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Abstract

This paper considers two-step e¢ cient GMM estimation and inference where the weighting
matrix and asymptotic variance matrix are based on the series long run variance estimator.
We propose a simple and easy-to-implement modi�cation to the trinity of test statistics in
the two-step e¢ cient GMM setting and show that the modi�ed test statistics are all asymp-
totically F distributed under the so-called �xed-smoothing asymptotics. The modi�cation is
multiplicative and involves the J statistic for testing over-identifying restrictions. This leads
to convenient asymptotic F tests that use standard F critical values. Simulation shows that,
in terms of both size and power, the asymptotic F tests perform as well as the nonstandard
tests proposed recently by Sun (2014b) in �nite samples. But the F tests are more appealing
as the critical values are readily available from standard statistical tables. Compared to the
conventional chi-square tests, the F tests are as powerful, but are much more accurate in size.

JEL Classi�cation: C12, C32

Keywords: E¢ cient GMM, F distribution, F test, Fixed-smoothing Asymptotics, Heteroskedas-
ticity and Autocorrelation Robust, Two-step GMM

1 Introduction

This paper considers the optimal two-step GMM estimator and the associated tests in a time se-
ries setting. In the presence of nonparametric temporal dependence, the optimal weighting matrix
is the inverted long run variance (LRV) of the moment process. To implement the two-step GMM
method, we often estimate the LRV using the nonparametric kernel or series method. Given the
nonparametric nature of the LRV estimator, there is a high variation in the weighting matrix
with consequent e¤ects on the two-step point estimator and the associated tests. Recently Sun
(2014b) employs the �xed-smoothing asymptotics and establishes a new asymptotic approxima-
tion that captures the estimation uncertainty in the LRV estimator. Under the �xed-smoothing
asymptotics, the point estimator is asymptotically mixed normal and the test statistics converge
to a nonstandard distribution. In the case of series LRV estimation, Sun (2014b) shows that the
nonstandard limiting distribution can be approximated by a noncentral F distribution.

In this paper, we follow Sun (2014b) but focus on the series LRV estimator. We modify the
usual test statistics, including the Wald statistic, the quasi LR statistic, and the LM statistic
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and show that the modi�ed test statistics are all asymptotically standard F distributed. The
standard F distribution is the exact limiting distribution. No additional approximation is needed.
This is in contrast to Sun (2014b) where the noncentral F distribution is an approximation to
the �xed-smoothing limiting distribution. The standard F distribution is more accessible than
the noncentral F distribution, as standard F critical values are readily available from standard
statistical tables.

The modi�cation involves the usual J statistic for testing overidentifying restrictions. The
modi�ed test statistics are scaled versions of the original test statistics with the scaling factor
depending on the J statistic. So the modi�cation is very easy to implement. To understand
the modi�cation, we cast the two-step GMM estimation and inference into OLS estimation and
inference in a classical normal linear regression (CNLR). We show that the modi�ed Wald statistic
in the GMM framework is exactly the usual Wald statistic constructed in the standard way in
the CNLR framework. Our proposed asymptotic F tests, which are based on the modi�ed test
statistics and use the standard F approximation, can be regarded as conditional tests conditioning
on the J statistic. The conditioning argument is entirely analogous to that used in the linear
regression model with stochastic regressors that are independent of the regression error.

Monte Carlo simulations show that our proposed asymptotic F tests are as accurate in size
as the corresponding nonstandard tests of Sun (2014b). They are also as powerful as the latter
tests. So there is no power loss in using the asymptotic F tests. Like the nonstandard tests of
Sun (2014b), the asymptotic F tests are much more accurate in size than the usual chi-square
tests without any power sacri�ce. Given the convenience of the standard F approximation, we
recommend the asymptotic F tests for practical use.

The paper contributes to a growing body of literature on the �xed-smoothing asymptotics.
For kernel LRV estimators such as the Newey-West estimator (Newey and West (1987)), the
�xed-smoothing asymptotics is the so-called the �xed-b asymptotics �rst studied by Kiefer and
Vogelsang (2002a, 2002b, 2005) in the econometrics literature. Subsequent research includes
Jansson (2004), Sun, Phillips, Jin (2008), Sun and Phillips (2009), Gonçlaves and Vogelsang
(2011) and among others. Papers that are most closely related to this paper are those that use
the series LRV estimators. In this case, the �xed-smoothing asymptotics is the so-called �xed-K
asymptotics. Some examples of these papers are Phillips (2005), Müller (2007), Sun (2011, 2013,
2014a&b), and Sun and Kim (2012).

In the case of series LRV estimation, the F limit theory has been established in Sun (2011)
for trend regression, Sun (2013) for stationary moment processes, and Sun (2014c) for highly
persistent moment processes. See also Sun and Kim (2012, 2015) for the J test and the Wald test
in the spatial setting. All these papers focus on the �rst-step GMM estimator or OLS estimator.
This paper is the �rst to establish the F limit theory for the trinity of test statistics in a two-step
e¢ cient GMM framework. This is not trivial, as the asymptotic pivotality of these statistics
under the �xed-smoothing asymptotics was not established until very recently in Sun (2014b).

The rest of the paper is organized as follows. Section 2 presents the basic setting and intro-
duces the modi�ed test statistics. Section 3 establishes the �xed-smoothing asymptotics of the
modi�ed test statistics and develops the asymptotic F and t tests. Section 4 casts the GMM
estimator as an OLS estimator in a regression setting and shows that the modi�ed Wald statistic
is the usual Wald statistic in a CNLR model. The next section reports simulation evidence. The
last section concludes. Proofs are given in the appendix.
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2 Two-step GMM Estimation and Testing

We consider the standard GMM setting with moment conditions

Ef (vt; �0) = 0; t = 1; 2; : : : ; T; (1)

where vt is the vector of observations at time t, �0 2 � � Rd is the parameter of interest, and
f (vt; �) is the m� 1 vector of moment conditions that are twice continuously di¤erentiable. We
assume that Ef (vt; �) = 0 if and only if � = �0 so that �0 is point identi�ed. The model may be
overidenti�ed with the degree of overidenti�cation q = m � d � 0: We allow ff (vt; �0)g to have
autocorrelation of unknown forms.

De�ne

gt (�) =
1

T

tX
j=1

f(vj ; �);

then the GMM estimator of �0 is given by

�̂GMM = argmin
�2�

gT (�)
0W�1

T gT (�) ;

where WT is a positive de�nite weighting matrix. The initial �rst-step GMM estimator can be
obtained by choosing WT to be a matrix Wo;T that does not depend on any unknown parameter.
This gives rise to

~�T = argmin
�2�

gT (�)
0W�1

o;T gT (�) :

Here Wo;T may depend on the sample size T but we assume that Wo;T
p!Wo;1; a matrix that is

positive de�nite almost surely.
With the �rst step estimator ~�T ; we can construct the optimal weighting matrix WT ; which

is the asymptotic variance matrix of
p
TgT (�0) : See Hansen (1982). Most, if not all, estimators

of the asymptotic variance take the following form

WT

�
~�T

�
=
1

T

TX
t=1

TX
s=1

Qh

�
t

T
;
s

T

� 
f(vt; ~�T )�

1

T

TX
�=1

f(v� ; ~�T )

! 
f(vs; ~�T )�

1

T

TX
�=1

f(v� ; ~�T )

!
;

(2)
where Qh (r; s) is a symmetric weighting function that depends on the smoothing parameter h:
In this paper, we focus on the series LRV estimator with

QK (r; s) =
1

K

KX
j=1

�j (r) �j (s) ;

where f�j (r)g are orthonormal basis functions on L2[0; 1] satisfying
R 1
0 �j (r) dr = 0: In the

econometric literature, the series LRV estimator has been recently used, for example, in Phillips
(2005), Müller (2007), and Sun (2011, 2013, 2014a&b).

