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syntax 

gmmhar depvar [varlist1] (varlist2=instlist)[if] [in] [, noconstant level(#)] 

 

options        Description                                                   

Model 

noconstant      suppress the constant term 

 

Reporting 

level(#)         set the confidence level；default is level(95) 

                                                                             

you must tsset your data before using gmmhar; see [TS] tsset 

time-series operators are allowed. 

Menu 

statistics>Time series > Two step gmm estimation with HAR standard errors 

 

Description 

Sun (2014) considers the more accurate fixed-smoothing asymptotics in the two-step efficient 

GMM framework where the weighting matrix and asymptotic variance matrix are based on 

the orthonormal series long run variance estimator. Hwang and Sun (2017) propose some 

modifications to the usual test statistics, including the Wald statistic, the quasi-LR type 

statistic (difference in the GMM criterion functions), and the LM type (score type) statistic 

and show that the modified test statistics are all asymptotically standard F distributed under 

the fixed-smoothing asymptotics. The modified statistics are rescaled versions of the original 

test statistics with the scaling factors depending on the J statistic (Sun and Kim, 2012) for 

testing over-identifying restrictions.  

 

Options 

Model 
noconstant; see [R] estimation options. 

 

Reporting 

level(#); see [R] estimation options. 

 



 

Remarks and examples 

Hwang and Sun (2017) construct HAR standard errors for two-step GMM estimation and 

develop asymptotic F approximation for the Wald statistic where the weighting matrix and 

asymptotic variance matrix are based on the orthonormal series long-run variance estimator. 

The data-driven choice of K, the number of orthonormal bases, is selected by the AMSE method 

implemented via the VAR(1) plug-in.  

 

 

Example 1 

To illustrate the use of gmmhar, we estimate a quarterly time-series model relating the change in 

the U.S. inflation rate (D.inf) to the unemployment rate (UR) for 1959q1–2000q4. As instruments, 

we use the second lag of quarterly GDP growth, the lagged values of the Treasury bill rate, the 

trade-weighted exchange rate, and the Treasury medium-term bond rate. We fit our model using 

the two-step efficient GMM method. 

 

 
In this case, the header reports data-driven optimal K by the usual AMSE method.  

 

 

Example 2 

nonparametric orthonormal series approach, noconstant, level case 99%, AMSE automatic 



bandwidth selection. 

 

 

Stored results 

The gmmhar uses ivregress to get the colname of e(b). So, in addition to the standard stored 

results from ivregress, gmmhar also stores the following results in e()： 

 Scalars    

e(N)            the number of observations 

e(sF)           the adjusted F statistic 

e(sfdf)          the first degrees of freedom 

e(ssdf)          the second degrees of freedom 

e(kopt)          the data-driven optimal K for the OS long run variance estimator 

e(J)            the J statistic for testing the overidentifying restrictions 

     

Macros     

    e(cmd)         gmmhar 

e(cmdline)      command as typed 

e(varline)       variable line as typed 

e(carg)         nocons or " " if specified 

e(title)         title in estimation output 

e(vcetype)      orthonormal series 

e(depvar)       name of dependent variable 

e(exog)        exogenous variables 

e(endog)       endogenous variables 

e(inst)         instrument variables 

 

Matrices   

e(betahat)        the two-step gmm coefficient vector 

e(sstderr)        the adjusted standard error for each individual coefficient 

e(sdf)           the degrees of freedom of the t statistic  

e(st)            the t statistic for testing a single restriction.  



 

 

Functions  

e(sample)        marks the estimation sample 

*the other results in ereturn list see[R] ivregress 

 

Methods and formulas 

Consider the regression model: 

𝑌𝑡 = 𝑋𝑡𝜃0 + 𝑒𝑡, 𝑡 = 1,2, ⋯ , 𝑇 

where {𝑒𝑡} is a zero-mean process that may be correlated with the covariate process {𝑋𝑡 ∈ 𝑅1×𝑑}. 

There are instruments {𝑍𝑡 ∈ 𝑅1×𝑚} such that the moment conditions: 

𝐸𝑍𝑡
′(𝑌𝑡 − 𝑋𝑡𝜃0) = 0 

hold if and only if 𝜃 = 𝜃0. We allow the process {𝑍𝑡
′𝑒𝑡} to have the autocorrelation of unknown 

forms. The model may be over-identified with the degree of over identification 𝑞 = 𝑚 − 𝑑 ≥ 0.  

Define：       𝑆𝑍𝑋 =
1

𝑇
∑ 𝑍𝑡

′𝑇
𝑡=1 𝑋𝑡, 𝑆𝑍𝑍 =

1

𝑇
∑ 𝑍𝑡

′𝑇
𝑡=1 𝑍𝑡, 𝑆𝑍𝑌 =

1

𝑇
∑ 𝑍𝑡

′𝑇
𝑡=1 𝑌𝑡. 

