Title

hart — Test linear hypotheses after har estimation
Syntax Menu Description Options Remarks and example Stored results Methods and

formula References Also see

Syntax

Basic syntax
hart coeflist
hart exp=exp[=...]

options Description

Model

kernel(string)  set the type of kernels: Bartlett; Parzen; Quadratic Spectral; Orthonormal Series
accumulate test the hypothesis jointly with previously tested hypotheses

level(#) set the confidence level; default is level(95)

kernel(string ) is required.
time-series operators are allowed.

Syntax 1 tests that the coefficients are 0.
Syntax 2 tests that the linear expressions are equal.

Menu

statistics>Postestimation>Tests> Test linear hypotheses after har estimation

Description

hart performs Wald tests of simple and composite linear hypotheses about the parameters in the
most recently estimated har model. See Sun (2013) and Sun (2014).

Options
— IModel

kernel(string) specifies the type of kernels (Bartlett; Parzen; Quadratic Spectral, Orthonormal

Series) to be used in the estimation of the long run covariance matrix.
accumulate allows a hypothesis to be tested jointly with the previously tested hypotheses.
Reporting

level(#); see [R] estimation options.




Remarks and examples

Sun (2013) and Sun (2014) introduce simple and trustworthy inference procedures that are
robust to heteroskedasticity and autocorrelation. The HAR variance estimator in Sun (2013) is
based on an orthonormal series long run variance matrix estimator. The optimal number K of
orthonormal bases is selected by minimizing the type II error of the test subject to a control of the
type I error. The tests in Sun (2013) are asymptotic F and t tests in an exact sense: the asymptotic
distribution of the adjusted F statistic and t statistic are standard F and t distributions. The HAR
variance estimator in Sun (2014) is based on the more conventional kernel long run variance
matrix estimators. The F and t tests in Sun (2014) are approximate tests. The asymptotic
distributions of the adjusted F and t statistic are not exactly F and t distribution, but they can be
well approximated by the standard F and t distributions.

A Example 1: Test for a single coefficient against zero
We estimate the following regression:

. har usr idle wic,kernel (bartlett)

Regression with HAR standard errors Number of obs = 30
Kernel: Bartlett F( 2, 17y = 47 .66
Data-driven optimal lag: 2 Prob > F = 0.0000
HAR

usr Coef. Std.Err. t df P>t [95% Conf. Intervall]

idle -.6670978 .0715786 -9.32 22 0.000 -.8155428 -.5186529

wio -.7792461 .11897 -6.55 13 0.000 -1.036265 -.522227

_cons 66.21805 6.984346 9.48 19 0.000 51.59965 80.83646

We can test the hypothesis that the coefficient on idle is zero by typing:
. hart idle=0, kernel (bartlett)

F( 1, 2z) = 86.86
Prob > F = 0.0000

The F statistic is 86.86. The degrees of freedom of the approximating F distribution are (1,22).
The p-value of the test is 0%. We can reject the null hypothesis at the 1% level.

A Example 2: Testing that a coefficient is equal to a given value

We can test the hypothesis that the coefficient on idle is -0.6670978 by typing:

. hart idle=-0.6670978, kernel (bartlett)
F( 1, 22) 0.00
Prob > F 1.0000

We find that we cannot reject that hypothesis.

A Example 3: Testing the equality of two coefficients
Now let’s test something a bit more difficult: whether the coefficient on idle is the same as the



coefficient on wio:

hart idle=wioc, kernel (bartlett)
F( 1, 13) = 3.20
Prob > F = 0.0968

We find that we cannot reject the equality hypothesis at the 5% level, but we can at the 10% level.

A Example 4:
hart allows us to test any linear restrictions. For example,
hart 3*idle-2*wio=2*idle-l*wio, kernel (bartlett)

F( 1, 13) =  3.20

Prob > F =  0.0968

However, hart does not deal with nonlinear restrictions directly. If you attempt to test a nonlinear
hypothesis, you will be told that it is not possible.
. hart 3*idle/2*wio=2*idle-l*wioc, kernel (bartlett)
not possible with test
r(131);
This is not a problem specific to the command hart. Stata’s command “test” exhibits the same
behavior. In fact, hart uses Stata’s command “test” to parse the null hypothesis. To test nonlinear

restrictions, we have to convert them into linear ones before using hart.

A Example 5: Testing joint hypotheses

We wish to test whether idle and wio, taken as a whole, are significant by testing whether the
coefficients on idle and wio are simultaneously zero. The command hart allows us to specify
multiple conditions to be tested, each embedded within parentheses.