De�ne the projection coe¢ cient

�j (�0) =
1p
T

TX
t=1

�j(
t

T
)

"
f(vt; �0)�

1

T

TX
�=1

f(v� ; �0)

#
for j = 1; 2; : : : ;K:
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Then

WT (�0) =
1

K

KX
j=1

�j(�0)�
0
j(�0): (3)

In essence, each outer product �j(�0)�0j(�0) is an approximately unbiased estimator of the LRV,
and the series LRV estimator is a simple average of these estimators. Here K is the smoothing
parameter underlying the series LRV estimator WT : If �j (r) =

p
2 sin (2�jr) or

p
2 cos (2�jr) ;

then the series LRV estimator is proportional to the spectral density estimator at the origin that
takes a simple average of the �rst K periodograms. The averaged periodogram estimator is a
common spectral density estimator. In the traditional asymptotic framework, it can be shown
that the averaged periodogram estimator is asymptotically equivalent to the kernel LRV estimator
based on the Daniell kernel; See for example Phillips (2005). Sun (2013) provides more discussion
on the relationship between the kernel LRV and series LRV estimators. To ensure that WT is
positive semide�nite, we assume that K � m throughout the rest of the paper.

With the optimal weighting matrix estimator WT (~�T ); the two-step GMM estimator is:

�̂T = argmin
�2�

gT (�)
0W�1

T (~�T )gT (�) :

Suppose that we want to perform hypothesis testing based on �̂T : Without loss of generality, we
consider the linear null hypothesis H0 : R�0 = r against the alternative H1 : R�0 6= r where R is
a p� d matrix with full row rank. As in Sun (2014b), we consider the �trinity�of test statistics
in the GMM setting. The �rst test statistic is the (normalized) Wald statistic given by

WT :=WT (�̂T ) = T (R�̂T � r)0
�
R
h
GT (�̂T )

0W�1
T (�̂T )GT (�̂T )

i�1
R0
��1

(R�̂T � r)=p; (4)

where GT (�) =
@gT (�)
@�0 : When p = 1 and for one-sided alternative hypotheses, we can construct

the t statistic:

tT (�̂T ) =

p
T (R�̂T � r)�

R
h
GT (�̂T )0W

�1
T (�̂T )GT (�̂T )

i�1
R0
�1=2 :

The second test statistic is the GMM criterion function statistic, which can be regarded as
the LR analogue in the GMM setting. Let �̂T;R be the restricted second-step GMM estimator:

�̂T;R = argmin
�2�

gT (�)
0W�1

T (~�T )gT (�) s:t: R� = r:

The GMM criterion function statistic is given by

DT :=
h
TgT (�̂T )

0W�1
T (~�T )gT (�̂T )� TgT (�̂T;R)0W�1

T (~�T )gT (�̂T;R)
i
=p;

which is often referred to as the quasi LR statistic.
The third test statistic is the GMM counterpart of the score or LM statistic. Let �T (�) =

G0T (�)W
�1
T (~�T )gT (�) be the gradient of the GMM criterion function. The score type test statistic

is given by

ST = T
h
�T (�̂T;R)

i0 h
G0T (�̂T;R)W

�1
T (~�T )GT (�̂T;R)

i�1
�T (�̂T;R)=p:

In the de�nitions of DT and ST ; ~�T can be replaced by �̂T or any other
p
T consistent estimator

without a¤ecting our asymptotic results.
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To introduce the modi�ed or corrected versions of the above three test statistics, we construct
the standard J statistic for testing the over-identifying restrictions:

JT := JT (�̂T ) = TgT (�̂T )
0W�1

T (�̂T )gT (�̂T ):

The modi�ed or corrected versions of WT ;DT and ST are

Wc
T :=Wc

T (�̂T ) =
K � p� q + 1

K

WT (�̂T )

1 + 1
KJT (�̂T )

;

DcT := DcT (�̂T ) =
K � p� q + 1

K

DT (�̂T )
1 + 1

KJT (�̂T )
;

ScT := ScT (�̂T ) =
K � p� q + 1

K

ST (�̂T )
1 + 1

KJT (�̂T )
:

The multiplicative corrections are the same for all three statistics. The corresponding version of
the t statistic is

tcT (�̂T ) =
K � q
K

tT (�̂T )

1 + 1
KJT (�̂T )

:

Under the conventional asymptotic theory where K diverges to 1 with the sample size T
but K=T ! 0; both correction factors K � p� q + 1=K and (1 + JT (�̂T )=K)�1 approach unity.
So they do not matter in large samples and can thus be regarded as �nite sample corrections.
Under this type of asymptotics,WT ;DT and ST and henceWc

T ;DcT and ScT are all asymptotically
�2p=p distributed. It is now well known that the chi-square approximation is not accurate in �nite
samples. This motivates the more accurate �xed-smoothing asymptotics under which K is held
�xed as T ! 1: We point out in passing that the �xed-K speci�cation is an asymptotic device
to help establish a more accurate approximation. We do not have to use a �xed K value in �nite
samples.

3 The Asymptotic F and t Tests

De�ne

Gt(�) =
@gt (�)

@�0
=
1

T

tX
j=1

@f(vj ; �)

@�0
for t � 1:

Let ut = f(vt; �0) and �0 (t) � 1; et s iidN(0; Im): We make the following assumptions on the
basis functions, the GMM estimators, and the data generating process. These assumptions are
the same as those in Sun (2014b) and are commonly used in the literature on the �xed-smoothing
asymptotics.

Assumption 1 The basis functions �j (�) are piecewise monotonic, continuously di¤erentiable
and orthonormal in L2[0; 1] and

R 1
0 �j (x) dx = 0:

Assumption 2 As T ! 1; �̂T = �0 + op (1) ; ~�T = �0 + op (1) for an interior point �0 2 �, a
compact parameter space.

Assumption 3
P1
j=�1 k�jk <1 where �j = Eutu0t�j.
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Assumption 4 (a) f(vt; �) is twice continuously di¤erentiable in � for almost all vt: (b) For
any �T = �0 + op (1) ; plimT!1G[rT ] (�T ) = rG uniformly in r where G = G(�0) has rank d and
G(�) = E@f(vt; �)=@�

0.

Assumption 5 (a) T�1=2
PT
t=1�j (t=T )ut converges weakly to a continuous distribution, jointly

over j = 0; 1; : : : ; J for every �nite J:
(b) The following holds:

P

 
1p
T

TX
t=1

�j

�
t

T

�
ut � x for j = 0; 1; : : : ; J

!

= P

 
�
1p
T

TX
t=1

�j

�
t

T

�
et � x for j = 0; 1; : : : ; J

!
+ o (1) as T !1

for every �nite J where x 2 Rm and � is the matrix square root of 
; i.e., ��0 = 
 :=
P1
j=�1 �j :

(c) 
 is of full rank.

Let
Bp+q(r) :=

�
B0p(r); B

0
q(r)

�0
;

where Bp(r) and Bq(r) are independent standard Brownian motion processes of dimensions p
and q; respectively. Denote

Cpp =

Z 1

0

Z 1

0
QK(r; s)dBp(r)dBp(s)

0; Cpq =

Z 1

0

Z 1

0
QK(r; s)dBp(r)dBq(s)

0 (5)

Cqq =

Z 1

0

Z 1

0
QK(r; s)dBq(r)dBq(s)

0; Dpp = Cpp � CpqC�1qq C 0pq:

Theorem 1 Let Assumptions 1-5 hold. Then, for a �xed K; the following weak convergence
results hold jointly as T !1 :

(a) WT (�̂T )
d!
�
Bp (1)� CpqC�1qq Bq (1)

�0
D�1pp

�
Bp (1)� CpqC�1qq Bq (1)

�
=p :

d
= F1;

(b) tT (�̂T )
d!
�
Bp (1)� CpqC�1qq Bq (1)

�
=
p
Dpp :

d
= t1;

(c) JT (�̂T )
d! B0q(1)C

�1
qq [Bq(1)] :

d
= J1;

where
�
B0p (1) ; B

0
q (1)

�0 is independent of (Cpq; Cqq; Dpp) and Dpp is independent of (Cpq; Cqq) :
The weak convergence of the marginal distributions in Theorem 1(a,b) and 1(c) has been

established in Sun (2014b) and Sun and Kim (2012), respectively. It su¢ ces to show that the
weak convergence holds jointly. A proof is given in the appendix.

