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Abstract

This paper establishes the asymptotic normality of plug-in sieve M estimators of possibly

irregular functionals of semi-nonparametric time series models. We show that, even when the

sieve score process is not a martingale di¤erence sequence, the asymptotic variance in the case

of irregular functionals is the same as those for independent data. Using an orthonormal series

long run variance estimator, we construct a �pre-asymptotic�Wald statistic and show that

it is asymptotically F distributed. Simulations indicate that our �pre-asymptotic�Wald test

with F critical values has more accurate size in �nite samples than the conventional Wald test

with chi-square critical values.
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1 Introduction

Many economic and �nancial time series are nonlinear and non-Gaussian (see, e.g., Granger,

2003). For economic policy analysis, it is important to uncover complicated nonlinear relations

in structural models (see, e.g., Chen, 2013). Unfortunately, it is di¢ cult to correctly parame-

terize all aspects of nonlinear dynamic functional relations (see, e.g., White 1994). Due to the

well-known problem of �curse of dimensionality,�it is also impractical to estimate a general non-

linear time series model fully nonparametrically. These issues motivate the growing popularity of

semiparametric and semi-nonparametric models and methods in economics and �nance.

The method of sieves (Grenander, 1981) is a general procedure for estimating semiparametric

and nonparametric models, and has been widely used in statistics, economics, �nance, biosta-

tistics and other disciplines. In this paper, we focus on sieve M estimation, which optimizes a

sample average of a random criterion over a sequence of approximating parameter spaces, sieves,

that becomes dense in the original in�nite dimensional parameter space as the complexity of the

sieves grows to in�nity with the sample size T . See Shen and Wong (1994), Chen (2007) and

the references therein for many examples of sieve M estimation, including sieve (quasi) maxi-

mum likelihood, sieve (nonlinear) least squares, sieve generalized least squares, and sieve quantile

regression.

We consider inference on possibly misspeci�ed semi-nonparametric time series models via the

method of sieve M estimation. For general sieve M estimators with weakly dependent data,

White and Wooldridge (1991) establish the consistency, and Chen and Shen (1998) establish the

convergence rate and the
p
T asymptotic normality of plug-in sieve M estimators of regular (i.e.,

p
T estimable) functionals. To the best of our knowledge, there is no published work on the

limiting distributions of plug-in sieve M estimators of irregular (i.e., slower than
p
T estimable)

functionals. There is also no published inferential result for general sieve M estimators of regular

or irregular functionals for possibly misspeci�ed semi-nonparametric time series models.
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We �rst provide a general theory on the asymptotic normality of plug-in sieve M estimators

of possibly irregular functionals in semi-nonparametric time series models. The key insight is to

examine the functional of interest on a sieve tangent space where a Riesz representer always exists

regardless of whether the functional is regular or irregular. The asymptotic normality result is

rate-adaptive in the sense that applied researchers do not need to know a priori whether the

functional of interest is
p
T estimable or not.

For possibly misspeci�ed semi-nonparametric models with weakly dependent data, Chen and

Shen (1998) establish that the asymptotic variance of a sieve M estimator of any regular functional

depends on the temporal dependence and is equal to the long run variance (LRV) of a scaled score

process. In this paper, we show a new and interesting result that, regardless of whether the score

process is a martingale di¤erence sequence or not, the asymptotic variance of a sieve M estimator

of an irregular functional for weakly dependent data is the same as that for independent data.

Our asymptotic theory suggests that, for weakly dependent time series data with a large sample

size, temporal dependence could be ignored in making inference on irregular functionals via the

method of sieves. However, simulation studies indicate that, when the sample size and the sieve

number of terms in approximating the unknown function(s) are small (relatively to the degree

of temporal dependence), inference procedures based on asymptotic variance estimators ignoring

autocorrelation do not perform well. See, e.g., Conley, Hansen and Liu (1997) and Pritsker (1998)

for earlier discussion of this problem with kernel density estimation for interest rate data sets.

To deal with this problem, for inference on both regular and irregular functionals, we pro-

pose to use a �pre-asymptotic�sieve variance that captures temporal dependence of an unknown

form. That is, we treat the underlying triangular array sieve score process as a generic time

series and ignore the fact that it becomes less temporally dependent when the sieve number of

terms in approximating unknown functions grows to in�nity as T goes to in�nity. This novel

�pre-asymptotic� sieve approach enables us to develop a uni�ed inference framework that can

accommodate both regular and irregular functionals.

To derive a simple and more accurate asymptotic approximation under weak conditions, we

compute a �pre-asymptotic�Wald statistic using an orthonormal series LRV (OS-LRV) estimator.

For both regular and irregular functionals, we show that the �pre-asymptotic� t statistic and a

scaled Wald statistic converge to the standard t distribution and F distribution respectively when
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the series number of terms in the OS-LRV estimator is held �xed; and that the t distribution

and F distribution approach the standard normal and chi-square distributions respectively when

the series number of terms in the OS-LRV estimator goes to in�nity. Our �pre-asymptotic� t

and F approximations achieve triple robustness in the following sense: they are asymptotically

valid regardless of (1) whether the functional is regular or not; (2) whether there is temporal

dependence of unknown forms or not; and (3) whether the series number of terms in the OS-LRV

estimator is held �xed or not.

To facilitate the practical use of our inference procedure, we show that, in �nite samples

and for linear sieve M estimators, our �pre-asymptotic� sieve test statistics (i.e. t statistic and

Wald statistic) for semi-nonparametric time series models are numerically equivalent to the cor-

responding test statistics one would obtain if the models are treated as if they were parametric.

To investigate the �nite sample performance of our proposed �pre-asymptotic� robust inference

procedures on semi-nonparametric time series models, we conduct a simulation study using a

partially linear regression model. For both regular and irregular functionals, we �nd that our test

using the �pre-asymptotic�scaled Wald statistic with F critical values has more accurate size than

the �pre-asymptotic�Wald test using chi-square critical values. For irregular functionals, we �nd

that they both perform better than the Wald test using a consistent estimate of the asymptotic

variance ignoring autocorrelation.

The rest of the paper is organized as follows. Section 2 presents the plug-in sieve M estimator

of functionals of interest and gives two illustrative examples. Section 3 establishes the asymptotic

normality of the plug-in sieve M estimators of possibly irregular functionals. Section 4 and Ap-

pendix A show that the asymptotic variances of plug-in sieve M estimators of irregular functionals

for weakly dependent data are the same as if they were for i.i.d. data. Section 5 presents the �pre-

asymptotic�OS-LRV estimator and F approximation. Section 6 describes a simple computation

method and presents a simulation study. Section 7 brie�y concludes. Appendix B contains all

the proofs.

Notation. We denote fA(a) (FA(a)) as the marginal probability density (cdf) of a random

variable A evaluated at a and fAB(a; b) (FAB(a; b)) the joint density (cdf) of the random vari-

ables A and B. We use � to introduce de�nitions. For any vector-valued A, we let A0 denote

its transpose and jjAjjE �
p
A0A, although sometimes we also use jAj =

p
A0A without con-
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fusion. Denote Lp(
; d�), 1 � p < 1, as a space of measurable functions with jjgjjLp(
;d�) �

f
R

 jg(t)j

pd�(t)g1=p < 1, where 
 is the support of the sigma-�nite positive measure d� (some-

times Lp(
) and jjgjjLp(
) are used when d� is the Lebesgue measure). For any (possibly random)

positive sequences faT g1T=1 and fbT g1T=1, aT = Op(bT )means that limc!1 lim supT Pr (aT =bT > c) =

0; aT = op(bT ) means that for all " > 0, limT!1 Pr (aT =bT > ") = 0; and aT . bT and aT � bT
respectively mean that there exist two constants 0 < c1 � c2 < 1 such that c1aT � bT and

c1aT � bT � c2aT . For a positive sequence fcT g1T=1 we sometimes use cT % c (cT & c)

to mean that the sequence is increasing (decreasing) and converges to c. We use AT � AkT ,

HT � HkT and VT � VkT to denote various sieve spaces. For simplicity, we assume that

dim(VT ) = dim(AT ) � dim(HT ) � kT , all of which grow to in�nity with the sample size T .

2 Sieve M Estimation

We assume that the data fZt = (Y 0t ; X 0
t)
0gTt=1 is from a strictly stationary and weakly dependent

process de�ned on an underlying complete probability space. Let Z � Rdz ; 1 � dz < 1, Y �

Rdy and X � Rdx be the supports of Zt; Yt and Xt respectively. Let (A; d) denote an in�nite

dimensional metric space. Let ` : Z � A ! R be a measurable function and E[`(Z;�)] be a

population criterion. For simplicity we assume that there is a unique �0 2 (A; d) such that

E[`(Z;�0)] > E[`(Z;�)] for all � 2 (A; d) with d(�; �0) > 0. Di¤erent models correspond to

di¤erent choices of the criterion functions E[`(Z;�)] and the parameter spaces (A; d). While

correct speci�cation/misspeci�cation is relevant for the model underlying E[`(Z;�)], we do not

require correct speci�cation and thus, we allow �0 to be a pseudo-true parameter. Let f : (A; d)!

R be a known measurable mapping. In this paper we are interested in the estimation of and the

inference on f(�0) via the method of sieves.

Let AT be a sieve space for the whole parameter space (A; d). Then there is an element

�T�0 2 AT such that d (�T�0; �0) ! 0 as dim(AT ) ! 1 (with T ). An approximate sieve M

estimator b�T 2 AT of �0 solves
1

T

TX
t=1

`(Zt; b�T ) � sup
�2AT

1

T

TX
t=1

`(Zt; �)� op(T�1): (2.1)

We call f(b�T ) the plug-in sieve M estimator of f(�0). Under very mild conditions (see, e.g.,
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White and Wooldridge, 1991), the sieve M estimator b�T is consistent for �0:
d(b�T ; �0) = Op fmax [d(b�T ;�T�0); d (�T�0; �0)]g = op(1):

Given the consistency, we can restrict our attention to a shrinking d-neighborhood of �0. We

equip A with another pseudo norm k�ks such that k�� �0ks . d(�; �0) and k�� �0ks �p
E[`(Zt; �0)� `(Zt; �)] in a shrinking d-neighborhood of �0. For stationary beta-mixing weakly

dependent data, Chen and Shen (1998) establish the convergence rate:

kb�T � �0ks = Op(�T ), where �T = max [�T ; k�T�0 � �0ks] ; (2.2)

�T = inf

�
� 2 (0; 1) :

Z �

b�2

q
H[ ](w; f`(Zt; �0)� `(Zt; �) : k�� �0ks � �; � 2 AT g)dw �

p
T�2

�
where H[ ](w;FT ) is the L2(fZ) metric entropy with bracketing, and b > 0 is a constant.

The method of sieve M estimation includes many special cases. Di¤erent choices of criterion

functions `(Zt; �) and di¤erent choices of sieves AT lead to di¤erent examples of sieve M estima-

tion. As an illustration, we provide two examples below. See, e.g., Shen and Wong (1994) and

Chen (2007) for additional examples.

Example 2.1 (Partially additive ARX regression) Suppose that the time series data fYtgTt=1 is

generated by

Yt = X
0
t�0 + h01 (Yt�1) + h02 (Yt�2) + ut; E [utjXt; Yt�1; Yt�2] = 0;

where Xt is a dx-dimensional exogenous random vector that does not contain a constant. Let

�0 2 � � Rdx and h0j 2 Hj for j = 1; 2. Let �0 = (�00; h01; h02)
0 2 A = ��H1 �H2. Examples

of functionals of interest could be f(�0) = �0�0 or rh0j(yj) where � 2 Rdx and yj 2 int(Y) for

j = 1; 2.

As an illustration, we assume that Y is an interval of R,

H1 = �s(Y) and H2 = fh2 2 �s(Y) : h2(y�) = 0g

for s > 0:5 and a known point y� 2 Y, where

�s(Y) =
(
h 2 C [s](Y) : sup

k�[s]
sup
y2Y

���rkh(y)��� <1; sup
y;y02Y

��r[s]h(y)�r[s]h (y0)��
jy � y0js�[s]

<1
)
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is a Hölder space, [s] is the largest integer that is strictly smaller than s. The Hölder space �s(Y)

(with s > 0:5) is a smooth function space that is widely assumed in the semi-nonparametric

literature. We can then approximate H = H1 �H2 by a sieve HT = H1;T �H2;T , where H1;T =�
h1 (�) = �0Pk1;T (�) : � 2 Rk1;T

	
and

H2;T =
n
h2 (�) = �0Pk2;T (�) : � 2 Rk2;T ; h2(y�) = 0

o
; (2.3)

where the known sieve basis Pkj;T (�) could be polynomial splines, B-splines, wavelets, Fourier

series and others.

