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Abstract

This paper proposes a nonparametric test for conditional independence that is easy to
implement, yet powerful in the sense that it is consistent and achieves n�1=2 local power.
The test statistic is based on an estimator of the topological �distance� between restricted
and unrestricted probability measures corresponding to conditional independence or its ab-
sence. The distance is evaluated using a family of Generically Comprehensively Revealing
(GCR) functions, such as the exponential or logistic functions, which are indexed by nuisance
parameters. The use of GCR functions makes the test able to detect any deviation from
the null. We use a kernel smoothing method when estimating the distance. An integrated
conditional moment (ICM) test statistic based on these estimates is obtained by integrating
out the nuisance parameters. We simulate the critical values using a conditional simulation
approach. Monte Carlo experiments show that the test performs well in �nite samples. As an
application, we test an implication of the key assumption of unconfoundedness in the context
of estimating the returns to schooling.
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1 Introduction

In this paper, we propose a �exible nonparametric test for conditional independence. Let X; Y;
and Z be three random vectors. The null hypothesis we want to test is that Y is independent of
X given Z, denoted by

Y ? X j Z:

Intuitively, this means that given the information in Z, X cannot provide additional information
useful in predicting Y . Dawid (1979) showed that some simple heuristic properties of conditional
independence can form a conceptual framework for many important topics in statistical inference:
su¢ ciency and ancillarity, parameter identi�cation, causal inference, prediction su¢ ciency, data
selection mechanisms, invariant statistical models, and a subjectivist approach to model-building.

An important application of conditional independence testing in economics is to test a key
assumption identifying causal e¤ects. Suppose we are interested in estimating the e¤ect of X
(e.g., schooling) on Y (e.g., income), and that X and Y are related by the equation

Y = �0 + �1X + U;

where U (e.g., ability) is an unobserved cause of Y (income) and �0 and �1 are unknown coef-
�cients, with �1 representing the e¤ect of X on Y . (We write a linear structural equation here
merely for concreteness.) Since X is typically not randomly assigned and is correlated with U
(e.g., unobserved ability will a¤ect both schooling and income), OLS will generally fail to consis-
tently estimate �1. Nevertheless, if, as in Griliches and Mason (1972) and Griliches (1977), we
can �nd a set of covariates Z (e.g., proxies for ability, such as AFQT scores) such that

U ? X j Z; (1)

we can estimate �1 consistently by various methods: covariate adjustment, matching, methods
using the propensity score such as weighting and blocking, or combinations of these approaches.

The assumption in (1) is a key assumption for identifying �1. It is called a conditional exogene-
ity assumption by White and Chalak (2008). It enforces the �ignorability�or �unconfoundedness�
condition, also known as �selection on observables�(Barnow, Cain, and Goldberger, 1981).

Note that the conditional independence assumption in (1) cannot be directly tested since U
is unobservable. But if there are other observable covariates V satisfying certain conditions (see
White and Chalak, 2010), we have

U ? X j Z implies V ? X j Z;

so we can test the assumption in (1) by testing its implication, V ? X j Z: Section 6 of this paper
applies this test in the context of a nonparametric study of returns to schooling.

In the literature, there are many tests for conditional independence when the variables are
categorical. However, in economic applications it is common to condition on continuous variables,
and there are only a few nonparametric tests for the continuous case. Previous work on testing
conditional independence for continuous random variables includes Linton and Gozalo (1997,
�LG�), Fernandes and Flores (1999, �FF�), and Delgado and Gonzalez-Manteiga (2001, �DG�).
Su and White have several papers (2003, 2007, 2008, 2010, �SW�) addressing this question.
Although SW�s tests are consistent against any deviation from the null, they are only able to
detect local alternatives converging to the null at a rate slower than n�1=2 and hence su¤er from
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the �curse of dimensionality.�We will compare our test with the LG, DG and SW tests in our
simulation study.

Recently, Song (2009) has proposed a distribution-free conditional independence test of two
continuous random variables given a parametric single index that achieves the local n�1=2 rate.
Speci�cally, Song (2009) tests the hypothesis

Y ? X j �� (Z) ;

where �� (�) is a scalar-valued function known up to a �nite-dimensional parameter �, which must
be estimated.