Remark 1 If QK (�; �) is replaced by a kernel function, then under some condition on the kernel
function, Theorem 1 also holds. A key advantage of using the series LRV estimator is that

CK := K

�
Cpp Cpq
C 0pq Cqq

�
=

KX
j=1

�Z 1

0
�j (r) dBp+q (r)

� �Z 1

0
�j (r) dBp+q (r)

�0
follows a standard Wishart distribution Wp+q (K; Ip+q) : A well-known property of a Wishart
random matrix is that Dpp = Cpp � CpqC�1qq C 0pq s Wp (K � q; Ip) =K. The fact that Dpp follows
a Wishart distribution and its independence of (Cpq; Cqq) are the two key properties of Dpp that
drive our F limit theory. For kernel LRV estimation, Dpp will not be Wishart and will not be
independent of (Cpq; Cqq) : So an exact F limit theory is not possible.
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Remark 2 Note that � = CpqC
�1
qq Bq (1) is independent of Bp (1) and Dpp; the limiting distrib-

ution F1 in Theorem 1(a) conditional on � satis�es

K � p� q + 1
K

F1
d
=
K � p� q + 1

K

[Bp (1)��]0D�1pp [Bp (1)��]
p

d
= Fp;K�p�q+1

�
k�k2

�
;

which is a noncentral F distribution with noncentrality parameter k�k2 : Unconditionally, K�p�q+1K F1
follows a mixed noncentral F distribution, i.e., a noncentral F distribution with a random non-
centrality parameter. The noncentral F test proposed in Sun (2014b) is based on the noncentral
F approximation to the mixed F distribution.

Remark 3 It follows from Theorem 1(c) that

K � q + 1
Kq

JT (�̂T )
d! Fq;K�q+1; (6)

where Fq;K�q+1 is the standard F distribution with degrees of freedom q and K � q+1: This is a
result �rst established in Sun and Kim (2012).

Using Theorem 1, we have

Wc
T (�̂T ) =

K � p� q + 1
K

WT (�̂T )

1 + 1
KJT (�̂T )

d! K � p� q + 1
K

F1
1 + 1

KJ1
=
K � p� q + 1

K
�0pD

�1
pp �p

where

�p :=
Bp (1)� CpqC�1qq Bq (1)q

1 + 1
KJ1

=
Bp (1)� CpqC�1qq Bq (1)q
1 + 1

KB
0
q(1)C

�1
qq Bq(1)

:

Another key result that drives the F limit theory is that �p s N(0; Ip). This holds for the
case of series LRV estimation but not for the kernel LRV estimation. The result is proved in
the proof of Theorem 2 using the conditioning argument with J1 as the conditioning variable.
This is in contrast with Sun (2014b) which uses � or k�k2 as the conditioning variable. Given
that �p s N(0; Ip) and that �p is independent of Dpp, F1

�
1 +K�1J1

��1
= �0pD

�1
pp �p follows

Hotelling�s T 2 distribution. Using the relationship between the T 2 distribution and the standard
F distribution, we obtain Part (a) of Theorem 2. Other parts can be similarly obtained. In
particular, Parts (b) and (c) follow because, as shown by Sun (2014b), the asymptotic equivalence
of WT ; DT ; and ST continues to hold under the �xed-smoothing asymptotics.

Theorem 2 Let Assumptions 1-5 hold. Then, for a �xed K as T !1; we have:
(a) Wc

T (�̂T )
d! Fp;K�p�q+1;

(b) DcT (�̂T )
d! Fp;K�p�q+1;

(c) ScT (�̂T )
d! Fp;K�p�q+1;

(d) tcT (�̂T )
d! tK�q:
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Remark 4 When q = 0; we have JT (�̂T ) = 0 and the multiplicative correction degenerates. In
this case, we have

K � p+ 1
K

WT (�̂T )
d! Fp;K�p+1:

This is identical to a result obtained in Sun (2013) for the Wald test based on the �rst-step
estimator. This is expected, as when q = 0; the optimal weighting matrix becomes irrelevant and
the �rst-step estimator and two-step estimator become numerically identical.

Remark 5 It follows from (6) that

1

K
JT (�̂T )

d! q

K � q + 1F (q;K � q + 1) d=
�2q

�2K�q+1

for two independent chi-square random variables �2q and �
2
K�q+1: So, as K increases for a �xed

q; JT (�̂T )=K approaches zero and the modi�ed Wald statistic becomes close to the original Wald
statistic. The multiplicative correction 1 + JT (�̂T )=K can be regarded as a �nite sample correc-
tion under the conventional increasing-smoothing asymptotics. For the same reason, the other
multiplicative correction (K � p� q + 1) =K can be regarded as a �nite sample correction un-
der the conventional increasing-smoothing asymptotics, as (K � p� q + 1) =K ! 1 as K ! 1:
This correction factor can be motivated from the Bartlett correction. See Sun (2013) for more
discussion.

Remark 6 Let F�p;K�p�q+1 be the (1� �) quantile of the F distribution Fp;K�p�q+1: According
to Theorem 2, the critical value for the original test statistic WT (�̂T ) can be taken to be�

1 +
1

K
JT (�̂T )

� �
K

K � p� q + 1

�
F�p;K�p�q+1: (7)

Compare with the chi-square critical value ��p =p where �
�
p is the (1� �) quantile of the chi-squared

distribution �2p; the above critical value is larger for three reasons. First, F
�
p;K�p�q+1 > �

�
p =p due

to the random denominator in the F distribution. Second, K=(K � p � q + 1) > 1 for q > 1
or p > 1: Third, 1 + JT (�̂T )=K > 1 almost surely. A direct implication is that the chi-square
critical values are too small, especially when q is large and K is relatively small. The small value
of K can be empirically very relevant, as the moment process in economic applications often has
high autocorrelation (e.g., Müller, 2014), which calls for a small value of K: Using the chi-square
critical value can therefore lead to the �nding of statistical signi�cance that does not actually
exist.

Remark 7 If we use the kernel LRV estimator, then we can choose an equivalent K value and
use the critical value in (7). According to Sun and Kim (2012), the equivalent K value is given
by the integer that is closest to hR 1

0 kb (r; r) dr
i2

R 1
0

R 1
0 [kb(r; s)]

2 drds
; (8)

where

kb(t; �) = k(
t� �
b
)�

Z 1

0
k(
s� �
b
)ds�

Z 1

0
k(
t� s
b
)ds+

Z 1

0

Z 1

0
k(
r � s
b
)drds;
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b = M=T for the truncation lag parameter M , and k (�) is the kernel function used in the LRV
estimation. This procedure can be justi�ed under the conventional asymptotics under which b! 0,
bT !1 as T !1; as in this case, the equivalent K value approaches 1 and the critical value
in (7) approaches the chi-squared critical value ��p =p. In fact, as b! 0; we can take

K =
1

b
hR1
�1 k

2(x)dx
i ;

which provides a good approximation to (8). Here
R1
�1 k

2(x)dx = 2=3; 0:54; and 1 for the Bartlett,
Parzen, and the quadratic spectral kernels, respectively. However, under the �xed-b asymptotics,
the standard F distribution is not the exact limiting distribution. So, strictly speaking, we cannot
justify this procedure under the �xed-b asymptotics. For this reason, one may argue that we should
just simulate the nonstandard distribution and use the exact nonstandard critical value. However,
the approximate critical value in (7) with an equivalent K is convenient to use and may be more
appealing in applied research.

Remark 8 In the proof of the theorem, we show that conditional on Bq (�), �p s N(0; Ip). Since
the conditional distribution does not depend on Bq (�) ; we can conclude that �p is independent of
Bq (�) : As a result, �p is independent of Bq (1) and Cqq. Note that Dpp is also independent of
Bq (1) and Cqq: So �0pD

�1
pp �p is independent of Bq (1)

0C�1qq Bq (1) : Now

K � p� q + 1
K

F1

d
=
K � p� q + 1

Kp

�
�0pD

�1
pp �p

� �
1 +

1

K
B0q(1)C

�1
qq Bq(1)

�
d
= Fp;K�p�q+1

�
1 +

1

K
J1
�

d
= Fp;K�p�q+1

�
1 +

q

K � q + 1Fp;K�q+1
�

where Fp;K�p�q+1 s Fp;K�p�q+1, J1 s J1, Fp;K�q+1 s Fp;K�q+1 and Fp;K�p�q+1 is inde-
pendent of J1 and Fp;K�q+1: This gives another characterization of the nonstandard limiting
distribution developed by Sun (2014b). It can be used to simplify the simulation of the nonstan-
dard distribution F1:

Remark 9 Let CV � be the nonstandard critical value for [(K � p� q + 1) =K]WT (�̂T ) as pro-
posed in Sun (2014b). Using the characterization in the previous remark, we have

lim
T!1

P

�
K � p� q + 1

K
WT (�̂T ) > CV

�

�
= P

�
Fp;K�p�q+1

�
1 +

1

K
J1
�
> CV �

�
= P

"
Fp;K�p�q+1 >

CV �

1 + 1
KJ1

#

= 1� EFp;K�p�q+1

 
CV �

1 + 1
KJ1

!
= �:

That is, the asymptotic level of the nonstandard test is � when averaging over all realizations of
J1. Conditional on J1, the asymptotic level is

1� Fp;K�p�q+1

 
CV �

1 + 1
KJ1

!
;
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which is strictly increasing in J1: So when the J statistic is large, which implies a large J1 in
large samples, the nonstandard Wald test is expected to reject the null more often. In contrast,
the critical value in (7) is based on the conditional distribution of [(K � p� q + 1) =K]WT (�̂T )
conditional on JT (�̂T ): With the conditional critical value, the asymptotic conditional level of the
test is �xed at � regardless of the value of JT (�̂T ).

