. hart 

responds by showing us the two equations and reporting an F statistic of 47.66. The p-value is 

about 0%. 

 

ΔExample 6: Quickly testing coefficients against zero 

It is very common to test whether some coefficents are jointly zero in applied research.  The 

command hart has a more convenient syntax to accommodate this common case: 

 
 

ΔExample 7: Replaying the previous test 

We can review our last test by typing hart without arguments. 

 
 

ΔExample 8: Testing the equality of multiple coefficients 

Let’s test the hypothesis that idle, wio and syslcl have the same coefficient.  

 

 

The syntax idle=wio=syslcl with multiple = operators is just a convenient shorthand for typing 

that the first expression equals the second expression and that the first expression equals the third 

expression. 

 

We can perform the same test by using either of the following 

 

 



Stored results 

hart stores the following results in r()： 

Scalars    

r(firdf)    the first degrees of freedom  

r(secdf)   the second degrees of freedom  

r(lag)     the data-driven optimal truncation lag 

r(kopt)    the data-driven optimal K 

r(F)       the adjusted F statistic 

 

Matrices 

r(thetaiv)  the IV coefficient vector 

 

Methods and formulas 

Consider the regression model: 

𝑌𝑡 = 𝑋𝑡𝜃0 + 𝑒𝑡, 𝑡 = 1,2,⋯ , 𝑇 

where {𝑒𝑡} is a zero-mean process that may be correlated with the covariate process {𝑋𝑡 ∈ 𝑅
1×𝑑}. 

There are instruments {𝑍𝑡 ∈ 𝑅
1×𝑚} such that the moment conditions: 

𝐸𝑍𝑡
′(𝑌𝑡 −𝑋𝑡𝜃0) = 0 

hold if and only if 𝜃 = 𝜃0. We allow the process {𝑍𝑡
′𝑒𝑡} to have the autocorrelation of unknown 

forms. The model may be over-identified with the degree of over-identification 𝑞 = 𝑚 − 𝑑 ≥ 0.   

 

Define: 

𝑆𝑍𝑋 =
1

𝑇
∑ 𝑍𝑡

′𝑇
𝑡=1 𝑋𝑡,  𝑆𝑍𝑍 =

1

𝑇
∑ 𝑍𝑡

′𝑇
𝑡=1 𝑍𝑡,   𝑆𝑍𝑌 =

1

𝑇
∑ 𝑍𝑡

′𝑇
𝑡=1 𝑌𝑡. 

Then the IV estimator of 𝜃0 is 

𝜃𝐼𝑉 = [𝑆𝑍𝑋
′ 𝑊0𝑇

−1𝑆𝑍𝑋]
−1[𝑆𝑍𝑋

′ 𝑊0𝑇
−1𝑆𝑍𝑌] 

where 𝑊0𝑇 = 𝑆𝑍𝑍 ∈ 𝑅
𝑚×𝑚, 𝑃𝑙𝑖𝑚

𝑇→∞
𝑊0𝑇 =𝑊0. 

We are interested in testing the null 𝐻0: 𝑅𝜃0 = 𝑟 against the alternative 𝐻1: 𝑅𝜃0 ≠ 𝑟, where 

𝑟 ∈ 𝑅𝑝×1 and 𝑅 ∈ 𝑅𝑝×𝑑 is a matrix of full row rank. Nonlinear restrictions can be converted into 

linear ones via the delta method. Under some standard high-level conditions, we have 

√𝑇𝑅(𝜃𝐼𝑉 − 𝜃0) = √𝑇(𝑅𝜃𝐼𝑉 − 𝑟) =
1

√𝑇
∑𝑢𝑡 + 𝑜𝑝

𝑇

𝑡=1

(1) 

where 𝐺0 = 𝐸𝑆𝑍𝑋 ∈ 𝑅
𝑚×𝑑 and 𝑢𝑡 = 𝑅(𝐺0

′𝑊0
−1𝐺0)

−1𝐺0
′𝑊0

−1𝑍𝑡
′𝑒𝑡 is the transformed moment 

process. It then follows that √𝑇𝑅(𝜃𝐼𝑉 − 𝜃0)
𝑑
→𝑁(0,Ω), where Ω = ∑ 𝐸

𝑗=+∞
𝑗=−∞ 𝑢𝑡𝑢𝑡−𝑗

′  is the long 

run variance of {𝑢𝑡}. The Wald statistic for testing 𝐻0 against 𝐻1 is  

𝐹𝐼𝑉 = √𝑇(𝑅𝜃𝐼𝑉 − 𝑟)
′
(𝛺̂)

−1
√𝑇(𝑅𝜃𝐼𝑉 − 𝑟)/𝑝. 

