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1 Introduction

For models defined by moment restrictions, we often allow the moment process to have a non-
parametric autocorrelation structure, especially in macroeconomic and financial applications.
The generalized method of moments (GMM), initially proposed by Hansen (1982), is a work-
horse for these models. Inference in the GMM framework typically employs a nonparametric
estimator of the long-run variance (LRV) of the moment process. In the regression setting, which
is a special case of the GMM, this nonparametric LRV estimator is more commonly referred to
as the heteroskedasticity and autocorrelation robust (HAR) variance estimator. Conventional
asymptotic theory dictates that the HAR variance estimator is consistent. However, the accu-
racy of the resulting asymptotic approximation is often unsatisfactory. In particular, HAR tests
tend to over-reject, sometimes substantially, under the null hypothesis in finite samples. See, for
example, Andrews (1991), Hansen, Heaton, and Yaron (1996), and the other papers in the July
1996 special issue of the Journal of Business & Economic Statistics for evidence.

The recent literature has introduced alternative asymptotics to combat this problem. Unlike
the conventional asymptotics where the amount of nonparametric smoothing increases with the
sample size, the alternative asymptotics holds the amount of nonparametric smoothing fixed.
Hence, the alternative asymptotics is also called the fixed-smoothing asymptotics. There are
ample numerical evidence and theoretical results on the higher accuracy of fixed-smoothing as-
ymptotic approximations relative to conventional asymptotic approximations. See, for example,
Jansson (2004) and Sun, Phillips, and Jin (2008) for location models, and Sun (2014a, 2014b)
for the GMM framework.

Another source of the poor finite sample properties of HAR tests is related to the weak
identification of the model parameters, as Stock and Wright (2000) point out. Nonetheless, it is
possible to perform hypothesis testing and construct confidence intervals without assuming that
the parameters are identified. Stock and Wright (2000) propose using the S statistic constructed
directly from the GMM objective function, while Kleibergen (2005) proposes using the K statistic,
a Lagrangian-multiplier-type statistic constructed from the first-order derivative of the continuous
updating GMM (henceforth, CU-GMM) objective function.

Under some regularity conditions, both the K statistic and the S statistic are shown to follow
chi-squared distributions asymptotically under the null hypothesis, regardless of the strength of
the identification. However, these chi-squared approximations rely on the assumption that the
underlying LRV estimators are consistent in the presence of the heteroskedasticity and autocorre-
lation structure. In other words, the chi-squared approximations completely ignore the estimation
errors in the LRV estimators and effectively assume that these LRVs are known. For this reason,
the approximating chi-squared distributions can be far from the finite sample distributions.

The problem is especially severe for the K statistic, as all the underlying LRV estimators
employ the same smoothing parameter. To illustrate the point, consider the kernel approach
to LRV estimation with compactly supported kernels. In this case, the kernel estimators of the
LRVs of the moment process and Jacobian process take a weighted sum of the respective sample
autocovariances up to the same order (see Assumption 2 in Kleibergen (2005)). For these LRV
estimators to be consistent, the maximum order of autocovariances (i.e., the truncated lag) must
be suffi ciently large such that none of the LRV estimators suffers from a large bias. However,
when the maximum order of autocovariances is large, all the LRV estimators have high variation.
Hence, to improve the accuracy of approximations, the potentially high estimation uncertainty
should not be ignored.

This paper develops fixed-smoothing asymptotics for the K and S statistics to account for
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the estimation uncertainty in the underlying LRV estimators. It is built upon Sun (2014b)
and Hwang and Sun (2017), which establish fixed-smoothing asymptotics for the usual statistics
including the Lagrangian-multiplier (LM), Wald, and likelihood-ratio types of statistics in a
strongly identified GMM framework. The main departure is that we consider the CU-GMM
framework with possibly weak identification. As in Hwang and Sun (2017), we employ the
orthonormal series approach to LRV estimation. The simplest and most familiar example of this
estimator is the average periodogram estimator, which involves taking a simple average of the first
few periodograms. More generally, this approach involves first projecting the time series onto a
sequence of orthonormal basis functions such as the sine and cosine functions and then taking the
simple average of the squared projection coeffi cients as the LRV estimator. The number of basis
functions, which characterizes the amount of smoothing, is the smoothing parameter underlying
this orthonormal series LRV estimator.

By holding the number of basis functions fixed as the sample size increases, we establish a
novel result that a modified K statistic and a modified J statistic follow independent F distri-
butions in large samples. There are substantial challenges to establishing this intriguing result.
First, Kleibergen’s (2005) asymptotic chi-squared theory relies on the key result that the Jaco-
bian for the CU-GMM problem is asymptotically independent of the empirical moment vector.
Asymptotic independence may not hold when the estimation uncertainties in the LRV estimators
are accounted for. Second, the weighting matrix in the CU-GMM objective function converges to
a random matrix under fixed-smoothing asymptotics. This is in sharp contrast to Kleibergen’s
(2005) setting in which the weighting matrix converges to a deterministic matrix. As a result, the
weighting matrix is, by definition, asymptotically independent of all the involved random variables
including the Jacobian for the CU-GMM under conventional asymptotics. Such independence
does not hold under fixed-smoothing asymptotics. The absence of these two independence results
thus makes it challenging to show that the K statistic and J statistic are asymptotically pivotal.

To overcome these challenges, we employ singular value decompositions (SVDs) and condi-
tioning arguments. We also use the rotational invariance of the standard normal distribution
and Wishart distribution repeatedly. Along the way, we introduce some simple modifications to
the original K, J, and S statistics. For the J and S statistics, such modifications amount to a
multiplicative degree-of-freedom correction that is free of nuisance parameters. For the K statis-
tic, the modification involves both a degree-of-freedom correction and a correction that employs
the original J statistic. We show that the seemingly complicated asymptotic distributions are not
only pivotal but also equal to the standard F distributions.

The asymptotic F tests based on the modified K and S statistics are just as easy to use as the
chi-squared tests proposed by Kleibergen (2005) and Stock and Wright (2000). Like chi-squared
critical values, F critical values are readily available in standard programming environments
and software packages. Moreover, the asymptotic independence of the modified K statistic and
modified J statistic allows us to design a new and simple test to overcome the well-known power
deficiency of the usual K test. Monte Carlo simulations show that the F distributions provide
more accurate approximations of the distributions of the modified K, J, and S statistics than the
chi-squared distributions.

We use the following notation throughout the paper: E(a) is the expected value of the random
variable a and vec(A) stands for the column vectorization of the m × d dimensional matrix A :
vec(A) = (A′1, . . . , A

′
d)
′ when A = (A1, . . . , Ad). PA = A (A′A)−1A′ and MA = Im − PA. “→p”

indicates convergence in probability and “⇒”indicates convergence in distribution. We use “0”
or “O”to represent a matrix of zeros.
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The rest of the paper is organized as follows. Section 2 presents the K and S statistics
and the modified K, J, and S statistics, and reviews the asymptotic chi-squared theory for the
K and S statistics. Section 3 develops the fixed-smoothing asymptotics for the K, J, and S
statistics. Section 4 is devoted to establishing the asymptotic F theory for the modified K and J
statistics. While Sections 2—4 focus on testing the whole vector of the model parameters, Section
5 considers testing a subvector. Section 6 develops the asymptotic F theory for the modified S
statistic. Section 7 uses the asymptotic properties of the K and J statistics to design a more
powerful test. Section 8 reports simulation evidence and presents an empirical application. The
last section concludes. All proofs are given in Appendix A.

2 Basic Setting and Asymptotic Chi-squared Theory

2.1 The K, J, and S statistics and their modifications

Let Yt ∈ RdY be a vector of observations at time t, and f (Yt, ·) an m× 1 vector of continuously
differentiable functions such that the following moment restriction

Ef (Yt, θ0) = 0, for t = 1, . . . , T, (1)

holds for θ0 ∈ Θ ∈ Rd. The degree of potential overidentification is denoted by q := m− d. We
allow the process f (Yt, θ0) to exhibit heteroskedasticity and autocorrelation of unknown forms.
We are interested in testing

H0 : θ = θ0 against H1 : θ 6= θ0.

Since the null hypothesis pins down the full parameter vector, testing without assuming identi-
fication is feasible1. For example, we can use the K test of Kleibergen (2005) and the S test of
Stock and Wright (2000), both of which are based on the CU-GMM objective function.

To introduce the CU-GMM objective function, we let Vff (θ) be the long-run variance of the
moment process, that is,

Vff (θ) = lim
T→∞

var

(
1√
T

T∑
t=1

f (Yt, θ)

)
.

A nonparametric estimator of the LRV takes the quadratic form

V̂ff (θ) =
1

T

T∑
t=1

T∑
s=1

ωh

(
t

T
,
s

T

)[
f (Yt, θ)− f̄ (Y, θ)

] [
f (Ys, θ)− f̄ (Y, θ)

]′
,

where f̄ (Y, θ) = T−1
∑T

t=1 f (Yt, θ), ωh (·, ·) is a weighting function and h is the smoothing para-
meter indicating the amount of nonparametric smoothing. For example, we can take ωh(t/T, s/T ) =
k ((t− s) / (hT )) for a kernel function k (·) , leading to the usual kernel LRV estimator. With the
LRV estimator V̂ff (θ) , the CU-GMM objective function is2

QT (θ) =
1

2

[
1√
T

T∑
t=1

f (Yt, θ)

]′
V̂ −1

ff (θ)

[
1√
T

T∑
t=1

f (Yt, θ)

]
.

1We consider subvector testing in Section 5.
2The multiplicative factor of 1/2 is introduced for notational convenience in our later development.
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The K statistic is based on the first-order derivative of QT (θ). Define

gj (Yt, θ) =
∂f (Yt, θ)

∂θj
∈ Rm×1, j = 1, . . . , d,

g (Yt, θ) =
∂f (Yt, θ)

∂θ′
= (g1 (Yt, θ) , . . . , gd (Yt, θ)) ∈ Rm×d,

ḡ (Yt, θ) =
1

T

T∑
t=1

∂f (Yt, θ)

∂θ′
∈ Rm×d.

Taking the first-order and second-order derivatives of V̂ff (θ) with respect to θj , we obtain the
following LRV estimators3:

V̂gjf (θ) =
1

T

T∑
t=1

T∑
s=1

ωh

(
t

T
,
s

T

)
[gj (Yt, θ)− ḡ (Y, θ)]

[
f (Ys, θ)− f̄ (Y, θ)

]′
,

V̂gjgj (θ) =
1

T

T∑
t=1

T∑
s=1

ωh

(
t

T
,
s

T

)
[gj (Yt, θ)− ḡj (Y, θ)] [gj (Ys, θ)− ḡj (Y, θ)]′ .

Then,

∂QT (θ)

∂θ
= DT (θ)′ V̂ −1

ff (θ)

[
1√
T

T∑
t=1

f (Yt, θ)

]
,

where

DT (θ) = [DT,1 (θ) , . . . , DT,d (θ)] ∈ Rm×d with (2)

DT,j (θ) =

[
1√
T

T∑
t=1

gj(Yt, θ)

]
− V̂gjf (θ) V̂ −1

ff (θ)

[
1√
T

T∑
t=1

f (Yt, θ)

]
∈ Rm×1.

The K statistic for testing H0 : θ = θ0 against H1 : θ 6= θ0 is

KT (θ0) =

(
∂QT (θ0)

∂θ

)′ [
DT (θ0)′ V̂ −1

ff (θ0)DT (θ0)
]−1

(
∂QT (θ0)

∂θ

)
,

where, for a function φ (θ) , ∂φ (θ0) /∂θ is defined to be

∂φ (θ0)

∂θ
=
∂φ (θ)

∂θ

∣∣∣∣
θ=θ0

∈ Rd×1.

The S statistic is proportional to the CU-GMM objective function and is given by

ST (θ0) = 2QT (θ0) .

To develop our fixed-smoothing asymptotics, we employ the orthonormal series LRV estimator
so that

ωh

(
t

T
,
s

T

)
=

1

G

G∑
`=1

Φ`

(
t

T

)
Φ`

( s
T

)
,

3Strictly speaking, V̂gjf (θ) is a long-run covariance estimator, but we refer to it as LRV for convenience.
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where G is the smoothing parameter for this estimator and Φ` (·) is a set of basis functions on
L2[0, 1]. With this choice of the weighting function ωh (·, ·) , the LRV estimator V̂ff (θ) becomes4

V̂ff (θ) =
1

G

G∑
`=1

{
1√
T

T∑
t=1

Φ`

(
t

T

)[
f (Yt, θ)− f̄ (Y, θ)

]}{ 1√
T

T∑
t=1

Φ`

(
t

T

)[
f (Yt, θ)− f̄ (Y, θ)

]}′
.

In the econometrics literature, the orthonormal series LRV estimator has recently been used by,
for example, Phillips (2005), Müller (2007), Sun (2011, 2013, 2014a,b,c), Liu and Sun (2019),
and Lazarus, Lewis, Stock, and Watson (2016, 2018).

Our asymptotic F theory will be developed for modified versions of the usual statistics. The
modification involves the following J statistic:

JT (θ0) = ST (θ0)−KT (θ0)

=

[
1√
T

T∑
t=1

f (Yt, θ0)

]′
V̂ −1

ff (θ0)

[
1√
T

T∑
t=1

f (Yt, θ0)

]

−
(
∂QT (θ0)

∂θ

)′ [
DT (θ0)′ V̂ −1

ff (θ0)DT (θ0)
]−1

(
∂QT (θ0)

∂θ

)
. (3)

Define

f̃ (Yt, θ0) =

{
Im −DT (θ0)

[
DT (θ0)′ V̂ −1

ff (θ0)DT (θ0)
]−1

DT (θ0)′ V̂ −1
ff (θ0)

}
f (Yt, θ0) .

Then, some algebra shows that

JT (θ0) =

[
1√
T

T∑
t=1

f̃ (Yt, θ0)

]′
V̂ −1

ff (θ0)

[
1√
T

T∑
t=1

f̃ (Yt, θ0)

]
.

Note that JT (θ0) is not the same as the usual J statistic, which is given by

J̃T (θ̂) =

[
1√
T

T∑
t=1

f
(
Yt, θ̂

)]′
V̂ −1

ff (θ̂)

[
1√
T

T∑
t=1

f
(
Yt, θ̂

)]
,

for an estimator θ̂ of θ0.
The modified K, J, and S statistics are defined as

K∗T := K∗T (θ0) =
G−m+ 1

Gd

KT (θ0)

1 + JT (θ0) /G
,

J ∗T := J ∗T (θ0) =
G− q + 1

Gq
JT (θ0) ,

S∗T := S∗T (θ0) :=
G−m+ 1

Gm
ST (θ0) .

We show that all three statistics are asymptotically F-distributed under the fixed-smoothing
asymptotics.

4The literature typically uses K in place of G. To avoid the possible confusion with the K statistic, we use G
to denote the number of basis functions in this paper.
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2.2 Conventional asymptotic chi-squared theory

Before deriving the fixed-smoothing asymptotics, it is useful to review the conventional asymp-
totic chi-squared theory for the K and S statistics. To find the conventional asymptotic distrib-
utions of the original K statistic KT (θ0) and the S statistic ST (θ0), we maintain the following
two assumptions.

Assumption 2.1 The following CLT holds:(
1√
T

∑T
t=1 [f (Yt, θ0)− Ef (Yt, θ0)]

1√
T

∑T
t=1 vec [g (Yt, θ0)− Eg (Yt, θ0)]

)
⇒
(
ψf
ψg

)
,

where ψf ∈ Rm×1, ψg ∈ Rmd×1, and(
ψf
ψg

)
∼ N [0, V (θ0)]

for

V (θ0) =

(
Vff (θ0) Vfg (θ0)
Vgf (θ0) Vgg (θ0)

)
.

Assumption 2.2 V̂ff (θ0)→p Vff (θ0), Vff (θ0) is positive definite, and for j = 1, . . . , d

V̂gjf (θ0)→p Vgjf (θ0) .

Assumption 2.1 is the same as Assumption 1 in Kleibergen (2005). Assumption 2.2 is the
working assumption maintained throughout Kleibergen (2005).

We introduce a notational convention. When a (random) variable depends on the true para-
meter value, we often suppress this dependence. For example, we write

V (θ0) := V =

(
Vff Vfg
Vgf Vgg

)
and DT (θ0) := DT .

For easy reference, we call DT (θ0) the CU Jacobian.
Now, under Assumptions 2.1 and 2.2, we have

DT,j (θ0)−
√
TEgj(Yt, θ0)

=
1√
T

T∑
t=1

[gj(Yt, θ0)− Egj(Yt, θ0)]− V̂gjf (θ0) V̂ −1
ff (θ0)

[
1√
T

T∑
t=1

f (Yt, θ0)

]
⇒ ψgj − VgjfV

−1
ff ψf := ψgj ·f .

Note that ψgj ·f is independent of ψf because they are normally distributed with zero covariance:

cov(ψgj ·f , ψf ) = cov(ψgj − VgjfV
−1

ff ψf , ψf ) = Vgjf − VgjfV −1
ff Vff = 0.

This means that DT (θ0) is asymptotically independent of
∑T

t=1 f (Yt, θ0) /
√
T . It then follows

that
KT (θ0)⇒ χ2

d under the null H0.
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For the S statistic, Assumptions 2.1 and 2.2 imply that5

ST (θ0)⇒ χ2
m under the null H0.

