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Syntax 

har depvar [varlist1] (varlist2=inst list)[if] [in], kernel(string) [, noconstant  level(#) ] 

 

options        Description                                                   

Model 

kernel(string)   set the type of kernels: Bartlett; Parzen; Quadratic Spectral; Orthonormal Series 

noconstant     suppress constant term  

 

Reporting 

level(#)       set confidence level; default is level(95) 

                                                                             

kernel(string ) is required. 

you must tsset your data before using har; see [TS] tsset. 

time-series operators are allowed. 

 

Menu 

statistics>Time series >Regression with HAR standard errors 

 

Description 

The command estimates an IV regression in the presence of heteroskedasticity and autocorrelation. 

Inferences are based on the fixed-smoothing asymptotics. The command is based on Sun (2013) 

and Sun (2014). Sun (2013) develops heteroskedasticity and autocorrelation robust F and t tests 

using an orthonormal series long run variance matrix estimator.  The number of orthonormal 

bases is selected by minimizing the type II error of the associated test while controlling for its type 

I error. Sun (2014) introduces a new and easy-to-use asymptotic F test (and t test) based on kernel 

long run variance matrix estimators. The proposed bandwidth selection rule is testing-optimal and 

is similar to Sun (2013). The command allows for three types of kernels: the Bartlett, Parzen, and 

Quadratic Spectral kernels.   

 

For the sake of simplicity, we refer to the orthonormal series long run variance estimator in Sun 

(2013) as the kernel long run variance estimator with kernel “Orthonormal Series.”  In total, the 

command allows for four types of kernels: Bartlett, Parzen, Quadratic Spectral, and Orthonormal 

Series. 

 

 



Options 

Model 
kernel(string)specifies the type of kernels (Bartlett; Parzen; Quadratic Spetral; Orthonormal Series) 

to be used in the estimation of the covariance matrix. 

noconstant; see [R] estimation options. 

 

Reporting 

level(#); see [R] estimation options. 

 

Remarks and examples 

Sun (2013) and Sun (2014) introduce simple and trustworthy inference procedures that are 

robust to heteroskedasticity and autocorrelation. The HAR variance estimator in Sun (2013) is 

based on an orthonormal series long run variance matrix estimator. The optimal number K of 

orthonormal bases is selected by minimizing the type II error of the associated test subject to a 

control of its type I error. The tests proposed by Sun (2013) are asymptotic F and t tests in an exact 

sense: the asymptotic distributions of the adjusted F statistic and t statistic are standard F and t 

distributions.  The HAR variance estimator in Sun (2014) is based on the more conventional 

kernel long run variance matrix estimators. The F and t tests in Sun (2014) are approximate tests. 

The asymptotic distributions of the adjusted F and t statistic are not exactly F and t distributions, 

but they can be well approximated by the standard F and t distributions.  

 

Example 1 

 

 

 

 



Example 2 

 
 

 

Example 3 

 

 

 

Example 4 

 
 

 



Example 5 

 

 

Stored results 

The command har uses ivregress command to get the estimated coefficient. So, in addition to the 

standard stored results from ivregress, har also stores the following results in e(): 

 Scalars    

    e(N)           the number of observations 

*# e(fdf)           the first value of degrees of freedom 

 

*e(sF)          the adjusted F statistic 

*e(ssdf)         the second value of degrees of freedom 

*e(kopt)         the data-driven optimal number k of orthonormal bases 

 

#e(kF)          the adjusted F statistic 

#e(ksdf)         the second degrees of freedom 

   #e(lag)          the data-driven optimal truncation lag 

       

    

    Macros     

    e(cmd)         har 

e(cmdline)      command as typed 

e(varline)       variable line as typed 

e(carg)         nocons or " " if specified 

    e(depvar)       name of dependent variable 

e(title)         title in estimation output 

    e(vcetype)      title used to label Std. Err. 

    e(kerneltype)    kernel in the estimation 

 

Matrices   

e(b)           coefficient vector 

*e(sstderr)       the adjusted std error for each individual coefficient  



*e(sdf)          the degrees of freedom of the approximating t distribution 

*e(st)           the t statistic  

*e(sbetahat)      the IV coefficient vector 

 