A main contribution here is that our proposed test also achieves n�1=2 local power, despite its
fully nonparametric nature. In contrast to Song (2009), the conditioning variables can be multi-
dimensional. The test is motivated by a series of papers on consistent speci�cation testing by
Bierens (1982, 1990), Bierens and Ploberger (1997), and Stinchcombe and White (1998, �StW�),
among others. Whereas Bierens (1982, 1990) and Bierens and Ploberger (1997) construct the
integrated conditional moment (ICM) tests that essentially compare a restricted parametric model
with an unrestricted regression model, the test in this paper follows a suggestion of StW, which is
based on the estimates of the topological distance between unrestricted and restricted probability
measures, corresponding to conditional independence or its absence.

This distance is measured indirectly by a family of moments, which are the di¤erences of the
expectations under the null and under the alternative for a set of test functions. The chosen
test functions make use of Generically Comprehensively Revealing (GCR) functions, such as the
logistic or normal cumulative distribution functions (CDFs), and are indexed by a continuous
nuisance parameter vector 
. Under the null, all moments are zeroes. Under the alternative, the
moments are nonzero for essentially all choices of 
. This is in contrast with DG (2001), which
employs an indicator testing function that is not generically and comprehensively revealing.

We estimate these moments by their sample analogs, using kernel smoothing. An ICM test
statistic based on these is obtained by integrating out the nuisance parameters. Its limiting null
distribution is a functional of a mean zero Gaussian process. We simulate critical values using a
conditional simulation approach suggested by Hansen (1996) in a di¤erent setting.

Our GCR approach requires bounded random variables. When any random variable is not
bounded, we �rst standardize it on the basis of estimated location and scale parameters and then
apply a bounded and invertible transformation to the standardized data. The location and scale
parameters can be the mean and standard deviation or other more robust measures such as the
median and interquartile range, respectively.

The plan of the paper is as follows. In Section 2, we specify a family of moment conditions
which is (essentially) equivalent to the null hypothesis of conditional independence and forms
a basis for our test. In Section 3, we establish stochastic approximations of the empirical mo-
ment conditions uniformly over the nuisance parameters. We derive the �nite-dimensional weak
convergence of the empirical moment process. We also provide a bandwidth choice for practical
use: a simple �plug-in� estimator of the MSE-optimal bandwidth. In Section 4, we formally
introduce and analyze our ICM test statistic. In Section 5, we report some Monte Carlo results,
examining the size and power properties of our test and comparing its performance with that of
a variety of other tests in the literature. In Section 6, we study the returns to schooling, using
the proposed statistic to test an implication of the key assumption of unconfoundedness. The
last section concludes. The appendix contains the proofs of the main results and shows that the
estimation errors in the location and scale parameters have no impact on our asymptotic theory.
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2 The Null Hypothesis and the Testing Approach

2.1 The Null Hypothesis

Let X, Y , and Z be three random vectors, with dimensions dX , dY ; and dZ , respectively. Denote
W = (X 0; Y 0; Z 0) 2 Rd with d = dX + dY + dZ : Given an IID sample fXi; Yi; Zigni=1, we want to
test the null that Y is independent of X conditional on Z, i.e.,

H0 : Y ? X j Z; (2)

against the alternative that Y and X are dependent conditional on Z, i.e.,

Ha : Y 6? X j Z:

Let FY jXZ(y j x; z) be the conditional distribution function of Y given (X;Z) = (x; z) and
FY jZ(y j z) be the conditional distribution function of Y given Z = z. Then we can express the
null as

FY jXZ(yjx; z) = FY jZ(yjz): (3)

The following three expressions are equivalent to one another and to (3):

FXjY Z(xjy; z) = FXjZ(xjz); (4)

FXY jZ(x; yjz) = FXjZ(xjz)FY jZ(yjz); (5)

FXY Z(x; y; z)FZ(z) = FXZ(x; z)FY Z(y; z); (6)

where we have used the standard notations for distribution functions.
The approach adopted in this paper is inspired by a series of papers on consistent speci�cation

testing: Bierens (1982, 1990), Bierens and Ploberger (1997), and StW, among others. The tests
in those papers are based on an in�nite number of moment conditions indexed by nuisance
parameters. Consider, as an example, the conditional mean function g (x) = E (Y j X = x).
Bierens (1990) tests the hypothesis that the parametric functional form, f (x; �), is correctly
speci�ed in the sense that g (x) = f (x; �0) for some �0 2 �. The test statistic is based on

an estimator of a family of moments E
h
(Y � f(X; �0))e


0X
i
indexed by a nuisance parameter

vector 
. Under the null hypothesis of correct speci�cation, these moments are zeroes for all

. Bierens�s (1990) Lemma 1 shows that the converse essentially holds, due to the properties
of the exponential function, making the test capable of detecting all deviations from the null.
The similar idea is used in Bierens and Wang (2012) for testing a parametric speci�cation of the
conditional distribution function.