A component of ∂V̂ff (θ0) /∂θj is V̂gjf (θ0) . Assumption 2.2 requires not only that V̂ff (θ0) is a
consistent estimator of Vff (θ0) but also that each derivative ∂V̂ff (θ0) /∂θj is a consistent estimator
of the corresponding derivative ∂Vff (θ0) /∂θj . Using the consistency results amounts to approx-
imating the distributions of the two sets of LRV estimators, namely V̂ff (θ0) and {V̂gjf (θ0)}dj=1,
by their respective degenerate distributions. This may not be much of a problem if such an
approximation is applied to only one LRV estimator and the underlying process has very weak
dependence. However, here we apply the degenerate approximations to potentially many LRV
estimators, each of which is governed by the same smoothing parameter used in the construction
of V̂ff (θ0) . The single smoothing parameter must be tailored toward both the moment processes
and the Jacobian processes, some of which may be strongly autocorrelated. For this reason,
the smoothing parameter used in V̂ff (θ0) must account for the autocovariances of high orders,
even though this is not necessary for estimating Vff (θ0) itself. The estimation uncertainties in
V̂ff (θ0) and hence in {V̂gjf (θ0)}dj=1 can therefore be very high. Ignoring them may lead to a poor
approximation in finite samples.

3 Fixed-smoothing Asymptotics for the K, J, and S Statistics

The analysis in the previous section motivates us to study the fixed-smoothing asymptotics under
which G is held fixed as T → ∞. Under this type of asymptotics, the estimation uncertainties
in V̂ff (θ0) and {V̂gjf (θ0)}dj=1 are all retained in the limit, and as a result, the fixed-smoothing
asymptotic approximations are more accurate than the chi-squared approximations. Since G is
fixed, this type of asymptotics may be referred to as the fixed-G asymptotics. We consider the
fixed-G asymptotics hereafter.

We first present an assumption on the model identification.

Assumption 3.1 For κ ∈ [0, 1/2],

T κEg(Yt, θ0)→ Π = (Π1, . . . ,Πd) ∈ Rm×d

for a constant matrix Π, and Π 6= 0 for κ ∈ [0, 1/2).

When κ = 0 and Π has a full column rank, θ0 can be consistently estimated at the usual
√
T

rate. When κ ∈ (0, 1/2) and Π has a full column rank, θ0 can still be consistently estimated,
albeit at a rate slower than

√
T . In later sections, we refer to the case with κ ∈ [0, 1/2) as the

case with possibly weak identification. When κ = 1/2 and Π = 0, θ0 cannot be consistently
estimated, and the model contains no information about θ0 to the first order. We refer to this
case as the case with complete identification failure. The case with κ = 1/2 and Π 6= 0 is the
intermediate case in which θ0 cannot be consistently estimated, but the model contains some
information about θ0.

The next assumption generalizes Assumption 2.1.

5Weaker assumptions can be used to obtain this result. For example, it suffi ces that V̂ff (θ0) →p Vff (θ0) for a
positive definite matrix Vff (θ0) and that T−1/2∑T

t=1 f (Yt, θ0)⇒ N (0, Vff (θ0)) .
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Assumption 3.2 The following functional CLT (FCLT) holds:(
1√
T

∑[Tr]
t=1 [f (Yt, θ0)− Ef (Yt, θ0)]

1√
T

∑[Tr]
t=1 vec [g (Yt, θ0)− Eg (Yt, θ0)]

)

⇒
(
Bf (r)
Bg (r)

)
=

(
Vff Vfg
Vgf Vgg

)1/2(
Wf (r)
Wg (r)

)
=

(
V

1/2
ff 0

Vgf V
−1/2

ff V
1/2

g·f

)(
Wf (r)
Wg (r)

)
,

where
Bg (r) =

(
B′g1

(r) , . . . , B′gd (r)
)′ ∈ Rdm×1

is a vector Brownian motion process and

Wg (r) =
(
W ′g1

(r) , . . . ,W ′gd (r)
)′ ∈ Rdm×1

is a standard vector Brownian motion process.

Assumption 3.2 is stronger than necessary. It can be replaced by Assumption 2.1 and a
multivariate CLT that ensures (5) and (6) below. See Sun (2014a,b) for details. Suffi cient
moment and mixing conditions for the CLT or FCLT can be found, for example, in Theorem 7.18
of White (2001).

For each Bgj (r) ∈ Rm×1, j = 1, . . . , d, we write

Bgj (r) = VgjfV
−1

ff Bf (r) +Bgj ·f (r) , (4)

where Bf (r) and Bgj ·f (r) are independent Brownian motions. Furthermore, let Vgj ·f = Vgjgj −
VgjfV

−1
ff Vfgj , and define

Wgj (r) = V −1/2
gjgj Bgj (r) , Wf (r) = V

−1/2
ff Bf (r) , and Wgj ·f (r) = V

−1/2
gj ·f Bgj ·f (r) .

Then, Wgj (r), Wf (r) , and Wgj ·f (r) are standard Brownian motions. Plugging them into (4)
leads to

Wgj (r) = V −1/2
gjgj VgjfV

−1/2
ff ·Wf (r) + V −1/2

gjgj V
1/2

gj ·f ·Wgj ·f (r) .

For the basis functions used in the LRV estimation, we maintain the following assumption,
which is the same as Assumption 1(b) in Sun (2014b).

Assumption 3.3 For ` = 1, 2, . . . , G, the basis functions Φ` (·) are piecewise monotonic, con-
tinuously differentiable, and orthonormal in L2[0, 1] and satisfy

∫ 1
0 Φ` (x) dx = 0.

Under Assumptions 3.2 and 3.3, we have

1√
T

T∑
t=1

Φ`

(
t

T

)[
f (Yt, θ0)− f̄(Y, θ0)

]
⇒
∫ 1

0
Φ` (r) dBf (r) := ξf,` (5)

1√
T

T∑
t=1

Φ`

(
t

T

)
[gj (Yt, θ0)− ḡj(Y, θ0)]⇒

∫ 1

0
Φ` (r) dBgj (r) := ξgj ,` (6)
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jointly over j = 1, 2, . . . , d and ` = 1, . . . , G. Let ξgj ·f,` =
∫ 1

0 Φ` (r) dBgj ·f (r). Then, we have

ξgj ,` = VgjfV
−1

ff ξf,` + ξgj ·f,`.

Let ηf,`, ηgj ,`, and ηgj ·f,` be the scale-free versions of ξf,`, ξgj ,`, and ξgj ·f,`. We have

ηf,` :=

∫ 1

0
Φ` (r) dWf (r) ∼ iidN(0, Im) over ` = 1, . . . , G;

ηgj ,` :=

∫ 1

0
Φ` (r) dWgj (r) ∼ iidN(0, Im) over ` = 1, . . . , G;

ηgj ·f,` :=

∫ 1

0
Φ` (r) dWgj ·f (r) ∼ iidN(0, Im) over ` = 1, . . . , G.

The iid properties hold because {Φ` (·) , ` = 1, . . . , G} are orthonormal on L2[0, 1] and Wgj (r) ,
Wf (r) , and Wgj ·f (r) are standard Brownian motions. We collect some useful results in the
following lemma.

Lemma 3.1 Let Assumptions 3.2 and 3.3 hold.
(a)

{
ηf,`, ` = 1, . . . , G

}
and

{
ηgj ·f,` : j = 1, . . . , d, ` = 1, . . . , G

}
are independent.

(b) Wf (1) is independent of
{
ηf,`, ` = 1, . . . , G

}
and Wgj ·f (1) is independent of {ηgj ·f,`, ` =

1, . . . , G}.
(c) {Wgj ·f (1) , j = 1, . . . , d} are independent of

{
ηf,`, ` = 1, . . . , G

}
and Wf (1) is independent

of {ηgj ·f,` : j = 1, . . . , d, ` = 1, . . . , G}.

Lemma 3.1(a) holds because Wf (·) and Wgj ·f (·) are independent. Lemmas 3.1(b) and 3.1(c)
follow from the condition that

∫ 1
0 Φ` (r) dr = 0 and the independence betweenWf (·) andWgj ·f (·).

The following lemma establishes the asymptotic behavior of the LRV estimators and CU
Jacobian for different values of κ.

Lemma 3.2 Let Assumptions 3.1, 3.2, and 3.3 hold. Then,

V̂ff (θ0)⇒ 1

G

G∑
`=1

ξf,`ξ
′
f,`, V̂gjf (θ0)⇒ 1

G

G∑
`=1

ξgj ,`ξ
′
f,`,

and
DT (θ0)

T 1/2−κ ⇒ D∞,

where

D∞ = (D∞,1, . . . , D∞,d) ∈ Rm×d for D∞,j = Πj + 1

{
κ =

1

2

}
B̃gj ·f (1)

and

B̃gj ·f (1) = Bgj (1)−
[

1

G

G∑
`=1

ξgj ,`ξ
′
f,`

][
1

G

G∑
`=1

ξf,`ξ
′
f,`

]−1

Bf (1) . (7)
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Note that B̃gj ·f (1) is not the same as Bgj ·f (1) , which is equal to Bgj (1)−VgjfV −1
ff Bf (1). The

difference lies in the implicit projection coeffi cient. While Bgj ·f (1) is based on the true projection
coeffi cient VgjfV

−1
ff , B̃gj ·f (1) is based on the limit of the estimated version V̂gjf V̂

−1
ff . Under the

fixed-smoothing asymptotics, the limit of V̂gjf V̂
−1

ff is not equal to VgjfV
−1

ff . The difference has
profound implications on our asymptotic development for the case that κ = 1/2. While Bgj ·f (1) is
independent of Bf (1) , B̃gj ·f (1) is not. The Jacobian for the CUE is therefore not asymptotically
independent of the moment process. This is in sharp contrast to Kleibergen (2005), where
asymptotic independence holds even for the case with κ = 1/2. Section 4.2 provides additional
details.

Using Lemma 3.2, we can establish the fixed-smoothing asymptotics of the K, J, and S
statistics.

First, for the K statistic, we have

KT (θ0)

=

{
D′T

T 1/2−κ V̂
−1

ff

1√
T

T∑
t=1

f (Yt, θ0)

}′ [
D′T

T 1/2−κ V̂
−1

ff

DT

T 1/2−κ

]−1 D′T
T 1/2−κ V̂

−1
ff

1√
T

T∑
t=1

f (Yt, θ0)

⇒ Bf (1)′
[

1

G

G∑
`=1

ξf,`ξ
′
f,`

]−1

D∞

D′∞
[

1

G

G∑
`=1

ξf,`ξ
′
f,`

]−1

D∞


−1

D′∞

[
1

G

G∑
`=1

ξf,`ξ
′
f,`

]−1

Bf (1)

:= K∞,θ.

Representing K∞,θ using scale-free random variables and processes, we have

K∞,θ =
[
V
−1/2

ff Bf (1)
]′ [ 1

G

G∑
`=1

V
−1/2

ff ξf,`

(
V
−1/2

ff ξf,`

)′]−1

× V −1/2
ff D∞

(V −1/2
ff D∞

)′ [ 1

G

G∑
`=1

V
−1/2

ff ξf,`

(
V
−1/2

ff ξf,`

)′]−1

V
−1/2

ff D∞


−1 (

V
−1/2

ff D∞
)′

×
[

1

G

G∑
`=1

V
−1/2

ff ξf,`

(
V
−1/2

ff ξf,`

)′]−1

V
−1/2

ff Bf (1)

= Wf (1)′ C̃−1
∞ D̃∞

{
D̃′∞C̃

−1
∞ D̃∞

}−1
D̃′∞C̃

−1
∞ Wf (1)

=
∥∥∥P

C̃
−1/2
∞ D̃∞

C̃−1/2
∞ Wf (1)

∥∥∥2
, (8)

where D̃∞ = V
−1/2

ff D∞ and

C̃∞ =
1

G

G∑
`=1

ηf,`η
′
f,`.

Second, for the J statistic, we note that

1√
T

T∑
t=1

f̃ (Yt, θ0)⇒ V
1/2

ff

[
Wf (1)− D̃∞

{
D̃′∞C̃

−1
∞ D̃∞

}−1 {
D̃′∞C̃

−1
∞ Wf (1)

}]
,
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and so

JT (θ0)⇒
[
Wf (1)− D̃∞

{
D̃′∞C̃

−1
∞ D̃∞

}−1 {
D̃′∞C̃

−1
∞ Wf (1)

}]′
C̃−1
∞

×
[
Wf (1)− D̃∞

{
D̃′∞C̃

−1
∞ D̃∞

}−1 {
D̃′∞C̃

−1
∞ Wf (1)

}]
=
∥∥∥M

C̃
−1/2
∞ D̃∞

C̃−1/2
∞ Wf (1)

∥∥∥2
:= J∞,θ,

which holds jointly with KT (θ0) ⇒ K∞,θ. Finally, given that ST (θ0) = JT (θ0) + KT (θ0) , we
have

ST (θ0)⇒
∥∥∥C̃−1/2
∞ Wf (1)

∥∥∥2
= Wf (1)′ C̃−1

∞ Wf (1) := S∞,θ.

Although the fixed-smoothing asymptotic distributions of KT (θ0), JT (θ0) , and ST (θ0) look
complicated, they provide the basis for developing the asymptotic F theory for K∗T (θ0) ,J ∗T (θ0),
and S∗T (θ0). In the next two sections, we focus on the modified K and J statistics and obtain their
asymptotic distributions under different assumptions on the strength of the identification. Since
the distribution of the modified S statistic does not depend on the identification assumptions, its
analysis is carried out separately in Section 6.

4 Asymptotic F Theory for the Modified K and J Statistics

4.1 The case with possibly weak identification

In this subsection, we consider the case κ ∈ [0, 1/2).When κ = 0, we have the usual case of strong
identification, and θ0 is

√
T estimable. When κ ∈ (0, 1/2), θ0 can still be consistently estimated,

but the rate of convergence is slower than the usual parametric
√
T rate. See, for example, Caner

(2010).
By Lemma 3.2, when κ ∈ [0, 1/2), the limit D∞ of the normalized CU Jacobian, namely

DT /T
1/2−κ, is a deterministic matrix. By definition, D∞ is independent of any random vari-

able including Bf (1) , the limit of the empirical moment vector. Therefore, the normalized CU
Jacobian is asymptotically independent of the empirical moment vector. This brings our case
with κ ∈ [0, 1/2) close to what is considered in Kleibergen (2005). Nevertheless, there is a major
difference. Under the usual asymptotics that Kleibergen (2005) employs, the LRV estimator V̂ff

converges in probability to the true LRV Vff , and so the randomness of the weighting matrix in
the CU-GMM objective function QT (θ0) vanishes. By contrast, under the fixed-smoothing as-
ymptotics, the randomness is retained in the limit with the consequential effect on the asymptotic
distribution of the K statistic. The GMM with a random weighting matrix in the limit has been
studied by Sun (2014b) and Hwang and Sun (2017), who consider a two-step GMM framework
with strong identification. Despite this difference, we can adopt the idea in Sun (2014b) and
Hwang and Sun (2017) to prove the following theorem.

Theorem 4.1 Let Assumptions 3.1—3.3 hold. If κ ∈ [0, 1/2) and Π has a full column rank, then

[K∗T (θ0) ,J ∗T (θ0)]⇒
[
K∗∞,θ,J ∗∞,θ

]
=d [Fd,G−m+1, Fq,G−q+1] ,

where Fd,G−m+1 and Fq,G−q+1 are independent F variates.
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Partitioning the matrix C̃∞ and the vector Wf (1) , we write

C̃∞ =
1

G

G∑
`=1

ηf,`η
′
f,` =

(
C̃dd, C̃dq
C̃qd, C̃qq

)
and Wf (1) =

(
Wf,d (1)
Wf,q (1)

)
, (9)

where C̃dd ∈ Rd×d, C̃qq ∈ Rq×q, C̃dq ∈ Rd×q, C̃qd ∈ Rq×d, Wf,d (1) ∈ Rd×1, and Wf,q (1) ∈ Rq×1.
To obtain the asymptotic F distribution for K∗T (θ0) in Theorem 4.1, we first use the SVD of D̃∞
and the partitioned matrix inversion formula to show that

K∞,θ =d
[
Wf,d (1)− C̃dqC̃−1

qq Wf,q (1)
]′
C̃−1
dd·q

[
Wf,d (1)− C̃dqC̃−1

qq Wf,q (1)
]
,

where C̃dd·q = C̃dd− C̃dqC̃−1
qq C̃qd. That is, K∞,θ is equal in distribution to a quadratic form in the

vector Wf,d (1)− C̃dqC̃−1
qq Wf,q (1) with C̃dd·q as the (inverse) weighting matrix. While Hotelling’s

T 2 distribution also takes a quadratic form, the underlying vector is standard normal and the
weighting matrix follows an independent Wishart distribution. This inspires us to transform the
original K statistic KT (θ0) so that the resulting limiting distribution takes the form of a T 2

distribution. This transformation involves the J statistic JT (θ0) and amounts to dividing the
original K statistic by 1 + G−1JT (θ0) . With additional multiplicative rescaling, we then turn
the T 2 distribution into the standard F distribution. This explains how the modified K statistic
K∗T (θ0) is constructed.

Theorem 4.1 shows that the modified K and J statistics converge weakly to independent F
distributions. This intriguing result is used later to design a new test that overcomes a drawback
of the LM-type or score-type tests such as the K test.

4.2 The case with complete identification failure

We consider κ = 1/2, in which case, by Lemma 3.2,

DT,j (θ0)⇒ D∞,j = Πj + B̃gj ·f (1) = D∞,j ∈ Rm×1.