4 Understanding the Asymptotic F and t Tests

The asymptotic F and t tests may appear mysterious at �rst sight. To shed some light on the two
tests, we consider the location model, which is perhaps the simplest model in an overidenti�ed
GMM setting:

y1t = �0 + u1t; y1t 2 Rp;
y2t = u2t; y2t 2 Rq; (9)

where �0 is the parameter of interest, and ut = (u01t; u
0
2t)

0 2 Rp+q is a mean zero stationary process
that can exhibit autocorrelation of unknown forms. The long run variance of ut is


 =

�

11 
12

21 
22

�
;

which has been partitioned conformably with the two blocks of equations. As simple as it is, the
location model captures all the essentials in a GMM setting. In fact, a general GMM model can
be reduced to the above location model in an asymptotic sense. The location model is an ideal
framework to present the basic ideas and intuition, as it abstracts away the unnecessary details
and complications. For more discussions, see Hwang and Sun (2015).

At the mechanical level, the parameter �0 can be estimated using the GMM. The moment
conditions are

E

�
y1t � �0
y2t

�
= 0;

and the GMM estimator of � is �̂GMM = argmin�2� g
0
T (�)W

�1
T gT (�) with

gT (�) =

 
1
T

PT
t=1 y1t � �

1
T

PT
t=1 y2t

!
:

If we take Wo;T = Ip+q; we obtain the initial GMM estimator ~�T = �y1 :=
1
T

PT
t=1 y1t; which

is the OLS estimator based on the �rst block of equations. If we take WT to be the long run
variance estimator:


̂ =

�

̂11 
̂12

̂21 
̂22

�
=
1

T

TX
t=1

TX
s=1

QK

�
t

T
;
s

T

�
(yt � �y) (ys � �y) ; (10)

where yt = (y01t; y
0
2t)

0 ; we obtain the e¢ cient two-step GMM estimator: �̂T = �y1 � �̂�y2 with

�̂ = 
̂12
̂
�1
22 ;

which is an estimator of the long run regression coe¢ cient �0 = 
12

�1
22 : Compared with the

initial estimator ~�T ; which ignores the second block of equations, the two-step estimator �̂T aims

10



to explore the additional information embodied in the second block. As a special case of the
GMM setting, the location model permits the asymptotic F tests and t test as described in the
previous section.

To demystify the asymptotic F and t tests, we cast the GMM estimator as an OLS estimator
in a linear regression model. Let

!i (y1) =
1p
T

TX
t=1

�i

�
t

T

�
y1t; !i (y2) =

1p
T

TX
t=1

�i

�
t

T

�
y2t

!i (u1) =
1p
T

TX
t=1

�i

�
t

T

�
u1t; !i (u2) = !i (y2) ;

xi =
1p
T

TX
t=1

�i

�
t

T

�
for i = 0; 1; : : : ;K:

These transforms are analogous to the Fourier transforms and are designed to capture the long
run behavior of the underlying processes. Then

!i (y1) = �0xi + !i (u1)

!i (y2) = !i (u2)

for i = 0; 1; : : : ;K: This can be regarded as a system of cross-sectional regressions with dependent
variables !i (y1) and !i (y2) and sample size K + 1:

To obtain an e¢ cient estimator of �0; we use !i (u2) to predict and hence reduce the error
term in the �rst block of equations. This is equivalent to adding !i (y2) to the �rst block of
equations, leading to the regression model of the form:

!i (y1) = �0xi + �0!i (y2) + !i (") ;

where as before �0 = 
12
�122 2 Rp�q, " = u1 � �0u2, and !i (") = !i (u1)� �0!i (u2) is the new
error term. Under Assumptions 1�5 for the location model, of which Assumptions 2 and 4 hold
trivially, we have �

!i (u1)
!i (u2)

�
d! iidN(0;
):

Hence the error term !i (") is asymptotically normal. More speci�cally, !i (") is asymptotically
iid N(0;
11�2) where


11�2 = 
11 � 
12
�122 
21:

In addition, !i (") is asymptotically independent of !i (y2) :
The above model is close to a CNLR model with �xed regressors. However, there are three

di¤erences. First, the normality of the error term and its independence from the regressors hold
only asymptotically. To remove this di¤erence and for simplicity, we assume that normality holds
exactly from now on, i.e., !i (") s iid N(0;
11�2) and that !i (") is independent of !i (y2) : The
�nite sample results obtained under these assumptions then hold asymptotically without these
assumptions. Second, when p > 1; we have a system of regressions while there is typically only
one regression in a CNLR model. Of course, we can focus on the case of p = 1 to gain some
insights but we will consider a general p: Third, !i (y2) is random rather than �xed. This is
innocuous, as we can follow the standard practice and use the conditioning argument.
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Let

!1 =

0BB@
!00 (y1)
!01 (y1)
: : :

!0K (y1)

1CCA
(K+1)�p

; !2 =

0BB@
!00 (y2)
!01 (y2)
: : :

!0K (y2)

1CCA
(K+1)�q

;

!" =

0BB@
!00 (")
!01 (")
: : :

!0K (")

1CCA
(K+1)�p

; and X =

0BB@
x0
x1
: : :
xK

1CCA
(K+1)�1

:

Then
!1 = X�

0
0 + !2�

0
0 + !":

Based on this, we obtain the OLS estimator of �00 below:

�̂0T;OLS =
�
X 0M2X

��1 �
X 0M2!1

�
;

where M2 = IK+1 � !2 (!02!2)
�1 !02: Conditional on !2; we have

(�̂0T;OLS � �00) s N
h
0;
11�2

�
X 0M2X

��1i
:

Hence it is mixed normal unconditionally. This result is analogous to the asymptotic mixed
normality of the two-step GMM estimator. In fact we can show that �̂T;OLS and the two-step
GMM estimator �̂T;GMM � �̂T are numerically identical under a slightly stronger condition on
the basis functions. Here we add the subscript �GMM�to �̂T to signify its origin.

Proposition 3 Let Assumption 1 hold with
R 1
0 �k (r) dr = 0 replaced by T

�1PT
t=1�k (t=T ) = 0

for k = 1; 2; : : : ;K; then �̂T;OLS = �̂T;GMM : If
R 1
0 �k (r) dr = 0 but not T�1

PT
t=1�k (t=T ) = 0

for k = 1; 2; : : : ;K; then under Assumptions 1�5, we have
p
T (�̂T;OLS � �̂T;GMM ) = op (1) for a

�xed K as T !1:

While the asymptotic equivalence between �̂T;OLS and �̂T;GMM is well expected, it is nontrivial
to show that they are numerically identical under the assumption that T�1

PT
t=1�k (t=T ) = 0:

This assumption holds for �k (t=T ) =
p
2 sin (2�kt=T ) ;

p
2 cos (2�kt=T ) ; which are the basis

functions in common use for the series LRV estimation.
The conditional distribution of (�̂0T;OLS � �00) conditional on !2 depends on !2 only through

(X 0M2X)
�1 : It then follows that the conditional distribution of (�̂0T;OLS � �00) conditional on

(X 0M2X)
�1 is also N [0;
11�2 (X 0M2X)

�1]: In the proof of the proposition, it is shown that
(X 0M2X)

�1 = (1 + T �y02
̂
�1
22 �y2=K)=T: Therefore, we can take T �y

0
2
̂

�1
22 �y2 as the conditioning

variable. But T �y02
̂
�1
22 �y2 is exactly the J statistic in the overidenti�ed location model. So the

minimal conditioning variable in the CNLR coincides with the conditioning variable we use in
the GMM framework.