StW �nd that a broader class of functions has this property. They extend Bierens�s result
by replacing the exponential function in the moment conditions with any GCR function, and by
extending the probability measures considered in the Bierens (1990) approach to signed measures.
As stated in StW, GCR functions include non-polynomial real analytic functions, e.g., exp,
logistic CDF, sine, cosine, and also some nonanalytic functions like the normal CDF or its density.
Further, they point out that such speci�cation tests are based on estimates of topological distances
between a restricted model and an unrestricted model. Following this idea, we can construct a test
for conditional independence based on estimates of a topological distance between unrestricted
and restricted probability measures corresponding to conditional independence or its absence.
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To de�ne the GCR property formally, let C(F ) be the set of continuous functions on a compact
set F � Rd; and sp [H'] be the linear span of a collection of functions H'(�): We write ~w :=
(1; w0)0: The de�nition below is the same as De�nition 3.6 in StW.

De�nition 1 (StW, De�nition 3.6) We say that H' = fH : Rd ! R j H(w) = ' ( ~w0
) ; 
 2
� � R1+dg is generically comprehensively revealing if for all � with non-empty interior, the
uniform closure of sp[H'] contains C(F ) for every compact set F � Rd.

Intuitively, GCR functions are a class of functions indexed by 
 2 � whose span comes
arbitrarily close to any continuous function, regardless of the choice of �; as long as it has non-
empty interior. When there is no confusion, we simply call ' GCR if the generated H' is GCR.

We now establish an equivalent hypothesis in the form of a family of moment conditions
following StW. Let P be the joint distribution of the random vector W , and let Q be the joint
distribution of W with Y ? X j Z. Thus, P is an unrestricted probability measure, whereas Q
is restricted. To be speci�c, P and Q are de�ned such that for any event A,

P (A) �
Z
A
dFXY Z(x; y; z) =

Z
A
dFXY jZ(x; yjz)dFZ(z) (7)

and

Q(A) �
Z
A
dFXjZ(xjz)dFY jZ(yjz)dFZ(z): (8)

Note that the measure P will be the same as the measure Q if and only if the null is true:

P (A) =

Z
A
dFXY jZ(x; yjz)dFZ(z)

H0=

Z
A
dFXjZ(xjz)dFY jZ(yjz)dFZ(z) = Q(A)

for all Borel sets A: Testing the null hypothesis is thus equivalent to testing whether there is any
deviation of P from Q. It should be pointed out that the marginal distribution of Z is the same
under P and Q regardless of whether the null is true or not.

Let EP and EQ be the expectation operators with respect to the measure P and the measure
Q. De�ne

�' (
) � EP

h
'( ~W 0
)

i
� EQ

h
'( ~W 0
)

i
;

where 
 � (
0; 
01; 
02; 
03)0 2 R1+d is a vector of nuisance parameters, ~W = (1;W 0)0; and ' is such
that the indicated expectations exist for all 
. Under the null hypothesis, �' (
) is obviously
zero for any choice of 
 and any choice of '; including GCR functions. To construct a powerful
test, we want �' (
) to be nonzero under the alternative. If �'0 (
0) is not zero under some
alternative, we say that '0 can detect that particular alternative for the choice 
 = 
0. An
arbitrary function '0 may fail to detect some alternatives for some choices of 
. Nevertheless,
according to StW, if W is a bounded random vector, the properties of GCR functions imply
that they can detect all possible alternatives for essentially all 
 2 � � R1+d with � having
non-empty interior. �Essentially all�
 2 � means that the set of �bad�
�s, i.e., the set f
 2 �:
�' (
) = 0 and Y 6? X j Zg has Lebesgue measure zero and is not dense in �.

Given that any deviation of P from Q can be detected by essentially any choice of 
 2 �,
testing H0 : Y ? X j Z is equivalent to testing

H0 : �' (
) = 0 for essentially all 
 2 � (9)
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for a GCR function ' and a set � with non-empty interior. The alternative is Ha : H0 is false.
A straightforward testing approach is to estimate �' (
) and to see how far the estimate

is from zero. However, there are two technical issues. First, the result of StW requires W to
be bounded. To achieve the boundedness, we can replace each element V of W by 	V (V ),
where 	V is a bounded one-to-one mapping with Borel measurable inverse. De�ne 	Y (Y ) =
(	Y1 (Y1) ; : : : ;	YdY (YdY ))

0 and de�ne 	X (X) and 	Z (Z) similarly. Then Y ? X j Z is equiv-
alent to 	Y (Y ) ? 	X (X) j 	Z (Z) : The equivalence holds because the sigma �elds are not
a¤ected by the transformation. So it is innocuous to assume that W has a bounded support.