#e(kbetahat)      the IV coefficient vector 

#e(kstderr)       the adjusted std error for each individual coefficient  

#e(kdf)          the degrees of freedom of the approximating t distribution 

#e(kt)           the t statistic  

 

Functions  

e(sample)        marks the estimation sample 

 

note：for the other results in ereturn list see[R] ivregress;  

* only for Orthonormal Series;  

# only for Bartlett, Parzen, Quadratic Spectral. 

 

Methods and formulas 

Consider the regression model: 

𝑌𝑡 = 𝑋𝑡𝜃0 + 𝑒𝑡, 𝑡 = 1,2,⋯ , 𝑇 

where {𝑒𝑡} is a zero-mean process that may be correlated with the covariate process {𝑋𝑡 ∈ 𝑅
1×𝑑}. 

There are instruments {𝑍𝑡 ∈ 𝑅
1×𝑚} such that the moment conditions: 

𝐸𝑍𝑡
′(𝑌𝑡 −𝑋𝑡𝜃0) = 0 

hold if and only if 𝜃 = 𝜃0. We allow the process {𝑍𝑡
′𝑒𝑡} to have the autocorrelation of unknown 

forms. The model may be over-identified with the degree of over-identification 𝑞 = 𝑚 − 𝑑 ≥ 0.   

 

Define: 

𝑆𝑍𝑋 =
1

𝑇
∑ 𝑍𝑡

′𝑇
𝑡=1 𝑋𝑡,  𝑆𝑍𝑍 =

1

𝑇
∑ 𝑍𝑡

′𝑇
𝑡=1 𝑍𝑡,   𝑆𝑍𝑌 =

1

𝑇
∑ 𝑍𝑡

′𝑇
𝑡=1 𝑌𝑡. 

Then the IV estimator of 𝜃0 is 

𝜃𝐼𝑉 = [𝑆𝑍𝑋
′ 𝑊0𝑇

−1𝑆𝑍𝑋]
−1[𝑆𝑍𝑋

′ 𝑊0𝑇
−1𝑆𝑍𝑌] 

where 𝑊0𝑇 = 𝑆𝑍𝑍 ∈ 𝑅
𝑚×𝑚, 𝑃𝑙𝑖𝑚

𝑇→∞
𝑊0𝑇 =𝑊0. 

We are interested in testing the null 𝐻0: 𝑅𝜃0 = 𝑟 against the alternative 𝐻1: 𝑅𝜃0 ≠ 𝑟, where 

𝑟 ∈ 𝑅𝑝×1 and 𝑅 ∈ 𝑅𝑝×𝑑 is a matrix of full row rank. Nonlinear restrictions can be converted into 

linear ones via the delta method. Under some standard high-level conditions, we have 

√𝑇𝑅(𝜃𝐼𝑉 − 𝜃0) = √𝑇(𝑅𝜃𝐼𝑉 − 𝑟) =
1

√𝑇
∑𝑢𝑡 + 𝑜𝑝

𝑇

𝑡=1

(1) 

where 𝐺0 = 𝐸𝑆𝑍𝑋 ∈ 𝑅
𝑚×𝑑 and 𝑢𝑡 = 𝑅(𝐺0

′𝑊0
−1𝐺0)

−1𝐺0
′𝑊0

−1𝑍𝑡
′𝑒𝑡 is the transformed moment 

process. It then follows that √𝑇𝑅(𝜃𝐼𝑉 − 𝜃0)
𝑑
→𝑁(0,Ω), where Ω = ∑ 𝐸

𝑗=+∞
𝑗=−∞ 𝑢𝑡𝑢𝑡−𝑗

′  is the long 

run variance of {𝑢𝑡}. The Wald statistic for testing 𝐻0 against 𝐻1 is  

𝐹𝐼𝑉 = √𝑇(𝑅𝜃𝐼𝑉 − 𝑟)
′
(𝛺̂)

−1
√𝑇(𝑅𝜃𝐼𝑉 − 𝑟)/𝑝. 