We further assume that Π = 0 so that
√
TEg(Yt, θ0) → 0 as T → ∞. That is, Eg(Yt, θ0)

converges to a zero matrix at a rate faster than 1/
√
T . When κ = 1/2 and Π = 0, the model

parameter θ0 is not identified, and we have complete identification failure. An extreme case is
Eg(Yt, θ0) = 0, in which case the moment conditions provide no information about θ0 and none
of the linear combinations of θ0 is identified. An example of this case is an instrumental variable
(IV) regression where the instruments are completely irrelevant.

In the case of complete identification failure, DT (θ0) converges to a random matrix D∞. The
columns of the random matrix D∞ are {B̃gj ·f (1)}, which are not independent of {C̃−1

∞ ,Wf (1)}.
This scenario is completely different from that of Kleibergen (2005), where the CU Jacobian
is asymptotically independent of the empirical moment vector. We also cannot use the same
arguments as in the proofs of Theorem 4.1 directly. Nevertheless, we can establish the same
result as in Theorem 4.1.

Theorem 4.2 Let Assumptions 3.1—3.3 hold. If κ = 1/2 and Π = 0, then

[K∗T (θ0) ,J ∗T (θ0)]⇒
[
K∗∞,θ,J ∗∞,θ

]
=d [Fd,G−m+1, Fq,G−q+1] ,

where Fd,G−m+1 and Fq,G−q+1 are independent F variates.
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To prove the first part of the theorem, we first represent D∞,j = B̃gj ·f (1) in terms of the
scale-free random variables and processes:

B̃gj ·f (1) = V
1/2
gj ·fW̃gj ·f (1) ,

where

W̃gj ·f (1) = Wgj ·f (1)−
[

1

G

G∑
`=1

ηgj ·f,`η
′
f,`

][
1

G

G∑
`=1

ηf,`η
′
f,`

]−1

Wf (1) . (10)

Owing to the presence of the second term in (10), which captures the projection uncertainty,
W̃gj ·f (1) is not independent of {C̃−1

∞ , Wf (1)}. The question is whether a transformation of
W̃gj ·f (1) is independent of {C̃−1

∞ ,Wf (1)}. In view of the conditional normality of W̃gj ·f (1) con-
ditional on

{
ηf,` : ` = 1, . . . , G

}
and Wf (1), it is natural to employ rescaling by its conditional

standard deviation as the transformation. We show in the proof of Theorem 4.2 that the condi-
tional variance of W̃gj ·f (1) is [1 +G−1Wf (1)′ C̃−1

∞ Wf (1)]Im, a scalar matrix. This motivates us
to define

D̃∗∞,j :=
D̃∞,j√

1 +G−1Wf (1)′ C̃−1
∞ Wf (1)

. (11)

The key step in proving Theorem 4.2 is to show that {D̃∗∞,j} are independent of C̃−1
∞ and Wf (1).

Then, by conditioning on {D̃∗∞,j}, we effectively reduce the problem to the previous case in which
the limit of the CU Jacobian is a deterministic matrix.

Note that ST (θ0) ⇒ Wf (1)′ C̃−1
∞ Wf (1) . In terms of the K and J statistics, the rescaling

defined in (11) amounts to replacing DT (θ0) by DT (θ0) /
√

1 +G−1ST (θ0) in the definitions of
KT (θ0) and JT (θ0) . Such a replacement has no effect on these two statistics, as the relevant terms
take a self-normalized form. We employ the rescaling in (11) only in our theoretical development.
There is no need to change the original or modified statistic.

It is reassuring that [K∗T (θ0) ,J ∗T (θ0)] ⇒ [Fd,G−m+1, Fq,G−q+1], regardless of whether θ0 is
weakly identified or unidentified. We can use the F approximations without knowing the strength
of the identification.

4.3 The intermediate case

We consider the case with κ = 1/2 but now

DT,j (θ0)⇒ D∞,j = Πj + B̃gj ·f (1) ,

for some Π 6= 0. That is,
√
TEgj(Yt, θ0) 6= 0 for some j. In this case, θ0 is not identified, as the

noise and signal are of the same order. However, there is still some information about θ0. The
case is analogous to the simple IV regression where the covariance between the instrument and
endogenous variable is small in that it goes to zero at the exact rate of 1/

√
T .
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We proceed as in Section 4.2 to define

D̃∗∞,j =
D̃∞,j√

1 +G−1Wf (1)′ C̃−1
∞ Wf (1)

= V
−1/2

ff

Πj√
1 +G−1Wf (1)′ C̃−1

∞ Wf (1)
+ V

−1/2
ff V

1/2
gj ·f

W̃gj ·f (1)√
1 +G−1Wf (1)′ C̃−1

∞ Wf (1)

= V
−1/2

ff

Πj√
1 +G−1Wf (1)′ C̃−1

∞ Wf (1)
+ V

−1/2
ff V

1/2
gj ·fW̃

∗
gj ·f (1) .

Compared with D̃∗∞,j in Section 4.2, D̃
∗
∞,j now contains an additional term, namely the first term

in the above expression. The presence of this first term invalidates our arguments in Section 4.2
because Wf (1)′ C̃−1

∞ Wf (1) and hence the first term are not independent of {C̃−1
∞ ,Wf (1)}. More

fundamentally, it is the mixture of the two distributions in D∞,j that creates a dilemma. If only
Πj is present for all j, we can use the arguments in Section 4.1 to establish the asymptotic F
theory. If only B̃gj ·f (1) is present for all j, then we can use the arguments in Section 4.2 to
establish the same theory. However, the arguments in Sections 4.1 and 4.2 are different and
cannot be included in a unified framework.

In general, when Vg·f 6= 0, the limiting distribution K∞,θ is not free of nuisance parameters.
Appendix B provides detailed arguments. However, under the increasing-smoothing asymptotics
wherein G→∞ but G/T → 0 as T →∞, we have

K∗T =
KT (θ0)

d
(1 + op (1))⇒ χ2

d/d,

using the same arguments in proving the chi-squared approximation in Section 2.2. In the mean-
while, we have

Fd,G−m+1 ⇒ χ2
d/d,

as G → ∞. Therefore, the F approximation Fd,G−m+1 is asymptotically valid for the modified
K statistic K∗T under the increasing-smoothing asymptotics. Similarly, the F approximation
Fq,G−q+1 is asymptotically valid for the modified J statistic J ∗T .

Although we cannot establish the asymptotic F theory for the intermediate case, we recom-
mend using it in practice. Our simulation results show that the F approximations are still more
accurate than the chi-squared approximations in finite samples. This is expected, as the F ap-
proximations still capture much of the uncertainty in the underlying LRV estimators, while the
chi-squared approximations completely ignore it.

5 Testing Hypotheses on Subsets of the Parameters

In the previous sections, the null hypothesis pins down all the elements of θ0. However, in many
empirical applications, we may be interested in testing only a subset of the parameters. Suppose
now that θ can be partitioned as θ = (α′, β′)′, where α ∈ Rdα , β ∈ Rdβ , and dα +dβ = d. Assume
further that α is locally strongly identified (see Assumption 5.1), whereas β may not be. We
would like to test the null of

H∗0 : β = β0
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while leaving α unspecified. Under the null hypothesis above, we estimate α by

α̂ (β0) = arg min
α∈A

QT (α, β0) ,

where A is a compact parameter space. For notational simplicity, we write α̂ = α̂ (β0) with the
understanding that α̂ is the restricted CU-GMM estimator under the null H∗0 . Let α0 be the
probability limit of α̂0. Denote θ0 = (α′0, β

′
0)′ and θ̂0 = (α̂′, β′0)′.

The K statistic for testing H∗0 is

KT (θ̂0) =

(
∂QT (θ̂0)

∂θ

)′ [
DT (θ̂0)′V̂ −1

ff (θ̂0)DT (θ̂0)
]−1

(
∂QT (θ̂0)

∂θ

)
,

and the S statistic is ST (θ̂0) = 2QT (θ̂0). The construction of the statistics KT (θ̂0) and ST (θ̂0) is
the same as in the case for testing the full parameter vector. The only difference is that all the
statistics are now evaluated at θ̂0.

The modified K statistic involves the J statistic:

JT (θ̂0) = ST (θ̂0)−KT (θ̂0) =

[
1√
T

T∑
t=1

f̃(Yt, θ̂0)

]′
V̂ −1

ff (θ̂0)

[
1√
T

T∑
t=1

f̃(Yt, θ̂0)

]
,

which takes the same form as before but is now evaluated at θ̂0. With JT (θ̂0), we define the
modified K, J, and S statistics as

K∗T (θ̂0) =
G− dβ − q + 1

Gdβ

KT (θ̂0)

1 +G−1JT (θ̂0)
,

J ∗T (θ̂0) =
G− q + 1

Gq
JT (θ̂0),

S∗T (θ̂0) =
G− dβ − q + 1

G (dβ + q)
ST (θ̂0).

To obtain an explicit expression for the modified K statistic, we partition each of DT (θ) and
g(Yt, θ) into two blocks:

DT (θ) = [DT,α (θ) , DT,β (θ)] with DT,α (θ) ∈ Rm×dα and DT,β (θ) ∈ Rm×dβ

g(Yt, θ) = [gα(Yt, θ), gβ(Yt, θ)] with gα(Yt, θ) ∈ Rm×dα and gβ(Yt, θ) ∈ Rm×dβ .

Then,

∂QT (θ̂0)

∂θ
= DT (θ̂0)′V −1

ff (θ̂0)

[
1√
T

T∑
t=1

f(Yt, θ̂0)

]

=

 DT,α(θ̂0)′V̂ −1
ff (θ̂0)

[
1√
T

∑T
t=1 f(Yt, θ̂0)

]
DT,β(θ̂0)′V̂ −1

ff (θ̂0)
[

1√
T

∑T
t=1 f(Yt, θ̂0)

] 
=

(
0dα×d

DT,β(θ̂0)′V̂ −1
ff (θ̂0)

[
1√
T

∑T
t=1 f(Yt, θ̂0)

] )
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by the first-order conditions for estimating α̂.

Since the first block of ∂QT (θ̂0)
∂θ is zero, to compute the K statistic, we need only to find the

lower-right block of the matrix [DT (θ̂0)′V̂ −1
ff (θ̂0)DT (θ̂0)]−1. By the partitioned matrix inverse

formula, this lower-right block is[
D̂′T,βV̂

−1
ff (θ̂0)D̂T,β − D̂′T,βV̂ −1

ff (θ̂0)D̂T,α

(
D̂′T,αV̂

−1
ff (θ̂0)D̂T,α

)−1
D̂′T,αV̂

−1
ff (θ̂0)D̂T,β

]−1

,

where D̂T,β = DT,β(θ̂0) and D̂T,α = DT,α(θ̂0). Hence, the K statistic becomes

KT (θ̂0) =

[
DT,β(θ̂0)′V̂ −1

ff (θ̂0)
1√
T

T∑
t=1

f(Yt, θ̂0)

]′

×
[
D̂′T,βV̂

−1
ff (θ̂0)D̂T,β − D̂′T,βV̂ −1

ff (θ̂0)D̂T,α

(
D̂′T,αV̂

−1
ff (θ̂0)D̂T,α

)−1
D̂′T,αV̂

−1
ff (θ̂0)D̂T,β

]−1

×
[
DT,β(θ̂0)′V̂ −1

ff (θ̂0)
1√
T

T∑
t=1

f(Yt, θ̂0)

]
.

To establish the fixed-smoothing asymptotic distributions of KT (θ̂0) and JT (θ̂0) and hence
those of K∗T (θ̂0) and J ∗T (θ̂0), we make the following assumptions.

Assumption 5.1 (a) The m× dα Jacobian matrix

Egα(Yt, θ0) = Πα := (Π1, . . . ,Πdα)

has full column rank dα, and Egα(Yt, θ) is a continuous function of θ at θ0. (b) The m × dβ
Jacobian matrix Egβ(Yt, θ0) satisfies: for κ ∈ [0, 1/2],

T κEgβ(Yt, θ0)→ Πβ := (Πdα+1, . . . ,Πd) ,

and Πβ has full column rank for κ ∈ [0, 1/2).

Assumption 5.2 f (Yt, ·) is twice continuously differentiable and
(a) (i) uniformly over s ∈ [0, 1],

1

T

[Ts]∑
t=1

gα(Yt, θ̂0) = Πα · s+ op (1) ,

(ii) uniformly over s ∈ [0, 1],

1

T

[Ts]∑
t=1

∂gj(Yt, θ̂0)

∂α′
= Π(j),α · s+ op (1) ,

for j = 1, . . . , dα where Π(j),α is an m× dα constant matrix for each j = 1, . . . , dα.
(b)
√
T (α̂− α0) = Op (1) and

√
T (α̂− α0) = −

[
D′T,α√
T
V̂ −1

ff

DT,α√
T

]−1{
D′T,α√
T
V̂ −1

ff

[
1√
T

T∑
t=1

f(Yt, θ0)

]}
+ op (1) ,
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where DT,α = DT,α (θ0) and V̂ −1
ff = V̂ −1

ff (θ0).

(c) (i) T κE
[
gβ(Yt, θ0)− gβ(Yt, θ̂0)

]
= op (1) and (ii)

1√
T

T∑
t=1

[
gβ(Yt, θ̂0)− Egβ(Yt, θ̂0)

]
=

1√
T

T∑
t=1

[gβ(Yt, θ0)− Egβ(Yt, θ0)] + op (1) .

Assumption 5.2 (a) is used to prove Lemma 5.1(a) below. This is a standard assumption in
the literature on fixed-smoothing asymptotics.

Under fixed-smoothing asymptotics, the weighting matrix in the GMM criterion does not
converge to a deterministic matrix. For this reason, Assumption 5.2 (b) does not follow directly
from standard textbook arguments. Nevertheless, suffi cient primitive conditions can be found
in Zhang (2016), who considers the fixed-smoothing asymptotics under strong identification for
generalized empirical likelihood estimators, which include the CU-GMM as a special case.

Assumption 5.2 (c.i) holds by the dominated convergence theorem if E supα∈A ‖T κgβ(Yt, α, β0)‖ <
∞. Assumption 5.2 (c.ii) is a stochastic equicontinuity condition, which holds under some moment
and mixing conditions.

Lemma 5.1 Let Assumptions 3.2, 3.3, 5.1, and 5.2 hold.
(a) For any θ̃0 between θ̂0 and θ0, we have

T−1
T∑
t=1

Φ`

(
t

T

)
gα

(
Yt, θ̃0

)
= op (1)

T−1
T∑
t=1

Φ`

(
t

T

)
∂gj(Yt, θ̃0)

∂α′
= op (1) for j = 1, . . . , dα.

(b) The following convergence results hold jointly

1√
T

T∑
t=1

Φ`

(
t

T

)[
f
(
Yt, θ̂0

)
− f̄(Y, θ̂0)

]
⇒
∫ 1

0
Φ` (r) dBf (r) := ξf,` (12)

1√
T

T∑
t=1

Φ`

(
t

T

)[
gj

(
Yt, θ̂0

)
− ḡj(Y, θ̂0)

]
⇒
∫ 1

0
Φ` (r) dBgj (r) := ξgj ,` (13)

for j = 1, . . . , d and ` = 1, . . . , G.
(c) For C∞ = G−1

∑G
`=1 ξf,`ξ

′
f,`, we have

V
−1/2

ff (θ̂0)

[
1√
T

T∑
t=1

f(Yt, θ̂0)

]

= M
V̂
−1/2
ff DT,α

· 1√
T

T∑
t=1

(
V̂
−1/2

ff f(Yt, θ0)
)

(1 + op (1))⇒M
C
−1/2
∞ Πα

· C−1/2
∞ Bf (1) .

(d) Let

B̃∗gj ·f (1) = Bg,j (1)−
[

1

G

G∑
`=1

ξgjξ
′
f,`

]
C−1/2
∞ M

C
−1/2
∞ Πα

· C−1/2
∞ Bf (1) ,
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D∞,β,j = Πdα+j + 1

{
κ =

1

2

}
B̃∗gdα+j ·f (1) , j = 1, . . . , dβ,

and
D∞,β =

(
D∞,β,1, . . . , D∞,β,dβ

)
∈ Rm×dβ .

Then,
DT,β(θ̂0)/T 1/2−κ ⇒ D∞,β.

Lemma 5.1(a) follows from Assumptions 3.3 and 5.2(a). It is used to prove Lemma 5.1(b).
Lemma 5.1(b) shows that the asymptotic distributions are invariant to the estimation error in θ̂0.
As a result, the limiting distributions of V̂ff (θ̂0), V̂gjgj (θ0), and V̂fgj (θ̂0) are the same as those of
V̂ff (θ0), V̂gjgj (θ0), and V̂fgj (θ0). The key assumption behind this invariance to the estimation error

in θ̂0 is
∫ 1

0 Φ` (r) dr = 0. Lemma 5.1(c) shows that the estimation error in θ̂0 has an asymptotic
effect on the normalized moment conditions. The effect is captured via the projection matrix
M
V̂
−1/2
ff DT,α

. The limit of DT,β(θ̂0)/T 1/2−κ in Lemma 5.1(d) is similar to that in Lemma 3.2.

The difference is that compared with B∗gj ·f (1) defined in (7), B̃∗gj ·f (1) contains the additional
projection matrix M

C
−1/2
∞ Πα

, which captures the effect from estimating α0.