Let `(Zt; �) = � [Yt �X 0
t� � h1 (Yt�1)� h2 (Yt�2)]

2 =2 with � = (�0; h1; h2)
0 2 A = � �H1 �

H2. Let AT = � � H1;T � H2;T be a sieve for A. We can estimate �0 2 A by the sieve least

squares (LS) estimator b�T � (b�0T ;bh1;T ;bh2;T )0 2 AT :
b�T = arg max

(�;h1;h2)2AT

1

T

TX
t=1

`(Zt; �; h1; h2). (2.4)

A functional of interest f(�0) (such as �0�0 or rh0j(yj)) is then estimated by the plug-in sieve

LS estimator f(b�T ) (such as �0b�T or rbhj;T (yj)).
This example is very similar to Example 2 in Chen and Shen (1998), except that we allow for

dynamic misspeci�cation in the sense that E [utjXt; Yt�1; Yt�2;Yt�j for j � 3] may not equal to

zero. It is clear that one could replace this example by a slightly more general nonlinear additive

ARX model of Chen and Tsay (1993) with �0 = (g0; h01; h02)
0:

Yt = g0(Xt) + h01 (Yt�1) + h02 (Yt�2) + ut; E [utjXt; Yt�1; Yt�2] = 0:

The results in our paper immediately lead to the asymptotic normality of f(b�T ) for possibly
irregular functionals f(�0) and provide simple, robust inference on f(�0).

Example 2.2 (Possibly misspeci�ed copula-based time series model) Suppose that fYtgTt=1 is a

sample of strictly stationary �rst order Markov process generated from (FY ; C
�(�; �)), where FY is

the true unknown continuous marginal distribution, and C�(�; �) is the true unknown copula for

(Yt�1; Yt) that captures all the temporal and tail dependence of fYtg. The � -th conditional quantile

of Yt given Y t�1 = (Yt�1; : : : ; Y1) is:

QY� (Yt�1) = F
�1
Y

�
C�12j1 [� jFY (Yt�1)]

�
;
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where C2j1[�ju] � @
@uC

�(u; �) is the conditional distribution of Ut � FY (Yt) given Ut�1 = u, and

C�12j1 [� ju] is its � -th conditional quantile. The true conditional density function of Yt given Y
t�1

is

p�(�jY t�1) = fY (�)c� (FY (Yt�1); FY (�)) ;

where fY (�) and c�(�; �) are the density functions of FY (�) and C�(�; �) respectively. A researcher

speci�es a parametric form fc(�; �; �) : � 2 �g for the copula density function, but it could be mis-

speci�ed in the sense c�(�; �) =2 fc(�; �; �) : � 2 �g. Let (�0; fY 0) be the pseudo true copula parameter

and marginal density given by:

(�0; fY 0) = arg max
�2�;f2F

E log ff(Yt)g+ E log fc (F (Yt�1); F (Yt); �)g

where F is the space of density functions and the expectations are taken with respect to the

true probability measure. Examples of functionals of interest could be �0�0, fY 0 (y), FY 0 (y) =R y
�1 fY 0 (y) dy or Q

0
0:01(y) = F

�1
Y 0

�
C�12j1 [0:01jFY 0(y); �0]

�
for any � 2 Rd� and some y 2 supp(Yt),

where C�12j1 [� ju; �0] is the conditional quantile function implied by the copula density function

c(u; �; �0):

We could estimate (�00; fY 0)
0 by the method of sieve quasi ML using di¤erent parameterizations

and di¤erent sieves for fY 0. For example, we can write fY 0 (�) = h20 (�) =
R1
�1 h

2
0 (y) dy for some

h0 2 L2(R): Such a function h0 is unique up to a multiplicative constant. We can assume that

h0 2 H:

H =

8<:h (�) = p0 (�) +
1X
j=1

�jpj(�) :
1X
j=1

�2j <1

9=; ; (2.5)

where fpjg1j=0 is a complete orthonormal basis functions in L2 (R), such as Hermite polynomials,

wavelets and other orthonormal basis functions. Here we normalize the coe¢ cient of the �rst

basis function p0 (�) to be 1 in order to achieve the identi�cation of h0 (�). Other normalization

could also be used. It is now obvious that h0 2 H could be approximated by functions in the

following sieve space:

HT =

8<:h (�) = p0 (�) +
kTX
j=1

�jpj(�) = p0 (�) + �0PkT (�) : � 2 RkT
9=; : (2.6)
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Let Z 0t = (Yt�1; Yt), � = (�
0; h)0 2 A = ��H and

`(Zt; �) = log

(
h2 (Yt)R1

�1 h
2 (y) dy

)
+ log

(
c

 Z Yt�1

�1

h2 (y)R1
�1 h

2 (x) dx
dy;

Z Yt

�1

h2 (y)R1
�1 h

2 (x) dx
dy; �

!)
:

(2.7)

Then �0 = (�00; h0)
0 2 A = � �H could be estimated by the sieve quasi MLE b�T = (b�0T ;bhT )0 2

AT = ��HT that solves

sup
�2��HT

1

T

(
TX
t=2

`(Zt; �) + log

(
h2 (Y1)R1

�1 h
2 (y) dy

))
(2.8)

up to an error of order op(1=T ): A functional of interest f (�0) (such as �0�0, fY 0 (y), FY 0 (y)

or Q00:01(y)) is then estimated by the plug-in sieve quasi MLE f (b�T ) (such as �0b�, bfY 0 (y) =bh2T (y) = R1�1 bh2T (y) dy, bFY 0 (y) = R y�1 bfY 0(y)dy or bQ0:01(y) = bF�1Y 0 (C�12j1 [0:01j bFY 0(y); b�])).
Under correct speci�cation, Chen, Wu and Yi (2009) establish the rate of convergence of

the sieve MLE b�T and provide a sieve likelihood-ratio inference for regular functionals including
f (�0) = �0�0 or FY 0 (y) or Q00:01(y). Under misspeci�ed copulas, by applying Chen and Shen

(1998), we can still derive the convergence rate of the sieve quasi MLE b�T and the pT asymptotic
normality of f(b�T ) for regular functionals. However, the sieve likelihood ratio inference given in
Chen, Wu and Yi (2009) is no longer valid under misspeci�cation. The results in this paper

immediately lead to the asymptotic normality of f(b�T ) (such as bfY 0 (y) = bh2T (y) = R1�1 bh2T (y) dy)
for any possibly irregular functional f(�0) (such as fY 0 (y)) as well as valid inferences under

potential misspeci�cation.

3 Asymptotic Normality of Sieve M Estimators

In this section, we establish the asymptotic normality of plug-in sieve M estimators of possi-

bly irregular functionals of semi-nonparametric time series models. We also give a closed-form

expression for the sieve Riesz representer that appears in our asymptotic normality result.

3.1 Local Geometry

The convergence rate in (2.2) implies that b�T 2 BT � B0 with probability approaching one, where
B0 � f� 2 A : k�� �0ks � �T log(log(T ))g; BT � B0 \ AT : (3.1)
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Hence, we can regard B0 as the e¤ective parameter space and BT as its sieve space. We assume

that B0 is convex at �0 in the sense that, for any � 2 B0; �� + (1� �)�0 2 B0 for some small

� > 0:

The asymptotic properties of b�T will depend on the behavior of `(Z;�) on B0:We suppose that
for all � 2 B0, `(Z;�)�`(Z;�0) can be approximated by�(Z;�0)[���0] such that�(Z;�0)[���0]

is linear in � � �0. When `(Z;�) is pathwise di¤erentiable at �0 in the direction [� � �0]; (i.e.,

the limit lim�!0[(`(Z;�0 + � [� � �0]) � `(Z;�0))=� ] exists for almost all Z) and the pathwise

(directional) derivative is linear in � � �0, we let �(Z;�0)[� � �0] = lim�!0[(`(Z;�0 + � [� �

�0])� `(Z;�0))=� ]. We require �(Z;�0)[�� �0] to satisfy Assumption 3.3 below.

There is a lot of freedom to choose the norm k�ks such that k�� �0k
2
s � E[`(Z;�0)� `(Z;�)]

for � 2 B0. For the sake of concreteness, we make some stronger assumptions and present results

for a speci�c choice of the norm k�ks. More speci�cally, we assume that for any �1; �2 2 B0;
@2

@�1@�2
E [`(Z;�0 + �1 (�1 � �0) + �2 (�2 � �0))] exists in a neighborhood of (�1; �2) = (0; 0) and

@2

@�1@�2
E[`(Z;�0 + �1 (�1 � �0) + �2 (�2 � �0))j�1=0;�2=0 is a bilinear functional of �1 � �0 and

�2 � �0: We de�ne the inner product:

h�1 � �0; �2 � �0i = � @2

@�1@�2
E`(Z;�0 + �1 (�1 � �0) + �2 (�2 � �0))

����
�1=0;�2=0

(3.2)

and the corresponding norm for � 2 B0:

k�� �0k2 = � @2

@�2
E`(Z;�0 + � (�� �0))

����
�=0

: (3.3)

To verify that the k�k is indeed a norm, we only need to check that k�� �0k � 0 (for all � 2 B0)

with equality if and only if � = �0: But this follows from the fact that �0 is the unique maximizer

of E[`(Z;�)] on B0. We further assume that the norm k�k satis�es Assumption 3.3(iii) below.

When the inter-change of the order of E and @=@�2 is allowed in (3.2), we have

h�1 � �0; �2 � �0i = �
@

@�
E�(Z;�0 + � (�2 � �0))[�1 � �0])

����
�=0

: (3.4)

Su¢ cient conditions allowing for the inter-change are: (i) for all � 2 B0 and almost all Z 2 Z;

the derivative @`(Z;�0 + � (�� �0))=@� exists for all � 2 T (0; �) � f� : j� j � �g for some � > 0;

(ii) for all � 2 B0, E`(Z;�0 + � (�� �0) is �nite for each � 2 T (0; �); (iii) for all � 2 B0;

E sup�2T (0;�)
�� @
@� `(Z;�0 + � [�� �0])

�� <1: Under additional regularity conditions that allow the
10



inter-change of E and @=@� in (3.4), we have

h�1 � �0; �2 � �0i = �E fr (Z;�0) [�1 � �0; �2 � �0]g ; (3.5)

where

r (Z;�0) [�1 � �0; �2 � �0] �
@�(Z;�0 + � (�2 � �0))[�1 � �0])

@�

����
�=0

: (3.6)

Let V � clsp (B0)�f�0g where clsp (B0) denotes the closed linear span of B0 under k�k : Then

V is a Hilbert space under h�; �i : De�ne

�0;T 2 arg min
�2clsp(BT )

jj�� �0jj: (3.7)

Let VT � clsp (BT )� f�0;T g. Then VT is also a Hilbert space under h�; �i : By de�nition we have

h�0;T � �0; vT i = 0 for all vT 2 VT .

For any v 2 V; we de�ne @f(�0)@� [v] to be the pathwise (directional) derivative of the functional

f (�) at �0 and in the direction of v = �� �0 2 V :

@f(�0)

@�
[v] =

@f(�0 + �v)

@�

����
�=0

for any v 2 V: (3.8)

We assume that @f(�0)@� [�] is a linear functional on V: For any vT = �T � �0;T 2 VT ; we let

@f(�0)

@�
[vT ] =

@f(�0)

@�
[�T � �0]�

@f(�0)

@�
[�0;T � �0]: (3.9)

So @f(�0)
@� [�] is also a linear functional on VT :

Note that VT is a �nite dimensional Hilbert space. As any linear functional on a �nite dimen-

sional Hilbert space is bounded, we can invoke the Riesz representation theorem to deduce that

there is a v�T 2 VT such that

@f(�0)

@�
[v] = hv�T ; vi for all v 2 VT , and (3.10)

@f(�0)

@�
[v�T ] = kv�T k

2 = sup
v2VT ;v 6=0

j@f(�0)
@�

[v]j2= kvk2 (3.11)

We call v�T the sieve Riesz representer of the functional
@f(�0)
@� [�] on VT .

We emphasize that the sieve Riesz representation (3.10)�(3.11) of the linear functional @f(�0)@� [�]

on VT always exists regardless of whether @f(�0)
@� [�] is bounded on the in�nite dimensional space

V or not. This crucial observation enables us to develop a general and uni�ed theory that is

currently lacking in the literature.
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� If @f(�0)@� [�] is bounded on the in�nite dimensional Hilbert space V, i.e.

sup
v2V;v 6=0

�
j@f(�0)
@�

[v]j= kvk
�
<1; (3.12)

then the functional @f(�0)@� [�] has a Riesz representer on V. Denote the representer by v�,

then kv�T k % kv�k < 1 and kv� � v�T k ! 0 as T ! 1. We say that f (�) is regular (at

� = �0). In this case, we have
@f(�0)
@� [v] = hv�; vi for all v 2 V. See, e.g., Shen (1997) and

Chen and Shen (1998).

� If @f(�0)@� [�] is unbounded on the in�nite dimensional Hilbert space V, i.e.

sup
v2V;v 6=0

�
j@f(�0)
@�

[v]j= kvk
�
=1; (3.13)

then kv�T k % 1 as T !1; and we say that f (�) is irregular (at � = �0).

As it will become clear later, the convergence rate of f(b�T )� f (�0) depends on the order of
kv�T k.