Now suppose that we follow the mechanics in the CNLR framework to conduct inference.
Conditional on (X 0M2X)

�1 ; the variance of �̂T;OLS is 
11�2 (X 0M2X)
�1 : Following a routine in

the CNLR framework, we can estimate the conditional variance by ~
11�2 (X 0M2X)
�1 where

~
11�2 =
1

K � q

�
!1 �X�̂0T;OLS � !2�̂0T;OLS

�0 �
!1 �X�̂0T;OLS � !2�̂0T;OLS

�
12



and �̂0T;OLS is the OLS estimator of �0: Here we have used 1=(K� q) = 1=(K+1� q� 1) instead
of 1=(K+1) as the scaling function. This is the usual degree-of-freedom correction in a standard
linear regression model. Constructing the Wald statistic for testing H0 : �0 = r in the same way
as what we would do in a CNLR framework, we obtain the (normalized) Wald statistic

WCNLR =
p
T
�
�̂T;OLS � r

�0 "
~
11�2

�
X 0M2X

T

��1#�1p
T
�
�̂T;OLS � r

�
=p:

We can also construct other type statistics such as the LR, LM and t statistics but we focus on
the Wald statistic here.

To formally compare WCNLR with the unmodi�ed GMM Wald statistic as given in (4), we
note that for the location model GT (�̂T ) = (Ip; Op�q)0: Using this and pluggingWT (�̂T;GMM ) = 
̂
and R = Ip into (4), we obtain

WT =
p
T (�̂T;GMM � r)0

h

̂11�2

i�1p
T (�̂T;GMM � r)=p; (11)

where 
̂11�2 = 
̂11 � 
̂12
̂�122 
̂21 and 
̂ij are given in (10). A formal comparison of WCNLR

with WT reveals that WCNLR has the additional factor (X 0M2X=T )
�1 in the variance estimator

that the GMM Wald statistic WT ignores. The reason that WT ignores this factor is that the
underlying variance estimator is based on the conventional �sandwich�formula, which is derived
under the conventional increasing-smoothing asymptotics where K !1 as T !1: Under this
type of asymptotics, (X 0M2X=T )

�1 !p 1 and so the factor is negligible in large samples. Under
the �xed-smoothing asymptotics, it follows from Hwang and Sun (2015) that

p
T
�
�̂T;GMM � �0

�
=
�
Ip; ��̂

� 1p
T

PT
t=1 (y1t � Ey1t)

1p
T

PT
t=1 y2t

!
!d

�
Ip; ��1

�
�Bp+q(1);

where
�1 = 


1=2
11�2

~�1

�1=2
22 +
12


�1
22 and ~�1 = CpqC

�1
qq : (12)

Some simple calculations show that the asymptotic variance of �̂T;GMM conditional on ~�1 satis-
�es:

avar(�̂T;GMM ) = 

1=2
11�2

�
Ip + ~�1 ~�

0
1

�
(


1=2
11�2)

0 = 
11�2 +

1=2
11�2

~�1 ~�
0
1(


1=2
11�2)

0:

When we use the conventional �sandwich� formula for variance estimation, which attempts to
estimate 
11�2 only, we e¤ectively ignore the term that involves ~�1 ~�01: This will not cause any
problem for asymptotic pivotal inference but will prevent us from developing an F limit theory.
The modi�cation we propose can be regarded as the multiplicative variance correction that takes
into account the extra asymptotic variance term under the �xed-smoothing asymptotics. More
speci�cally, instead of using 
̂11�2, we use 
̂11�2(1+ ĴT =K) as the asymptotic variance estimator.

The following proposition establishes the connection between WCNLR and Wc
T rigorously.

Proposition 4 Let Assumption 1 hold with
R 1
0 �k (r) dr = 0 replaced by T

�1PT
t=1�k (t=T ) = 0

for i = 1; 2; : : : ;K: Then

WCNLR =
K � q

K � p� q + 1W
c
T :

In particular, WCNLR = Wc
T when p = 1: If

R 1
0 �k (r) dr = 0 but not T�1

PT
t=1�k (t=T ) = 0;

then under Assumptions 1�5, we have WCNLR =
K�q

K�p�q+1W
c
T + op (1) for a �xed K as T !1:
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Remark 10 When p = 1; the proposition shows that the Wald statistic constructed in the stan-
dard way is numerically identical to the modi�ed Wald statistic we propose in the GMM setting.
While the modi�cation can be motivated on the ground of obtaining a convenient standard F lim-
iting distribution, it is a built-in feature of the standard Wald statistic in a linear regression. The
modi�cation may appear to be mysterious at �rst sight but it becomes natural from the regression
perspective.

Remark 11 When p > 1; WCNLR does not follow an F distribution but a rescaled version does:

K � p� q + 1
K � q WCNLR s Fp;K�p�q+1:

This follows from Theorem 2 and Proposition 4. Of course this can be proved directly in the
CNLR setting but there is no need to do so, as the limit theory established in the GMM setting
is directly applicable to the CNLR model.

Remark 12 Looking at the GMM problem from the regression perspective motivates us to use
the modi�ed Wald statistic even if there is no serial dependence. In this case, we can take K = T
and the modi�ed Wald statistic becomes

Wc
T :=

T � p� q + 1
T

WT

1 + 1
T JT

;

where WT and JT are the standard Wald and J statistics in the GMM framework with iid data.
In addition, we use Fp;T�p�q+1 instead of �2p=p as the reference distribution. From an asymptotic
point of view, Wc

T = WT + op (1) and F�p;T�p�q+1 = ��p =p + o (1) as T ! 1: So the modi�ed
Wald test based on the F approximation can be justi�ed in the same manner as the conventional
chi-square test. However, in �nite samples, the new test can be more accurate in size.

5 Simulation Evidence

We follow Sun (2014b) and consider a linear model of the form:

yt = x0;t0 + x1;t1 + x2;t2 + x3;t3 + "y;t;

where x0;t � 1 and x1;t, x2;t and x3;t are scalar endogenous regressors. The unknown parameter
vector is � = (0; 1; 2; 3)

0 2 Rd for d = 4: We have m instruments z0;t; z1;t; : : : ; zm�1;t with
z0;t � 1. The reduced-form equations for x1;t, x2;t and x3;t are given by

xj;t = zj;t +

m�1X
i=d

zi;t + "xj ;t for j = 1; 2; 3:

We consider two di¤erent experiment designs: the autoregressive (AR) design and the centered
moving average (CMA) design. In the AR design, each zi;t follows an AR(1) process of the
form zi;t = �zi;t�1 +

p
1� �2ezi;t where ezi;t =

�
eizt + e

0
zt

�
=
p
2 and et = [e0zt; e

1
zt; : : : ; e

m�1
zt ]0 s

iidN(0; Im): By construction, zit has unit variance for all for i � 1, and the correlation coe¢ cient
between the non-constant zi;t and zj;t for i 6= j is 0:5: The DGP for "t = ("yt; "x1t; "x2t; "x3t)

0 is the
same as that for (z1;t; : : : ; zm�1;t) except that there is a di¤erence in the dimension. The two vector
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processes "t and (z1;t; : : : ; zm�1;t) are independent from each other. We take � = �0:5; 0:0; 0:5;
0:8 and 0:9.

In the CMA design, "y;t is a scaled and centered moving average of an iid sequence "y;t =PL
j=�L et+j=

p
2L+ 1 where et s iidN(0; 1) and L is the number of leads and lags in the average.

The instruments are generated according to zit = [et�L+i�1�(2L+ 1)�1
PL
j=�L et+j ]

p
(2L+ 1)=2L

for i = 1; : : : ;m�1: The error term in the reduced-form equation is given by "xj ;t =
�
"y;t + exj ;t

�
=
p
2

where exj ;t s iidN(0; 1) and is independent of the sequence fetg : We take L = 3, 6; and 9:
We consider q = 0; 1; 2 and the corresponding numbers of moment conditions are m = 4; 5; 6:

The null hypotheses of interest are

H01 : 1 = 0;

H02 : 1 = 2 = 0;

H03 : 1 = 2 = 3 = 0:

The numbers of joint hypotheses are p = 1; 2 and 3; respectively. We consider three di¤erent
sample sizes T = 100; 200; 500 and two signi�cance levels � = 5% and � = 10%: We focus on the
Wald type of test but the simulation results are qualitatively similar for other type of tests.