In the next two subsections, we establish the fixed-smoothing asymptotic distributions for the
modified K and J statistics. We defer the treatment of the modified S statistic to Section 6.

5.1 The case with possibly weak identification

In this subsection, we consider κ ∈ [0, 1/2). In this case, DT,β(θ̂0)/T 1/2−κ converges to a deter-
ministic matrix D∞,β = Πβ. Hence,

KT (θ̂0) =

[
DT,β(θ̂0)′

T 1/2−κ V̂ −1
ff (θ̂0)

1√
T

T∑
t=1

f(Yt, θ̂0)

]′

×
[
D̂′T,β
T 1/2−κ V̂

−1
ff

D̂T,β

T 1/2−κ −
D′T,β
T 1/2−κ V̂

−1
ff

DT,α√
T

(
D′T,αV̂

−1
ff DT,α

)−1 D′T,α√
T
V̂ −1

ff

DT,β

T 1/2−κ

]−1

×

DT,β

(
θ̂0

)
T 1/2−κ

′

V̂ −1
ff (θ̂0)

1√
T

T∑
t=1

f(Yt, θ̂0)


′

⇒
[
Π′βC

−1/2
∞ M

C
−1/2
∞ Πα

C−1/2
∞ Bf (1)

]′
×
[
Π′βC

−1
∞ Πβ −Π′βC

−1
∞ Πα

[
Π′αC

−1
∞ Πα

]−1
Π′αC

−1
∞ Πβ

]−1

×
[
Π′βC

−1/2
∞ M

C
−1/2
∞ Πα

C−1/2
∞ Bf (1)

]
:= K∞,β.

In terms of the scale-free variables and processes, we have

K∞,β =
[
Π̃′βC̃

−1/2
∞ M

C̃
−1/2
∞ Π̃α

C̃−1/2
∞ Wf (1)

]′
×
[
Π̃′βC̃

−1/2
∞ M

C̃
−1/2
∞ Π̃α

C̃−1/2
∞ Π̃β

]−1
×
[
Π̃′βC̃

−1/2
∞ M

C̃
−1/2
∞ Π̃α

C̃−1/2
∞ Wf (1)

]
(14)

=

∥∥∥∥∥PM
C̃
−1/2
∞ Π̃α

[
C̃
−1/2
∞ Π̃β

]M
C̃
−1/2
∞ Π̃α

C̃−1/2
∞ Wf (1)

∥∥∥∥∥
2

,
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where
Π̃β = V

−1/2
ff Πβ and Π̃α = V

−1/2
ff Πα.

Owing to the presence of the projection matrix M
C̃
−1/2
∞ Π̃α

, the strategy for simplifying the
limiting distribution K∞,θ in the whole vector case does not work here straightforwardly. Instead,
we show in the proof of the next theorem that K∞,β can be represented by

K∞,β

=d

{
Rβ

(
Π̃′C̃−1

∞ Π̃
)−1

Π̃′C̃−1
∞ Wf (1)

}′ [
Rβ

(
Π̃′C̃−1

∞ Π̃
)−1

R′β

]−1{
Rβ

(
Π̃′C̃−1

∞ Π̃
)−1

Π̃′C̃−1
∞ Wf (1)

}
,

where Π̃ = (Π̃α, Π̃β) and
Rβ =

(
Odβ×dα , Idβ×dβ

)
.

This representation is identical to the fixed-smoothing limit of the Wald statistic in Hwang and
Sun (2017), who consider testing Rβθ = β0 in a two-step effi cient GMM framework. Using the
distributional representation in Hwang and Sun (2017), we find that

K∞,β =d
[
Wf,dβ (1)− C̃dβ ,qC̃−1

qq Wf,q (1)
]′
C−1
dβdβ ·q

[
Wf,dβ (1)− C̃dβ ,qC̃−1

qq Wf,q (1)
]
. (15)

Therefore, the distribution of K∞,β takes the same quadratic form as the distributional represen-
tation of K∞,θ given in (8). The only difference lies in the dimensionality: while the vector in
the quadratic form for K∞,θ is of dimension d, that for K∞,β is of dimension dβ.

In view of the similarity between K∞,β and K∞,θ, it is not surprising that the asymptotic
distribution of K∗T (θ̂0) is also an F distribution. The theorem below presents this result together
with the asymptotic distribution of J ∗T (θ̂0).

Theorem 5.1 Let Assumptions 3.2, 3.3, 5.1, and 5.2 hold. If κ ∈ [0, 1/2) and Π has a full
column rank, then [

K∗T (θ̂0),J ∗T (θ̂0)
]
⇒
[
Fdβ ,G−dβ−q+1, Fq,G−q+1

]
,

where Fdβ ,G−dβ−q+1 and Fq,G−q+1 are independent F variates.

Theorem 5.1 is similar to Theorem 4.1. When α is the null or empty vector, we have dβ =
dθ = d, Fdβ ,G−dβ−q+1 = Fd,G−m+1. Hence, in this special case, Theorem 5.1 reduces to Theorem
4.1.

5.2 The case with complete identification failure

We consider the case with κ = 1/2 and assume that Πβ = 0. Replacing Π̃β by D̃∞,β in (14), we
now have

K∞,β =
{
D̃′∞,βC̃

−1/2
∞ M

C̃
−1/2
∞ Π̃α

C̃−1/2
∞ Wf (1)

}′
×
{
D̃′∞,βC̃

−1/2
∞ M

C̃
−1/2
∞ Π̃α

C̃−1/2
∞ D̃∞,β

}−1
×
{
D̃′∞,βC̃

−1/2
∞ M

C̃
−1/2
∞ Π̃α

C̃−1/2
∞ Wf (1)

}
,

where
D̃∞,β =

(
D̃∞,β,1, . . . , D̃∞,β,dβ

)
∈ Rm×dβ
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for D̃∞,β,j = V
−1/2

ff B̃∗gdα+j
·f (1). Noting that

B̃∗gj ·f (1)

= Bgj (1)−
[

1

G

G∑
`=1

ξgj,`η
′
f,`

]
C̃−1/2
∞ M

C̃
−1/2
∞ Π̃α

· C̃−1/2
∞ Wf (1)

= VgjfV
−1/2

ff Wf (1) + V
1/2

gj ·fWgj ·f (1)

− 1

G

G∑
`=1

[
VgjfV

−1/2
ff ηf,`η

′
f,` + V

1/2
gj ·fηgj ·f,`η

′
f,`

]
C̃−1/2
∞ M

C̃
−1/2
∞ Π̃α

· C̃−1/2
∞ Wf (1)

= VgjfV
−1/2

ff

[
I − C̃∞C̃−1/2

∞ M
C
−1/2
∞ Π̃α

· C−1/2
∞

]
Wf (1)

+ V
1/2

gj ·f

[
Wgj ·f (1)−

(
1

G

G∑
`=1

ηgj ·f,`η
′
f,`

)
C̃−1/2
∞ M

C̃
−1/2
∞ Π̃α

· C̃−1/2
∞ Wf (1)

]
:= VgjfV

−1/2
ff W

(1)
f (1) + V

1/2
gj ·fW

(2)
gj ·f (1) ,

where

W̃
(1)
f (1) =

[
I − C̃∞C̃−1/2

∞ M
C̃
−1/2
∞ Π̃α

· C̃−1/2
∞

]
Wf (1)

= Π̃α

(
Π̃′αC̃

−1
∞ Π̃α

)−1
Π̃′αC̃

−1
∞ Wf (1)

and

W̃
(2)
gj ·f (1) = Wgj ·f (1)−

(
1

G

G∑
`=1

ηgj ·f,`η
′
f,`

)
C̃−1/2
∞ M

C̃
−1/2
∞ Π̃α

· C̃−1/2
∞ Wf (1) ,

we have
D̃∞,β,j = V

−1/2
ff Vgdα+jfV

−1/2
ff W

(1)
f (1) + V

−1/2
ff V

1/2
gdα+j ·fW

(2)
gdα+j ·f (1) .

Since D̃∞,β,j has two components, this case is more complicated than what is considered in
Section 4.2 where the counterpart D̃∞,j has only one component. It is more diffi cult to show that
a rescaled version of D̃∞,β,j is independent of Wf (1) and C̃−1

∞ .

The presence of the term containing W (1)
f (1) warrants the use of the SVD of Π̃α. Denote the

SVD by UαΛαSα, where

Λα =

(
Aα
Oα

)
, Uα = (Uα1, Uα2)

with Aα ∈ Rdα×dα , Oα ∈ R(m−dα)×dα , Uα1 ∈ Rm×dα , Uα2 ∈ Rm×(m−dα) and Sα ∈ Rdα×dα . As
in any SVD, Aα is a diagonal matrix, Oα is a matrix of zeros, and Uα and Sα are orthogonal
matrices. We also need to partition C̃∞, Wf (1) , and ηf,` differently to deal with the effect from
estimating α0. We now write

C̃∞ =

(
C̃αα, C̃αq̃
C̃q̃α, C̃q̃q̃

)
, C̃−1
∞ =

(
C̃−1
αα·q̃, −C̃−1

αα·q̃C̃αq̃C̃
−1
q̃q̃

−C̃−1
q̃q̃·αC̃q̃αC̃

−1
αα , C̃−1

q̃q̃·α

)
and

Wf (1) =

(
Wf,α (1)
Wf,q̃ (1)

)
, ηf,` =

(
ηf,α,`
ηf,q̃,`

)
,
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where C̃αα ∈ Rdα×dα , C̃q̃q̃ ∈ Rq̃×q̃,Wf,α (1) ∈ Rdα×1,Wf,q̃ (1) ∈ Rq̃×1, ηf,α,` ∈ Rdα×1, ηf,q̃,` ∈ Rq̃×1

for q̃ = q + dβ = m− dα.
The lemma below provides the distributional representations of the quantities appearing in

D̃∞,β and K∞,β.

Lemma 5.2 The following distributional representations hold jointly:
(a) W̃

(1)
f (1) =d Uα1

[
Wf,α (1)− C̃αq̃C̃−1

q̃q̃ Wf,q̃ (1)
]

;

(b) C̃
−1/2
∞ M

C̃
−1/2
∞ Π̃α

C̃
−1/2
∞ Wf (1) =d Uα2C̃

−1
q̃q̃ Wf,q̃ (1) ;

(c) W̃
(2)
gj ·f (1) =d Uα

[
Wgj ·f (1)−

(
1
G

∑G
`=1 ηgj ·f,`η

′
f,q̃,`

)
C̃−1
q̃q̃ Wf,q̃ (1)

]
;

(d) C̃
−1/2
∞ M

C̃
−1/2
∞ Π̃α

C̃
−1/2
∞ =d Uα2C̃

−1
q̃q̃ U

′
α2.

With some abuse of the notation, we identify the random variables in Lemma 5.2 with their
distributional representations in the rest of the paper.

Let J̃∞ = Wf,q̃ (1)′ C̃−1
q̃q̃ Wf,q̃ (1) . Using Lemma 5.2, we can show that conditioning onWf,q̃ (1)

and
{
ηf,q̃,`, ` = 1, 2, . . . , G

}
, U ′α1W

(1)
f (1) and U ′αW̃

(2)
gj ·f (1) are normal with the conditional vari-

ances (1+G−1J̃∞)Idα and (1+G−1J̃∞)Im, respectively. It is unsurprising that both U ′α1W
(1)
f (1)

and U ′αW̃
(2)
gj ·f (1) have scalar conditional variance matrices. What is surprising is that the under-

lying scalars are the same. This inspires us to rescale D̃∞,β,j by the square root of 1 + G−1J̃∞,
leading to the following definition:

D̃∗∞,β,j =
D̃∞,β,j√

1 +G−1J̃∞

= V
−1/2

ff Vgdα+j ·fV
−1/2

ff

W
(1)
f (1)√

1 +G−1J̃∞
+ V

−1/2
ff V

1/2
gdα+j ·f

W
(2)
gdα+j ·f (1)√

1 +G−1J̃∞
.

Let
D̃∗∞,β =

(
D̃∗∞,β,1, . . . , D̃

∗
∞,β,dβ

)
.

Using Lemma 5.2, we have

K∞,β =d

{(
D̃∗∞,β

)′
Uα2C̃

−1
q̃q̃ Wf,q̃ (1)

}′
×
{(

D̃∗∞,β

)′
Uα2C̃

−1
q̃q̃ U

′
α2D̃

∗
∞,β

}−1

×
{(

D̃∗∞,β

)′
Uα2C̃

−1
q̃q̃ Wf,q̃ (1)

}
.

By establishing that {D̃∗∞,β,j} are independent of C̃q̃q̃ and Wf,q̃ (1) , we can prove the theorem
below.

Theorem 5.2 Let Assumptions 3.2, 3.3, 5.1, and 5.2 hold. If κ = 1/2, Πβ = 0, then[
K∗T (θ̂0),J ∗T (θ̂0)

]
⇒
[
Fdβ ,G−dβ−q+1, Fq,G−q+1

]
,

where Fd,G−dβ−q+1 and Fq,G−q+1 are independent F variates.
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We have thus far considered cases parallel to those in Sections 4.1 and 4.2. Up to the adjust-
ment of the degrees of freedom, the asymptotic distributions of the modified K and J statistics
are the same as before.

For the intermediate case in which κ = 1/2 andΠβ 6= 0, pivotal inference based on [K∗T (θ̂0),J ∗T (θ̂0)]
is not possible under the fixed-smoothing asymptotics, as asymptotically pivotal inference is not
possible even in the simpler case of testing the whole vector θ0. Nevertheless, we can argue as
before that we can still use the F approximations for K∗T (θ̂0) and J ∗T (θ̂0) given in Theorems 5.1
and 5.2, as they are asymptotically valid under the increasing-smoothing asymptotics wherein
G→∞, G/T → 0, as T →∞.

6 Asymptotic F Theory for the Modified S Statistic

To establish the asymptotic F theory for the modified S statistic, we maintain the following
assumption, which is part of Assumption 3.2.

Assumption 6.1 T−1/2
∑[Tr]

t=1 [f (Yt, θ0)]⇒ Bf (r).

Theorem 6.1 Let Assumptions 3.3 and 6.1 hold. We have

S∗T (θ0) :=
G−m+ 1

Gm
ST (θ0)⇒ Fm,G−m+1.

In addition, let Assumptions 5.1(a) and 5.2(a.i) hold and assume that V̂gjf (θ0) = op(
√
T ) for

j = 1, . . . , dα. We have

S∗T (θ̂0) :=
G− dβ − q + 1

G (dβ + q)
ST (θ̂0)⇒ Fdβ+q,G−dβ−q+1.

The assumption that V̂gjf (θ0) = op(
√
T ) for j = 1, . . . , dα holds if the FCLT for the Jacobian

process holds as in Assumption 3.2. Here, we do not need the asymptotic distribution of V̂gjf (θ0)
and only impose a mild rate condition on it.

The assumptions for the asymptotic F theory for the modified S statistic are much weaker
than those for the K and J statistics. The reason is that the S statistic does not involve the
Jacobian with respect to the parameter subvector fully specified under the null. The drawback of
the F test based on the modified S statistic is that the first degree of freedom in the approximating
F distribution is larger than that for the modified K statistic, leading to potential power loss.

The asymptotic F theory for the modified S statistic holds regardless of the strength of the
identification of the parameters pinned down by the null hypothesis. This contrasts with the
K and J statistics, where the asymptotic F theory cannot be theoretically established in the
intermediate identification case.

7 J-K* Test: Improving the Power of the Modified K Test

The K test can suffer severe power loss for some parameter values under the alternatives. In this
section, we design a new test to improve the power of the K test when it is low.
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We first consider testing the full parameter vector. Recall that the K statistic is based on the
first-order derivative of the CU-GMM objective function. Suppose that the first-order derivative
is zero at some θ∗ 6= θ0, where θ0 is the true parameter value of θ, that is,

∂QT (θ∗)

∂θ
= DT (θ∗)′ V̂ −1

ff (θ∗)

[
1√
T

T∑
t=1

f (Yt, θ
∗)

]
= 0.

Furthermore, suppose that θ∗ is not a minimizer of the CU-GMM objective function QT (θ) . Such
a point exists because in general QT (θ) is not a strictly convex function for any sample. For
such a choice of θ∗, the K statistic KT (θ∗) is zero by construction. As a result, we fail to reject
the null hypothesis of θ = θ∗, and we commit a type II error. No such θ∗ works for all samples.
However, there may exist a parameter θ∗ 6= θ0 such that KT (θ∗) is small with a high probability
and QT (θ∗) is substantially different from the minimal value of QT (θ) , namely minθ∈ΘQT (θ) .
The K test then has low power against θ∗.

To fix the problem, we can employ a test to screen out such θ∗. A defining feature of θ∗ is
that 2QT (θ∗) − 2 minθ∈ΘQT (θ) is large. Note that minθ∈ΘQT (θ) does not depend on θ∗ and
2QT (θ∗) = KT (θ∗) +JT (θ∗) . Hence, for a given value of KT (θ∗) , if JT (θ∗) is suffi ciently large,
then we should reject the null H0 : θ = θ∗. If JT (θ∗) is not large, then we proceed to use the K
statistic KT (θ∗) to decide on whether H0 is true. This is the J-K test of Kleibergen (2005).