3.2 Asymptotic Normality

To establish the asymptotic normality of f(b�T ) for possibly irregular nonlinear functionals, we
assume:

Assumption 3.1 (local property of functional) (i) v 7! @f(�0)
@� [v] is a linear functional from

V to R;

(ii) sup
�2BT

���f(�)� f(�0)� @f(�0)
@� [�� �0]

���

v�T

 = o
�
T�

1
2

�
;

(iii) either (a) or (b) holds:

(a) kv�T k % 1 and

���@f(�0)@� [�0;T � �0]
���

jjv�T jj
= o

�
T�

1
2

�
;

or (b) kv�T k % kv�k <1 and kv� � v�T k � k�0;T � �0k = o
�
T�

1
2

�
:

Assumption 3.1.(ii) controls the linear approximation error of possibly nonlinear functional

f (�). It is automatically satis�ed when f (�) is a linear functional. For nonlinear functional, it

can be veri�ed using the convergence rate (the de�nition of BT ) and the smoothness of f (�).

12



Assumption 3.1.(iii) controls the bias part due to the �nite dimensional sieve approximation of

�0;T to �0. It is a condition imposed on the growth rate of the sieve dimension dim(AT ). When

f (�) is an irregular functional, we have kv�T k % 1 and Assumption 3.1.(iii)(a) is satis�ed if

the sieve approximation error rate is of a smaller order than T�
1
2 kv�T k. When f (�) is a regular

functional, we have kv�T k % kv�k < 1, and since h�0;T � �0; v�T i = 0 (by de�nition of �0;T ), we

have:����@f(�0)@�
[�0;T � �0]

���� = jhv�; �0;T � �0ij = jhv� � v�T ; �0;T � �0ij � kv� � v�T k � k�0;T � �0k ;
thus Assumption 3.1.(iii)(a) is satis�ed if (b) holds, which allows for the sieve approximation error

rate to be of the same order as T�
1
2 kv�T k.

Next, we make an assumption on the relationship between kv�T k and the asymptotic standard

deviation of f(b�T )� f(�0;T ): It will be shown that the asymptotic standard deviation is the limit
of the �standard deviation�(sd) norm kv�T ksd of v�T , de�ned as

kv�T k
2
sd � V ar

 
T�1=2

TX
t=1

�(Zt; �0)[v
�
T ]

!
: (3.14)

Note that kv�T k
2
sd is the �nite dimensional sieve version of the long run variance of the score

process f�(Zt; �0)[v�T ]gt�T , and kv�T k
2
sd = V ar (�(Z;�0)[v

�
T ]) if the score process is a martingale

di¤erence array.

Assumption 3.2 (sieve variance) kv�T k = kv�T ksd = O (1) :

By the de�nition of kv�T k given in (3.11), 0 < kv�T k is non-decreasing in dim(VT ), and hence

is non-decreasing in T . Assumption 3.2 then implies that lim infT!1 kv�T ksd > 0. De�ne

u�T � v�T = kv�T ksd (3.15)

to be the normalized version of v�T . Then Assumption 3.2 implies that ku�T k = O(1).

Let �T fg (Z)g � T�1
PT
t=1 [g (Zt)� Eg (Zt)] denote the centered empirical process indexed

by the function g. Let "T = o(T�1=2):

Assumption 3.3 (local behavior of criterion) (i) �(Z;�0) [v] is linear in v 2 V;

(ii) sup
�2BT

�T f`(Z;�� "Tu�T )� `(Z;�)��(Z;�0)[�"Tu�T ]g = Op("2T );
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(iii) sup
�2BT

����E[`(Zt; �)� `(Zt; �� "Tu�T )]� jj�� "Tu�T � �0jj2 � jj�� �0jj22

���� = O("2T ):
Assumptions 3.3.(ii) and (iii) are simpli�ed versions of those in Chen and Shen (1998), and

can be veri�ed in the same way.

Assumption 3.4 (CLT)
p
T�T f�(Z;�0) [u�T ]g !d N(0; 1), where N(0; 1) is a standard normal

distribution.

Assumption 3.4 is a very mild one, and can be easily veri�ed by applying any existing triangular

array CLT for weakly dependent data (see, e.g., Hall and Heyde, 1980).

We are now ready to state the asymptotic normality theorem.

Theorem 3.1 Let Assumptions 3.1.(i)(ii), 3.2 and 3.3 hold. Then

p
T [f(b�T )� f(�0;T )]= kv�T ksd = pT�T f�(Z;�0) [u�T ]g+ op (1) ; (3.16)

If further Assumptions 3.1.(iii) and 3.4 hold, then

p
T [f(b�T )� f(�0)]= kv�T ksd = pT�T f�(Z;�0) [u�T ]g+ op (1)!d N(0; 1): (3.17)

In light of Theorem 3.1, we call kv�T k
2
sd de�ned in (3.14) the �pre-asymptotic�sieve variance

of the estimator f(b�T ). When the functional f(�0) is regular (i.e., kv�T k = O(1)), we have

kv�T ksd � kv�T k = O(1) typically; so f(b�T ) converges to f(�0) at the parametric rate of 1=pT .
When the functional f(�0) is irregular (i.e., kv�T k ! 1), we have kv�T ksd !1 (under Assumption

3.2); so the convergence rate of f(b�T ) becomes slower than 1=pT . Regardless of whether the �pre-
asymptotic�sieve variance kv�T k

2
sd stays bounded asymptotically (i.e., as T !1) or not, it always

captures whatever true temporal dependence there exists in �nite samples.

For regular functionals of semi-nonparametric time series models, Chen and Shen (1998) and

Chen (2007, Theorem 4.3) establish that
p
T (f(b�T )� f(�0))!d N(0; �

2
v�) with

�2v� = lim
T!1

V ar

 
T�1=2

TX
t=1

�(Zt; �0)[v
�]

!
= lim
T!1

kv�T k
2
sd 2 (0;1): (3.18)

Our Theorem 3.1 is a natural extension of their results to allow for irregular functionals.
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3.3 Sieve Riesz Representer

To apply the asymptotic normality Theorem 3.1 one needs to verify Assumptions 3.1�3.4. Once

we compute the sieve Riesz representer v�T 2 VT , Assumptions 3.1 and 3.2 can be easily checked,

while Assumptions 3.3 and 3.4 are standard ones and can be veri�ed in the same ways as those

in Chen and Shen (1998) and Chen (2007) for regular functionals of semi-nonparametric models.

Although it may be di¢ cult to compute the Riesz representer v� 2 V in a closed form for a regular

functional on the in�nite dimensional space V, we can always compute the sieve Riesz representer

v�T 2 VT de�ned in (3.10) and (3.11) explicitly. Therefore, Theorem 3.1 is easily applicable to

a large class of semi-nonparametric time series models, regardless of whether the functionals of

interest are
p
T estimable or not.

3.3.1 Sieve Riesz representers for general functionals

For the sake of concreteness, in this subsection we focus on a large class of semi-nonparametric

models where the population criterion E[`(Zt; �; h (�))] is maximized at �0 = (�00; h0 (�))
0 2 A =

��H, � is a compact subset in Rd� , H is a class of real valued continuous functions (of a subset

of Zt) belonging to a Hölder, Sobolev or Besov space, and AT = � �HT is a �nite dimensional

sieve space. The general cases with multiple unknown functions require only more complicated

notation.

Let k�k be the norm de�ned in (3.3) and VT = Rd� � fvh (�) = PkT (�)0� : � 2 RkT g be dense

in the in�nite dimensional Hilbert space (V; k�k). By de�nition, the sieve Riesz representer v�T =

(v�0�;T ; v
�
h;T (�))0 = (v�0�;T ; PkT (�)0��T )0 2 VT of

@f(�0)
@� [�] solves the following optimization problem:

@f(�0)

@�
[v�T ] = kv�T k

2 = sup
v=(v0�;vh)

02VT ;v 6=0

���@f(�0)@�0 v� +
@f(�0)
@h [vh(�)]

���2
hv; vi

= sup

=(v0�;�0)

02Rd�+kT ;
 6=0


0FkTF
0
kT




0RkT 

; (3.19)

where

FkT �
�
@f(�0)

@�0
;
@f(�0)

@h
[PkT (�)0]

�0
(3.20)
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is a (d� + kT )� 1 vector,1 and RkT is a (d� + kT )� (d� + kT ) positive de�nite matrix such that


0RkT 
 � hv; vi for all v = (v0�; PkT (�)0�)0 2 VT . (3.21)

For easy reference, we de�ne

RkT =

0@ I11 IT;12

IT;21 IT;22

1A and R�1kT :=

0@ I11T I12T

I21T I22T

1A : (3.22)

If the criterion function `(z; �; h (�)) is twice continuously pathwise di¤erentiable with respect

to (�; h (�)), then under some regularity conditions, we have I11 = E
h
�@2`(Zt;�0;h0(�))

@�@�0

i
, IT;22 =

E
h
�@2`(Zt;�0;h0(�))

@h@h [PkT (�); P 0kT (�)]
i
, IT;12 = E

h
�@2`(Zt;�0;h0(�))

@�@h [P 0kT (�)]
i
and IT;21 � I 0T;12.

The sieve Riesz representation (3.10) becomes: for all v = (v0�; PkT (�)0�)
0 2 VT ,

@f(�0)

@�
[v] = F 0kT 
 = hv

�
T ; vi = 
�0T RkT 
 for all 
 = (v0�; �

0)0 2 Rd�+kT : (3.23)

The 
�T that solves (3.23), which is also the solution to the optimization problem in (3.19), is

given by


�T =
�
v�0�;T ; �

�0
T

�0
= R�1kT FkT : (3.24)

The sieve Riesz representer is v�T =
�
v�0�;T ; v

�
h;T (�)

�0
=
�
v�0�;T ; PkT (�)0��T

�0
2 VT : Thus

kv�T k
2 = 
�0T RkT 


�
T = F

0
kT
R�1kT FkT ; (3.25)

which is �nite for each sample size T but may grow with T .

Finally the score process can be expressed as

�(Zt; �0)[v
�
T ] =

�
��(Zt; �0; h0 (�))0;�h(Zt; �0; h0 (�))[PkT (�)0]

�

�T � SkT (Zt)0
�T :

Thus kv�T k
2
sd = 


�0
T V ar

�
1p
T

PT
t=1 SkT (Zt)

�

�T and

V ar (�(Zt; �0)[v
�
T ]) = 


�0
T E

�
SkT (Zt)SkT (Zt)

0� 
�T . (3.26)

To verify Assumptions 3.1 and 3.2 for irregular functionals, it is handy to know the exact

speed of divergence of kv�T k
2. We assume

1When @f(�0)
@h

[�] applies to a vector (matrix), it stands for element-wise (column-wise) operations. We follow the

same convention for other operators such as �(Zt; �0) [�] in the paper.
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Assumption 3.5 The smallest and largest eigenvalues of RkT de�ned in (3.21) are bounded and

bounded away from zero uniformly for all kT .

Assumption 3.5 imposes some regularity conditions on the sieve basis functions, which is a

typical assumption in the linear sieve (or series) literature.

Remark 3.2 Assumption 3.5 implies that

jjv�T jj2 � jj
�T jj2E � jjFkT jj2E = jj
@f(�0)

@�
jj2E + jj

@f(�0)

@h
[PkT (�)]jj2E.

Then: f(�) is regular at � = �0 if limkT jj
@f(�0)
@h [PkT (�)]jj2E < 1; f(�) is irregular at � = �0 if

limkT jj
@f(�0)
@h [PkT (�)]jj2E =1.

3.3.2 Examples

We �rst consider three typical linear functionals of semi-nonparametric models.

For the Euclidean parameter functional f(�) = �0�, we have FkT = (�0;00kT )
0 with 00kT =

[0; : : : ; 0]1�kT . Thus v
�
T = (v�0�;T ; PkT (�)0��T )0 2 VT with v��;T = I11T �, �

�
T = I21T �, and kv�T k

2 =

�0I11T �: If the largest eigenvalue of I
11
T , �max(I

11
T ), is bounded above by a �nite constant uniformly

in kT ; then kv�T k
2 � �max(I11T )��0� <1 uniformly in T , and the functional f(�) = �0� is regular.

For the evaluation functional f(�) = h(x) for x 2 X , we have FkT = (00d� ; PkT (x)
0)0. Thus v�T =

(v�0�;T ; PkT (�)0��T )0 2 VT with v��;T = I12T PkT (x), �
�
T = I22T PkT (x), and kv�T k

2 = P 0kT (x)I
22
T PkT (x) :

So if the smallest eigenvalue of I22T , �min(I
22
T ), is bounded away from zero uniformly in kT , then

kv�T k
2 � �min(I22T )jjPkT (x)jj2E !1; and the functional f(�) = h(x) is irregular.