 

Let 𝐺𝑇 = 𝑆𝑍𝑋, 𝑢̂𝑡 = 𝑅(𝐺𝑇
′𝑊0𝑇

−1𝐺𝑇)
−1𝐺𝑇

′𝑊0𝑇
−1𝑍𝑡

′, and 𝑢̂𝑎𝑣𝑒 = 𝑇−1∑ 𝑢̂𝑠
𝑇
𝑠=1 . We consider the 



estimator Ω̂ of the form 

Ω̂ =
1

𝑇
∑∑𝑄ℎ (

𝑠

𝑇
,
𝑡

𝑇
) (𝑢̂𝑡

𝑇

𝑠=1

− 𝑢̂𝑎𝑣𝑒)(𝑢̂𝑠 − 𝑢̂
𝑎𝑣𝑒)′

𝑇

𝑡=1

, 

where 𝑄ℎ(𝑟, 𝑠) is a weighting function, and ℎ is the smoothing parameter. The above estimator 

includes the kernel HAR variance estimators and the orthonormal series HAR variance estimator 

as special cases.  

 

For the kernel HAR variance estimator, we let 𝑄ℎ(𝑟, 𝑠) = 𝑘((𝑟 − 𝑠) 𝑏⁄ ) and ℎ = 1 𝑏⁄  for a 

kernel function 𝑘(∙) with M𝑇 = 𝑏𝑇 being the so-called truncation lag.  Define 

𝑐1 = ∫ 𝑘(𝑥)𝑑𝑥
+∞

−∞
, 𝑐2 = ∫ 𝑘2(𝑥)𝑑𝑥

+∞

−∞
. 

For the Bartlett kernel, 𝑐1 = 1, 𝑐2 = 2 3⁄ ; For the Parzen kernel, 𝑐1 = 3 4⁄ , 𝑐2 = 0.539285; 

For the Quadratic Spectral kernel, 𝑐1 = 1.25, 𝑐2 = 1.  Let 

𝐾 = max([
1

𝑏𝑐2
] , 𝑝) − 𝑝 + 1, 

where [∙] is the ceiling function, and   

𝜅 =
1

2
(exp(𝑏[𝑐1 + (𝑝 − 1)𝑐2]) + (1 + 𝑏[𝑐1 + (𝑝 − 1)𝑐2])). 

Based on the kernel estimator 𝛺̂, Sun (2014) shows that 

𝑃(𝐹𝐼𝑉 > 𝜅𝐹𝑝,𝐾
𝛼 ) = 𝛼 + 𝑜(𝑏) + 𝑂((𝑏𝑇)−𝑞) + 𝑂 (

𝑙𝑜𝑔𝑇

√𝑇
), 

where 𝐹𝑝,𝐾
𝛼  is the 100(1 − 𝛼)% quantile of the standard 𝐹𝑝,𝐾 distribution. 

 

Sun (2014) obtains the testing-optimal bandwidth 𝑏𝑜𝑝𝑡: 

 

𝑏𝑜𝑝𝑡 =

{
 
 

 
 
[
2𝑞𝐺 ′

𝑝,𝛿2(𝜒𝑝
1−𝛼)|𝐵̅|

𝛿2𝐺 ′
(𝑝+2),𝛿2(𝜒𝑝

1−𝛼)𝑐2
]

1

𝑞+1

𝑇
−𝑞

𝑞+1, 𝐵̅ > 0

[
𝐺 ′
𝑝(𝜒𝑝

1−𝛼)𝜒𝑝
1−𝛼|𝐵̅|

(𝜏 − 1)𝛼
]

1

𝑞 1

𝑇
, 𝐵̅ ≤ 0

 

 

where 𝜏 > 1 is the permitted tolerance, G′
𝑝,𝛿2(𝑧) is the pdf of the noncentral 𝜒2 distribution with 

degrees of freedom 𝑝 and noncentrality parameter 𝛿2. In the above formula, 𝜒𝑝
1−𝛼 is the 1 − 𝛼 

quantile of the 𝜒2 distribution with 𝑝 degrees of freedom and 𝛿2 is chosen to satisfy 𝑃{𝜘 >

𝜒𝑝
1−𝛼} = 75%, where 𝜘~𝜒𝑝

2(𝛿2). In addition,  

𝐵̅ = 𝑡𝑟(𝐵Ω−1)/𝑝, 𝐵 = −𝜌𝑞 ∑ |𝑗|𝑞

∞

𝑗=−∞

𝐸𝑢𝑡𝑢𝑡−𝑗
′  

where q is the order of the kernel used, and 𝜌𝑞 is the Parzen characteristic exponent of the kernel. 