We can also modify the J-K test to obtain a J-K* test based on the J ∗T and K∗T statistics.
The J-K* test rejects the null of H0 : θ = θ0 if

J ∗T (θ0) ≥ FαJq,G−q+1

or
J ∗T (θ0) < FαJq,G−q+1 and K

∗
T (θ0) ≥ FαKd,G−m+1,

where FαJq,G−q+1 is the 1 − αJ quantile of the F distribution Fq,G−q+1 and F
αK
d,G−m+1 is 1 − αK

quantile of the F distribution Fd,G−m+1.
In the cases with possibly weak identification and complete identification failure, J ∗T (θ0) and

K∗T (θ0) are asymptotically independent. Hence, the asymptotic null rejection probability of the
J-K* test is

αJ + (1− αJ)αK = αJ + αK − αJαK .
To obtain a level-α J-K* test, we can take

αK =
α− αJ
1− αJ

for a given αJ . For example, if we set α = 5% and αJ = 1%, then we take

αK =
0.05− 0.01

1− 0.01
= 4.04%.

We use these choices of αJ and αK in our simulation study.
For the intermediate case when κ = 1/2 and Π 6= 0, the above asymptotic level calculation

cannot be rigorously justified under the fixed-smoothing asymptotics, but it is still asymptotically
valid under the increasing-smoothing asymptotics.

To test a subvector of the model parameters H∗0 : β = β0, we can design the J-K* test in the
same way but with θ0 replaced by θ̂0. The subvector J-K* test rejects if

J ∗T (θ̂0) ≥ FαJq,G−q+1
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or
J ∗T (θ̂0) < FαJq,G−q+1 and K

∗
T (θ̂0) ≥ FαKdβ ,G−dβ−q+1.

The asymptotic validity of the test can be justified in the same way.

8 Monte Carlo Simulations and Empirical Application

In this section, we investigate the finite sample performances of the proposed tests in a linear
IV regression model and a stochastic discount factor (SDF) model. While the SDF model is
calibrated to an empirical dataset, the IV regression model is not. The reason for studying the
IV regression model is that we have the flexibility to vary the key parameters, and so we can
examine their effects on the test performances.

8.1 Linear IV regression

For the linear IV regression, the data-generating process is

Yt = X1,tβ1 +X2,tβ2 + εy,t,

where X1,t and X2,t are correlated with εy,t. The instruments are {Z1,t, Z2,t, Z3,t}, which are
uncorrelated with εy,t, and

X1,t = Z1,tβxz + Z3,tβxz + εx1,t

X2,t = Z2,tβxz + Z3,tβxz + εx2,t.

The error terms [εy,t, εx1,t, εx2,t] follow an AR(1) process:

εy,t = φεεy,t−1 + (1− φ2
ε)

1/2ey,t

εx1,t = φεεx1,t−1 + (1− φ2
ε)

1/2ex1,t

εx2,t = φεεx2,t−1 + (1− φ2
ε)

1/2ex2,t

with [ey,t, ex1,t, ex2,t] ∼ N(0, Ve). The variance-covariance matrix Ve is

Ve =

 1 ρ ρ
ρ 1 ρ
ρ ρ 1

 .

The instruments also follow an AR(1) process:

Zj,t = φzZj,t−1 + (1− φ2
z)

1/2ezj ,t

for j = 1, 2, 3 with [ez1,t, ez2,t, ez3,t] ∼ N(0, Ve). Finally, [ey,t, ex1,t, ex2,t] is independent of
[ez1,t, ez2,t, ez3,t].

In the simulations, we set φz = φε = φ.We target a specified value of the R2 of the first-stage
regression (a regression of Xt on Z1,t and Z2,t). Using some simple calculations, the population
R2 of the first-stage regression is

R2 =
2β2

xz(1 + ρ)

2β2
xz (1 + ρ) + 1

.
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From this, we back out β2
xz as

β2
xz =

R2

2(1 + ρ)(1−R2)
.

With this choice, the correlation coeffi cient between Xit and εy,t is

corr(Xi,t, εy,t) = ρ
(
1−R2

)
for i = 1 and 2.

There are three key parameters in the model: φ, ρ, and R2. While φ measures the degree of
persistence, ρ measures the degree of endogeneity and R2 measures the strength of the instru-
ments. We consider the following parameter configurations: φ = 0, 0.6, 0.9, ρ = 0.3, and 0.9, and
R2 ranges from 0 to 0.2 in increments of 0.025.

The null and alternative hypotheses of interest are H0 : β1 = β2 = 0 and H1 : β1 6= 0 or
β2 6= 0. We consider two groups of tests. The first group consists of the two-step Wald test, the
two-step LM test, the CU Wald test, and their modified versions6. The two-step tests in the first
group employ the standard IV estimator as the initial first-step estimator. The CU Wald test
is based on the Wald statistic evaluated at the CU estimator. See Sun (2014b) and Hwang and
Sun (2017) for more details on the two-step tests. The first group of tests is not robust to weak
identification. The second group of tests consists of the K, J, S, and J-K tests and their modified
versions developed in this study7. For the OS LRV estimators, we use the Fourier basis functions
and select the number of basis functions G using the AMSE criterion in Phillips (2005).

Figure 1 reports the empirical sizes of the nominal 5% tests when φ = 0 and ρ = 0.9. The
average G is around 18 for every level of R2. Several patterns emerge. First, the chi-squared
tests including the Wald, LM, Wald CUE, K, J, S, and J-K tests all have a large size distortion.
For the Wald, LM, and Wald CUE tests, the size distortion can be severe. Second, when the
instruments are weak (i.e., when R2 is small), the Wald, LM, and Wald CUE tests have larger size
distortion than the K, J, S, and J-K tests, as shown by the scale difference between the top and
bottom panels of Figure 1. In addition, the size of the Wald, LM, and Wald CUE tests improves
with the strength of the identification, while the size of the K, J, S, and J-K tests does not. These
results are consistent with the theoretical prediction: while the K, J, S, and J-K tests are robust
to weak identification, the Wald, LM, and Wald CUE tests are not. Third, a chi-squared test
has larger size distortion than the corresponding F test presented in this paper or that in Hwang
and Sun (2017). In fact, the K*, J*, S*, and J-K* tests, all of which are F-type tests, have an
accurate size. For the F tests based on the modified Wald, LM, and Wald CUE statistics, the
size distortion diminishes to zero as the identification becomes stronger. We can thus conclude
that the asymptotic F approximations are much more accurate than the asymptotic chi-squared
approximations.

Figure 2 reports the empirical size of the nominal 5% tests when φ = 0.9 and ρ = 0.9. The
configurations are the same as in Figure 1, but the processes are now more persistent. The
average G is around 6 for every level of R2. The product of two independent AR(1) processes
with the same AR parameter φ is an AR(1) process with the AR parameter φ2. Hence, the
moment process under consideration follows AR(1) with the AR parameter 0.92 = 0.81, which is
high but not empirically implausible. The qualitative observations we made for Figure 1 continue
to apply. The difference is that the chi-squared tests are more size distorted than before. This
is expected, as the LRV estimators have a large downward bias when the moment process is

6For brevity, we refer to these three tests as Wald, Wald CUE, and LM, respectively. Their modified versions
are referred to as Wald*, LM*, and Wald CUE*, respectively.

7We refer to the modified versions as K*, J*, S*, and J-K*, respectively.
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positively autocorrelated. Regarding the F tests, the S* and J-K* tests now slightly under-reject,
while the J* test continues to over-reject and the K* test still has a size lower than 5%.

Figure 3 has the same parameter configuration as Figure 2 except that now ρ = 0.3, indicating
less endogeneity. Here, the average G is 6 as well, although slightly smaller than in the previous
case. The figure provides further evidence that an asymptotic F test is more accurate than the
corresponding chi-squared test. Owing to the smaller degree of endogeneity, the Wald, LM, and
Wald CUE tests do not suffer from such a large size distortion as in Figure 1 when the instruments
are very weak.

Figure 4 reports the empirical sizes for φ = 0 and ρ = 0 (i.e., no serial dependence and no
endogeneity). Here, the average G is around 27. The size distortion of the Wald, LM, and Wald
CUE tests changes with the strength of the identification. When the instruments are weak, the
Wald, LM, and Wald CUE tests are under-sized. The F tests based on the modified Wald, LM,
and Wald CUE statistics are even more under-sized. This is a scenario when the F tests are less
accurate. When the instruments become stronger, the Wald, LM, and Wald CUE tests become
over-sized, and the corresponding F tests have an improved size accuracy. Consistent with our
theoretical prediction, the empirical size of the weak-identification-robust tests, namely the K, J,
S, and J-K tests and their modified versions, is invariant to the strength of the identification.

To sum up, our simulation evidence lends strong support to the higher accuracy of the F
approximations in most cases. In an overall sense, the K*, S*, and J-K* tests are the most
accurate among all the tests considered.

To simulate the power of the tests under consideration, we generate the data under the local
alternative so that

Yt = (X1,t, X2,t)β + εy,t,

for

β = (β1, β2)′ +
ξ

‖ξ‖ ·
c√
T

where ξ ∼ N(0, I2). We let ξ be different for different simulation replications. That is, we do
not specify the direction of the local departure. Effectively, we simulate the average local power
averaged over all directions uniformly.

Figures 5—9 report the power of all the tests under consideration. The parameter configu-
rations are the same as in Figures 1—4. For the strength of the instruments, we consider an
intermediate value of R2 = 0.5. The reported power is size-adjusted, and thus the power com-
parison is meaningful. While such a size adjustment is not possible in practice, it is feasible in
Monte Carlo experiments. Moreover, the size-adjusted power of the S test is the same as that of
the S* test, as they are based on the same test statistic up to a multiplicative constant. Similarly,
the J test and J* test have the same size-adjusted power. We can make a number of observations
from these four power figures. First, the first group of tests is, in general, more powerful than
the second group. However, Figure 5 shows that in the high endogeneity case with ρ = 0.9,
the second group of tests is more powerful when the local departure from the null is not large.
Second, among the second group of tests, the J test is in general less powerful. It is not a good
idea to use the J test alone. Third, for the first group of tests, the F test based on the modified
Wald, LM, or Wald CUE statistic is as powerful as the corresponding chi-squared test. For the
second group of tests, the K* test and J-K* are less powerful than the corresponding chi-squared
test. For the K and J-K tests, there is a cost to achieving size accuracy. Finally, the J-K test
appears to be more powerful than the K test, and the J-K* test is more powerful than the K*
test.
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Figure 1: Empirical sizes of the 5% tests when φ = 0 and ρ = 0.9.
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Figure 2: Empirical sizes of the 5% tests when φ = 0.9 and ρ = 0.9.
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Figure 3: Empirical sizes of the 5% tests when φ = 0.9 and ρ = 0.3.
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Figure 4: Empirical sizes of the 5% tests when φ = 0.0 and ρ = 0.0.
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Figure 5: Size-adjusted power when φ = 0, ρ = 0.9 and R2 = 0.5.
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Figure 6: Size-adjusted power when φ = 0.9, ρ = 0.9 and R2 = 0.5.
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Figure 7: Size-adjusted power when φ = 0, ρ = 0.3 and R2 = 0.5.
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Figure 8: Size-adjusted power when φ = 0.9, ρ = 0.3 and R2 = 0.5.
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Figure 9: Size-adjusted power when φ = 0, ρ = 0 and R2 = 0.5
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8.2 Stochastic discount factor model

To describe the data-generating process in this experiment design, we start with the asset pricing
equation derived from the agent’s intertemporal optimization problem with CRRA utility:

pt =
1

α0
Et

{[(
Ct+1

Ct

)−β0

(pt+1 +Dt+1)

]}
,

where α−1
0 is the discount factor, β0 is the risk aversion coeffi cient, pt is the ex-dividend real price

of the asset under consideration, Dt is the real dividend, and Ct is the real consumption. In the
above, Et (·) is the conditional expectation conditioning on the information set at time t.

Let

dt =
Dt

Dt−1
, ct =

Ct
Ct−1

, vt =
pt
Dt
.

Then, the pricing equation can be rewritten as

vt =
1

α0
Et
[
(ct+1)−β0 (1 + vt+1) dt+1

]
. (16)

Following Kleibergen (2005), we assume that (ct, dt) evolves according to the following Gaussian
VAR(1) process:(

log ct
log dt

)
=

(
0.021
0.004

)
+

(
−0.161 0.017
0.414 0.117

)(
log ct−1

log dt−1

)
+

(
εc,t
εd,t

)
, (17)

where (εc,t, εd,t)
′ are iid normally distributed with var(εd,t) = 0.014, var(εc,t) = 0.0012, and

corr(εc,t, εd,t) = 0.43. The parameters in the Gaussian VAR(1) are calibrated to the log-growth
rate of U.S. per capita real annual consumption and the log-growth rate of real annual dividends
on the Standard & Poor’s 500 (SP500). Kocherlakota (1990), Hansen, Heaton, and Yaron (1996),
and Stock and Wright (2000) also use the above VAR(1) in their simulation studies.

To solve for vt under the above Gaussian VAR(1) dynamics for the state variables ct and
dt, we follow Tauchen (1986a, 1986b) and approximate the Gaussian VAR(1) using a discrete
Markov chain with 102 states (10 states for each of the two variables ct and dt). Using the
discrete Markov chain approximation, we can solve for v as a function of c and d. With some
abuse of the notation, we write this function as v(c, d;α0, β0).

The data for our experiments are generated as follows. Given the model parameters α0 and
β0, we generate ct and dt according to the Gaussian VAR(1) model in (17) and then compute
vt = v (ct, dt;α0, β0) , which is the solution to the Euler equation in (16). With {ct, dt, vt}Tt=1 , we
compute the real returns of the asset

Rt+1 :=
pt+1 +Dt+1

pt
− 1 =

(1 + vt+1)

vt
dt+1 − 1.

Our simulated data then consist of the vector time series {(ct, dt, Rt)}Tt=1 .
In terms of ct+1 and Rt+1, the Euler equation becomes

Et
[
(ct+1)−β0 (1 +Rt+1)− α0

]
= 0, t = 1, . . . , T. (18)

The above conditional moment restriction implies the following unconditional moment restric-
tions:

Ef (Yt, α0, β0) = 0, t = 1, . . . , T, (19)
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where Yt = (ct+1, Rt+1, Zt) ,

f (Yt, α, β) =
[
(ct+1)−β (1 +Rt+1)− α

]
⊗ Zt,

and the vector of instruments Zt consists of a constant and the three lagged values of consumption
growth and asset returns:

Zt = (1, ct, ct−1, ct−2, Rt, Rt−1, Rt−2) ∈ R7.

We are interested in testing H0 : β = β0 against H1 : β 6= β0. All the tests under consideration
are based on the GMM using (19) as the moment conditions.

In the simulation experiments, we set α0 = 1/(0.97) and β0 = 1.3. For the parameters in the
Gaussian VAR(1) process, we also consider a model in which corr(εc, εd) = 0.95 and a model
(strong identification) in which the intercept and VAR matrix are equal to 2 times those in (17).
As in the linear IV simulation study, we use the Fourier basis functions and select the number
of basis functions G using the AMSE criterion in Phillips (2005). The average G (Avg G) and
the interquartile range (IQR G) are reported with the results. The sample size is 250 and the
number of simulation replications is 10,000.

Table 1 reports the empirical size of the weak identification-robust tests, showing that the
F tests have a more accurate size than the corresponding chi-squared tests. In addition, the
size properties of all the tests are not affected by the identification strength and the correlation
between εc and εd.

Table 1: Empirical sizes of the 5% tests
Weaker ID Weaker ID Stronger ID Stronger ID

corr(εc, εd) = .43 corr(εc, εd) = .95 corr(εc, εd) = .43 corr(εc, εd) = .95

K 0.114 0.106 0.111 0.106
K* 0.051 0.047 0.049 0.049
J 0.121 0.115 0.124 0.112
J* 0.049 0.050 0.053 0.049
S 0.143 0.138 0.146 0.135
S* 0.049 0.047 0.052 0.046
J-K 0.136 0.127 0.134 0.129
J-K* 0.098 0.095 0.100 0.096
Avg G 32.674 33.870 33.004 34.182
IQR G 2 0 2 2

“Weaker ID”refers to the empirically calibrated VAR(1) model for (log (ct) , log (dt)) . “Stronger
ID” refers to the VAR(1) model whose AR matrix is twice the AR matrix in the empirically
calibrated VAR(1) model.

Figures 10—13 report the power functions for the tests. The general pattern that emerges is
that the F tests have lower power, but the shape of their power functions closely matches that
of the power functions of the original chi-squared tests. The S and J-K tests and their modified
versions seem to have good power properties. However, as shown in Table 1, the J-K* test has a
larger size distortion than the S* test. In summary, the F tests not only have a more accurate
size, but also retain the power properties of the chi-squared tests.
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Figure 10: Power for the “Weaker ID”model, and corr(εc, εd) = .43
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Figure 11: Power for the “Weaker ID”model, and corr(εc, εd) = .95
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Figure 12: Power for the “Stronger ID”model, and corr(εc, εd) = .43
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Figure 13: Power for the “Stronger ID”model, and corr(εc, εd) = .95
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8.3 SDF model for consumption growth and return on SP500

In this section, we use yearly observations (1871—1993) of U.S. consumption and stock returns to
construct asymptotic confidence sets for the risk aversion parameter of the SDF model described
in Section 8.2. The dataset we adopt is the same as that used by Stock and Wright (2000) and
Kleibergen (2005). As explained therein, the consumption series consists of nondurables and
services per capita, while the stock returns are based on the Cowles Commission index, followed
by the annual average price of the Standard & Poor’s monthly composite index.