Then the IV estimator of 𝜃0 is  

𝜃𝐼𝑉 = [𝑆𝑍𝑋
′ 𝑊0𝑇

−1𝑆𝑍𝑋]−1[𝑆𝑍𝑋
′ 𝑊0𝑇

−1𝑆𝑍𝑌], 

where 𝑊0𝑇 = 𝑆𝑍𝑍 ∈ 𝑅𝑚×𝑚.  

Hwang and Sun (2017) consider two-step efficient GMM estimation and inference where the 

weighting matrix and asymptotic variance matrix are based on the orthonormal series long run 

variance estimator. In its general form, the two-step GMM estimator is given by 

𝜃𝐺𝑀𝑀 = 𝑎𝑟𝑔 min
𝜃∈Θ

𝑔𝑇(𝜃)′ 𝑤𝑇
−1(𝜃𝐼𝑉)𝑔𝑇(𝜃) = {𝑆𝑍𝑋

′ [𝑤𝑇(𝜃𝐼𝑉)]
−1

𝑆𝑍𝑋}−1{𝑆𝑍𝑋
′ [𝑤𝑇(𝜃𝐼𝑉)]

−1
𝑆𝑍𝑌} 

where 

𝑤𝑇(𝜃) =
1

𝑇
∑ ∑ 𝑄𝐾 (

𝑡

𝑇
,

𝑠

𝑇
)𝑇

𝑠=1
𝑇
𝑡=1 (𝑣𝑡(𝜃) − 𝑣̅(𝜃))(𝑣𝑡(𝜃) − 𝑣̅(𝜃))′，𝑣𝑡(𝜃) = 𝑍𝑡′(𝑌𝑡 − 𝑋𝑡𝜃)，

and 𝑣̅(𝜃) = ∑ 𝑣𝑡(𝜃)/𝑇𝑇
𝑡=1 . Note that 𝑤𝑇(𝜃̂𝐼𝑉) is a quadratic estimator of the long run variance 

of moment process {𝑣𝑡(𝜃0)}. 𝑄𝐾(r, s) is a symmetric weighting function that depends on the 

smoothing parameter 𝐾. Hwang and Sun (2017) focus on the orthonormal series LRV estimation 

with 𝑄𝐾(r, s) =
1

𝐾
∑ 𝜙𝑗(r)𝐾

𝑗=1 𝜙𝑗(s), where {𝜙𝑗(∙)}
𝑗=1

𝐾
are orthonormal basis functions on 𝐿2[0,1] 

satisfying ∫ 𝜙𝑗(𝑟)
1

0
𝑑𝑟 = 0 for 𝑗 = 1,2, ⋯ , 𝐾.  

We are interested in testing the null 𝐻0: 𝑅𝜃0 = 𝑟 against the alternative 𝐻1: 𝑅𝜃0 ≠ 𝑟, where 

𝑟 ∈ 𝑅𝑝×1 and 𝑅 ∈ 𝑅𝑝×𝑑 is a matrix of full row rank. Nonlinear restrictions can be converted into 

linear ones via the delta method. The Wald statistic is given by 

𝕎𝑇(𝜃𝐺𝑀𝑀) = √𝑇(𝑅𝜃𝐺𝑀𝑀 − 𝑟)
′
{𝑅(𝐺𝑇′𝑤𝑇

−1(𝜃𝐺𝑀𝑀)𝐺𝑇)
−1

𝑅′}√𝑇(𝑅𝜃𝐺𝑀𝑀 − 𝑟)/𝑝 

where 𝐺𝑇 = 𝑆𝑍𝑋. Under the assumptions in Hwang and Sun (2017), the following result holds: 

𝕎𝑇
𝐶 (𝜃𝐺𝑀𝑀)

𝑑
→ 𝐹𝑝,𝐾−𝑝−𝑞+1, 

where 



𝕎𝑇
𝐶 (𝜃𝐺𝑀𝑀) =

𝐾−𝑝−𝑞+1

𝐾

𝕎𝑇(𝜃̂𝐺𝑀𝑀)

1+
1

𝐾
𝐽𝑇(𝜃̂𝐺𝑀𝑀)

  

is the modified Wald statistic and 

 
𝐽𝑇

(𝜃𝐺𝑀𝑀) =
𝐾 − 𝑞 + 1

𝐾
∙

𝑇𝑔𝑇(𝜃̂𝐺𝑀𝑀)′𝑤𝑇
−1(𝜃𝐺𝑀𝑀)𝑔𝑇(𝜃𝐺𝑀𝑀)

𝑞
 

is the J statistics for testing overidentifying restrictions. Sun and Kim (2012) show that 

 𝐽𝑇(𝜃𝐺𝑀𝑀) converges in distribution to 𝐹(𝑞, 𝐾 − 𝑞 + 1). Following Sun and Kim (2012) and 

Hwang and Sun (2017), we select 𝐾 based on the AMSE criterion implemented using the VAR(1) 

plug-in procedure. 
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Also see 

[TS]tsset—Declare data to be time-series data. 

http://econweb.ucsd.edu/~yisun/J_test.pdf
http://econweb.ucsd.edu/~yisun/J_test.pdf