For the Bartlett kernel, 𝑞 = 1, 𝜌𝑞 = 1; For the Parzen kernel, 𝑞 = 2, 𝜌𝑞 = 6; For the QS kernel, 

𝑞 = 2, 𝜌𝑞 = 1.421223.  

 

The parameter 𝐵̅ is estimated by a standard VAR(1) plug-in procedure. This is what we opt for in 



the new command. Plugging the estimate of 𝐵 into 𝑏𝑜𝑝𝑡 yields 𝑏𝑡𝑒𝑚𝑝. The data-driven choice 

of 𝑏 is then given by 𝑏̂𝑜𝑝𝑡 = min(𝑏𝑡𝑒𝑚𝑝, 0.5). We do not use a b larger than 0.5 in order to 

avoid large power loss. 

 

For the OS HAR variance estimator, we let 𝑄ℎ(𝑟, 𝑠) = 𝐾
−1∑ 𝜙𝑗(𝑟)𝜙𝑗(𝑠)

𝐾
𝑗=1 , and ℎ = 𝐾, 

where {𝜙𝑗(∙)}𝑗=1
𝐾

are orthonormal basis functions on 𝐿2[0,1] satisfying ∫ 𝜙𝑗(𝑟)
1

0
𝑑𝑟 = 0 for 

𝑗 = 1,2,⋯ ,𝐾. Sun (2013) shows that the usual Wald statistic 𝐹𝐼𝑉 satisfies  

𝐾 − 𝑝 + 1

𝐾
𝐹𝐼𝑉

𝑑
→ 𝐹𝑝,𝐾−𝑝+1 =

𝜒𝑝
2 𝑝⁄

𝜒𝐾−𝑝+1
2 (𝐾 − 𝑝 + 1)⁄

 

where 𝐹𝑝,𝐾−𝑝+1 is the 𝐹 distribution with degrees of freedom( 𝑝, 𝐾 − 𝑝 + 1). 

 

Sun (2013) obtains the testing-optimal 𝐾𝑜𝑝𝑡 as follows 

𝐾𝑜𝑝𝑡 =

{
 
 

 
 
[
𝛿2𝐺 ′

(𝑝+2),𝛿2(𝜒𝑝
1−𝛼)

4𝐺 ′
𝑝,𝛿2(𝜒𝑝

1−𝛼)|𝐵̅|
]

1

3

𝑇
2

3, 𝐵̅ > 0

[
(𝜏 − 1)𝛼

𝐺 ′
𝑝(𝜒𝑝

1−𝛼)𝜒𝑝
1−𝛼|𝐵̅|

]

1

2

𝑇, 𝐵̅ ≤ 0

 

 

As before, the parameter 𝐵̅ is estimated by a standard VAR(1) plug-in procedure. Plugging the 

estimate of 𝐵̅ into 𝐾𝑜𝑝𝑡 yields 𝐾̂𝑡𝑒𝑚𝑝.We truncate  𝐾̂𝑡𝑒𝑚𝑝 to be between 𝑝 + 4 and T. That 

is, we take   

𝐾̃𝑡𝑒𝑚𝑝 = {

𝑝 + 4, 𝑖𝑓 𝐾̂𝑡𝑒𝑚𝑝 ≤ 𝑝 + 4 

 𝐾̂𝑡𝑒𝑚𝑝,   𝑖𝑓  𝐾̂𝑡𝑒𝑚𝑝 ∈ (𝑝 + 4, 𝑇]

𝑇, 𝑖𝑓  𝐾̂𝑡𝑒𝑚𝑝 > 𝑇

 

Imposing the lower bound 𝑝 + 4 ensures that the variance of the approximating distribution 

𝐹𝑝,𝐾−𝑝+1 is finite and that power loss is not very large. Finally, we round 𝐾̃𝑡𝑒𝑚𝑝to the greatest 

even number less than 𝐾̃𝑡𝑒𝑚𝑝. We take this greatest even number, denoted by 𝐾̂𝑜𝑝𝑡to be our 

data-driven and testing-optimal choice for K. 
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Also see 

[TS]tsset—Declare data to be time-series data. 