To obtain a confidence set for β, we specify a sequence of increasing values of β. We compute
the statistics of interest (K, J, and S statistics and their modified versions) for each value of the
sequence of β. Then, the (1 − α)100% confidence set of β associated with a test consists of the
values of β that are not rejected by the test at the level of 100α%.

We use the moment conditions in (19) with two sets of instruments. The first set consists of
a constant and the one-period lagged observations of the two series, that is, Zt = (1, ct, Rt). The
second set consists of a constant and the two-period lagged observations of the two series, that
is, Zt = (1, ct−1, Rt−1). We follow the argument of Hall (1988) and lag the observations by two
periods to avoid a problem with aggregating the consumption data.

For the conventional K, J, and S statistics, the covariance matrices are estimated using Newey—
West covariance matrix estimators with one lag as in Kleibergen (2005). For our modified K, J,
and S statistics, we apply the data-driven procedure shown in the previous section to select the
number of basis functions used in the LRV estimation. Figures 14 and 15 report the difference
between 1 and the p-value (i.e., one minus the p-value) for the tests that test the null H0 : β = β0

against H1 : β 6= β0 for a sequence of values of β0. The horizontal line at 95% in the figures
helps us construct the 95% confidence set. More specifically, the β values whose “one minus the
p-value”is below 95% belong to the 95% confidence set.

In the first case with Zt = (1, ct, Rt), the “one minus the p-value” plots of the K test and
K* test are similar. The 95% confidence set for β based on the K test is slightly larger than
that based on the K* test. In the second case with Zt = (1, ct−1, Rt−1), however, the “one minus
the p-value”plots of the K test and K* test differ considerably. The 95% confidence set for β
resulting from the K* test is much smaller than that from the conventional K test. However, the
“one minus the p-value”plot of the J* test indicates that support for the moment equations is
limited, as its “one minus the p-values”are above 0.95 in most cases.

9 Conclusion

In this paper, we combine the ideas of weak identification and fixed-smoothing asymptotics in
a CU-GMM framework. The S statistic of Stock and Wright (2000) and the K statistic of
Kleibergen (2005) allow us to conduct hypothesis testing in weakly identified models. On the
other hand, Sun (2014b) and Hwang and Sun (2017) obtain the asymptotic distribution of the
trinity of test statistics in a two-step GMM framework using fixed-smoothing asymptotics. The
literature on weakly identified models does not pay particular attention to the estimation of the
LRV of the moment process, while the literature on fixed-smoothing asymptotics usually imposes
strong identification assumptions. We bridge this gap in the literature by applying this latter
approach in a potentially weakly identified CU-GMM framework.

One striking result of the fixed-smoothing literature is that, after some simple modifications,
the commonly used test statistics are asymptotically F-distributed. A key result of this paper
is that this property continues to hold for the weak-identification-robust test statistics. In par-
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Figure 14: “One minus the p-value”plots for the tests when the instument set is Zt = (1, ct, Rt) .
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Figure 15: “One minus the p-value” plots for the tests when the instument set is Zt =
(1, ct−1, Rt−1) .
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ticular, the modified versions of the K and S statistics are asymptotically F-distributed. This is
convenient, since we can avoid using simulations to obtain the critical values for these tests. The
simulation results show that in finite samples, the F approximations deliver better results than
the conventional chi-squared approximations.

10 Appendix A: Proofs of the Main Results

Proof of Lemma 3.2. Using Assumptions 3.2 and 3.3, and the weak convergence results in
(5) and (6), we have

V̂ff (θ0)

=
1

G

G∑
`=1

[
1√
T

T∑
t=1

Φ`

(
t

T

)[
f (Yt, θ0)− f̄(Y, θ0)

]] [ 1√
T

T∑
t=1

Φ`

(
t

T

)[
f (Yt, θ0)− f̄(Y, θ0)

]]′

⇒ 1

G

G∑
`=1

(∫ 1

0
Φ` (r) dBf (r)

)(∫ 1

0
Φ` (r) dBf (r)

)′
=

1

G

G∑
`=1

ξf,`ξ
′
f,`,

and

V̂gjf (θ0)

=
1

G

G∑
`=1

[
1√
T

T∑
t=1

Φ`

(
t

T

)
[gj (Yt, θ0)− ḡj(Y, θ)]

][
1√
T

T∑
t=1

Φ`

(
t

T

)[
f (Yt, θ0)− f̄(Y, θ)

]]′

⇒ 1

G

G∑
`=1

(∫ 1

0
Φ` (r) dBgj (r)

)(∫ 1

0
Φ` (r) dBf (r)

)′
=

1

G

G∑
`=1

ξgj,`ξ
′
f,`

jointly. Therefore,

DT,j (θ0)−
√
TEgj (Yt, θ0)

=
1√
T

T∑
t=1

[gj (Yt, θ0)− Egj (Yt, θ0)]− ∂V̂ff (θ0)

∂θj
V̂ −1

ff (θ0)

[
1√
T

T∑
t=1

f (Yt, θ0)

]

⇒ Bgj (1)−
[

1

G

G∑
`=1

ξgj,`ξ
′
f,`

][
1

G

G∑
`=1

ξf,`ξ
′
f,`

]−1

Bf (1) := B̃gj ·f (1) .

By Assumption 3.1, we have

1

T 1/2−κDT,j (θ0)⇒ D∞,j ∈ Rm×1

for

D∞,j = Πj + 1

{
κ =

1

2

}
B̃gj ·f (1) .

Proof of Theorem 4.1. We first relate the limiting distribution K∞,θ of the original K
statistic to the limiting distribution of the rescaled two-step Wald statistic in Hwang and Sun

43



(2017, hereafter HS (2017)). If we replace R by the d× d identity matrix and GΛ by D̃∞ in their
equation (19) on page 286, then the limiting distribution d · F∞ of the two-step Wald statistic
in HS (2017) takes the same form of K∞,θ here. In fact, the two distributions are seemingly
different only in terms of the notations. Noting that Bm (1) and W̃∞ in HS (2017) are the same
asWf (1) and C̃∞ here, the limiting distribution K∞,θ is identical to d ·F∞ in HS (2017). Careful
inspection reveals that the limiting distribution J∞,θ of the J statistic JT (θ0) is identical to J∞
in HS (2017, equation (20), page 286).

Recall that

C̃∞ =
1

G

G∑
`=1

ηf,`η
′
f,` =

(
C̃dd C̃dq
C̃qd C̃qq

)
and Wf (1) =

(
Wf,d (1)
Wf,q (1)

)
.

Let C̃dd·q = C̃dd − C̃dqC̃−1
qq C̃qd, C̃qq·d = C̃qq − C̃qdC̃−1

dd C̃dq. By definition, GC̃∞ ∼ Wm (G, Im), a
Wishart distribution with G degrees of freedom. Using a basic property of Wishart distributions,
we know that GC̃dd·q ∼ Wd (G− q, Id) , and that C̃dd·q is independent of (C̃dq, C̃qq).

It then follows from HS (2017) that(
KT (θ0)
JT (θ0)

)
⇒
(
K∞,θ
J∞,θ

)
d
=

( [
Wf,d (1)− C̃dqC̃−1

qq Wf,q (1)
]′
C̃−1
dd·q

[
Wf,d (1)− C̃dqC̃−1

qq Wf,q (1)
]

Wf,q (1)′ C̃−1
qq Wf,q (1)

)
.

By the continuous mapping theorem, we have(
K∗T (θ0)
J ∗T (θ0)

)
⇒
(

G−m+1
Gd (ψ∗)′ C̃−1

dd·qψ
∗

G−q+1
Gq Wf,q (1)′ C̃−1

qq Wf,q (1)

)
:=

(
K∗∞,θ
J ∗∞,θ

)
(20)

where

ψ∗ :=

[
Wf,d (1)− C̃dqC̃−1

qq Wf,q (1)
]

√
1 + 1

GW
′
f,q (1) C̃−1

qq Wf,q (1)
.

Using the same conditional argument as in HS (2017), we can show that ψ∗ ∼ N(0, Id) and
ψ∗ is independent of Wf,q (1)′ C̃−1

qq Wf,q (1) and C̃qq. Note that (Wf (1) , C̃dq, C̃qq) is independent
of C̃dd·q. So, as a function of (Wf (1) , C̃dq, C̃qq), ψ∗ is also independent of C̃dd·q.We have therefore
shown that K∗∞,θ is independent of J ∗∞,θ and that both K∗∞,θ and J ∗∞,θ are equal to a rescaled
Hotelling’s T 2 distribution, i.e., a rescaled quadratic form in a standard normal vector with an
independent Wishart weighting matrix. The rescaling is designed to turn a T 2 distribution into
an F distribution. Using the relationship between the T 2 distribution and the F distribution, we
have (

K∗T (θ0)
J ∗T (θ0)

)
⇒
(
Fd,G−m+1

Fq,G−q+1

)
where Fd,G−m+1 and Fq,G−q+1 are independent F distributions.
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Proof of Theorem 4.2. We have

B̃gj ·f (1) = Bgj (1)−
[

1

G

G∑
`=1

(
ξgj,`η

′
f,`

)]
C̃−1
∞ Wf (1)

=
[
VgjfV

−1
ff Bf (1) +Bgj ·f (1)

]
− 1

G

G∑
`=1

[
VgjfV

−1/2
ff ηf,`η

′
f,` + ξgj ·f,`η

′
f,`

]
C̃−1
∞ Wf (1)

=
[
VgjfV

−1/2
ff Wf (1) +Bgj ·f (1)

]
− VgjfV

−1/2
ff Wf (1)−

[
1

G

G∑
`=1

ξgj ·f,`η
′
f,`

]
C̃−1
∞ Wf (1)

= Bgj ·f (1)−
[

1

G

G∑
`=1

ξgj ·f,`η
′
f,`

]
C̃−1
∞ Wf (1)

= V
1/2
gj ·f

{
Wgj ·f (1)−

[
1

G

G∑
`=1

ηgj ·f,`η
′
f,`

]
C̃−1
∞ Wf (1)

}
:= V

1/2
gj ·fW̃gj ·f (1)

where

W̃gj ·f (1) = Wgj ·f (1)−
[

1

G

G∑
`=1

ηgj ·f,`η
′
f,`

][
1

G

G∑
`=1

ηf,`η
′
f,`

]−1

Wf (1) .

Conditional on
{
ηf,`
}G
`=1

and Wf (1), W̃gj ·f (1) is normal with mean zero and variance

Im + E

[ 1

G

G∑
`=1

ηgj ·f,` × η
′
f,`C̃

−1
∞ Wf (1)

] 1

G

G∑
˜̀=1

Wf (1)′ C̃−1
∞ ηf,˜̀× η

′
gj ·f,˜̀

∣∣∣∣∣∣ {ηf,`}G`=1
,Wf (1)


= Im + E

[ 1

G

G∑
`=1

η′f,`C̃
−1
∞ Wf (1)× ηgj ·f,`

] 1

G

G∑
˜̀=1

η′
gj ·f,˜̀

×Wf (1)′ C̃−1
∞ ηf,˜̀

∣∣∣∣∣∣ {ηf,`}G`=1
,Wf (1)


= Im + E

 1

G2

G∑
`=1

G∑
˜̀=1

η′f,`C̃
−1
∞ Wf (1)×

(
ηgj ·f,`η

′
gj ·f,˜̀

)
×Wf (1)′ C̃−1

∞ ηf,˜̀

∣∣∣∣∣∣ |{ηf,`}G`=1
,Wf (1)


= Im +

[
1

G2

G∑
`=1

η′f,`C̃
−1
∞ Wf (1)×Wf (1)′ C̃−1

∞ ηf,`

∣∣∣∣∣
]
Im

= Im

[
1 +

1

G
Wf (1)′ C̃−1

∞ Wf (1)

]
.

So, conditional on
{
ηf,`
}G
`=1

and Wf (1) ,

W̃ ∗gj ·f (1) :=
W̃gj ·f (1)√

1 + 1
GWf (1)′ C̃−1

∞ Wf (1)
∼ N(0, Im).

Given that the conditional distribution does not depend on the conditioning variables, we have

W̃ ∗gj ·f (1) ∼ N(0, Im)
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unconditionally. The covariance between W̃ ∗gj ·f (1) and Wf (1) is

cov
(
W̃ ∗gj ·f (1) ,Wf (1)

)
= cov

Wgj ·f (1)−
[

1
G

∑G
`=1 ηgj ·f,`η

′
f,`

]
C̃−1
∞ Wf (1)√

1 + 1
GWf (1)′ C̃−1

∞ Wf (1)
,Wf (1)


= E

Wgj ·f (1)Wf (1)′√
1 + 1

GWf (1)′ C̃−1
∞ Wf (1)

− E

[
1
G

∑G
`=1 ηgj ·f,`η

′
f,`

]
C̃−1
∞ Wf (1)Wf (1)′√

1 + 1
GWf (1)′ C̃−1

∞ Wf (1)

= 0− 0 = 0,

using the law of iterated expectations. Therefore, W̃ ∗gj ·f (1) is independent ofWf (1) . In addition,

W̃ ∗gj ·f (1) is independent of ηf,` for any ` = 1, . . . , G, as

cov
(
W̃ ∗gj ·f (1) , ηf,`

)
= cov

Wgj ·f (1)−
[

1
G

∑G
k=1 ηgj ·f,kη

′
f,k

]
C̃−1
∞ Wf (1)√

1 + 1
GWf (1)′ C̃−1

∞ Wf (1)
, ηf,`


= E

Wgj ·f (1) η′f,` −
[

1
G

∑G
k=1 ηgj ·f,kη

′
f,k

]
C̃−1
∞ Wf (1) η′f,`√

1 + 1
GWf (1)′ C̃−1

∞ Wf (1)

= E


E

[
Wgj ·f (1) |

{
ηf,k

}
,Wf (1) , C̃∞

]
η′f,`√

1 + 1
GWf (1)′ C̃−1

∞ Wf (1)


− E

1
G

∑G
k=1 E

[
ηgj ·f,`|

{
ηf,k

}
,Wf (1) , C̃∞

]
η′f,kC̃

−1
∞ Wf (1) η′f,`√

1 + 1
GWf (1)′ C̃−1

∞ Wf (1)
= 0.

As a consequence, W̃ ∗gj ·f (1) is independent of C̃∞.
Let

D̃∗∞,j =
D̃∞,j√

1 + 1
GWf (1)′ C̃−1

∞ Wf (1)

= V
−1/2

ff V
1/2
gj ·f

W̃gj ·f (1)√
1 + 1

GWf (1)′ C̃−1
∞ Wf (1)

= V
−1/2

ff V
1/2
gj ·fW̃

∗
gj ·f (1)

and D̃∗∞ = (D̃∗∞,1, . . . , D̃
∗
∞,d). Then

K∞,θ = Wf (1)′ C̃−1
∞ D̃∗∞

{
D̃∗′∞C̃

−1
∞ D̃∗∞

}−1
D̃∗′∞C̃

−1
∞ Wf (1) ,

where D̃∗∞ is independent of C̃∞ and Wf (1) .
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Next,

1√
T

T∑
t=1

f̃ (Yt, θ0)⇒ V
1/2

ff

[
Wf (1)− D̃∗∞

{
D̃∗′∞C̃

−1
∞ D̃∗∞

}−1 {
D̃∗′∞C̃

−1
∞ Wf (1)

}]
and so

JT (θ0)⇒ J∞,θ :=

[
Wf (1)− D̃∗∞

{
D̃∗′∞C̃

−1
∞ D̃∗∞

}−1 {
D̃∗′∞C̃

−1
∞ Wf (1)

}]′
C̃−1
∞

×
[
Wf (1)− D̃∗∞

{
D̃∗′∞C̃

−1
∞ D̃∗∞

}−1 {
D̃∗′∞C̃

−1
∞ Wf (1)

}]
which holds jointly with KT (θ0)⇒ K∞,θ.

Given that D̃∗∞ is independent of C̃−1
∞ and Wf (1) , we can use the conditioning argument

(conditional on D̃∗∞) and the same proof for Theorem 4.1 to obtain(
K∗T (θ0)
J ∗T (θ0)

)
⇒
(
Fd,G−m+1

Fq,G−q+1

)
conditionally on D̃∗∞. But the conditional distribution does not depend on D̃

∗
∞. So the above also

holds unconditionally.

Proof of Lemma 5.1. Part (a). This part can be proved using Sun (2014a). Details are
omitted.

Part (b). We prove the marginal convergence in (12) only. The marginal convergence for the
other part can be proved similarly. The joint convergence can be proved using the Cramer-Wold
device. Using Assumptions 3.2 and 5.2(a.i), we have

f̄(Y, θ̂0) =
1

T

T∑
t=1

f
(
Yt, θ̂0

)
=

1√
T

1√
T

T∑
t=1

f (Yt, θ0) +
1√
T

[
1

T

T∑
t=1

gα

(
Yt, θ̃0

)]√
T (α̂− α0) (1 + op (1))

=
1√
T

1√
T

T∑
t=1

f (Yt, θ0) +
1√
T

Πα ·
√
T (α̂− α0) (1 + op (1)) = Op

(
1√
T

)
.