For the weighted integration functional f(�) =
R
X w(x)h(x)dx for a weighting function w(x),

we have FkT = (0
0
d�
;
R
X w(x)PkT (x)

0dx)0. Thus v�T = (v
�0
�;T ; PkT (�)0��T )0 for v��;T = I12T

R
X w(x)PkT (x)dx,

��T = I
22
T

R
X w(x)PkT (x)dx, and

kv�T k
2 = F 0kTR

�1
kT
FkT =

�Z
X
w(x)PkT (x)dx

�0
I22T

�Z
X
w(x)PkT (x)dx

�
:

If the smallest and largest eigenvalues of I22T are bounded and bounded away from zero uni-

formly for all kT , then jjv�T jj2 � jj
R
X w(x)PkT (x)dxjj

2
E . Thus f(�) =

R
X w(x)h(x)dx is regular if

limkT jj
R
X w(x)PkT (x)dxjj

2
E <1; is irregular if limkT jj

R
X w(x)PkT (x)dxjj

2
E =1.
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We �nally consider an example of nonlinear functionals that arises in Example 2.2 when

the parameter of interest is �0 = (�00; h0)
0 with h20 proportional to the (pseudo) true marginal

density fY 0 (�) of Yt. Consider the functional f(�) = h2 (y) =
R1
�1 h

2 (y) dy. Note that f(�0) =

fY 0 (y) = h20 (y) and h0(�) is approximated by the linear sieve HT given in (2.6). Then FkT =�
00d� ;

@f(�0)
@h [PkT (�)0]

�0
with

@f(�0)

@h
[PkT (�)] = 2h0 (y)

�
PkT (y)� h0 (y)

Z 1

�1
h0 (y)PkT (y)dy

�
:

Thus v�T = (v
�0
�;T ; PkT (�)0��T )0 2 VT with v��;T = I12T

@f(�0)
@h [PkT (�)], ��T = I22T

@f(�0)
@h [PkT (�)], and

kv�T k
2 = F 0kTR

�1
kT
FkT =

@f(�0)

@h
[PkT (�)0]I22T

@f(�0)

@h
[PkT (�)]:

So if the smallest eigenvalue of I22T is bounded away from zero uniformly in kT , then kv�T k
2 �

const: � jj@f(�0)@h [PkT (�)]jj2E ! 1; and the functional f (�) = h2 (y) =
R1
�1 h

2 (y) dy is irregular at

� = �0:

4 Asymptotic Variances of Sieve Estimators of Irregular Func-

tionals

In this section, we derive the asymptotic expression of the �pre-asymptotic�sieve variance kv�T k
2
sd

for an irregular functional. We show that, even when the score process is not a martingale

di¤erence sequence, the asymptotic variance of a sieve M estimator of an irregular functional for

weakly dependent data is the same as that for independent data.

4.1 Exact Form of the Asymptotic Variance

By de�nition of the �pre-asymptotic�sieve variance jjv�T jj2sd and the strict stationarity of the data

fZtgTt=1, we have:

jjv�T jj2sd = V ar (�(Z;�0)[v�T ])�
"
1 + 2

T�1X
t=1

�
1� t

T

�
��T (t)

#
; (4.1)

where f��T (t)g is the autocorrelation coe¢ cient of the triangular array f�(Zt; �0)[v�T ]gt�T :

��T (t) �
E (�(Z1; �0)[v

�
T ]�(Zt+1; �0)[v

�
T ])

V ar
�
�(Z;�0)[v�T ]

� : (4.2)
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Denote

CT � sup
t2[1;T )

jE f�(Z1; �0)[v�T ]�(Zt+1; �0)[v�T ]gj :

The following high-level assumption captures the essence of the problem.

Assumption 4.1 (i) kv�T k ! 1 as T ! 1, and kv�T k
2 =V ar (�(Z;�0)[v

�
T ]) = O(1); (ii) There

is an increasing integer sequence fdT 2 [2; T )g such that

(a)
dTCT

V ar
�
�(Z;�0)[v�T ]

� = o(1) and (b)

������
T�1X
t=dT

�
1� t

T

�
��T (t)

������ = o(1):
Primitive su¢ cient conditions for Assumption 4.1 are given in the next subsection.

Theorem 4.1 Let Assumption 4.1 hold. Then:
���� kv�Tk2sd
V ar(�(Z;�0)[v�T ])

� 1
���� = o (1); If further Assump-

tions 3.1, 3.3 and 3.4 hold, then
p
T [f(b�T )� f(�0)]q
V ar

�
�(Z;�0)[v�T ]

� !d N (0; 1) : (4.3)

4.2 Su¢ cient Conditions for Assumption 4.1

In this subsection, we provide su¢ cient conditions for Assumption 4.1 for sieve M estimation of

irregular functionals of general semi-nonparametric models. In Appendix A, we present additional

low-level su¢ cient conditions for sieve M estimation of real-valued functionals of purely nonpara-

metric models. We show that these su¢ cient conditions are easily satis�ed for sieve M estimation

of the evaluation and the weighted integration functionals.

Given the closed-form expressions of kv�T k and V ar (�(Z;�0)[v�T ]) in Subsection 3.3, it is easy

to see that the following assumption implies Assumption 4.1.(i).

Assumption 4.2 (i) Assumption 3.5 holds and limkT jj
@f(�0)
@h [PkT (�)]jj2E = 1; (ii) The smallest

eigenvalue of E [SkT (Zt)SkT (Zt)
0] in (3.26) is bounded away from zero uniformly for all kT .

Next, we provide some su¢ cient conditions for Assumption 4.1.(ii). Let fZ1;Zt (�; �) be the

joint density of (Z1; Zt) and fZ (�) be the marginal density of Z. Let p 2 [1;1). De�ne

k�(Z;�0)[v�T ]kp � (E fj�(Z;�0)[v
�
T ]j

pg)1=p : (4.4)

By de�nition, k�(Z;�0)[v�T ]k
2
2 = V ar (�(Z;�0)[v

�
T ]). The following assumption implies Assump-

tion 4.1.(ii)(a).
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Assumption 4.3 (i) supt�2 sup(z;z0)2Z�Z jfZ1;Zt (z; z0) = [fZ1 (z) fZt (z0)]j � C for some constant

C > 0; (ii) k�(Z;�0)[v�T ]k1 = k�(Z;�0)[v�T ]k2 = o(1).

Assumption 4.3.(i) is mild. When Zt is a continuous random variable, it is equivalent to

assuming that the copula density of (Z1; Zt) is bounded uniformly in t � 2. For irregular func-

tionals (i.e., kv�T k % 1), the L2(fZ) norm k�(Z;�0)[v�T ]k2 diverges (under Assumption 4.1.(i) or

Assumption 4.2), Assumption 4.3.(ii) requires that the L1(fZ) norm k�(Z;�0)[v�T ]k1 diverge at a

slower rate than the L2(fZ) norm k�(Z;�0)[v�T ]k2 as kT !1. In many applications the L1(fZ)

norm k�(Z;�0)[v�T ]k1 actually remains bounded as kT ! 1 and hence Assumption 4.3.(ii) is

trivially satis�ed.

The following assumption implies Assumption 4.1.(ii)(b).

Assumption 4.4 (i) fZtg1t=1 is strictly stationary strong-mixing with mixing coe¢ cients � (t)

satisfying
P1
t=1 t


 [� (t)]
�

2+� <1 for some � > 0 and 
 > 0; (ii) As kT !1;

k�(Z;�0)[v�T ]k


1 k�(Z;�0)[v�T ]k2+�

�(Z;�0)[v�T ]


+12

= o (1) :

The �-mixing condition in Assumption 4.4.(i) with 
 > �
2+� becomes Condition 1.(iii) in sec-

tion 6.6.2 of Fan and Yao (2003) for the pointwise asymptotic normality of their local polynomial

estimator of a conditional mean function. In Appendix A, we illustrate that 
 > �
2+� is also

su¢ cient for sieve M estimation of evaluation functionals of nonparametric time series models to

satisfy Assumption 4.4.(ii).

Proposition 4.2 Let Assumptions 4.2, 4.3 and 4.4 hold. Then:
PT�1
t=1 j��T (t)j = o(1) and As-

sumption 4.1 holds.

Theorem 4.1 and Proposition 4.2 show that when the functional f(�) is irregular (i.e., kv�T k !

1), weak dependence does not a¤ect the asymptotic variance of a general sieve M estimator

f(b�T ). Similar results have been proved for nonparametric kernel and local polynomial estimators
of evaluation functionals of conditional mean and density functions. See for example, Robinson

(1983), Masry and Fan (1997), Fan and Yao (2003), Lu and Linton (2007), Gao (2007) and

Wu (2011). However, whether this is the case for general sieve M estimators of any irregular
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functionals has been a long standing question. Theorem 4.1 and Proposition 4.2 give a positive

answer.

One may conclude from Theorem 4.1 and Proposition 4.2 that the results and inference pro-

cedures for sieve estimators carry over from independent data to the time series case without

modi�cations. However, this is true only when the sample size and hence the sieve number of

terms are large and the dependence is weak. Whether the sample size and the sieve number of

terms are large enough so that one can ignore the temporal dependence depends on the functional

of interest, the strength of the temporal dependence, and the sieve basis functions employed. So it

is ultimately an empirical question. In any �nite sample, the temporal dependence does a¤ect the

sampling distribution of the sieve estimator. In the next section, we design an inference procedure

that is easy to use and at the same time captures the time series dependence in �nite samples.

5 Autocorrelation Robust Inference

In order to apply the asymptotic normality Theorem 3.1, we need to estimate the sieve Riesz

representer v�T and the sieve variance kv�T k
2
sd. In this section, we propose simple estimators of

v�T and kv�T k
2
sd and establish the asymptotic distributions of the associated t statistic and Wald

statistic.

We focus on the case that `(Z;�) is well-behaved in the sense that the two de�nitions in (3.2)

and (3.5) are equivalent. We start by introducing an estimator of the sieve Riesz representer v�T :

Let k�kT denote the empirical norm induced by the following empirical inner product

hv1; v2iT = �
1

T

TX
t=1

r(Zt; b�T )[v1; v2]; (5.1)

for any v1; v2 2 VT . We de�ne an empirical sieve Riesz representer bv�T of the functional @f(b�T )@� [�]

with respect to the empirical norm k�kT , i.e.

@f(b�T )
@�

[bv�T ] = sup
v2VT ;v 6=0

j@f(b�T )@� [v]j2

kvk2T
<1 and (5.2)

@f(b�T )
@�

[v] = hv; bv�T iT for any v 2 VT : (5.3)
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We next show that the theoretical sieve Riesz representer v�T can be consistently estimated by the

empirical sieve Riesz representer bv�T under the norm k�k. In the following we denote WT � fv 2

VT : kvk = 1g.

Assumption 5.1 Let f��T g be a positive sequence such that ��T = o(1).

(i) sup�2BT ;v1;v22WT
Efr(Z;�)[v1; v2]� r(Z;�0)[v1; v2]g = O(��T );

(ii) sup�2BT ;v1;v22WT
�T fr(Z;�)[v1; v2]g = Op(��T );

(iii) sup�2BT ;v2WT

���@f(�)@� [v]� @f(�0)
@� [v]

��� = O(��T ):
Assumption 5.1.(i) is a smoothness condition on the second derivative of the criterion func-

tion with respect to �. In the nonparametric LS regression model, we have r(Z;�)[v1; v2] =

r(Z;�0)[v1; v2] for all � and v1; v2. Hence Assumption 5.1.(i) is trivially satis�ed. Assumption

5.1.(ii) is a stochastic equicontinuity condition on the empirical process T�1
PT
t=1 r(Zt; �)[v1; v2]

indexed by � in the shrinking neighborhood BT uniformly in v1; v2 2 WT . Assumption 5.1.(iii)

puts some smoothness condition on the functional @f(�)@� [v] with respect to � in the shrinking

neighborhood BT uniformly in v 2 WT .

Lemma 5.1 Let Assumption 5.1 hold, then����� kbv�T k

v�T

 � 1
����� = Op(��T ) and kbv�T � v�T k

v�T

 = Op(�

�
T ): (5.4)

With the empirical estimator bv�T satisfying Lemma 5.1, we can now construct an estimate

of the kv�T k
2
sd ; which is the LRV of the score process �(Zt; �0)[v�T ]: Many nonparametric LRV

estimators are available in the literature. To be consistent with our focus on the method of sieves

and to derive a simple and robust asymptotic approximation, we use an orthonormal series LRV

(OS-LRV) estimator in this paper. The OS-LRV estimator has already been used in constructing

autocorrelation robust inference on regular functionals of parametric time series models; see,

e.g., Phillips (2005), Sun (2011, 2013) and the references therein. Let f�mg1m=0 be a sequence

of orthonormal basis functions in L2 ([0; 1]) with �0 (�) � 1: The orthonormality and �0 (�) � 1

implies that
R 1
0 �m (r) dr = 0 for all m � 1: De�ne the orthogonal series projection

b�m = 1p
T

TX
t=1

�m(
t

T
)�(Zt; b�T )[bv�T ] (5.5)
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and construct the direct series estimator b
m = b�2m for each m = 1; 2; : : : ;M where M 2 Z+:

Taking a simple average of these direct estimators yields our OS-LRV estimator jjbv�T jj2sd;T of

kv�T k
2
sd :

kbv�T k2sd;T � 1

M

MX
m=1

b
m = 1

M

MX
m=1

b�2m; (5.6)

where M , the number of orthonormal basis functions used, is the smoothing parameter in the

LRV estimation.