In practice, we recommend choosing a bounded set, say [a; b]d; to closely match the support of
the GCR function we use. Depending on whether the random variables have bounded supports
or not, we can achieve this using a di¤erent transformation 	. As an example, suppose that the
support of V is a bounded interval, say [vmin; vmax] for some known �nite constants vmin and
vmax: Then we can take

	V (V ) = a+ (b� a) (V � vmin)
vmax � vmin

; (10)

which obviously meets our requirement. If the end points of the support are not known, we can
estimate them by v̂min = mini=1;:::;n (Vi) and v̂max = maxi=1;:::;n (Vi) and plug the estimates into
(10). Under some mild conditions, v̂min and v̂max converge to the true endpoints at the fast rate
of 1=n. As a result, we can show that the estimation uncertainty has no e¤ect on our asymptotic
results.

When the random variable V has an unbounded support, we �rst standardize it and then
take

	V (V ) = a+ (b� a) arctan ((V � �v) =�v) + 0:5�
�

; (11)

where �v and �v are location and scale parameters. For example, �v and �v can be the mean
and standard deviation of V: By construction, 	V (V ) 2 [a; b]. We can also use other bounded
functions such as 	V (V ) = a+(b�a)F ((V � �v) =�v) for a CDF F . The standardization ensures
that 	V (V ) does not reside in a small subset of [a; b]: See Bierens and Wang (2012) for more
discussion. When �v and �v are not known, we can estimate them by �̂v and �̂v respectively
and plug them into (11). In Section 8.2, we make the transformation explicit and show that
under some mild conditions including the

p
n-consistency of �̂v and �̂v; the estimator errors in

�̂v and �̂v have no impact on the asymptotic properties of our proposed test. Here for notational
simplicity we leave this transformation implicit and assume that P (W 2 [a; b]d) = 1. Without
loss of generality, we let a = 0 and b = 1 for our theoretical development.

The second issue is related to the nonparametric estimation of �' (
) : It involves a nonpara-
metric estimator f̂Z of the density fZ in the denominator of the test statistic, making the analysis
of limiting distributions awkward. To avoid this technical issue, we compute the expectations of
'fZ rather than those of ', leading to a new �distance�metric between P and Q:

�'f (
) = EP

h
'( ~W 0
)fZ(Z)

i
� EQ

h
'( ~W 0
)fZ(Z)

i
:

Using the change-of-measure technique, we have

�'f (
) = C
n
EP �

h
'( ~W 0
)

i
� EQ�

h
'( ~W 0
)

io
;
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where P � and Q� are probability measures de�ned according to

P �(A) =

Z
A
fZ(z)dFXY jZ(x; yjz)dFZ(z)=C and

Q� (A) =

Z
A
fZ(z)dFXjZ(xjz)dFY jZ(yjz)dFZ(z)=C (12)

with C =
R
f2Z (z) dz being the normalizing constant. Under the null of H0 : Y ? X j Z; P �

and Q� are the same measure, and so �'f (
) = 0 for all 
 2 �: Under the alternative of
Ha : Y 6? X j Z; P � and Q� are di¤erent measures. By de�nition, if ' is GCR, then its revealing
property holds for any probability measure (see De�nition 3.2 of StW). So under the alternative,
we have �'f (
) 6= 0 for essentially all 
 2 �: The behaviors of �'f (
) under H0 and Ha imply
that we can employ �'f (
) in place of �' (
) to perform our test.

To sum up, when ' is a GCR function, W has bounded supports, � has non-empty interior,
and

R
f2Z (z) dz <1; a null hypothesis equivalent to conditional independence is

H0 : �'f (
) = 0 for essentially all 
 2 �:

That is, the null hypothesis of conditional independence is equivalent to a family of moment
conditions indexed by 
. For notational simplicity, we drop the subscript and write �(
) :=
�'f (
) hereafter.