So, by Assumptions 3.3, 5.2(b) and using Part (a), we have

1√
T

T∑
t=1

Φ`

(
t

T

)[
f
(
Yt, θ̂0

)
− f̄(Y, θ̂0)

]
=

1√
T

T∑
t=1

Φ`

(
t

T

)[
f
(
Yt, θ̂0

)]
+ op (1)

=
1√
T

T∑
t=1

Φ`

(
t

T

)
f (Yt, θ0) +

[
1

T

T∑
t=1

Φ`

(
t

T

)
gα

(
Yt, θ̃0

)]√
T (α̂− α0) + op (1)

=
1√
T

T∑
t=1

Φ`

(
t

T

)
f (Yt, θ0) + op (1)⇒

∫ 1

0
Φ` (r) dBf (r) := ξf,`.
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Part (c). Note that for j = 1, . . . , dα,

1√
T
DT,j (θ0) =

1

T

T∑
t=1

gj(Yt, θ0)− 1√
T
V̂gjf (θ0) V̂ −1

ff (θ0)

[
1√
T

T∑
t=1

f (Yt, θ0)

]

=
1

T

T∑
t=1

gj(Yt, θ0) +Op

(
1√
T

)
.

This holds because by Part (b) we have

V̂gjf (θ0)⇒ 1

G

G∑
`=1

ξgj ,`ξ
′
f,`, V̂ff (θ0)⇒ 1

G

G∑
`=1

ξf,`ξ
′
f,`,

and T−1/2
∑T

t=1 f (Yt, θ0) = Op (1) . As a result,

1

T

T∑
t=1

gα (Yt, θ0) =
DT,α√
T

+ op (1) .

Using this result and Assumption 5.2 (b), we have

V̂
−1/2

ff

[
1√
T

T∑
t=1

f
(
Yt, θ̂0

)]

= V̂
−1/2

ff

[
1√
T

T∑
t=1

f (Yt, θ0)−
(

1

T

T∑
t=1

gα

(
Yt, θ̃0

))√
T (α̂− α0)

]

= V̂
−1/2

ff

1√
T

T∑
t=1

Im −
(

1

T

T∑
t=1

gα (Yt, θ0)

)[
D′T,α√
T
V̂ −1

ff

DT,α√
T

]−1
D′T,α√
T
V̂ −1

ff

 f(Yt, θ0)(1 + op (1))

=

Im −
(
V̂
−1/2

ff

DT,α√
T

)[
D′T,α√
T
V̂ −1

ff

DT,α√
T

]−1
D′T,α√
T
V̂
−1/2

ff

 1√
T

T∑
t=1

V̂
−1/2

ff f(Yt, θ0)(1 + op (1))

= M
V̂
−1/2
ff DT,α

1√
T

T∑
t=1

(
V̂
−1/2

ff f(Yt, θ0)
)

(1 + op (1))

⇒M
C
−1/2
∞ Πα

· C−1/2
∞ Bf (1) .

Combining this with V̂ −1/2
ff (θ̂0) = V̂

−1/2
ff (θ0) + op (1) = V̂

−1/2
ff + op (1) leads to the desired result.

Part (d). The columns of DT,β(θ̂0) are

DT,β,j−dα(θ̂0) =
1√
T

T∑
t=1

gj(Yt, θ̂0)− V̂gjf (θ̂0)V̂ −1
ff (θ̂0)

1√
T

T∑
t=1

f
(
Yt, θ̂0

)
=

1√
T

T∑
t=1

gj(Yt, θ̂0)− V̂gjf V̂
−1/2

ff M
V̂
−1/2
ff DT,α

1√
T

T∑
t=1

(
V̂
−1/2

ff f(Yt, θ0)
)

(1 + op (1))
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for j = dα + 1, . . . , dα + dβ. It follows from Assumption 5.2 (c.ii) and Part (c) that for j =
dα + 1, . . . , dα + dβ,

DT,β,j−dα(θ̂0)−
√
TEgj(Yt, θ̂0)

=
1√
T

T∑
t=1

[gj(Yt, θ0)− Egj(Yt, θ0)] + op (1)

− V̂gjf V̂
−1/2

ff M
V̂
−1/2
ff DT,α

1√
T

T∑
t=1

(
V̂
−1/2

ff f(Yt, θ0)
)

(1 + op (1))

⇒ Bgj (1)−
[

1

G

G∑
`=1

ξgj,`ξ
′
f,`

]
C−1/2
∞ M

C
−1/2
∞ Πα

· C−1/2
∞ Bf (1) := B̃∗gj ·f (1) .

When κ ∈ [0, 1/2), we have

DT,β(θ̂0)

T 1/2−κ = T κEgβ(Yt, θ̂0) + op (1)

= T κEgβ(Yt, θ0)− T κE
[
gβ(Yt, θ0)− gβ(Yt, θ̂0)

]
+ op (1)⇒ Πβ,

where we have used Assumption 5.2 (c.i). Similarly, when κ = 1/2, we have

DT,β,j−dα(θ̂0)

T 1/2−κ ⇒ Πj + B̃∗gj ·f (1)

for j = dα + 1, . . . , dα + dβ. Combining the two cases κ ∈ [0, 1/2) and κ = 1/2 yields

DT,β(θ̂0)/T 1/2−κ ⇒ D∞,β.

Proof of Theorem 5.1. By simple calculations, we have[
Π̃′βC̃

−1/2
∞ M

C̃
−1/2
∞ Π̃α

C̃−1/2
∞ Π̃β

]−1

=

{
Π̃′βC̃

−1
∞ Π̃β − Π̃′βC̃

−1
∞ Π̃α

[
Π̃′αC̃

−1
∞ Π̃α

]−1
Π̃′αC̃

−1
∞ Π̃β

}−1

= Rβ

(
Π̃′C̃−1

∞ Π̃
)−1

R′β.

Note that

Π̃′βC̃
−1/2
∞ M

C̃
−1/2
∞ Π̃α

C̃−1/2
∞ Wf (1)

=
{
M
C̃
−1/2
∞ Π̃α

[
C̃−1/2
∞ Π̃β

]}′
C̃−1/2
∞ Wf (1)

=

{[
I − C̃−1/2

∞ Π̃α

(
Π̃′αC̃

−1
∞ Π̃α

)−1
Π̃′αC̃

−1/2
∞

]
C̃−1/2
∞ Π̃β

}′
C̃−1/2
∞ Wf (1)

=

{
C−1/2
∞ Π̃β − C̃−1/2

∞ Π̃α

(
Π̃′αC̃

−1
∞ Π̃α

)−1
Π̃′αC̃

−1
∞ Π̃β

}′
C̃−1/2
∞ Wf (1)

=

[
Π̃β − Π̃α

(
Π̃′αC̃

−1
∞ Π̃α

)−1
Π̃′αC̃

−1
∞ Π̃β

]′
C̃−1
∞ Wf (1) ,
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and

Rβ

(
Π̃′C̃−1

∞ Π̃
)−1

Π̃′C̃−1
∞ Wf (1)

= Rβ

(
Π̃′αC̃

−1
∞ Π̃α Π̃′αC̃

−1
∞ Π̃β

Π̃′βC̃
−1
∞ Π̃α, Π̃′βC̃

−1
∞ Π̃β

)−1(
Π̃′αC̃

−1
∞

Π̃′βC̃
−1
∞

)
Wf (1)

=

{
Π̃′βC̃

−1
∞ Π̃β − Π̃′βC̃

−1
∞ Π̃α

[
Π̃′αC̃

−1
∞ Π̃α

]−1
Π̃′αC̃

−1
∞ Π̃β

}−1

×
[
Π̃β − Π̃α

(
Π̃′αC̃

−1
∞ Π̃α

)−1
Π̃′αC̃

−1
∞ Π̃β

]′
C̃−1
∞ Wf (1)

=

[
Rβ

(
Π̃′C̃−1

∞ Π̃
)−1

R′β

] [
Π̃β − Π̃α

(
Π̃′αC̃

−1
∞ Π̃α

)−1
Π̃′αC̃

−1
∞ Π̃β

]′
C̃−1
∞ Wf (1)

=

[
Rβ

(
Π̃′C̃−1

∞ Π̃
)−1

R′β

] [
Π̃′βC̃

−1/2
∞ M

C̃
−1/2
∞ Π̃α

C̃−1/2
∞ Wf (1)

]
.

We have

Π̃′βC̃
−1/2
∞ M

C̃
−1/2
∞ Π̃α

C̃−1/2
∞ Wf (1)

=

[
Rβ

(
Π̃′C̃−1

∞ Π̃
)−1

R′β

]−1

Rβ

(
Π̃′C̃−1

∞ Π̃
)−1

Π̃′C̃−1
∞ Wf (1) .

Therefore,

K∞,β =

{
Rβ

(
Π̃′C̃−1

∞ Π̃
)−1

Π̃′C̃−1
∞ Wf (1)

}′ [
Rβ

(
Π̃′C̃−1

∞ Π̃
)−1

R′β

]−1{
Rβ

(
Π̃′C̃−1

∞ Π̃
)−1

Π̃′C̃−1
∞ Wf (1)

}
.

Comparing this with the distribution F∞ in HS (2017), we can see that K∞,β is the same as pF∞
if we replace GΛ and R in HS (2017, equation (19), page 286) by Π̃ and Rβ, respectively.

To derive the limiting distribution of JT (θ̂0), we let

FT =

( 1
T 1/2−κ Idβ O

O 1
T 1/2 Idα

)
.

Then D̂FT := DT (θ̂0)FT →p Π, and

1√
T

T∑
t=1

f̃
(
Yt, θ̂0

)
= V̂

1/2
ff (θ̂0)

{
Im − V̂ −1/2

ff (θ̂0)D̂FT

[
D̂′FT V̂

−1
ff (θ̂0)D̂FT

]−1
D̂FT V̂

−1/2
ff (θ̂0)

}
V̂
−1/2

ff (θ̂0)
1√
T

T∑
t=1

f(Yt, θ̂0)

⇒ C1/2
∞

{
Im − C−1/2

∞ Π
[
Π′C−1

∞ Π
]−1

Π′C−1/2
∞

}
M
C
−1/2
∞ Πα

· C−1/2
∞ Bf (1)

= V
1/2

ff C̃1/2
∞

{
Im − C̃−1/2

∞ Π̃
[
Π̃′C̃−1

∞ Π̃
]−1

Π̃′C̃−1/2
∞

}
M
C̃
−1/2
∞ Π̃α

· C̃−1/2
∞ Wf (1)

= V
1/2

ff C̃1/2
∞ M

C̃
−1/2
∞ Π̃

·M
C̃
−1/2
∞ Π̃α

· C̃−1/2
∞ Wf (1)

= V
1/2

ff C̃1/2
∞ M

C̃
−1/2
∞ Π̃

· C̃−1/2
∞ Wf (1)

= V
1/2

ff

[
Wf (1)− Π̃

{
Π̃′C̃−1

∞ Π̃
}−1 {

Π̃′C̃−1
∞ Wf (1)

}]
.
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Therefore,

JT (θ̂0)⇒ J∞,β :=

[
Wf (1)− Π̃

{
Π̃′C̃−1

∞ Π̃
}−1 {

Π̃′C̃−1
∞ Wf (1)

}]′
C̃−1
∞

×
[
Wf (1)− Π̃

{
Π̃′C̃−1

∞ Π̃
}−1 {

Π̃′C̃−1
∞ Wf (1)

}]
The weak convergence holds jointly with the weak convergence: KT (θ̂0) ⇒ K∞,β. With some
notational changes, we can see that J∞,β is the same as J∞ in HS (2017, equation (20), page
286).

It now follows from HS (2017) that(
KT (θ̂0)

JT (θ̂0)

)
⇒
(
K∞,β
J∞,β

)
d
=

( [
Wf,dβ (1)− C̃dβ ,qC̃−1

qq Wf,q (1)
]′
C−1
dβdβ ·q

[
Wf,dβ (1)− C̃dβ ,qC̃−1

qq Wf,q (1)
]

Wf,q (1)′ C̃−1
qq Wf,q (1)

)
.

Hence (
K∗T (θ̂0)

J ∗T (θ̂0)

)
⇒
(

G−dβ−q+1
Gdβ

(
ψ∗β
)′
C−1
dβdβ ·qψ

∗
β

G−q+1
Gq Wf,q (1)′ C̃−1

qq Wf,q (1)

)
,

where

ψ∗β =
Wf,dβ (1)− C̃dβ ,qC̃−1

qq Wf,q (1)√
1 +Wf,q (1)′ C̃−1

qq Wf,q (1) /G
.

Using the same proof as that for Theorem 4.1, we then have(
K∗T (θ̂0)

J ∗T (θ̂0)

)
⇒
(
Fdβ ,G−dβ−q+1

Fq,G−q+1

)
,

where the two F variates are independent.

Proof of Lemma 5.2. Since Uα is an m × m orthogonal matrix,
[
U ′αC̃

−1
∞ Uα, U

′
αWf (1)

]
has the same distribution as

[
C̃−1
∞ ,Wf (1)

]
. In term of the distributional equivalence, we can

replace
[
U ′αC̃

−1
∞ Uα, U

′
αWf (1)

]
by
[
C̃−1
∞ ,Wf (1)

]
.We will do so throughout the proof so that the

distributional representations in the lemma hold jointly.
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Part (a).

W̃
(1)
f (1) = Π̃α

(
Π̃′αC̃

−1
∞ Π̃α

)−1
Π̃′αC̃

−1
∞ Wf (1)

= UαΛαSα

(
S′αΛ′αU

′
αC̃
−1
∞ UαΛαSα

)−1
S′αΛ′αU

′
αC̃
−1
∞ UαU

′
αWf (1)

=d UαΛαSα

(
S′αΛ′αC̃

−1
∞ ΛαSα

)−1
S′αΛ′αC̃

−1
∞ Wf (1)

= UαΛα

(
Λ′αC̃

−1
∞ Λα

)−1
Λ′αC̃

−1
∞ Wf (1)

= UαΛα

(
Λ′αC̃

−1
∞ Λα

)−1 (
A′α, O

′
α

)
C̃−1
∞ Wf (1)

= UαΛα

(
A′αC̃

−1
αα·q̃Aα

)−1
A′αC̃

−1
αα·q̃

[
Wf,α (1)− C̃αq̃C̃−1

q̃q̃ Wf,q̃ (1)
]

= Uα

(
Iα
Oα

)[
Wf,α (1)− C̃αq̃C̃−1

q̃q̃ Wf,q̃ (1)
]

= (Uα1, Uα2)

( [
Wf,α (1)− C̃αq̃C̃−1

q̃q̃ Wf,q̃ (1)
]

Oq̃×1

)
= Uα1

[
Wf,α (1)− C̃αq̃C̃−1

q̃q̃ Wf,q̃ (1)
]
.

Part (b). In the proof of Part (a), we have shown that

Π̃α

(
Π̃′αC̃

−1
∞ Π̃α

)−1
Π̃′αC̃

−1
∞ Wf (1) = Uα

(
Wf,α (1)− C̃α,q̃C̃−1

q̃q̃ Wf,q̃ (1)

Oq̃×1

)
.

Using this result, we have

C̃−1/2
∞ M

C̃
−1/2
∞ Π̃α

C̃−1/2
∞ Wf (1)

= C̃−1
∞

[
Im − Π̃α

(
Π̃′αC̃

−1
∞ Π̃α

)−1
Π̃′αC̃

−1
∞

]
Wf (1)

= C̃−1
∞ Wf (1)− C̃−1

∞ Π̃α

(
Π̃′αC̃

−1
∞ Π̃α

)−1
Π̃′αC̃

−1
∞ Wf (1)

=d UαC̃
−1
∞ U ′αUαWf (1)− UαC̃−1

∞ U ′αUα

(
Wf,α (1)− C̃αq̃C̃−1

q̃q̃ Wf,q̃ (1)

Oq̃×1

)
= UαC̃

−1
∞

[(
Wf,α (1)
Wf,q̃ (1)

)
−
(
Wf,α (1)− C̃αq̃C̃−1

q̃q̃ Wf,q̃ (1)

Oq̃×1

)]
= UαC̃

−1
∞

(
C̃αq̃C̃

−1
q̃q̃ Wf,q̃ (1)

Wf,q̃ (1)

)
= UαC̃

−1
∞

(
C̃αq̃C̃

−1
q̃q̃

Iq̃q̃

)
Wf,q̃ (1)

= Uα

(
C̃−1
αα·q̃, −C̃−1

αα·q̃C̃αq̃C̃
−1
q̃q̃

−C̃−1
q̃q̃·αC̃q̃αC̃

−1
q̃q̃ , C̃−1

q̃q̃·α

)(
C̃αq̃C̃

−1
q̃q̃

Iq̃q̃

)
Wf,q̃ (1)

= Uα

(
Odα×q̃

C̃−1
q̃q̃·α

(
I − C̃q̃αC̃−1

q̃q̃ C̃α,q̃C̃
−1
q̃q̃

) )Wf,q̃ (1)

= (Uα1, Uα2)

(
Odα×q̃
C̃−1
q̃q̃

)
Wf,q̃ (1) = Uα2C̃

−1
q̃q̃ Wf,q̃ (1) .
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Part (c) Using the presentation

C̃−1/2
∞ M

C̃
−1/2
∞ Π̃α

C̃−1/2
∞ Wf (1) =d Uα

(
Odα×q̃
C̃−1
q̃q̃

)
Wf,q̃ (1)

in part (b), we have

W̃
(2)
gj ·f (1)

= Wgj ·f (1)−
(

1

G

G∑
`=1

ηgj ·f,`η
′
f,`

)
C̃−1/2
∞ M

C̃
−1/2
∞ Π̃α

· C̃−1/2
∞ Wf (1)

=d UαWgj ·f (1)− Uα

(
1

G

G∑
`=1

ηgj ·f,`η
′
f,`

)
U ′αUα

(
Odα×q̃
C̃−1
q̃q̃

)
Wf,q̃ (1)

= Uα

[
Wgj ·f (1)−

(
1

G

G∑
`=1

ηgj ·f,`η
′
f,`

)(
Odα×q̃
C̃−1
q̃q̃

)
Wf,q̃ (1)

]

= Uα

[
Wgj ·f (1)−

(
1

G

G∑
`=1

ηgj ·f,`η
′
f,q̃,`

)
C̃−1
q̃q̃ Wf,q̃ (1)

]
.

