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syntax

gmmbhar depvar [varlistl] (varlist2=instlist)[if] [in] [, noconstant level(#)]

options Description

Model

noconstant suppress the constant term

Reporting

level(#) set the confidence level; default is level(95)

you must tsset your data before using gmmbhar; see [TS] tsset
time-series operators are allowed.

Menu

statistics>Time series > Two step gmm estimation with HAR standard errors

Description

Sun (2014) considers the more accurate fixed-smoothing asymptotics in the two-step efficient
GMM framework where the weighting matrix and asymptotic variance matrix are based on
the orthonormal series long run variance estimator. Hwang and Sun (2017) propose some
modifications to the usual test statistics, including the Wald statistic, the quasi-LR type
statistic (difference in the GMM criterion functions), and the LM type (score type) statistic
and show that the modified test statistics are all asymptotically standard F distributed under
the fixed-smoothing asymptotics. The modified statistics are rescaled versions of the original
test statistics with the scaling factors depending on the J statistic (Sun and Kim, 2012) for
testing over-identifying restrictions.

Options
— IModel

noconstant; see [R] estimation options.

Reporting

level(#); see [R] estimation options.




Remarks and examples

Hwang and Sun (2017) construct HAR standard errors for two-step GMM estimation and
develop asymptotic F approximation for the Wald statistic where the weighting matrix and
asymptotic variance matrix are based on the orthonormal series long-run variance estimator.
The data-driven choice of K, the number of orthonormal bases, is selected by the AMSE method
implemented via the VAR(1) plug-in.

Example 1

To illustrate the use of gmmbhar, we estimate a quarterly time-series model relating the change in
the U.S. inflation rate (D.inf) to the unemployment rate (UR) for 1959q1-2000g4. As instruments,
we use the second lag of quarterly GDP growth, the lagged values of the Treasury bill rate, the
trade-weighted exchange rate, and the Treasury medium-term bond rate. We fit our model using
the two-step efficient GMM method.

. use http://fmwww.bc.edu/ec-p/data/stockwatson/macrodat

. generate inf =100 * log( CPI / L4.CPI )
(4 missing values generated)

. generate ggdp=100 * log( GDP / L4.GDPF )
(10 missing wvalues generated)

. gmmhar D.inf (UR=L2.ggdp L.TBILL L.ER L.TBON)

Two-step Efficient GMM Estimation Number of obs = 158
Data-driven optimal K: 46 F({ 1, 43y = 2.05
Prob > F = 0.1597
HLR
D.inf Coef. std.Err. t df P>|t| [95% Conf. Intervall]
UR -.0971458 .067901 -1.43 43 0.160 -.2340812 .0397895
_cons .5631061 .3936908 1.43 43 0.160 -.2308471 1.357059
HER J statistic = .92614349
Reference Dist for the J test: F( 3, 44)
P-value of the J test = 0.4361

Instrumented: UR
Instruments: L2.ggdp L.TBILL L.ER L.TBON

In this case, the header reports data-driven optimal K by the usual AMSE method.

Example 2
nonparametric orthonormal series approach, noconstant, level case 99%, AMSE automatic



bandwidth selection.

. gmmhar D.inf (UR=L2.ggdp L.TBILL L.ER L.TBON) ,nocons 1(99)

Two-step Efficient GMM Estimation Number of cbs = 158
Data-driven optimal K: 40 F( 1, 37y = 0.01
Prob > F = 0.9119
HAR
D.inf Coef. std.Err. t df P>|t] [88% Conf. Interwvall
UR .0014583 .0130865 0.11 37 0.912 -.0340768 .0369934
HER J statistic = .95768181
Reference Dist for the J test: F( 3, 38)
P-value of the J test = 0.4226

Instrumented: UR
Instruments: L2.ggdp L.TBILL L.ER L.TBON

Stored results

The gmmbhar uses ivregress to get the colname of e(b). So, in addition to the standard stored

results from ivregress, gmmbhar also stores the following results in e():