We examine the empirical size of four di¤erent two-step tests. The �rst three tests are
based on the same unmodi�ed Wald test statistic, so they have the same size-adjusted power.
The di¤erence lies in the critical values used. We employ the following critical values: �1��p =p,

K
K�p�q+1F

1��
p;K�p�q+1

�
�2
�
with �2 = pq=(K � q � 1); and F1��1 ; leading to the �2 test, the NCF

(noncentral F) test and the nonstandard F1 test. The �2 test uses the conventional chi-square
approximation. The NCF test uses the noncentral F approximation. The F1 test uses the
nonstandard F1 approximation with simulated critical values. The NCF test and the F1 test
are developed in Sun (2014b). The fourth test is the test proposed in this paper, which is based on
the modi�ed Wald statistic Wc

T and uses the standard F critical value F
1��
p;K�p�q+1: Equivalently,

our proposed test is based the unmodi�ed Wald test statistic as the �rst three tests but uses the
critical values given in (7). For easy reference, we now refer to our test as the standard F test,
which should not be confused with the standard F test in a CNLR model. For each test, the
initial �rst-step estimator is the IV estimator with weight matrix Wo = Z 0Z=T where Z is the
matrix of instruments.

We use the following basis functions �2j�1(x) =
p
2 cos 2j�x, �2j(x) =

p
2 sin 2j�x, j =

1; : : : ;K=2 and assume that K is even. In this case, the series LRV estimator can be computed
using discrete Fourier transforms. We select K based on the AMSE criterion implemented using
the VAR(1) plug-in procedure in Phillips (2005), which is similar to the plug-in procedure of
Andrews (1991). We compute the data-driven K on the basis of the initial �rst step estimator
~�T and use it in computing both WT (~�T ) and WT (�̂T ):
We also compare the size-adjusted power of the proposed standard F test with that of the

nonstandard F1 test. The data is generated under the local alternative H1 : R� = c0`p=
p
T

where c0 is a scalar and `p is the p-vector of ones. The two tests use the same data driven
smoothing parameter K: To make the power comparison meaningful, we compute the power
using the empirical �nite sample critical values obtained from the null distribution. That is, we
compare the size-adjusted power. It should be pointed out that size-adjustment is not feasible in
practice.

Tables 1 and 2 report the �nite sample size of the four tests for T = 100 and � = 5%: The
number of simulation replications is 10000. It is clear that the standard F test has as accurate
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size as the nonstandard F1 test and noncentral F test. Like the latter two tests, the standard
F test is much more accurate in size than the conventional chi-square test, which can be highly
size-distorted. These qualitative observations remain valid for other sample sizes and signi�cance
levels.

Figures 1 and 2 report the size-adjusted power of the nonstandard F1 test and the standard
F test for � = 5% and T = 100: There is no real di¤erence between the two power curves. In fact,
the standard F test can be slightly more powerful in some scenarios. Note that the size-adjusted
power of the nonstandard F1 test is the same as that of the conventional chi-square test, the
standard F test is therefore as powerful as the conventional chi-square test.

Our simulation evidence lends a strong support to the standard F test: it enjoys the same
good size and power properties as the nonstandard F1 test but it is easier to use, as the critical
values are readily available from statistical tables and no simulation or approximation is needed.

6 Conclusion

This paper has proposed a modi�cation to the trinity of test statistics in an e¢ cient two-step
GMM framework. Each modi�ed test statistic is a function of the original test statistic and the
usual J statistic for testing overidenti�cation. We show that the modi�ed test statistics are all
asymptotically F distributed. This leads to standard F tests that are based on the modi�ed test
statistics and use the standard F critical values. Simulation shows that the standard F tests have
the same �nite sample performance as the nonstandard tests recently proposed by Sun (2014b)
but the standard F tests are much easier to use.

The paper complements Sun (2011, 2013, 2014a) and Sun and Kim (2012) which establish
the F limit theory for the tests based on the �rst-step GMM estimation and the J test. When
the series LRV estimator is used, the F limit theory appears to be applicable to all common tests
in the �rst-step and two-step GMM settings. The results of the paper can be easily extended to
the continuous updating GMM (CU-GMM) framework. Recently, Zhang (2015) has shown that
the Wald statistic based on the CU-GMM estimator has the same �xed-smoothing limit as what
Sun (2014b) obtains in the two-step GMM framework. Given this, it is easy to see that our result
holds without change if the CU-GMM estimator is used instead. Following the work of Bester,
Conley, Hansen and Vogelsang (2015) and Sun and Kim (2015), we also do not imagine much
di¢ culty in extending our results to the spatial setting.
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Table 1: Empirical size of the nominal 5% �2 test, noncentral F test, nonstandard F1 test and
standard F test based on the series LRV estimator under the AR design with T = 100, number
of joint hypotheses p, and number of overidentifying restrictions q

�2 NCF F1 F �2 NCF F1 F �2 NCF F1 F
� p = 1; q = 0 p = 2; q = 0 p = 3; q = 0
-0.8 0.114 0.072 0.073 0.072 0.197 0.087 0.084 0.087 0.310 0.109 0.111 0.109
-0.5 0.081 0.060 0.059 0.060 0.117 0.066 0.066 0.066 0.174 0.077 0.078 0.077
0.0 0.063 0.051 0.050 0.051 0.083 0.052 0.053 0.052 0.112 0.060 0.062 0.060
0.5 0.094 0.063 0.063 0.063 0.142 0.065 0.065 0.065 0.222 0.077 0.078 0.077
0.8 0.134 0.086 0.088 0.086 0.229 0.100 0.097 0.100 0.355 0.119 0.122 0.119
0.9 0.166 0.117 0.120 0.117 0.290 0.150 0.146 0.150 0.437 0.181 0.184 0.181

p = 1; q = 1 p = 2; q = 1 p = 3; q = 1
-0.8 0.186 0.081 0.077 0.079 0.307 0.088 0.087 0.086 0.457 0.107 0.113 0.105
-0.5 0.113 0.065 0.065 0.064 0.175 0.069 0.068 0.067 0.247 0.079 0.080 0.078
0.0 0.081 0.053 0.052 0.052 0.113 0.057 0.056 0.056 0.155 0.060 0.060 0.060
0.5 0.128 0.064 0.063 0.063 0.204 0.073 0.072 0.071 0.308 0.079 0.080 0.078
0.8 0.196 0.089 0.086 0.087 0.331 0.101 0.099 0.100 0.489 0.112 0.118 0.112
0.9 0.252 0.126 0.123 0.122 0.420 0.155 0.153 0.147 0.589 0.183 0.192 0.172

p = 1; q = 1 p = 1; q = 2 p = 1; q = 2
-0.8 0.260 0.080 0.079 0.077 0.425 0.090 0.083 0.084 0.602 0.100 0.097 0.090
-0.5 0.154 0.061 0.062 0.061 0.244 0.065 0.061 0.065 0.351 0.074 0.073 0.072
0.0 0.104 0.055 0.055 0.055 0.148 0.062 0.058 0.060 0.211 0.065 0.063 0.065
0.5 0.171 0.065 0.066 0.064 0.279 0.065 0.061 0.062 0.415 0.073 0.072 0.070
0.8 0.268 0.085 0.082 0.080 0.449 0.090 0.082 0.085 0.623 0.100 0.097 0.088
0.9 0.332 0.124 0.121 0.109 0.529 0.148 0.137 0.132 0.712 0.160 0.157 0.139

The �rst three tests �2, NCF and F1 are based on the same unmodi�ed Wald statistic but
use di¤erent critical values. The �2 test uses the chi-squared critical value; the NCF test uses
the noncentral F critical value; and the F1 test uses simulated nonstandard critical value. The
standard F test is based on the modi�ed Wald statistic and uses the standard F critical value.