For irregular functionals, our asymptotic result in Section 4 suggests that we can ignore

the temporal dependence and estimate kv�T k
2
sd by b�2v = T�1

PT
t=1f�(Zt; �0)[bv�T ]g2. However,

when the sample size is small, there may still be considerable autocorrelation in the sieve score

process f�(Zt; �0)[v�T ]gTt=1: To capture the possibly large but diminishing autocorrelation in a

�nite sample, we propose treating f�(Zt; �0)[v�T ]gTt=1 as a generic time series and using the same

formula as in (5.6) to estimate the asymptotic variance of T�1=2
PT
t=1�(Zt; �0)[v

�
T ]: We call the

estimator the �pre-asymptotic� variance estimator. With a data-driven smoothing parameter

choice of M , the �pre-asymptotic� variance estimator jjbv�T jj2sd;T should be close to b�2v when the
sample size is large. On the other hand, when the sample size is small, the �pre-asymptotic�

variance estimator may provide a more accurate measure of the sampling variation of the plug-

in sieve M estimator of irregular functionals. An extra bene�t of the �pre-asymptotic� idea is

that it allows us to treat regular and irregular functionals in a uni�ed framework. So we do not

distinguish regular and irregular functionals in the rest of this section.

To make statistical inference on a scalar functional f(�0), we construct a t statistic as follows:

tT �
p
T [f(b�T )� f(�0)]

bv�T

sd;T : (5.7)

We proceed to establish the asymptotic distribution of tT whenM is a �xed constant. To facilitate

our development, we make the assumption below.

Assumption 5.2 Let
p
T��T �T = o(1) and the following conditions hold:

(i) supv2WT ;�2BT T
�1=2PT

t=1 �m (t=T ) (�(Zt; �) [v]��(Zt; �0) [v]� Ef�(Zt; �) [v]g) = op(1)

for m = 0; 1; : : : ;M ;

(ii) supv2WT ;�2BT E f�(Z;�) [v]��(Zt; �0) [v]� r(Z;�0) [v; �� �0]g = O (�
�
T �T ) ;

(iii) supv2WT

���T�1=2PT
t=1 �m(t=T )�(Zt; �0)[v]

��� = Op(1) for m = 0; 1; : : : ;M ;
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(iv) For et s iid N(0; 1); we have for any x = (x1; : : : ; xM )0 2 RM ,

P

 
T�1=2

TX
t=1

�m(t=T )�(Zt; �0) [u
�
T ] < xm; m = 0; 1; : : : ;M

!

= P

 
T�1=2

TX
t=1

�m(t=T )et < xm; m = 0; 1; : : : ;M

!
+ o (1) :

Assumption 5.2.(iv) is a slightly stronger version of Assumption 3.4. It is equivalent to as-

suming that T�1=2
PT
t=1 [�0(t=T ); : : : ; �m(t=T )]

0�(Zt; �0) [u�T ] follows a multivariate CLT. When

�m (x) is continuously di¤erentiable in x, Assumption 5.2.(iv) is weaker than a FCLT of the form:

T�1=2
[T� ]X
t=1

�(Zt; �0) [u
�
T ]!d W (�)

whereW (�) is the standard Brownian motion process. A FCLT of the above type is often assumed

in parametric time series analysis. When Assumption 5.2.(iv) holds, we write

T�1=2
TX
t=1

�m(
t

T
)�(Zt; �0) [u

�
T ]

as T�1=2
TX
t=1

�m(
t

T
)et

where as signi�es that the two sides are asymptotically equivalent in distribution.

Theorem 5.1 Let f�mgMm=0 be a sequence of orthonormal basis functions in L2 ([0; 1]) with

�0 (�) � 1. Under Assumptions 3.2, 3.3, 5.1 and 5.2, we have, for m = 1; : : : ;M;

kv�T k
�1
sd
b�m as iid N(0; 1):

If further Assumption 3.1 holds, then

tT �
p
T [f(b�T )� f(�0)] = kbv�T ksd;T as t (M) ;

where t (M) is the t distribution with degree of freedom M .

Theorem 5.1 shows that when M is �xed, the tT statistic converges weakly to a standard t

distribution. This result is very handy as critical values from the t distribution can be easily

obtained from statistical tables or standard software packages. This is an advantage of using

the OS-LRV estimator. When M ! 1; t (M) approaches the standard normal distribution. So

critical values from t (M) can be justi�ed even if M = MT ! 1 slowly with the sample size T .
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Theorem 5.1 extends the results of Sun (2011, 2013) on robust OS-LRV estimation for parametric

models to the case of general semi-nonparametric models.

In some applications, we may be interested in a vector of functionals f = (f1; : : : ; fq)
0 for

some �xed �nite q 2 Z+. If each fj satis�es Assumptions 3.1�3.3 and their Riesz representer

v�T = (v
�
1;T ; : : : ; v

�
q;T ) satis�es the multivariate version of Assumption 3.4:

kv�T k
�1
sd

p
T�T f�(Z;�0) [v�T ]g !d N(0; Iq);

then

kv�T k
�1
sd

p
T [f(b�T )� f(�0)]!d N(0; Iq); (5.8)

where kv�T k
2
sd = V ar

�p
T�T�(Z;�0)[v

�
T ]
�
is a q � q matrix. A direct implication is that

T [f(b�T )� f(�0)]0 kv�T k�2sd [f(b�T )� f(�0)]!d �
2
q : (5.9)

To estimate kv�T k
2
sd ; we de�ne the orthogonal series projection

b�m = (b�(1)m ; : : : ; b�(q)m )0 with
b�(j)m = T�1=2

TX
t=1

�m(t=T )�(Zt; b�T )[v̂�j;T ];
where v̂�j;T denotes the empirical sieve Riesz representer of the functional

@fj(b�T )
@� [�] (j = 1; : : : ; q).

The OS-LRV estimator jjbv�T jj2sd;T of the sieve variance kv�T k2sd is
kbv�T k2sd;T = 1

M

MX
m=1

b�m b�0m:
To make statistical inference on f(�0); we construct the F test version of the Wald statistic

as follows:

FT � T [f(b�T )� f(�0)]0 kbv�T k�2sd;T [f(b�T )� f(�0)] =q: (5.10)

We maintain Assumption 5.2 but replace Assumption 5.2(iv) by its multivariate version: for

et s iid N(0; Iq); we have

P

 
T�1=2

TX
t=1

�m(t=T )�(Zt; �0)
h
kv�T k

�1
sd v

�
T

i
< xm; m = 0; 1; : : : ;M

!

= P

 
T�1=2

TX
t=1

�m(t=T )et < xm; m = 0; 1; : : : ;M

!
+ o (1)

for xm 2 Rq:

Using a proof similar to that for Theorem 5.1, we can prove the theorem below.
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Theorem 5.2 Let f�mgMm=0 be a sequence of orthonormal basis functions in L2([0; 1]) with �0 (�) �

1. Let Assumptions 3.1, 3.2, 3.3, 5.1 and the multivariate version of Assumption 5.2 hold. Then,

for a �xed �nite integer M :
M � q + 1

M
FT !d Fq;M�q+1;

where Fq;M�q+1 is the F distribution with degree of freedom (q;M � q + 1).

The weak convergence of the F statistic can be rewritten as

FT !d

�2q=q

�2M�q+1= (M � q + 1)
M

M � q + 1 =
d Fq;M�q+1

M

M � q + 1 :

As M !1; both �2M�q+1= (M � q + 1) and M=(M � q + 1) converge to one, and hence FT !d

�2q=q. When M is not very large or the number of the restrictions q is large, the asymptotic

distribution �2q=q is likely to produce a large approximation error. This explains why the F

approximation is more accurate, especially when M is relatively small and q is relatively large.

6 Computation and Simulation

6.1 Computation

In this subsection, we show a simple way to compute the OS-LRV estimator introduced in the

previous section. In fact, we show that the estimator can be computed using the standard formula

of the OS-LRV estimation for parametric models, and that the Riesz representer does not have

to be computed.

For simplicity, let the sieve space be AT = ��HT with � a compact subset of Rd� and HT =�
h (�) = PkT (�)0� : � 2 RkT

	
. Let �0;T = (�0; PkT (�)0�0;T ) 2 int(�)�HT . For � 2 AT = ��HT ;

we write `(Zt; �) = `(Zt; �; h (�)) = `(Zt; �; PkT (�)0�) and de�ne ~̀(Zt; 
) = `(Zt; �; PkT (�)0�) as a

function of 
 = (�0; �0)0 2 Rd
 where d
 = d�+d� and d� � kT . For any given Zt, we view `(Zt; �)

as a functional of � on the in�nite dimensional function space A, but ~̀(Zt; 
) as a function of 


on the Euclidian space Rd
 whose dimension d
 grows with the sample size but could be regarded

as �xed in �nite samples. By de�nition, for any �j =
�
�0j ; PkT (�)0�j

�0
, j = 1; 2; we have

@ ~̀(Zt; 
1)

@
0
(
2 � 
1) = �`(Zt; �1) [�2 � �1] (6.1)
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where the left hand side is the regular derivative and the right hand side is the pathwise func-

tional derivative. By the consistency of the sieve M estimator b�T = (b�0T ; PkT (�)0b�T ) for �0;T =
(�0; PkT (�)0�0;T ), we have that b
0T � (b�0T ; b�0T ) is a consistent estimator of 
00;T = (�00; �

0
0;T ), then

the �rst order conditions for the sieve M estimation can be represented as

1

T

TX
t=1

@ ~̀(Zt; b
T )
@


� 0: (6.2)

These �rst order conditions are exactly the same as what we would get for parametric models

with d
-dimensional parameter space.

Next, we pretend that ~̀(Zt; 
) is a parametric criterion function on a �nite dimensional space

Rd
 . Using the OS-LRV estimator for the parametric M estimator based on the sample criterion

function T�1
PT
t=1

~̀(Zt; 
), we obtain the asymptotic variance estimator for
p
T (b
T � 
0;T ) as

follows: b�T = bR�1T bBT bR�1T , where
bRT = � 1

T

TX
t=1

@2 ~̀(Zt; b
T )
@
@
0

,

bBT = 1

M

MX
m=1

"
1p
T

TX
t=1

�m

�
t

T

�
@ ~̀(Zt; b
T )

@


#"
1p
T

TX
t=1

�m

�
t

T

�
@ ~̀(Zt; b
T )
@
0

#
:

Now suppose we are interested in a real-valued functional f0;T = f (�0;T ) = f (�0; PkT (�)0�0;T ),

which is estimated by the plug-in sieve M estimator bf = f (b�T ) = f(b�T ; PkT (�)0b�T ). We compute
the asymptotic variance of bf mechanically via the Delta method. We can then estimate the
asymptotic variance of

p
T ( bf � f0;T ) by

dV ar( bf) = bF 0kT b�T bFkT , with bFkT = �@f(b�T )@�0
;
@f(b�T )
@h

[PkT (�)0]
�0
:

It is easy to verify that for any sample size T , dV ar( bf) is numerically identical to kbv�T k2sd;T ; our
asymptotic variance estimator given in (5.6). The numerical equivalence in variance estimators

and point estimators (i.e., b
T ) implies that the corresponding test statistics are also numerically
identical. Hence, we can use standard statistical packages designed for (misspeci�ed) parametric

models to compute test statistics for semi-nonparametric models.
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6.2 Simulation

To examine the accuracy of our inference procedures in Section 5, we consider a partially linear

regression model in our simulation study:

Yt = X
0
1t�0 +

~h0( ~X2t) + ut; E[utjX1t; ~X2t] = 0, t = 1; : : : ; T;

where ~X2t and ut are scalar processes, X1t = (X1
1t; : : : ; X

d
1t)

0 is a d-dimensional vector process

with independent component Xj
1t for j = 1; : : : ; d. Let d = 4 and

Xj
1t = �X

j
1;t�1 +

p
1� �2"j1t; ~X2t =

�
X1
1t + : : :+X

d
1t

�
=
p
2d+ et=

p
2;

et = �et�1 +
p
1� �2"et; ut = �ut�1 +

p
1� �2"ut;

where ("11t; : : : ; "
d
1t; "et; "ut)

0 are iid N(0; Id+2). Here we have normalized X
j
1t;
~X2t; and ut to have

zero mean and unit variance. We take � 2 f0; 0:25; 0:5; 0:75g:

Without loss of generality, we set �0 = 0: We consider ~h0( ~X2t) = sin( ~X2t) and cos( ~X2t): Such

choices are qualitatively similar to that in Härdle, Liang and Gao (2000, pages 52 and 139) who

employ sin(� ~X2t). We focus on ~h0( ~X2t) = cos( ~X2t) below as it is harder to be approximated by

a linear function around the center of the distribution of ~X2t, but the qualitative results are the

same for ~h0( ~X2t) = sin( ~X2t):

To estimate the model using the method of sieves on the unit interval [0; 1], we �rst transform

~X2t into [0; 1]:

X2t =
1

1 + exp
�
� ~X2t

� or ~X2t = log� X2t
1�X2t

�
.