. hart (idle=0) (wioc=0), kernel (bartlett)
F( Z, 17) = 47 .66
Prob > F = 0.0000

hart displays the set of conditions and reports an F statistic of 47.66. hart also reports the degrees
of freedom of the approximating F distribution, which are 2 and 17. The p-value of the test is
reported to be around 0. So we can strongly reject the hypothesis of no difference between the two

coefficients.

[ITechnical note

An alternative method to test simultaneous hypotheses is to specify a test for the first constraint
and then accumulate it with the second constraint:

. hart idle=0, kernel (bartlett)

F( 1, 22) = 86.86
Prob > F = 0.0000

. hart wio=0, kernel (bartlett) acc
F( Z, 17) = 47.66
Procb > F = 0.0000

We first test the hypothesis that the coefficient on idle is zero by typing hart idle=0. We then test
whether the coefficient on wio is also zero by typing hart wio=0, accumulate. The accumulate



option tells hart that this is not the start of a new test but a continuation of the previous one. hart
responds by showing us the two equations and reporting an F statistic of 47.66. The p-value is
about 0%.

A Example 6: Quickly testing coefficients against zero
It is very common to test whether some coefficents are jointly zero in applied research. The
command hart has a more convenient syntax to accommodate this common case:

hart idle wio, kernel (bartlett)
F( Z, 17) = 47.66
Probh > F = 0.0000

A Example 7: Replaying the previous test
We can review our last test by typing hart without arguments.
hart , kernel (bartlett)

F( Z, 17 = 47.66
Prob > F = 0.0000

A Example 8: Testing the equality of multiple coefficients
Let’s test the hypothesis that idle, wio and syslcl have the same coefficient.

. har usr idle wio syslcl,kernel (bartlett)

Regression with HAR standard errors Number of obs = 30
Kernel: Bartlett F( 3, 27y = 323.51
Data-driven optimal lag: 1 Prob > F = 0.0000
HAR

usr Coef. Std.Err. t df P>t [95% Conf. Interwval]

idle -1.019373 .0311105 -32.77 4 0.000 -1.10575 -.9329965

wio -1.034228 .0333176 -31.04 54 0.000 -1.101026 -.9674303

syslcl -1.000682 .0520787 -19.21 12 0.000 -1.114152 -.8872121

_cons 102.003 3.01555 33.83 5 0.000 94 25128 109.7547

. hart idle=wio=syslcl, kernel (bartlett)
F( Z, 18) = 0.65
Frob » F = 0.5315

The syntax idle=wio=syslcl with multiple = operators is just a convenient shorthand for typing
that the first expression equals the second expression and that the first expression equals the third

expression.

We can perform the same test by using either of the following

hart (idle=wio) (idle=syslcl), kernel (bartlett)
F( Z, 18) = 0.65
Prob > F = 0.5315

. hart (idle=wio) (wic=syslcl), kernel(bartlett)
F( Z, 18) = 0.65
Prob > F = 0.5315



Stored results

hart stores the following results in r():

Scalars

r(firdf) the first degrees of freedom

r(secdf)  the second degrees of freedom

r(lag) the data-driven optimal truncation lag
r(kopt) the data-driven optimal K

r(F) the adjusted F statistic

Matrices

r(thetaiv) the IV coefficient vector

Methods and formulas

Consider the regression model:
Y, =X.0q+e,t=12,---T
where {e,} is a zero-mean process that may be correlated with the covariate process {X, € R*%}.
There are instruments {Z; € R*™} such that the moment conditions:
EZ{(Y; — X:60) =0
hold if and only if 8 = 6,. We allow the process {Z;e;} to have the autocorrelation of unknown
forms. The model may be over-identified with the degree of over-identification g =m —d = 0.

Define:
1 1 1
Szx = ;Z{=1 Zé X, Szz = ;Z’{:l Zé Zy, Szy = ;Z?ﬂzé Y.

Then the IV estimator of 8, is
Oy = [SzxW5r*Szx1™ [SgxWor Szv]

Where WOT = SZZ € Rmxm, gllm WOT = Wo.