Table 2: Empirical size of the nominal 5% �2 test, noncentral F test, nonstandard F1 test and
standard F test based on the series LRV estimator under the centered MA design with T = 100,
number of joint hypotheses p, and number of overidentifying restrictions q

�2 NCF F1 F �2 NCF F1 F �2 NCF F1 F
L p = 1; q = 0 p = 2; q = 0 p = 3; q = 0
3 0.017 0.007 0.007 0.007 0.089 0.030 0.029 0.030 0.201 0.047 0.048 0.047
6 0.030 0.017 0.017 0.017 0.068 0.023 0.022 0.023 0.134 0.028 0.029 0.028
9 0.048 0.029 0.030 0.029 0.079 0.027 0.026 0.027 0.142 0.032 0.033 0.032

p = 1; q = 1 p = 2; q = 1 p = 3; q = 1
3 0.102 0.033 0.031 0.036 0.229 0.057 0.056 0.059 0.299 0.047 0.050 0.049
6 0.106 0.039 0.037 0.046 0.169 0.031 0.031 0.036 0.275 0.034 0.037 0.039
9 0.108 0.035 0.034 0.039 0.159 0.032 0.031 0.034 0.259 0.033 0.036 0.036

p = 1; q = 2 p = 2; q = 2 p = 3; q = 2
3 0.180 0.046 0.046 0.042 0.286 0.050 0.046 0.042 0.387 0.043 0.043 0.035
6 0.164 0.039 0.037 0.045 0.265 0.036 0.032 0.040 0.425 0.036 0.036 0.039
9 0.165 0.040 0.039 0.043 0.265 0.032 0.029 0.034 0.402 0.032 0.031 0.034
See footnotes to Table 1
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Figure 1: Size-adjusted power of two-step 5% F1 and F tests based on the series LRV estimator
under the AR design with � = 0:5 and T = 100
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Figure 2: Size-adjusted power of two-step 5% F1 and F tests based on the series LRV estimator
under the centered MA design with L = 9 and T = 100
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7 Appendix of Proofs

Proof of Theorem 1. The marginal weak convergence results in (a) and (b) have been proved
in Sun (2014b, Theorem 1), and the result in (c) has been proved in Sun and Kim (2012, The-
orem 1 and equation (7)). It remains to show that the convergence results hold jointly. As a
representative example, we prove that (a) and (c) hold jointly.

Let
~W1 =

Z 1

0

Z 1

0
QK (r; s) dBm (r) dBm (s)

and G� = ��1G, which is an m� d matrix, then it follows from Sun (2014b) and Sun and Kim
(2012) that

WT (�̂T )
d!
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�0�
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��1
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R
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=p := F1;
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Bm(1)�G�

h
G0� ~W

�1
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i�1
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�1
1 Bm(1)

�0
~W�1
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�
Bm(1)�G�

h
G0� ~W

�1
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i�1
G0� ~W

�1
1 Bm(1)

�
:= J1:

In addition, careful inspection shows that the above convergence results hold jointly. It remain
to show that (F1; J1) is equivalent in distribution to��

Bp (1)� CpqC�1qq Bq (1)
�0
D�1pp

�
Bp (1)� CpqC�1qq Bq (1)

�
=p; B0q(1)C

�1
qq Bq(1)

�
:

Let Um�m�m�dV 0d�d be a singular value decomposition (SVD) of G�: By de�nition, U
0U =

UU 0 = Im, V V 0 = V 0V = Id and

� =

�
Ad�d
Oq�d

�
;

where A is a diagonal matrix with singular values on the main diagonal and O is a matrix of
zeros. Then we have:h

G0� ~W
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Since [U 0 ~W�1
1 U , U 0Bm(1)] has the same joint distribution as [ ~W�1

1 ; Bm(1)]; we can write�
F1
J1

�
d
=

�
~F1
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�
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We proceed to simplify ~F1 and ~J1 starting with ~F1: We let
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�
C11 C12
C21 C22

�
and ~W�1

1 =

�
C11 C12

C21 C22

�
where C11 and C11 are d�dmatrices, C22 and C22 are q�q matrices, and C12 = C 021; C12 = (C21)0.
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where Cpp; Cpq; and Cqq are de�ned in (5); and Cd�p;d�p; Cp;d�p and Cd�p;q are similarly de�ned.
It follows from the partitioned inverse formula that
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and
RV
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where Oij are matrices of zeros with the dimensions as Cij : So
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In the last equality, we have used
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Proof of Theorem 2. Part (a). Conditional on Bq (�) := fBq (r) : r 2 [0; 1]g ; both Bp (1) and
Cpq are normal. Hence conditional on Bq (�) ; we have
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That is, conditional on Bq (�) ;
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In view of Theorem 1, we have
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completing the proof of Part (a).
Using the same argument, we can prove Part (d). Parts (b) and (c) hold because the

asymptotic equivalence of WT (�̂T ); DT (�̂T ) and ST (�̂T ) still holds under the �xed-smoothing
asymptotics. For more details, see Sun (2014b).
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Using the Sherman-Morrison formula, we have
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T �y02S

�1
22 �y2

�p
T �u01 +

p
T �y02S

�1
22 S21

�
�
T �y02S

�1
22 �y2

�
�
�
T �y02S

�1
22 �y2

�p
T �u01

1 + T �y02S
�1
22 �y2

�

�
T �y02S

�1
22 �y2

�
�
�p
T �y02S

�1
22

�
1 + T �y02S

�1
22 �y2

S21

=

�
T �y02S

�1
22 �y2

�p
T �u01 +

p
T �y02S

�1
22 S21

1 + T �y02S
�1
22 �y2

:

Hence

e0K+1M2eK+1 = 1� e0K+1!2
�
!02!2

��1
!02eK+1 = 1�

T �y02S
�1
22 �y2

1 + T �y02S
�1
22 �y2

=
1

1 + T �y02S
�1
22 �y2

;

e0K+1M2!" = e
0
K+1!u1 � e0K+1!2

�
!02!2

��1
!02!u1

=
p
T �u01 �

�
T �y02S

�1
22 �y2

�p
T �u01 +

p
T �y02S

�1
22 S21

1 + T �y02S
�1
22 �y2

=

p
T �u01 �

p
T �y02S

�1
22 S21

1 + T �y02S
�1
22 �y2

:

It then follows that
p
T
�
�̂0T;OLS � �00

�
=
p
T
�
�u01 � �y02S�122 S21

�
=
p
T
�
�u01 � �u02S�122 S21

�
:

It is easy to see that S�122 S21 = 
̂
�1
22 
̂21. So

�̂T;OLS � �0 = �u1 � �̂�u2 = �̂T;GMM � �0:

This implies that �̂T;OLS = �̂T;GMM , as desired.
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If
R 1
0 �k (r) dr = 0 but not T

�1PT
t=1�k (t=T ) = 0; then we have X =

p
TeK+1+O

�
1=
p
T
�
.

Using this and the assumptions in the proposition, we have
p
T
�
�̂0T;OLS � �00

�
=
�
e0K+1M2eK+1

��1
e0K+1M2!" + op (1) :

Following the same argument as above, we have
p
T (�̂T;OLS � �0) =

p
T (�̂T;GMM � �0) + op (1) ;

which implies that
p
T (�̂T;OLS � �̂T;GMM ) = op (1) :

Proof of Proposition 4. We �rst give a representation of WCNLR: We focus on the case that
T�1

PT
t=1�k (t=T ) = 0 for k = 1; 2; : : : ;K; as the other case follows from the similar arguments.

Using (�̂T;OLS � r)0 = [X 0M2X]
�1X 0M2!"; we have

WCNLR =
�
�̂T;OLS � r

�0 n
~
11�2

�
X 0M2X

��1o�1 �
�̂T;OLS � r

�
=p

=
�
X 0M2X

��1
X 0M2!"

n
~
11�2

�
X 0M2X

��1o�1
!0"M2X

�
X 0M2X

��1
=
X 0M2!" � ~
�111�2 � !0"M2X

X 0M2X

1

p
;

using the fact that X 0M2X is a scalar.
In the proof of Proposition 3, we have shown that

X 0M2!" =
p
Te0K+1M2!" =

T
�
�u01 � �y02S�122 S21

�
1 + T �y02S

�1
22 �y2

and

X 0M2X = Te0K+1M2eK+1 =
T

1 + T �y02S
�1
22 �y2

:

Hence

WCNLR =

p
T
�
�u01 � �y02S�122 S21

�q
1 + T �y02S

�1
22 �y2

� ~
�111�2 �
p
T
�
�u1 � S12S�122 �y2

�q
1 + T �y02S

�1
22 �y2

1

p
:

To simplify ~
�111�2; we note that

�̂0T;OLS =
�
!02MX!2

��1
!02MX!1

where

MX = IK+1 �X(X 0X)�1X 0 = IK+1 �XX 0 =

�
0 0
0 IK

�
:

So �̂0OLS = S
�1
22 S21: Plugging this and �̂OLS into the estimated residuals yields

!1 �X�̂0T;OLS � !2�̂0T;OLS
= !" �X

�
�̂0T;OLS � �00

�
� !2

�
�̂0T;OLS � �00

�
= !" �X

�
�u01 � �u02S�122 S21

�
� !2S�122 S21 + !2�00

=

0BB@
p
T
�
�"0 � �u01 + �u02S�122 S21 � �u02S

�1
22 S21 + �u2�

0
0

�
!01 (")� !02 (u2)S�122 S21 + !02 (u2)�00

: : :

!0K (")� !0K (u2)S
�1
22 S21 + !