Then ~h0( ~X2t) = cos(log[X2t (1�X2t)�1]) � h0 (X2t) : Let PkT (x2) = [p1 (x2) ; : : : ; pkT (x2)]0 be a

kT � 1 vector, where fpj (�) : j � 1g is a set of basis functions on [0; 1] : We approximate h0 (X2t)

by PkT (X2t)
0 � for some � = (�1; : : : ; �kT )

0 2 RkT : Let Xt =
�
X 0
1t; PkT (X2t)

0� a 1 � (d + kT )
vector and X0 = (X01; :::;X

0
T ) a (d + kT ) � T matrix. Let Y = (Y1; : : : ; YT )

0, U = (u1; : : : ; uT )
0

and 
 = (�0; �0)0 : Then the sieve LS estimator of 
 is b
T = (X0X)�1X0Y: In our simulation

experiments, we use the AIC to select kT . The results obtained under the BIC are qualitatively

similar.

We employ our asymptotic theory to construct con�dence regions for �1:j = (�01; : : : ; �0j)
0.

Equivalently, we test the null of H0j : �1:j = 0 against the alternative H1j : at least one element of
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�1:j is not zero. Depending on the value of j; the number of joint hypotheses under consideration

ranges from 1 to d: Let R� (j) be the �rst j rows of the identity matrix Id+kT , then the sieve

estimator of �1:j = R� (j) 
 is b�1:j = R� (j) b
T ; (6.3)

and so
p
T
�b�1:j � �1:j� = T�1=2 TX

t=1

R� (j)
�
X0X=T

��1
X0tut + op (1) :

Let (bu1; : : : ; buT )0 = bU = Y �Xb
T ; b��t = R� (j) (X0X=T )�1X0tbut 2 Rj and
b
�M =

1

M

MX
m=1

 
T�1=2

TX
t=1

�m(
t

T
)b��t

! 
T�1=2

TX
t=1

�m(
t

T
)b��t

!0

be the OS-LRV estimator of the asymptotic variance 
 of
p
T
�b�1:j � �1:j� : Using the numerical

equivalence result in Subsection 6.1, we can construct the F-test version of the Wald statistic as:

F� (j) =
M � j + 1

M

�p
TR� (j) b
T�0 b
�1�M �pTR� (j) b
T� =j

where the multiplicative factor (M � j + 1) =M is a Bartlett correction (Sun, 2013). We refer

to the test using critical values from the �2j=j distribution as the chi-square test. We refer to

the test using critical value F�j;M�j+1 as the F test, where F�j;M�j+1 is the (1� �) quantile

of the F distribution Fj;M�j+1: Throughout the simulation, we use �2m�1(x) =
p
2 cos(2m�x),

�2m(x) =
p
2 sin(2m�x);m = 1; : : : ;M=2 as the orthonormal basis functions for the OS-LRV

estimation.

To perform either the chi-square test or the F test, we need to choose M: Here we choose M

to minimize the coverage probability error (CPE) of the con�dence region based on the chi-square

test. The CPE-optimal M is derived in Sun (2013) and is reproduced here

MCPE =
l
cT

2
3

m
for c =

0@j
���X �j + 2� j���
4 jtr (B
�1)j

1A
1
3

where B is the asymptotic bias of b
, X �j is the (1� �) quantile of �2j distribution, and d�e is the
ceiling function. The above formula was developed for �nite-dimensional parametric models. So

it is not theoretically optimal unless kT is �xed, which is not the case here. Nevertheless, we use

29



the above formula as an empirical rule to select M:We have also implemented the MSE-based M

and the simulation results are qualitatively similar.

The parameters B and 
 inMCPE are unknown but could be estimated by a standard plug-in

procedure as in Andrews (1991). We �t an approximating VAR(1) model to the vector processb��t and use the �tted model to estimate 
 and B:While the plug-in procedure is fairly standard
in the nonparametric literature, we note that the results in Section 5 are proved under a �xed

and deterministicM but the data-driven plug-inM is random. Under some regularity conditions,

we may show that the results remain valid for a random M , but it is beyond the scope of this

paper to work out the details. Alternatively, we can discretize the set of possible multiplicative

constants, replacing the estimated constant term with the closest value in some �nite set. When

the mesh of this set is small enough, discretization will not have a large impact on the selected

M: On the other hand, since the set is �nite, our results hold for this modi�ed data-driven choice

of M: In our simulation, we ignore the randomness of the data-driven M and apply the results in

Section 5 directly.

We are also interested in making inference on h0 (x) for a given x in the interior of the support

of X2t. For each such a x, let Rx = [01�d; PkT (x)
0]: Then the sieve estimator of h0 (x) isbh (x) = Rxb
T : We test H0 : h (x) = h0 (x) against H1 : h (x) 6= h0 (x) for x = [1 + exp (�~x2)]�1

and ~x2 = �2 : 0:1 : 2; an evenly-spaced sequence between �2 and 2 with increment 0.1. Since
~X2t is standard normal, this range of ~x2 largely covers the support of ~X2t: Like the estimator for

the parametric part in (6.3), the above nonparametric estimator is also a linear combination ofb
T : As a result, we can follow exactly the same testing procedure as described above. To be more
speci�c, we let b�xt = Rx�X0X

T

��1
X0tbut

and b
xM =
1

M

MX
m=1

 
1p
T

TX
t=1

�m(
t

T
)b�xt! 1p

T

TX
t=1

�m(
t

T
)b�xt!0 ;

which is the pre-asymptotic OS-LRV estimator of
p
T [Rxb
T � h0 (x)]. Then the test statistic is

Fx =
�p
T [Rxb
T � h0 (x)]�0 b
�1xM �pT [Rxb
T � h0 (x)]� : (6.4)

As in the inference for the parametric part, we select the smoothing parameter M based on

30



the CPE criterion. It is important to point out that the approximating model and hence the

data-driven smoothing parameter M are di¤erent for di¤erent hypotheses under consideration.

In Section 4, we have shown that, for evaluation functionals, the asymptotic variance does not

depend on the time series dependence. So from an asymptotic point of view, we could also use

b
�xM = T�1
TX
t=1

b�xt �b�xt�0
as the estimator for the asymptotic variance of

p
T [Rxb
T � h0 (x)] and construct the F �x statistic

accordingly. Here F �x is the same as Fx given in (6.4) but with b
xM replaced by b
�xM :
For the nonparametric part, we have three di¤erent inference procedures. The �rst two are

both based on the Fx statistic with pre-asymptotic variance estimator, except that one uses �21

approximation and the other uses F1;M approximation. The third one is based on the F �x statistic

and uses the �21 approximation. For ease of reference, we call the �rst two tests the pre-asymptotic

�2 test and the pre-asymptotic F test, respectively. We call the test based on F �x and the �
2
1

approximation the asymptotic �2 test.

Table 6.1 gives the empirical null rejection probabilities for testing �1:j = 0 for j = 1; 2; 3; 4

for � � 0. The number of simulation replications is 10,000. We consider two types of sieve basis

functions to approximate h(�): the sine/cosine bases and the cubic spline bases with evenly spaced

knots. The nominal rejection probability is � = 5%. Several patterns emerge from the table. First,

the F test has a more accurate size than the chi-square test. This is especially true when the

processes are persistent and the number of joint hypotheses being tested is large. Second, the

size properties of the tests are not sensitive to the di¤erent sieve basis functions used for h(�).

Finally, as the sample size increases, the size distortion of both the F test and the chi-square test

decreases. It is encouraging that the size advantage of the F test remains even when T = 400.

Figures 6.1�6.4 present the empirical rejection probabilities for testing H0 : h (x) = h0 (x)

against H0 : h (x) 6= h0 (x) for x = [1 + exp (�~x2)]�1 and ~x2 = �2 : 0:1 : 2: It is clear that

the asymptotic �2 test that ignores the time series dependence has a large size distortion when

the process is persistent. This is true for both sample sizes T = 200 and T = 400 and for both

sieve bases considered. Compared to the pre-asymptotic �2 test, the pre-asymptotic F test has

more accurate size when the selected M value is small in an average sense. Figures not reported

here show that the selected M value increases with the sieve number of terms kT and decreases
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with the persistence of the underlying time series. So the advantage of the pre-asymptotic F test

is more visible when the sample size is smaller (and hence smaller kT ) and the time series are

more persistent. This, combined with the evidence for parametric inference, suggests that the

pre-asymptotic F test is preferred for both parametric and nonparametric inference in practical

situations.

In Figures 6.1�6.4, the average of the number of sieve basis terms (kT ) selected by the AIC is

between 5 and 6. This is true for both sample sizes, both types of sieve bases, and all � values

considered. So for this particular DGP there is no large variation in the models selected by the

AIC, which makes sense since the true unknown function h0() is very smooth. To examine the

e¤ects of the sieve number of terms kT on the performances of the tests, we consider setting kT to

a few di¤erent values a priori. Figures 6.5 and 6.6 report the empirical rejection probabilities for

the cosine & sine bases and for kT = 11 and 31 respectively. The sample size is T = 400: These

two �gures are representative of other �gures not reported here. As kT increases, all three tests

we consider have similar size properties. For each given �, the selected M̂ increases with kT : This

is consistent with our asymptotic theory � the larger kT is, the weaker the dependence is, and

the larger M̂ is. When kT is large enough, as in Figure 6.6, the asymptotic variance estimator

will be very close to the pre-asymptotic variance estimator. As a result, the pre-asymptotic �2

statistic will be very close to the asymptotic �2 statistic. The F approximation will also be close

to the �2 approximation, as the selected M values tend to be large. While we consider a kT that

is as large as 31 for the sample size 400 in the simulation, this is not what we recommend in

practice, as using large kT typically blows up variance fast and has an adverse e¤ect on the power

of the test. In practice we recommend to use AIC or small sample corrected AIC to select kT in

semiparametric time series models.
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Table 6.1: Empirical Null Rejection Probabilities for the 5% F test and Chi-square Test with j
joint hypotheses

j = 1 j = 2 j = 3 j = 4
F �2 F �2 F �2 F �2

T = 200, Cosine and Sine Basis
� = 0 0:062 0:071 0:066 0:072 0:065 0:083 0:067 0:129
� = 0:25 0:064 0:078 0:070 0:091 0:068 0:110 0:062 0:181
� = 0:50 0:065 0:087 0:072 0:099 0:065 0:133 0:008 0:214
� = 0:75 0:062 0:092 0:071 0:104 0:063 0:150 0:063 0:254

T = 200, Cubic Spline Basis
� = 0 0:061 0:069 0:061 0:071 0:064 0:081 0:066 0:124
� = 0:25 0:061 0:074 0:068 0:084 0:066 0:108 0:061 0:170
� = 0:50 0:061 0:083 0:066 0:094 0:063 0:124 0:009 0:208
� = 0:75 0:062 0:086 0:069 0:098 0:058 0:143 0:058 0:243

T = 400, Cosine and Sine Basis
� = 0 0:053 0:058 0:057 0:061 0:057 0:072 0:063 0:093
� = 0:25 0:057 0:062 0:057 0:071 0:060 0:082 0:067 0:120
� = 0:50 0:055 0:063 0:061 0:075 0:062 0:094 0:055 0:142
� = 0:75 0:059 0:065 0:064 0:081 0:059 0:103 0:056 0:164

T = 400, Cubic Spline Basis
� = 0 0:053 0:057 0:055 0:057 0:055 0:068 0:060 0:090
� = 0:25 0:053 0:058 0:054 0:065 0:058 0:080 0:065 0:113
� = 0:50 0:056 0:062 0:061 0:074 0:059 0:093 0:049 0:137
� = 0:75 0:058 0:062 0:063 0:080 0:059 0:101 0:052 0:155
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Figure 6.1: Empirical Rejection Probabilities for 5% Tests Against the Value of X2t with Cosine
& Sine Bases and T = 200
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Figure 6.2: Empirical Rejection Probabilities for 5% Tests Against the Value of X2t with Cosine
& Sine Bases and T = 400
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Figure 6.3: Empirical Rejection Probabilities for 5% Tests Against the Value of X2t with Cubic
Spline Bases and T = 200
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Figure 6.4: Empirical Rejection Probabilities for 5% Tests Against the Value of X2t with Cubic
Spline Bases and T = 400
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Figure 6.5: Empirical Rejection Probabilities for 5% Tests Against the Value of X2t with Cosine
& Sine Bases, T = 400; and kT = 11:
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Figure 6.6: Empirical Rejection Probabilities for 5% Tests Against the Value of X2t with Cosine
& Sine Bases, T = 400; and kT = 31
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7 Conclusion

In this paper, we develop a uni�ed framework for establishing the asymptotic normality of sieve

M estimators of possibly irregular functionals. Our theory reproduces previous results for regular

functionals, and produces many new results for irregular functionals. This includes a surprising

result that weak dependence may not a¤ect the asymptotic variances of sieve M estimators of many

irregular functionals including evaluation functionals and some weighted integration functionals

(see Appendix A). Using the �pre-asymptotic� scaled test statistics, we provide an accurate,

autocorrelation robust inference procedure for sieve M estimators of both regular and irregular

functionals. Our inference procedure is very easy to implement, as it is based on the standard F

approximation or t approximation.