 

Let 𝐺𝑇 = 𝑆𝑍𝑋, 𝑢̂𝑡 = 𝑅(𝐺𝑇
′𝑊0𝑇

−1𝐺𝑇)
−1𝐺𝑇

′𝑊0𝑇
−1𝑍𝑡

′, and 𝑢̂𝑎𝑣𝑒 = 𝑇−1∑ 𝑢̂𝑠
𝑇
𝑠=1 . We consider the 

estimator Ω̂ of the form 

Ω̂ =
1

𝑇
∑∑𝑄ℎ (

𝑠

𝑇
,
𝑡

𝑇
) (𝑢̂𝑡

𝑇

𝑠=1

− 𝑢̂𝑎𝑣𝑒)(𝑢̂𝑠 − 𝑢̂
𝑎𝑣𝑒)′

𝑇

𝑡=1

, 

where 𝑄ℎ(𝑟, 𝑠) is a weighting function, and ℎ is the smoothing parameter. The above estimator 

includes the kernel HAR variance estimators and the orthonormal series HAR variance estimator 

as special cases.  

 

For the kernel HAR variance estimator, we let 𝑄ℎ(𝑟, 𝑠) = 𝑘((𝑟 − 𝑠) 𝑏⁄ ) and ℎ = 1 𝑏⁄  for a 

kernel function 𝑘(∙) with M𝑇 = 𝑏𝑇 being the so-called truncation lag.  Define 

𝑐1 = ∫ 𝑘(𝑥)𝑑𝑥
+∞

−∞
, 𝑐2 = ∫ 𝑘2(𝑥)𝑑𝑥

+∞

−∞
. 

For the Bartlett kernel, 𝑐1 = 1, 𝑐2 = 2 3⁄ ; For the Parzen kernel, 𝑐1 = 3 4⁄ , 𝑐2 = 0.539285; 

For the Quadratic Spectral kernel, 𝑐1 = 1.25, 𝑐2 = 1.  Let 

𝐾 = max([
1

𝑏𝑐2
] , 𝑝) − 𝑝 + 1, 

where [∙] is the ceiling function, and   

𝜅 =
1

2
(exp(𝑏[𝑐1 + (𝑝 − 1)𝑐2]) + (1 + 𝑏[𝑐1 + (𝑝 − 1)𝑐2])). 

Based on the kernel estimator 𝛺̂, Sun (2014) shows that 

𝑃(𝐹𝐼𝑉 > 𝜅𝐹𝑝,𝐾
𝛼 ) = 𝛼 + 𝑜(𝑏) + 𝑂((𝑏𝑇)−𝑞) + 𝑂 (

𝑙𝑜𝑔𝑇

√𝑇
), 

where 𝐹𝑝,𝐾
𝛼  is the 100(1 − 𝛼)% quantile of the standard 𝐹𝑝,𝐾 distribution. 

 

Sun (2014) obtains the testing-optimal bandwidth 𝑏𝑜𝑝𝑡: 

 

𝑏𝑜𝑝𝑡 =

{
 
 

 
 
[
2𝑞𝐺 ′

𝑝,𝛿2(𝜒𝑝
1−𝛼)|𝐵̅|

𝛿2𝐺 ′
(𝑝+2),𝛿2(𝜒𝑝

1−𝛼)𝑐2
]

1

𝑞+1

𝑇
−𝑞

𝑞+1, 𝐵̅ > 0

[
𝐺 ′
𝑝(𝜒𝑝

1−𝛼)𝜒𝑝
1−𝛼|𝐵̅|

(𝜏 − 1)𝛼
]

1

𝑞 1

𝑇
, 𝐵̅ ≤ 0

 

 

where 𝜏 > 1 is the permitted tolerance, G′
𝑝,𝛿2(𝑧) is the pdf of the noncentral 𝜒2 distribution with 

degrees of freedom 𝑝 and noncentrality parameter 𝛿2. In the above formula, 𝜒𝑝
1−𝛼 is the 1 − 𝛼 

quantile of the 𝜒2 distribution with 𝑝 degrees of freedom and 𝛿2 is chosen to satisfy 𝑃{𝜘 >

𝜒𝑝
1−𝛼} = 75%, where 𝜘~𝜒𝑝

2(𝛿2). In addition,  

𝐵̅ = 𝑡𝑟(𝐵Ω−1)/𝑝, 𝐵 = −𝜌𝑞 ∑ |𝑗|𝑞

∞

𝑗=−∞

𝐸𝑢𝑡𝑢𝑡−𝑗
′  

where q is the order of the kernel used, and 𝜌𝑞 is the Parzen characteristic exponent of the kernel. 