2.2 Heuristics for Rates

When the probability density functions exist, the conditional independence is equivalent to any
of the following:

fY jXZ(yjx; z) = fY jZ(yjz);
fXjY Z(xjy; z) = fXjZ(xjz);
fXY jZ(x; yjz) = fXjZ(xjz)fY jZ(yjz);

fXY Z(x; y; z)fZ(z) = fXZ(x; z)fY Z(y; z); (13)

where the notation for density functions is self-explanatory. One way to test conditional indepen-
dence is to compare the densities in a given equation to see if the equality holds. For example, Su
and White�s (2008) test essentially compares fXY ZfZ with fXZfY Z . To do that, they estimate
fXY Z ; fZ ; fXZ ; and fY Z nonparametrically, so their test has power against local alternatives at
a rate of only n�1=2h�d=4, the slowest rate of the four nonparametric density estimators, i.e., the
rate for f̂XY Z . This rate is slower than n�1=2 and hence re�ects the �curse of dimensionality.�
The dimension here is d = dX + dY + dZ , which is at least three and could potentially be larger.

To achieve the rate n�1=2, we do not compare the density functions directly. Instead, our
family of moment conditions indirectly measures the distance between fXY ZfZ and fXZfY Z , so
that for each given 
, the test statistic is based on an estimator of an average that can achieve
an n�1=2 rate, just as a semiparametric estimator would.

To better understand the moment conditions of the equivalent null, we write

�(
) =

Z
'( ~w0
) fZ(z) fXY Z(x; y; z) dxdydz �

Z
'( ~w0
)fY Z(y; z) fXZ(x; z) dxdydz:
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Instead of comparing fXY ZfZ with fY ZfXZ , we now compare their integral transforms. Before
the transformation, fXY ZfZ and fY ZfXZ are functions of (x; y; z), the data points, and those
functions can only be estimated at a nonparametric rate slower than n�1=2. But their integral
transforms are now functions of 
. For each 
, the transformation is an average of the data so
that semiparametric techniques could be used here to get an n�1=2 rate. Essentially, we compare
two functions by comparing their weighted averages. The two comparisons are equivalent because
of the properties of the chosen test functions. That is, if we choose GCR functions for our test
functions, de�ned on a compact index space � with non-empty interior, and we do not detect
any di¤erence between P � and Q� transforms at essentially any point 
, then P � and Q� must
agree, and as a consequence P and Q must agree. We gain robustness by integrating over many
points 
:

2.3 Empirical Moment Conditions

With some abuse of notation, we write '(
0 + x
0
1 + y

0
2 + z
0
3) � '(x; y; z;
): De�ne

gXZ(x; z;
) = E ['(x; Y; z;
)jZ = z] =

Z
'(x; y; z;
)fY jZ(yjz)dy: (14)

Then the moment conditions can be rewritten as

�(
) = E ['(X;Y; Z;
)fZ(Z)]� E [gXZ(X;Z;
)fZ(Z)] :

The �rst term of �(
) is a mean of 'fZ , where ' is known and fZ can be estimated by a kernel
smoothing method. The second term is a mean of gXZfZ(Z), where the function gXZ(x; z;
) is
a conditional expectation that can be estimated by a Nadaraya-Watson estimator:

ĝXZ(x; z;
) =

Pn
j=1 '(x; Yj ; z;
)Kh(Zj � z)Pn

j=1Kh(Zj � z)

Thus we can estimate �(
) by

�̂n;h(
) =
1

n� 1

nX
i=1

h
'( ~W 0

i
)f̂Z(Zi)
i
� 1

n� 1

nX
i=1

ĝXZ(Xi; Zi;
)f̂Z(Zi)

=
1

n� 1

nX
i=1

['( ~W 0
i
)

1

n

nX
j=1

Kh(Zj � Zi)�
1

n (n� 1)

nX
i=1

nX
j=1

'(Xi; Yj ; Zi;
)Kh(Zj � Zi)

=
1

n (n� 1)

nX
i=1

nX
j=1

h
'( ~W 0

i
)� '( ~W 0
i;j
)

i
Kh(Zj � Zi)

=
1

n (n� 1)

nX
i=1

nX
j=1;j 6=i

f['( ~W 0
i
)� '( ~W 0

i;j
)]Kh(Zi � Zj)g; (15)
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where ~W 0
i;j
 = 
0 + X 0

i
1 + Y 0j 
2 + Z 0i
3 and Kh(u) is a multivariate kernel function. In this
paper, we follow the standard practice and use a product kernel of the form:

Kh(u) =
1

hdu
K
�u1
h
; : : : ;

udu
h

�
with K (u1; : : : ; udu) =

duY
`=1

k(u`);

where du is the dimension of u and h � hn is the bandwidth that depends on n.
�̂n;h(
) is an empirical version of �(
): For each 
 2 �; �̂n;h(
) is a second order U-statistic.