We are interested in testing the null Hy: ROy = r against the alternative H;: R6, # r, where
r € RP*! and R € RP*? is a matrix of full row rank. Nonlinear restrictions can be converted into
linear ones via the delta method. Under some standard high-level conditions, we have

T
A ~ 1
VTR = 60) = VT(ROyy 1) = = > ue + 0, (1)
VT4
where Gy = ES;x € R™4 and u, = R(G\Wy;1Gy) 1GiW;y Zle, is the transformed moment

~ a =400 7 .
process. It then follows that VTR (8, — 6,) = N(0,(), where Q = Y/ ~""F ugu;_; is the long

j=—o00

run variance of {u;}. The Wald statistic for testing H, against H; is

Fy = VT(RByy — 1) () VT (RO — 1) /p.

Let Gr = Szx, U = R(GIWortGr) ™ GiWortZ,, and 1%7¢ = T~1YT_ i, . We consider the



estimator O of the form

where Q(r,s) is a weighting function, and h is the smoothing parameter. The above estimator
includes the kernel HAR variance estimators and the orthonormal series HAR variance estimator

as special cases.

For the kernel HAR variance estimator, we let Qn(r,s) = k((r —s)/b) and h =1/b for a
kernel function k(-) with M; = bT being the so-called truncation lag. Define

= [17k()dx, ¢, = [ k2 (x)dx.

For the Bartlett kernel, ¢; = 1, ¢, = 2/3; For the Parzen kemel, ¢; = 3/4, ¢, = 0.539285;
For the Quadratic Spectral kernel, ¢c; = 1.25, ¢, = 1. Let

K = max([i],p) -p+1,
where [-] is the ceiling function, and
k=3 (exp(ble; + (p = Deal) + (1+ bley + (p — Dez))).

Based on the kernel estimator (2, Sun (2014) shows that
lo gT)
—\/T )

where Fy is the 100(1 — @)% quantile of the standard Fy, k distribution.

P@ﬁ>KF%)—a+0®)+OKMUq)+O(

Sun (2014) obtains the testing-optimal bandwidth by;:

1
2qG', s2(¥3~*)|B| lert - _
[ Zq, p.8 (Xp 12]1 | ] Tei B> 0
826G 1252 (Up )2

l [G;UFﬂQX ﬂBq

(t—Da

bopt =

where 7 > 1 is the permitted tolerance, G'p s52(2) is the pdf of the noncentral y? distribution with
degrees of freedom p and noncentrality parameter §2. In the above formula, )(1 “isthe 1 —«a
quantile of the y? distribution with p degrees of freedom and §2is chosen to satisfy P{}{ >
170} = 75%, where x~x2(6%). In addition,
B =tr(BO)/p,B=—pg ) |jlEu,
jm—e

where ¢ is the order of the kernel used, and p, is the Parzen characteristic exponent of the kernel.
For the Bartlett kernel, ¢ = 1, p, = 1; For the Parzen kernel, q = 2, p, = 6; For the QS kernel,
q=2,pq = 1.421223.

The parameter B is estimated by a standard VAR(1) plug-in procedure. This is what we opt for in



the new command. Plugging the estimate of B into bopt yields biemp- The data-driven choice
of b is then given by Bopt = min(btemp, 0.5). We do not use a b larger than 0.5 in order to
avoid large power loss.

For the OS HAR variance estimator, we let Qp,(r,s) = K1 Zﬁ-(:l ¢;()pj(s),and h =K,

where {¢ j (-)};(zlare orthonormal basis functions on L?[0,1] satisfying fol ¢j(r)dr =0 for

j=1,2,---,K. Sun (2013) shows that the usual Wald statistic F;, satisfies
K-p+1 d Xs/D
————Fy > F g pi1 =
K v p,K—-p+1 Xlz(_p+1/(K _ p + 1)
where Fy,x_p,,q isthe F distribution with degrees of freedom(p, K —p + 1).

Sun (2013) obtains the testing-optimal K, as follows
{[5 G prer (1 °
4G, 52(xp™%)IB|

[ (t—-1Da
Gy )xp *|B|

1

.z -
Ts,B>0
Kopt=

2 —_
]T,BSO

As before, the parameter B is estimated by a standard VAR(1) plug-in procedure. Plugging the
estimate of B into Kopt yields I?temp.We truncate I?temp to be between p +4 and 7. That

is, we take
p+4,  if Keemp <p+4
I?temp = I?temp' if I?temp €E(@+4T]
T, if Keemp>T
Imposing the lower bound p + 4 ensures that the variance of the approximating distribution

F, k—p+1 18 finite and that power loss is not very large. Finally, we round Ktempto the greatest
even number less than Ktemp. We take this greatest even number, denoted by I?Optto be our

data-driven and testing-optimal choice for K.
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[TS]tsset—Declare data to be time-series data.