For the Bartlett kernel, 𝑞 = 1, 𝜌𝑞 = 1; For the Parzen kernel, 𝑞 = 2, 𝜌𝑞 = 6; For the QS kernel, 

𝑞 = 2, 𝜌𝑞 = 1.421223.  



 

The parameter 𝐵̅ is estimated by a standard VAR(1) plug-in procedure. This is what we opt for in 

the new command. Plugging the estimate of 𝐵 into 𝑏𝑜𝑝𝑡 yields 𝑏𝑡𝑒𝑚𝑝. The data-driven choice 

of 𝑏 is then given by 𝑏̂𝑜𝑝𝑡 = min(𝑏𝑡𝑒𝑚𝑝, 0.5). We do not use a b larger than 0.5 in order to 

avoid large power loss. 

 

For the OS HAR variance estimator, we let 𝑄ℎ(𝑟, 𝑠) = 𝐾
−1∑ 𝜙𝑗(𝑟)𝜙𝑗(𝑠)

𝐾
𝑗=1 , and ℎ = 𝐾, 

where {𝜙𝑗(∙)}𝑗=1
𝐾

are orthonormal basis functions on 𝐿2[0,1] satisfying ∫ 𝜙𝑗(𝑟)
1

0
𝑑𝑟 = 0 for 

𝑗 = 1,2,⋯ ,𝐾. Sun (2013) shows that the usual Wald statistic 𝐹𝐼𝑉 satisfies  

𝐾 − 𝑝 + 1

𝐾
𝐹𝐼𝑉

𝑑
→ 𝐹𝑝,𝐾−𝑝+1 =

𝜒𝑝
2 𝑝⁄

𝜒𝐾−𝑝+1
2 (𝐾 − 𝑝 + 1)⁄

 

where 𝐹𝑝,𝐾−𝑝+1 is the 𝐹 distribution with degrees of freedom( 𝑝, 𝐾 − 𝑝 + 1). 

 

Sun (2013) obtains the testing-optimal 𝐾𝑜𝑝𝑡 as follows 

𝐾𝑜𝑝𝑡 =

{
 
 

 
 
[
𝛿2𝐺 ′

(𝑝+2),𝛿2(𝜒𝑝
1−𝛼)

4𝐺 ′
𝑝,𝛿2(𝜒𝑝

1−𝛼)|𝐵̅|
]

1

3

𝑇
2

3, 𝐵̅ > 0

[
(𝜏 − 1)𝛼

𝐺 ′
𝑝(𝜒𝑝

1−𝛼)𝜒𝑝
1−𝛼|𝐵̅|

]

1

2

𝑇, 𝐵̅ ≤ 0

 

 

As before, the parameter 𝐵̅ is estimated by a standard VAR(1) plug-in procedure. Plugging the 

estimate of 𝐵̅ into 𝐾𝑜𝑝𝑡 yields 𝐾̂𝑡𝑒𝑚𝑝.We truncate  𝐾̂𝑡𝑒𝑚𝑝 to be between 𝑝 + 4 and T. That 

is, we take   

𝐾̃𝑡𝑒𝑚𝑝 = {

𝑝 + 4, 𝑖𝑓 𝐾̂𝑡𝑒𝑚𝑝 ≤ 𝑝 + 4 

 𝐾̂𝑡𝑒𝑚𝑝,   𝑖𝑓  𝐾̂𝑡𝑒𝑚𝑝 ∈ (𝑝 + 4, 𝑇]

𝑇, 𝑖𝑓  𝐾̂𝑡𝑒𝑚𝑝 > 𝑇

 

Imposing the lower bound 𝑝 + 4 ensures that the variance of the approximating distribution 

𝐹𝑝,𝐾−𝑝+1 is finite and that power loss is not very large. Finally, we round 𝐾̃𝑡𝑒𝑚𝑝to the greatest 

even number less than 𝐾̃𝑡𝑒𝑚𝑝. We take this greatest even number, denoted by 𝐾̂𝑜𝑝𝑡to be our 

data-driven and testing-optimal choice for K. 
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Also see 

[TS]tsset—Declare data to be time-series data. 