Although the paper focuses on the sieve M estimators of semi-nonparametric time series mod-

els, our results can be generalized to other sieve extremum estimators. There are two di¤erent

types of smoothing parameters in our procedure. One is the number of terms in the sieve approx-

imation of the unknown function. The other is the number of orthonormal bases for asymptotic

variance estimation. In our simulation study, we use the AIC to select the former �rst and then

use the CPE criterion to select the latter, which is not completely satisfactory. For inference on

functionals of possibly misspeci�ed semi-nonparametric time series models, it will be useful to

develop some �optimal�procedure(s) to select the two types of smoothing parameters jointly. We

leave this for future research.

Appendix

A LRV of Sieve Estimators of Irregular Functionals of Purely Nonparametric

Models

In this section, we provide additional low-level su¢ cient conditions for Assumptions 4.1.(i), 4.3.(ii)

and 4.4.(ii) for purely nonparametric models where the true unknown parameter is a real-valued

function h0 (�) that solves suph2HE[`(Zt; h(Xt))]. This includes as a special case the nonpara-
metric conditional mean model: Yt = h0(Xt) + ut with E[utjXt] = 0. Our results can be easily

generalized to more general settings with only some notational changes.

Let �0 = h0 (�) 2 H and let f(�) : H ! R be any functional of interest. By the results in

Subsection 3.3, f(h0) has its sieve Riesz representer given by:

v�T (�) = PkT (�)0��T 2 VT with ��T = R
�1
kT

@f(h0)

@h
[PkT (�)];
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where RkT is such that

�0RkT � = E
�
�r (Zt; h0) [�0PkT ; P 0kT �]

�
= �0E

�
�er (Zt; h0 (Xt))PkT (Xt)PkT (Xt)0	�

for all � 2 RkT . Also, the score process can be expressed as

�(Zt; h0)[v
�
T ] =

e�(Zt; h0 (Xt))v�T (Xt) = e�(Zt; h0 (Xt))PkT (Xt)0��T :
Here the notations e�(Zt; h0 (Xt)) and er (Zt; h0 (Xt)) indicate the standard �rst-order and second-
order derivatives of `(Zt; h(Xt)) instead of functional pathwise derivatives (for example, we have

�er (Zt; h0 (Xt)) = 1 and e�(Zt; h0 (Xt)) = [Yt � h0(Xt)] in the nonparametric conditional mean
model). Thus,

kv�T k
2 = E

�
E[�er (Z; h0 (X)) jX](v�T (X))2	 = ��0T RkT ��T = @f(h0)

@h
[PkT (�)0]R

�1
kT

@f(h0)

@h
[PkT (�)];

V ar (�(Z; h0)[v
�
T ]) = E

n
E([e�(Z; h0 (X))]2jX)(v�T (X))2o :

It is then obvious that Assumption 4.1.(i) is implied by the following condition.

Assumption A.1 (i) infx2X E[�er (Z; h0 (X)) jX = x] � c1 > 0; (ii) supx2X E[�er (Z; h0 (X)) jX =

x] � c2 < 1; (iii) the smallest and largest eigenvalues of E fPkT (X)PkT (X)0g are bounded and
bounded away from zero uniformly for all kT , and limkT jj

@f(h0)
@h [PkT (�)]jj2E = 1;

(iv) infx2X E([e�(Z; h0 (X))]2jX = x) � c3 > 0.

It is easy to see that Assumptions 4.3.(ii) and 4.4.(ii) are implied by the following assumption.

Assumption A.2 (i) E fjv�T (X)jg = O(1); (ii) supx2X E
���� e�(Z; h0 (X))���2+� jX = x

�
� c4 <1;

(iii)
�
Efjv�T (X)j

2g
��(2+�)(
+1)=2

Efjv�T (X)j
2+�g = o(1).

It actually su¢ ces to use ess-infx (or ess-supx) instead of infx (or supx) in Assumptions A.1

and A.2. We immediately obtain the following two results.

Corollary A.1 Let Assumptions 4.3.(i), 4.4.(i), A.1 and A.2 hold. Then:

T�1X
t=1

j��T (t)j = o(1) and

����� kv�T k
2
sd

V ar
�
�(Z;�0)[v�T ]

� � 1����� = o (1) .
Remark A.2 Assumptions A.1 and A.2.(ii) imply that

V ar (�(Z;�0)[v
�
T ]) � E

�
(v�T (X))

2
	
� kv�T k

2 � jj��T jj2E � jj
@f(h0)

@h
[PkT (�)]jj2E !1;

hence Assumption A.2.(iii) is satis�ed if EfjPkT (X)0��T j
2+�g=jj��T jj

(2+�)(
+1)
E = o(1).
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Assumptions 4.3.(i), 4.4.(i), A.1 and A.2.(ii) are all very standard low level su¢ cient conditions.

In the following, we illustrate that Assumptions A.2.(i) and (iii) are easily satis�ed by two typical

functionals: the evaluation and the weighted integration functionals.

Evaluation functionals. For f(h0) = h0(x) with x 2 X , we have v�T (�) = PkT (�)0��T =

PkT (�)0R
�1
kT
PkT (x). Then kv�T k

2 = P 0kT (x)R
�1
kT
PkT (x) = v�T (x), and kv�T k

2 � jjPkT (x)jj2E ! 1
under Assumption A.1.(i)(ii)(iii). Further, we have, for any vT 2 VT :

vT (�x) = E fE[�er (Z; h0 (X)) jX]vT (X)v�T (X)g � Z
x2X

vT (x) �T (�x; x) dx; (A.1)

where

�T (�x; x) = E[�er (Z; h0 (X)) jX = x]v�T (x) fX (x) (A.2)

= E[�er (Z; h0 (X)) jX = x]P 0kT (x)R
�1
kT
PkT (x)fX (x) :

By equation (A.1) �T (�x; x) has the reproducing property on VT , so it behaves like the Dirac delta
function � (x� �x) on VT : Therefore v�T (x) concentrates in a neighborhood around x = �x and

maintains the same positive sign in this neighborhood.

We �rst verify Assumption A.2.(i). By equation (A.2), we haveZ
x2X

jv�T (x)j fX (x) dx =
Z
x2X

sign (v�T (x))

E[�er (Z; h0 (X)) jX = x]
�T (�x; x) dx �

Z
x2X

bT (x)�T (�x; x) dx;

where sign(v�T (x)) = 1 if v
�
T (x) > 0 and sign(v

�
T (x)) = �1 if v�T (x) � 0; and supx2X jbT (x)j �

c�11 <1 under Assumption A.1.(i). If bT (x) 2 VT ; then by equation (A.1) we have:Z
x2X

jv�T (x)j fX (x) dx = bT (�x) =
sign (v�T (�x))

E[�er (Z; h0 (X)) jX = �x]
� c�11 = O (1) :

If bT (x) =2 VT but can be approximated by a bounded function ~vT (x) 2 VT such thatZ
x2X

[bT (x)� ~vT (x)] �T (�x; x) dx = o(1);

then, also using equation (A.1), we obtain:Z
x2X

jv�T (x)j fX (x) dx =
Z
x2X

~vT (x) �T (�x; x) dx+

Z
x2X

[bT (x)� ~vT (x)] �T (�x; x) dx

= ~vT (�x) + o(1) = O (1) :

Thus Assumption A.2.(i) is satis�ed.

Similarly we can show that under mild conditions:

E
n
jv�T (X)j

2+�
o
� jv�T (�x)j

1+�

E[�er (Z; h0 (X)) jX = �x]
(1 + o (1)) = O

�
jv�T (�x)j

1+�
�
:
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On the other hand,

E
n
jv�T (X)j

2
o
=

Z
x2X

jv�T (x)j
2 fX (x) dx =

Z
x2X

v�T (x)

E[�er (Z; h0 (X)) jX = x]
�T (�x; x) dx � v�T (�x):

Therefore�
E
n
jv�T (X)j

2
o��(2+�)(
+1)=2

E
n
jv�T (X)j

2+�
o
� jv�T (�x)j

1+��(2+�)(
+1)=2 = o(1)

if 1+ �� (2+ �)(
+1)=2 < 0; which is equivalent to 
 > �=(2+ �): That is, when 
 > �=(2+ �);
Assumption A.2.(iii) is satis�ed.

Weighted integration functionals. For f(h0) =
R
X w(x)h0(x)dx, we have v

�
T (�) = PkT (�)0��T =

PkT (�)0R
�1
kT

R
X w(x)PkT (x)dx. Then kv�T k

2 � jj
R
X w(x)PkT (x)dxjj

2
E ! 1 under Assumption

A.1.(i)-(iii). Further, we have, for any vT 2 VT :Z
X
w(a)vT (a) da = E fE[�er (Z; h0 (X)) jX]vT (X)v�T (X)g

�
Z
x2X

vT (x) f
Z
X
w(a)�T (a; x) dagdx; where

�T (a; x) = E[�er (Z; h0 (X)) jX = x]P 0kT (a)R
�1
kT
PkT (x)fX (x) :

Note that Z
x2X

jv�T (x)j fX (x) dx =
Z
a2X

Z
x2X

b(a; x)�T (a; x) dadx; where

b(a; x) � w (a) sign fw(a)�T (a; x)g
E[�er (Z; h0 (X)) jX = x]

:

Then Assumption A.2.(i) can be veri�ed in a similar way as that for the evaluation functional.

Since jj
R
x2X w (x)PkT (x) dxjjE !1 we have

EfjPkT (X)0��T j
2+�g

jj��T jj
(2+�)(
+1)
E

�
E
�
kPkT (X)k

2+�
E

�
k��T k

2+�
E

jj��T jj
(2+�)(
+1)
E

= O

24 E
�
kPkT (X)k

2+�
E

�


R
x2X w (x)PkT (x) dx



(2+�)

E

35 = o(1)
for su¢ ciently large 
 > 1, where the minimum value of 
 may depend on the weighting

function w (x) : If supx2X kPkT (x)k
2
E = O (kT ) ; which holds for many basis functions, and

jj
R
x2X w (x)PkT (x) dxjj

2
E � kT ; then EfjPkT (X)0��T j

2+�g=jj��T jj
(2+�)(
+1)
E = o(1) for any 
 > 1: It

follows from Remark A.2 that Assumption A.2.(iii) is satis�ed.

B Proofs of the Main Results

Proof of Theorem 3.1. For any � 2 BT , denote ��u = � � "Tu�T as a local alternative of � for
some "T = o(T�

1
2 ). It is clear that if � 2 BT , then ��u 2 BT . Since b�T 2 BT with probability

40



approaching one (wpa1), we have that b��u;T = b�T � "Tu�T 2 BT wpa1. By the de�nition of b�T , we
have

�Op("2T ) �
1

T

TX
t=1

`(Zt; b�T )� 1

T

TX
t=1

`(Zt; b��u;T )
= E[`(Zt; b�T )� `(Zt; b��u;T )] + �T ��(Z;�0) �b�T � b��u;T �	
+ �T

�
`(Z; b�T )� `(Z; b��u;T )��(Z;�0) �b�T � b��u;T �	

= E[`(Zt; b�T )� `(Zt; b��u;T )]� �T f�(Z;�0)["Tu�T ]g+Op("2T ) (B.1)

by Assumption 3.3.(i)(ii). Next, by Assumptions 3.2 and 3.3.(iii) we have:

E[`(Zt; b�T )� `(Zt; b��u;T )]
=
jjb�T � "Tu�T � �0jj2 � jjb�T � �0jj2

2
+Op("

2
T )

= �"T hb�T � �0; u�T i+Op("2T ):
Combining these with the de�nition of b��u;T and the inequality in (B.1), we deduce that

�Op("2T ) � �"T hb�T � �0; u�T i � "T�T f�(Z;�0)[u�T ]g+Op("2T );
which further implies that

hb�T � �0; u�T i � �T f�(Z;�0)[u�T ]g = Op("T ) = op �T�1=2� : (B.2)

By de�nition of �0;T , we have h�0;T � �0; vi = 0 for any v 2 VT . Thus h�0;T � �0; u�T i = 0, and���pT hb�T � �0;T ; u�T i � pT�T f�(Z;�0) [u�T ]g��� = op(1): (B.3)

By Assumptions 3.1.(i) and 3.2, and the Riesz representation theorem,

f(b�T )� f(�0;T )

v�T

sd
=
f(b�T )� f(�0)� @f(�0)

@� [b�T � �0]

v�T

sd �
f(�0;T )� f(�0)� @f(�0)

@� [�0;T � �0]

v�T

sd
+

@f(�0)
@� [b�T � �0]� @f(�0)

@� [�0;T � �0]

v�T

sd
= hb�T � �0;T ; u�T i+ op �T�1=2� : (B.4)

It follows from (B.3) and (B.4) that�����pT f(b�T )� f(�0;T )

v�T

sd �
p
T�T f�(Z;�0) [u�T ]g

����� = op(1); (B.5)
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which establishes the �rst result of the theorem. The second result follows immediately from (B.5)

and Assumption 3.4.