0
K (u2)�

0
0

1CCA =

0BB@
0

!01 (u1)� !02 (u2)S�122 S21
: : :

!0K (u1)� !02 (u2)S
�1
22 S21

1CCA :

27



Therefore

~
11�2 =
1

K � q

KX
i=1

�
!i (u1)� S12S�122 !i (u2)

� �
!i (u1)� S12S�122 !i (u2)

�0
=

1

K � q
�
S11 � S12S�122 S21

�
:

Using this and noting that Sij = K
̂ij ; we have

~
11�2 =
K

K � q

�

̂11 � 
̂12
̂�122 
̂21

�
;

and so

WCNLR =
K � q
K

p
T
�
�u1 � S12S�122 �y2

�0q
1 + T �y02S

�1
22 �y2

�
�

̂11 � 
̂12
̂�122 
̂21

��1
�
p
T
�
�u1 � S12S�122 �y2

�q
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1

p

=
K � q
K

p
T
�
�u1 � �̂�u2

�0 �

̂11 � 
̂12
̂�122 
̂21

��1p
T
�
�u1 � �̂�u2

�
1 + 1

K (
p
T �u2)0
̂

�1
22 (
p
T �u2)

1

p
;

where we have used S12S�122 = �̂T;OLS = 
̂12
̂
�1
22 = �̂:

Next, we give a representation of Wc
T (�̂T ) when R = Ip. For the location model, GT (�̂T )

0 =
(Ip; Op�q) : We have

WT :=
p
T (�̂T � r)0

�

̂11 � 
̂12
̂�122 
̂21

��1p
T (�̂T � r)=p:

Combining this with
JT = (

p
T �u2)

0
̂�122 (
p
T �u2);

we have

Wc
T (�̂T ) =

K � p� q + 1
K

p
T
�
�u1 � �̂�u2

�0 �

̂11 � 
̂12
̂�122 
̂21

��1p
T
�
�u1 � �̂�u2

�
1 + 1

K (
p
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̂

�1
22 (
p
T �u2)

1

p
:

So

WCNLR =
K � q

K � p� q + 1W
c
T (�̂T ):

In particular, WCNLR =Wc
T (�̂T ) when p = 1:

28



References

[1] Andrews, D. W. K. (1991): �Heteroskedasticity and Autocorrelation Consistent Covariance
Matrix Estimation.�Econometrica 59, 817�858.

[2] Bester, C. A., T. G. Conley, C. B. Hansen, and T. J. Vogelsang (2015): �Fixed-b As-
ymptotics for Spatially Dependent Robust Nonparametric Covariance Matrix Estimators.�
Econometric Theory, forthcoming.

[3] Gonçlaves, S. (2011): �The Moving Blocks Bootstrap for Panel Linear Regression Models
with Individual Fixed E¤ects.�Econometric Theory 27(5), 1048�1082.

[4] Gonçlaves, S. and T. Vogelsang (2011): �Block Bootstrap HAC Robust Tests: The Sophis-
tication of the Naive Bootstrap.�Econometric Theory 27(4), 745�791.

[5] Hansen, L. P. (1982): �Large Sample Properties of Generalized Method of Moments Esti-
mators.�Econometrica 50, 1029�1054.

[6] Hwang, J. and Y. Sun (2015): �Should We Go One Step Further? An Accurate Comparison
of One-Step and Two-Step Procedures in a Generalized Method of Moments Framework�
Working paper, Department of Economics, UC San Diego.

[7] Jansson, M. (2004): �On the Error of Rejection Probability in Simple Autocorrelation Ro-
bust Tests.�Econometrica 72, 937�946.

[8] Kiefer, N. M. and T. J. Vogelsang (2002a): �Heteroskedasticity-autocorrelation Robust Test-
ing Using Bandwidth Equal to Sample Size.�Econometric Theory 18, 1350�1366.

[9] Kiefer, N. M. and T. J. Vogelsang (2002b): �Heteroskedasticity-autocorrelation Robust Stan-
dard Errors Using the Bartlett Kernel without Truncation.�Econometrica 70, 2093�2095.

[10] Kiefer, N. M. and T. J. Vogelsang(2005): �A New Asymptotic Theory for Heteroskedasticity-
Autocorrelation Robust Tests.�Econometric Theory 21, 1130�1164.

[11] Müller, U. K. (2007): �A Theory of Robust Long-Run Variance Estimation.� Journal of
Econometrics 141, 1331�1352.

[12] Müller, U. K. (2014): �HAC Corrections for Strongly Autocorrelated Time Series.�Journal
of Business & Economic Statistics, 32(3), 311�322

[13] Newey, W. K. and K. D. West (1987): �A Simple, Positive Semide�nite, Heteroskedasticity
and Autocorrelation Consistent Covariance Matrix.�Econometrica 55, 703�708.

[14] Phillips, P. C. B. (2005): �HAC Estimation by Automated Regression.�Econometric Theory
21, 116�142.

[15] Sun, Y. (2011): �Robust Trend Inference with Series Variance Estimator and Testing-optimal
Smoothing Parameter.�Journal of Econometrics 164(2), 345�366.

29



[16] Sun, Y. (2013): �A Heteroskedasticity and Autocorrelation Robust F Test Using Orthonor-
mal Series Variance Estimator.�Econometrics Journal 16, 1�26.

[17] Sun, Y. (2014a): �Let�s Fix It: Fixed-b Asymptotics versus Small-b Asymptotics in Het-
eroscedasticity and Autocorrelation Robust Inference.� Journal of Econometrics 178(3),
659�677.

[18] Sun, Y. (2014b): �Fixed-smoothing Asymptotics in a Two-step GMM Framework.�Econo-
metrica 82(6), 2327�2370.

[19] Sun, Y. (2014c): �Fixed-smoothing Asymptotics and Asymptotic F and t Tests in the Pres-
ence of Strong Autocorrelation.�Advances in Econometrics 33, 23�63.

[20] Sun, Y., P. C. B. Phillips and S. Jin (2008). �Optimal Bandwidth Selection in
Heteroskedasticity-Autocorrelation Robust Testing.�Econometrica 76(1), 175�194.

[21] Sun, Y., P. C. B. Phillips and S. Jin (2011): �Power Maximization and Size Control in
Heteroscedasticity and Autocorrelation Robust Tests with Exponentiated Kernels.�Econo-
metric Theory 27(6), 1320�1368.

[22] Sun, Y. and P. C. B. Phillips (2009): �Bandwidth Choice for Interval Estimation in GMM
Regression.�Working paper, Department of Economics, UC San Diego.

[23] Sun, Y. and M. S. Kim (2012): �Simple and Powerful GMM Over-identi�cation Tests with
Accurate Size.�Journal of Econometrics 166(2), 267�281.

[24] Sun, Y. and M. S. Kim (2015): �Asymptotic F Test in a GMM Framework with Cross
Sectional Dependence.�Review of Economics and Statistics 97(1), 210�223.

[25] Zhang, X. (2015): �Fixed-smoothing Asymptotics in the Generalized Empirical Likelihood
Estimation Framework.�Department of Statistics, University of Missouri�Columbia.

30


	Introduction
	Two-step GMM Estimation and Testing
	The Asymptotic F and t Tests
	Understanding the Asymptotic F and t Tests
	Simulation Evidence
	Conclusion
	Appendix of Proofs