Part (d). We have

C̃−1/2
∞ M

C̃
−1/2
∞ Π̃α

C̃−1/2
∞

= C̃−1
∞

[
Im − Π̃α

(
Π̃′αC̃

−1
∞ Π̃α

)−1
Π̃′αC̃

−1
∞

]
=d UαC̃

−1
∞ U ′α

[
Im − UαΛα

(
Λ′αC̃

−1
∞ Λα

)−1 (
A′α, O

′
α

)
C̃−1
∞ U ′α

]
= UαC̃

−1
∞ U ′α

[
Im − UαΛα

(
A′αC̃

−1
αα·q̃Aα

)−1
A′αC̃

−1
αα·q̃

(
Iq̃q̃,−C̃αq̃C̃−1

q̃q̃

)
U ′α

]
= UαC̃

−1
∞ U ′α

[
Im − UαΛαA

−1
α C̃αα·q̃

(
A′α
)−1

A′αC̃
−1
αα·q̃

(
Iq̃q̃,−C̃αq̃C̃−1

q̃q̃

)
U ′α

]
= UαC̃

−1
∞ U ′α

[
Im − Uα

(
Iα
Oα

)(
Iq̃q̃,−C̃αq̃C̃−1

q̃q̃

)
U ′α

]
= UαC̃

−1
∞ U ′α

[
Im − (Uα1, Uα2)

(
Iq̃q̃, −C̃αq̃C̃−1

q̃q̃

O, O

)
U ′α

]
= UαC̃

−1
∞ U ′α

[
Im −

(
Uα1, −Uα1C̃αq̃C̃

−1
q̃q̃

)( U ′α1

U ′α2

)]
.

Using Uα1U
′
α1 +Uα2U

′
α2 = Im, U ′α1Uα2 = 0, U ′α1Uα1 = Idα , U

′
α2Uα2 = Im−dα , we can simplify the
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above expression as

C̃−1/2
∞ M

C̃
−1/2
∞ Π̃α

C̃−1/2
∞

=d UαC̃
−1
∞ U ′α

[
Im − Uα1U

′
α1 + Uα1C̃αq̃C̃

−1
q̃q̃ U

′
α2

]
= UαC̃

−1
∞

(
U ′α1

U ′α2

)[
Uα2U

′
α2 + Uα1C̃αq̃C̃

−1
q̃q̃ U

′
α2

]
= UαC̃

−1
∞

(
C̃αq̃C̃

−1
q̃q̃ U

′
α2

U ′α2

)
= Uα

(
C̃−1
αα·q̃, −C̃−1

αα·q̃C̃αq̃C̃
−1
q̃q̃

−C̃−1
q̃q̃·αC̃q̃αC̃

−1
q̃q̃ , C̃−1

q̃q̃·α

)(
C̃αq̃C̃

−1
q̃q̃

Iq̃q̃

)
U ′α2

= Uα

(
O

C̃−1
q̃q̃·α − C̃

−1
q̃q̃·αC̃q̃αC̃

−1
q̃q̃ C̃αq̃C̃

−1
q̃q̃

)
U ′α2

= (Uα1, Uα2)

(
O

C̃−1
q̃q̃

)
U ′α2 = Uα2C̃

−1
q̃q̃ U

′
α2.

Proof of Theorem 5.2. We start by proving two key results. First, conditional on
{
ηf,q̃,`

}
={

ηf,q̃,`, ` = 1, . . . , G
}
and Wf,q̃ (1) , W̃

(2)
gj ·f (1) is normal with mean zero and variance(

1 +
1

G
Wf,q̃ (1)′ C̃−1

q̃q̃ Wf,q̃ (1)

)
Im =

(
1 +

1

G
J̃∞
)
Im.

So, conditional on
{
ηf,q̃,`

}
and Wf,q̃ (1) ,

W̃
(2)
gj ·f (1)√

1 +G−1J̃∞
∼ N(0, Im).

Given that the conditional distribution does not depend on the conditioning variables
{
ηf,q̃,`

}
and Wf,q̃ (1) , we have

W̃
(2)
gj ·f (1)√

1 +G−1J̃∞
∼ N(0, Im),

unconditionally and W (2)
gj ·f (1) /

√
1 +G−1J̃∞ is independent of

{
ηf,q̃,`

}
and Wf,q̃ (1) .

Second, conditional on
{
ηf,q̃,`

}
and Wf,q̃ (1) , U ′α1W

(1)
f (1) is normal with mean zero and vari-

ance

E
{[
Wf,α (1)− C̃α,q̃C̃−1

q̃q̃ Wf,q̃ (1)
] [
Wf,α (1)− C̃α,q̃C̃−1

q̃q̃ Wf,q̃ (1)
]′}

=

(
1 +

1

G
Wf,q̃ (1)′ C̃−1

q̃q̃ Wf,q̃ (1)

)
Idα

where Idα is the dα × dα identity matrix. So, conditional on
{
ηf,q̃,`

}
and Wf,q̃ (1)

W
(1)
f (1)√

1 +G−1J̃∞
∼ N(0, Uα1U

′
α1).
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The conditional distribution does not depend on the conditioning variables. SoW (1)
f (1) /

√
1 +G−1J̃∞

is unconditionally normal and is independent of
{
ηf,q̃,`

}
and Wf,q̃ (1).

Note that C̃q̃q̃ is a function of
{
ηf,q̃,`

}
. It follows from the above results that D̃∗∞,β,j is

independent of C̃−1
q̃q̃ and Wf,q̃ (1) . Therefore, conditional on U ′α2D̃

∗
∞,β ∈ Rq̃×dβ , the distribution

of K∞,β, which is given by

K∞,β =

∥∥∥∥PC̃−1/2
q̃q̃ U ′α2D̃

∗
∞,β

[
C̃
−1/2
q̃q̃ Wf,q̃ (1)

]∥∥∥∥2

,

takes the same form as that of K∞,θ =
∥∥∥P

C̃
−1/2
∞ D̃∞

[
C̃
−1/2
∞ Wf (1)

]∥∥∥2
given in (8). The only

difference lies in the dimensionality. We can use the same argument to simplify K∞,β. More
specifically, we write

C̃q̃q̃ =

(
C̃ββ , C̃βq
C̃qβ, C̃qq

)
and Wf,q̃ (1) =

(
Wf,β (1)
Wf,q (1)

)
,

and let UDΛDSD be the SVD of (D̃∗∞,β)′Uα2. Then

K∞,β =d
{
UDΛDSDC̃

−1
q̃q̃ Wf,q̃ (1)

}′ {
UDΛDSDC̃

−1
q̃q̃ S

′
DΛ′DU

′
D

}−1

×
{
UDΛDSDC̃

−1
q̃q̃ Wf,q̃ (1)

}
.

=d
{

ΛDC̃
−1
q̃q̃ Wf,q̃ (1)

}′ {
ΛDC̃

−1
q̃q̃ Λ′D

}−1 {
ΛDC̃

−1
q̃q̃ Wf,q̃ (1)

}
=d
[
Wf,β (1)− C̃βqC̃−1

qq Wf,q (1)
]′
C̃−1
ββ·q

[
Wf,β (1)− C̃βqC̃−1

qq Wf,q (1)
]
.

Next, we find the limit of JT (θ̂0). In the proof of Theorem 6.1, we will show that

ST (θ̂0)⇒Wf,q̃ (1)′ C̃−1
q̃q̃ C̃q̃q̃C̃

−1
q̃q̃ Wf,q̃ (1) = Wf,q̃ (1)′ C̃−1

q̃q̃ Wf,q̃ (1) .

The above convergence holds jointly with the weak convergence:

KT (θ̂0)⇒
[
Wf,β (1)− C̃βqC̃−1

qq Wf,q (1)
]′
C̃−1
ββ·q

[
Wf,β (1)− C̃βqC̃−1

qq Wf,q (1)
]
.

So

JT (θ̂0) = ST (θ̂0)−KT (θ̂0)

⇒Wf,q̃ (1)′ C̃−1
q̃q̃ Wf,q̃ (1)−

[
Wf,β (1)− C̃βqC̃−1

qq Wf,q (1)
]′
C̃−1
ββ·q

[
Wf,β (1)− C̃βqC̃−1

qq Wf,q (1)
]
.

But

Wf,q̃ (1)′ C̃−1
qq Wf,q̃ (1)

=

(
Wf,β (1)
Wf,q (1)

)′(
C̃ββ , C̃βq
C̃qβ, C̃qq

)−1(
Wf,β (1)
Wf,q (1)

)
=

∥∥∥∥∥
(
C̃
−1/2
ββ·q , −C̃

−1/2
ββ·q C̃βqC̃

−1
qq

O, C̃
−1/2
qq

)(
Wf,β (1)
Wf,q (1)

)∥∥∥∥∥
= Wf,q (1)′ C̃−1

qq Wf,q (1)

+
[
Wf,β (1)− C̃βqC̃−1

qq Wf,q (1)
]′
C̃−1
ββ·q

[
Wf,β (1)− C̃βqC̃−1

qq Wf,q (1)
]′
.

55



We have
JT (θ̂0)⇒Wf,q (1)′ C̃−1

qq Wf,q (1) .

Combining the limits of KT (θ̂0) and JT (θ̂0), we have:(
KT (θ̂0)

JT (θ̂0)

)
⇒
( [

Wf,β (1)− C̃βqC̃−1
qq Wf,q (1)

]′
C̃−1
ββ·q

[
Wf,β (1)− C̃βqC̃−1

qq Wf,q (1)
]

Wf,q (1)′ C̃−1
qq Wf,q (1)

)
.

As a result, (
K∗T (θ̂0)

J ∗T (θ̂0)

)
⇒
(

G−dβ−q+1
Gdβ

(
ψ∗β
)′
C̃−1
ββ·qψ

∗
β

G−q+1
Gq Wf,q (1)′ C̃−1

qq Wf,q (1)

)
:=

(
K∗∞,β
J ∗∞,β

)
,

where

ψ∗β =
Wf,β (1)− C̃βqC̃−1

qq Wf,q (1)√
1 +G−1Wf,q (1) C̃−1

qq Wf,q (1)
.

The form of (K∗∞,β,J ∗∞,β)′ is the same as that of (K∗∞,θ,J ∗∞,θ)′ in (20). Using the same argument
at the end of the proof for Theorem 4.1, we obtain(

K∗T (θ̂0)

J ∗T (θ̂0)

)
⇒
(
Fdβ ,G−dβ−q+1

Fq,G−q+1

)
.

Proof of Theorem 6.1. The weak convergence result for S∗T (θ0) holds because

S∗T (θ0)⇒ G−m+ 1

Gm
Bf (1)′

[
1

G

G∑
`=1

ξf,`ξ
′
f,`

]−1

Bf (1)

=
G−m+ 1

Gm
Wf (1)′

[
1

G

G∑
`=1

ηf,`η
′
f,`

]−1

Wf (1)

=d Fm,G−m+1.

It remains to prove the result for ST (θ̂0). Note that Lemma 5.1(c) holds under the assumptions
given in the theorem. Using 5.1(c) and 5.2(b), we have

ST (θ̂0)⇒
[
M
C
−1/2
∞ Πα

· C−1/2
∞ Bf (1)

]′
M
C
−1/2
∞ Πα

· C−1/2
∞ Bf (1)

=
[
Wf (1)′ C̃−1/2

∞ M
C̃
−1/2
∞ Π̃α

] [
M′
C̃
−1/2
∞ Π̃α

C̃−1/2
∞ Wf (1)

]
=d
[
Uα2C̃

−1
q̃q̃ Wf,q̃ (1)

]′ (
UαC̃

1/2
∞ U ′α

)(
UαC̃

1/2
∞ U ′α

)
Uα2C̃

−1
q̃q̃ Wf,q̃ (1)

= Wf,q̃ (1)′ C̃−1
q̃q̃

(
U ′α2UαC̃∞U

′
αUα2

)
C̃−1
q̃q̃ Wf,q̃ (1)

= Wf,q̃ (1)′ C̃−1
q̃q̃

[(
O
Iq̃

)′
C̃∞

(
O
Iq̃

)]
C̃−1
q̃q̃ Wf,q̃ (1)

= Wf,q̃ (1)′ C̃−1
q̃q̃ C̃q̃q̃C̃

−1
q̃q̃ Wf,q̃ (1) = Wf,q̃ (1)′ C̃−1

q̃q̃ Wf,q̃ (1) .
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Therefore,

S∗T (θ̂0) =
G− q̃ + 1

Gq̃
ST (θ̂0)⇒ G− q̃ + 1

Gq̃
Wf,q̃ (1)′ C̃−1

q̃q̃ Wf,q̃ (1) =d Fq̃,G−q̃+1.

11 Appendix B: the nonpivotality of the fixed-smoothing asymp-
totic distribution in the intermediate case

To prove the negative result, we can consider the special case with m = 2 and d = 1. In this case,
D̃∗∞ is a 2× 1 vector:

D̃∗∞

=
V
−1/2

ff Π√
1 + 1

GWf (1)′C−1
∞ Wf (1)

+ V
−1/2

ff V
1/2
g·f W̃

∗
g·f (1)

=

(
Π∗1 + δ1

Π∗2 + δ2

)
for

(
δ1

δ2

)
= V

−1/2
ff V

1/2
g·f W̃

∗
g·f (1) ,

where (δ1, δ2)′ ∈ R2 is N(0, V
−1/2

ff Vg·fV
−1/2

ff ). In the proof of Theorem 4.2, we have shown that

(δ1, δ2)′ is independent of Wf (1) and C̃−1
∞ . Note that

D̃o
∞ :=

D̃∗∞
||D̃∗∞||

lies on the unit circle and its distribution is completely characterized by its polar angle. The
distribution of the angle clearly depends on the distribution of the ratio

Π∗1 + δ1

Π∗2 + δ2
,

which in turn depends on the nuisance parameters V −1/2
ff Π and V −1/2

ff V
1/2
g·f .

Now,

K∞,θ = Wf (1)′ C̃−1
∞ D̃o

∞

[
D̃o′
∞C̃

−1
∞ D̃o

∞

]−1
D̃o′
∞C̃

−1
∞ Wf (1)

=

[
Wf (1)′ C̃−1

∞ D̃o
∞

]2[
D̃o′
∞C̃

−1
∞ D̃o

∞

] =

〈
C̃
−1/2
∞ Wf (1) , C̃

−1/2
∞ D̃o

∞

〉2

∥∥∥C̃−1/2
∞ Wf (1)

∥∥∥2 ∥∥∥C̃−1/2
∞ D̃o

∞

∥∥∥2

∥∥∥C̃−1/2
∞ Wf (1)

∥∥∥2

= cos2 (Υ)
∥∥∥C̃−1/2
∞ Wf (1)

∥∥∥2
,

whereΥ is an angle spanned by the vectors C̃−1/2
∞ Wf (1) /||C̃−1/2

∞ Wf (1) || and C̃−1/2
∞ D̃o

∞/||C̃
−1/2
∞ D̃o

∞||.
Let Υ1 and Υ2 be the polar angles (in [0, 2π]) of the two vectors C̃−1/2

∞ Wf (1) /||C̃−1/2
∞ Wf (1) ||

and C̃−1/2
∞ D̃o

∞/||C̃
−1/2
∞ D̃o

∞||, respectively. Then we can take Υ = Υ1 −Υ2.

57



We can make three observations. First, we can show that C̃−1/2
∞ Wf (1) /||C̃−1/2

∞ Wf (1) || is
uniform on the unit circle. For any orthogonal matrix U, we have

U
C̃
−1/2
∞ Wf (1)∥∥∥C̃−1/2
∞ Wf (1)

∥∥∥ =
(UC̃

−1/2
∞ U ′)UWf (1)∥∥∥(UC̃
−1/2
∞ U ′)UWf (1)

∥∥∥ :=d C̃
−1/2
∞ Wf (1)∥∥∥C̃−1/2
∞ Wf (1)

∥∥∥ .
That is, the distribution of C̃−1/2

∞ Wf (1) /||C̃−1/2
∞ Wf (1) || is invariant to any rotation. This

implies that C̃−1/2
∞ Wf (1) /||C̃−1/2

∞ Wf (1) || is indeed uniform on the unit circle. That is, Υ1 is

uniform over [0, 2π]. Second, while C̃−1/2
∞ D̃o

∞/||C̃
−1/2
∞ D̃o

∞|| lies on the unit circle too, it is neither
symmetric or concentrated on a single point on the unit circle, as D̃o

∞ does not satisfy these
properties either and there is dependence between C̃−1/2

∞ and D̃o
∞ when Π 6= 0. The distribution

of C̃−1/2
∞ D̃o

∞/||C̃
−1/2
∞ D̃o

∞|| depends on the nuisance parameters in a complicated way. So, Υ2 is
not free from nuisance parameters. The first two observations imply that the distribution of Υ

is not nuisance-parameters free. Third, ||C̃−1/2
∞ Wf (1) ||2 is free from nuisance parameters. It

follows from these three observations that the distribution of K∞,θ is not nuisance-parameters
free under the fixed-smoothing asymptotics.
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