Scalars

e(N) the number of observations

e(sF) the adjusted F statistic

e(sfdf) the first degrees of freedom

e(ssdf) the second degrees of freedom

e(kopt) the data-driven optimal K for the OS long run variance estimator
e(J) the J statistic for testing the overidentifying restrictions
Macros

e(cmd) gmmbhar

e(cmdline) command as typed

e(varline) variable line as typed

e(carg) nocons or " " if specified

e(title) title in estimation output

e(veetype) orthonormal series

e(depvar) name of dependent variable

e(exog) exogenous variables

e(endog) endogenous variables

e(inst) instrument variables

Matrices

e(betahat) the two-step gmm coefficient vector

e(sstderr) the adjusted standard error for each individual coefficient
e(sdf) the degrees of freedom of the t statistic

e(st) the t statistic for testing a single restriction.



Functions
e(sample) marks the estimation sample
*the other results in ereturn list see[R] ivregress

Methods and formulas

Consider the regression model:

Y = X600 +e,t=12,--,T
where {e,} is a zero-mean process that may be correlated with the covariate process {X; € R*%}.
There are instruments {Z; € R1*™} such that the moment conditions:
EZ{(Y; — X:60) =0

hold if and only if 8 = 6,. We allow the process {Z;e;} to have the autocorrelation of unknown
forms. The model may be over-identified with the degree of over identification g =m —d = 0.

1 1 1
Define: Szx = ;Z’{:l Zé Xi, Szz = ;Z?ﬂ Zé Ze, Szy = ;Z?ﬂz{ Y.

Then the IV estimator of 6, is
By = [SzxWorSzx) ™ [SzxWor' Szv ],
where Wyr = S;, € R™™,
Hwang and Sun (2017) consider two-step efficient GMM estimation and inference where the
weighting matrix and asymptotic variance matrix are based on the orthonormal series long run
variance estimator. In its general form, the two-step GMM estimator is given by

9GMM =arg g”gg gT(Q)'Wr_l(élv)gT(e) = {Séx[WT(élv)]_lszx}_l{séx[WT(éw)]_lSzy}
where
wr(8) =2 X1y 11 Qi (5,2) (v:(6) = 5(8)) (ve(8) — B(6))'» v(8) = Z,'(Y, — X,6).

and 7(0) = ¥T_,v,(8)/T. Note that WT(én,) is a quadratic estimator of the long run variance
of moment process {v:(0y)}. Qx(r,s) is a symmetric weighting function that depends on the
smoothing parameter K. Hwang and Sun (2017) focus on the orthonormal series LRV estimation

with Qg (r,s) = %Z;‘;l ¢;(r) ¢;(s), where {q[) j (-)}j,{:lare orthonormal basis functions on L2[0,1]

satisfying f01 ¢;(r)dr =0 for j =1,2,-,K.

We are interested in testing the null Hy: RO, = r against the alternative H;: R6, # r, where
r € RP*1 and R € RP*? is a matrix of full row rank. Nonlinear restrictions can be converted into
linear ones via the delta method. The Wald statistic is given by

~ ~ ' y 1A -1, ~
WT(QGMM) = \/T(RHGMM - T) {R(GT WTl(BGMM)GT) R }‘/T(RBGMM - T)/P
where G = Szx. Under the assumptions in Hwang and Sun (2017), the following result holds:

~ d
wg‘(gGMM) = Fpk—p-q+1s

where



N K-p—q+1 WT(§GMM)
We (6 = ()
T( GMM) K 1+%]T(96MM)

1s the modified Wald statistic and

1 (Beans) = K—q+1 Tgr(8emum) wr*(Bemm)gr(Bcum)
T K q
is the J statistics for testing overidentifying restrictions. Sun and Kim (2012) show that
]T(éGMM) converges in distribution to F(q,K —q + 1). Following Sun and Kim (2012) and
Hwang and Sun (2017), we select K based on the AMSE criterion implemented using the VAR(1)
plug-in procedure.
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Also see

[TS]tsset—Declare data to be time-series data.


http://econweb.ucsd.edu/~yisun/J_test.pdf
http://econweb.ucsd.edu/~yisun/J_test.pdf