Proof of Theorem 4.1. By Assumption 4.1.(i), we have: 0 < V ar (�(Z;�0)[v
�
T ]) ! 1. By

equation (4.1) and de�nition of ��T (t), we have:

jjv�T jj2sd
V ar

�
�(Z;�0)[v�T ]

� � 1 = 2[J1;T + J2;T ]; where

J1;T =

dTX
t=1

�
1� t

T

�
E f�(Z1; �0)[v�T ]�(Zt+1; �0)[v�T ]g
V arf�(Z;�0)[v�T ]g

and

J2;T =
T�1X

t=dT+1

�
1� t

T

�
��T (t).

By Assumption 4.1.(ii)(a), we have:

jJ1;T j �
dTCT

V arf�(Z;�0)[v�T ]g
= o(1): (B.6)

Assumption 4.1.(ii)(b) immediately gives jJ2;T j = o(1). Thus����� jjv�T jj2sd
V ar

�
�(Z;�0)[v�T ]

� � 1����� � 2[jJ1;T j+ jJ2;T j] = o(1); (B.7)

which establishes the �rst claim. This, Assumption 4.1.(i) and Theorem 3.1 together imply the

asymptotic normality result in (4.3).

Proof of Proposition 4.2. For Assumption 4.1.(i), we note that Assumption 4.2.(i) implies

kv�T k ! 1 by Remark 3.2. Also under Assumption 4.2, we have:

kv�T k
2

V ar
�
�(Z;�0)[v�T ]

	 = 
�0T RkT 

�
T


�0T E [SkT (Z)SkT (Z)
0] 
�T

� �max (RkT )

�min (E [SkT (Z)SkT (Z)
0])
= O(1);

where �max (A) and �min (A) denote the largest and the smallest eigenvalues of a matrix A.

Hence kv�T k
2 =V ar f�(Z; h0)[v�T ]g = O(1). For Assumption 4.1.(ii)(a), we have, under Assumption

4.3.(i),

jE f�(Z1; �0)[v�T ]�(Zt; �0)[v�T ]gj

=

����Z
z12Z

Z
zt2Z

�(z1; �0) [v
�
T ]�(zt; �0) [v

�
T ]
fZ1;Zt (z1; zt)

fZ (z1) fZ (zt)
fZ (z1) fZ (zt) dz1dzt

����
� C

�Z
z12Z

j�(z1; �0) [v�T ]j fZ (z1) dz1
�2
= C k�(Z;�0)[v�T ]k

2
1 ;
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which implies that CT � C k�(Z;�0)[v�T ]k
2
1. This and Assumption 4.3.(ii) imply the existence of

a growing dT !1 such that dTCT = k�(Z;�0)[v�T ]k
2
2 ! 0, thus Assumption 4.1.(ii)(a) is satis�ed.

Under Assumption 4.4.(ii), we could further choose dT !1 to satisfy

k�(Z;�0)[v�T ]k
2
1 � dT

�(Z;�0)[v�T ]

22 = o (1) and d
T �

k�(Z;�0)[v�T ]k
2
2+�

�(Z;�0)[v�T ]

22 !1 for some 
 > 0:

It remains to verify that such a choice of dT and Assumption 4.4.(i) together imply Assumption

4.1.(ii)(b). Under Assumption 4.4.(i), fZtg is a strictly stationary and strong-mixing process,
f�(Zt; �0)[v�T ] : t � 1g forms a triangular array of strong-mixing processes with the same decay
rate. We can then apply Davydov�s Lemma (Hall and Heyde 1980, Corollary A2) and obtain:

jE f�(Z1; �0)[v�T ]�(Zt+1; �0)[v�T ]gj � 8[�(t)]
�

2+� k�(Z;�0)[v�T ]k
2
2+� :

Then:
T�1X
t=dT

�����E f�(Z1; �0)[v�T ]�(Zt+1; �0)[v�T ]g

�(Z;�0)[v�T ]

22
�����

� 8
k�(Z;�0)[v�T ]k

2
2+�

�(Z;�0)[v�T ]

22 d�
T

T�1X
t=dT

t
 [�(t)]
�

2+� = o(1)

provided that

k�(Z;�0)[v�T ]k
2
2+�

�(Z;�0)[v�T ]

22 d�
T = O(1) and

1X
t=1

t
 [�(t)]
�

2+� <1 for some 
 > 0,

which veri�es Assumption 4.1.(ii)(b). Actually, we have established the stronger result:
PT�1
t=1 j��T (t)j =

o(1):

Proof of Lemma 5.1. First, using Assumptions 5.1.(i)-(ii) and the triangle inequality, we have

sup
�2BT

sup
v1;v22VT

���T�1PT
t=1 r(Zt; �)[v1; v2]� E fr(Zt; �0)[v1; v2]g

���
kv1k kv2k

� sup
�2BT

sup
v1;v22WT

�����T�1
TX
t=1

r(Zt; �)[v1; v2]� E fr(Zt; �)[v1; v2]g
�����

+ sup
�2BT

sup
v1;v22WT

jE fr(Z;�)[v1; v2]� r(Z;�0)[v1; v2]gj = Op(��T ): (B.8)

Let � = b�T , v1 = bv�T and v2 = v. Then it follows from (B.8), the de�nitions of h�; �i and h�; �iT
that ���T�1PT

t=1 r(Zt; b�T )[bv�T ; v]� E fr(Zt; �0)[bv�T ; v]g���

bv�T

 kvk =

�����hbv�T ; viT � hbv�T ; vi

bv�T

 kvk
����� = Op(��T ): (B.9)
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Combining this result with Assumption 5.1.(iii) and using

@f(b�T )
@�

[v] = hbv�T ; viT and @f(�0)@�
[v] = hv�T ; vi;

we can deduce that

Op(�
�
T ) = sup

v2VT

�����
@f(b�T )
@� [v]� @f(�0)

@� [v]

kvk

����� = sup
v2VT

�����hbv�T ; viT � hbv�T ; vi

bv�T

 kvk kbv�T k+ hbv�T � v�T ; vikvk

�����
= sup
v2VT

����hbv�T � v�T ; vikvk

����+Op(��T kbv�T k): (B.10)

This implies that

sup
v2VT

����hbv�T � v�T ; vikvk

���� = Op(��T kbv�T k): (B.11)

Letting v = bv�T � v�T in (B.11), we get
jjbv�T � v�T jj

v�T

 = Op

 
��T
jjbv�T jj

v�T



!
: (B.12)

It follows from this result that����� kbv�T k

v�T

 � 1
����� �






 bv�T

v�T

 � v�T

v�T







 = jjbv�T � v�T jj

v�T

 = Op

 
��T
jjbv�T jj

v�T



!

= Op

 
��T

����� jjbv�T jj

v�T

 � 1
�����
!
+Op (�

�
T ) (B.13)

from which we deduce that ����� jjbv�T jj

v�T

 � 1
����� = Op(��T ): (B.14)

Combining the results in (B.12), (B.13), and (B.14), we get jjbv�T�v�T jjkv�Tk
= Op(�

�
T ) as desired.

Proof of Theorem 5.1. Part (i) For m = 1; 2; : : : ;M; we write b�m as
b�m = 1p

T

TX
t=1

�m(
t

T
) f�(Zt; b�T )[bv�T ]� E(�(Zt; b�T )[bv�T ])��(Zt; �0)[bv�T ] + E(�(Zt; �0)[bv�T ])g

+
1p
T

TX
t=1

�m(
t

T
) fE(�(Zt; b�T )[bv�T ])� E(�(Zt; �0)[bv�T ])� E(r(Zt; �0) [bv�T ; b�T � �0])g

+
1p
T

TX
t=1

�m(
t

T
)E(r(Zt; �0) [bv�T ; b�T � �0]) + 1p

T

TX
t=1

�m(
t

T
)�(Zt; �0)[bv�T ]

� Îm;1 + Îm;2 + Îm;3 + Îm;4:
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Using Assumption 5.2.(i)-(ii), we have Îm;1 = op (kbv�T k) and Îm;2 = Op �pT��T �T kbv�T k�. So
b�m = 1p

T

TX
t=1

�m(
t

T
)�(Zt; �0)[v

�
T ] +

1p
T

TX
t=1

�m(
t

T
)�(Zt; �0)[bv�T � v�T ]

�
"
1

T

TX
t=1

�m(
t

T
)

# hp
T hv�T ; b�T � �0i+pT hbv�T � v�T ; b�T � �0ii

+ op (kbv�T k) +Op �pT��T �T kbv�T k� : (B.15)

Under Assumptions 3.2 and 3.3, we can invoke equation (B.2) in the proof of Theorem 3.1 to

deduce that

p
T kv�T k

�1
sd hv

�
T ; b�T � �0i = 1p

T
kv�T k

�1
sd

TX
t=1

�(Zt; �0)[v
�
T ] + op(1): (B.16)

Using Lemma 5.1 and the Hölder inequality, we get���pT hbv�T � v�T ; b�T � �0i��� � pT kbv�T � v�T k kb�T � �0k = Op(pT kv�T k ��T �T ): (B.17)

Next, by Assumption 5.2.(iii) and Lemma 5.1,����� 1pT
TX
t=1

�m(
t

T
)�(Zt; �0)[bv�T � v�T ]

�����
� kbv�T � v�T k sup

v2WT

����� 1pT
TX
t=1

�m(
t

T
)�(Zt; �0)[v]

����� = Op(kv�T k ��T ): (B.18)

Now, using Lemma 5.1, (B.15)-(B.18), Assumption 3.2 (kv�T k = O
�
kv�T ksd

�
), Assumption 5.2.(iv)

and
p
T��T �T = o(1), we can deduce that

kv�T k
�1
sd
b�m

=
1p
T
kv�T k

�1
sd

TX
t=1

"
�m

�
t

T

�
� 1

T

TX
t=1

�m

�
t

T

�#
�(Zt; �0)[v

�
T ] + op(1)

as
1p
T

TX
t=1

"
�m

�
t

T

�
� 1

T

TX
s=1

�m

� s
T

�#
et � �m (B.19)

Since f�m (�) ;m = 0; 1; : : : ;Mg is a set of orthonormal functions and �0 (�) = 1, we have �m
as

iid N(0; 1) for m = 1; : : : ;M , and hence kv�T k
�1
sd
b�m as iid N(0; 1) for m = 1; : : : ;M .

Part (ii) It follows from part (i) that

kv�T k
�1
sd kbv�T k2sd;T kv�T k�1sd = 1

M

MX
m=1

�
kv�T k

�1
sd
b�m�2 as

1

M

MX
m=1

�2m: (B.20)
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which, combined with Theorem 3.1, further implies that

tT =

p
T [f(b�T )� f(�0)]

v�T

sd

,
kbv�T ksd;T

v�T

sd

=

p
T [f(b�T )� f(�0)]

v�T

sd

,vuutM�1
MX
m=1

�

v�T

�1sd b�m�2
as

�0q
M�1PM

m=1 �
2
m

: (B.21)

where �0 = T�1=2
PT
t=1 et: Since both �0 and �m are approximately standard normal and

cov (�0; �m) = T
�1

TX
t=1

�m (t=T ) = o (1) ;

�0 is asymptotically independent of �m for m = 1; : : : ;M . This implies that tT
as t (M).

Proof of Theorem 5.2. Using similar arguments as in proving Theorem 5.1, we can show that

kv�T k
�1
sd
b�m as T�1=2

TX
t=1

"
�m (t=T )� T�1

TX
s=1

�m (s=T )

#
et � �m (B.22)

and �m
as iid N(0; Iq). It then follows that

kv�T k
�1
sd kbv�T k2sd;T �kv�T k�1sd �0 asM�1

MX
m=1

�m�
0
m: (B.23)

Using the results in (5.8) and (B.23), we have

FT = T [f(b�T )� f(�0)]0 kbv�T k�2sd;T [f(b�T )� f(�0)] =q
as

 
T�1=2

TX
t=1

et

!0(
M�1

MX
m=1

�m�
0
m

)�1 
T�1=2

TX
t=1

et

!
=q

= � 00

(
M�1

MX
m=1

�m�
0
m

)�1
�0; (B.24)

where �0 � T�1=2
PT
t=1 et: Since �m (�) ; m = 1; 2; : : : ;M are orthonormal and integrate to zero,

we have

FT
as �0

 
M�1

MX
m=1

�m�
0
m

!�1
�0

where �m s iid N (0; Iq) for m = 0; : : : ;M: This is exactly the same distribution as Hotelling

(1931)�s T 2 distribution. Using the well-known relationship between the T 2 distribution and F

distribution, we have [(M � q + 1) =M ]FT
as Fq;M�q+1 as desired.
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