When �̂n;h(
) is regarded as a process indexed by 
 2 �; �̂n;h(
) is a U-process. Note that
['( ~W 0

i
) � '( ~W 0
i;j
)]Kh(Zi � Zj) is not symmetric in i and j: To achieve the symmetry so that

the theory of U-statistics and U-processes can be applied, we rewrite �̂n;h(
) as

�̂n;h(
) =

�
n

2

��1X
i<j

�h;2(Wi;Wj ;
); (16)

where

�h;2(Wi;Wj ;
) =
1

2

h
'( ~W 0

i
)� '( ~W 0
i;j
)

i
Kh(Zi � Zj)

+
1

2

h
'( ~W 0

j
)� '( ~W 0
j;i
)

i
Kh(Zj � Zi) = �h;2(Wj ;Wi;
):

Our test statistic is related to what DG (2001, Sec 5.2) propose but no formal proof is given
there. DG formulate the null hypothesis as

H0 : L(
1; 
2; 
3) = 0 (17)

for all (
01; 

0
2; 


0
3)
0 in the support of (X 0; Y 0; Z 0)0 where

L(
1; 
2; 
3) = E
��
1
2 (Y )� E

�
1
2 (Y ) jZ

��
1
1 (X) 1
3 (Z) fZ (Z)

	
and 1v(V ) = 1 fV � vg is the indicator function. The DG statistic is based on the following
estimator of L(
1; 
2; 
3):

L̂n;h (
1; 
2; 
3)

=
1

n(n� 1)

nX
i=1

nX
j=1;j 6=i

�
1
2(Yi)� 1
2(Yj)

�
1
1(Xi)1
3 (Zi)Kh (Zj � Zi)

=
1

n(n� 1)

nX
i=1

nX
j=1;j 6=i

�
1
1(Xi)1
2(Yi)1
3 (Zi)� 1
1(Xi)1
2(Yj)1
3 (Zi)

�
Kh (Zj � Zi) :

Comparing this with �̂n;h(
) given in (15), we can see that L̂n;h (
) takes the same form as
�̂n;h(
).

The di¤erence is that we use a GCR function '(x; y; z;
) while DG use the indicator func-
tion 1
1 (x) 1
2 (y) 1
3 (z) : This has both theoretical and practical implications. First, from a
theoretical point of view, while the indicator function is comprehensively revealing, it is not
generically and comprehensively revealing. An advantage of using a GCR function is that the
alternative hypothesis can be revealed by essentially all 
: This property does not hold for the
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indicator function, i.e., there may exist a region of (
1; 
2; 
3) with nonempty interior such that
the moment condition in (17) holds but Y 6? X j Z: Second, the GCR approach requires bounded
random variables while the DG approach does not. So in our setting, the boundary smoothing
bias cannot be avoided and has to be dealt with explicitly and rigorously. DG assume unbounded
supports and so they do not have to deal with the boundary problem. Third, there can be a prac-
tical problem when computing some functionals of L̂n;h (
1; 
2; 
3) : For instance, the Cramér-von
Mises statistic in DG (2001) takes the form

Cn =
nX
i=1

L̂2n;h (Xi; Yi; Zi)

where by de�nition

L̂2n;h (Xi; Yi; Zi) =
1

n(n� 1)

nX
k=1

nX
j=1;j 6=k

[1Yi(Yk)� 1Yi(Yj)] 1Xi(Xk)1Zi (Zk)Kh (Zj � Zk) :

The DG test rejects the null when Cn is larger than an asymptotically valid critical value. When
the dimensions of X and Z are large, Xk � Xi and Zk � Zi for k 6= i may never happen
and 1Xi(Xk)1Zi (Zk) may never be di¤erent from zero, even in large samples. In this case
L̂2n;h (Xi; Yi; Zi) is zero. This could have adverse e¤ects on the size accuracy and the power
property of the test in �nite samples. This is supported by our Monte Carlo study.

A desirable property of the DG test is that it is invariant to strictly monotonic trans-
formations of fXig and fYig : To see this, let mX (X) = (mX1 (X1) ; :::;mXdX

(XdX ))
0 and

mY (Y ) = (mY1 (Y1) ; :::;mYdY
(YdY ))

0 where all the univariate functions mXk (�) and mYk (�) are
strictly monotonic. Then

[1Yi(Yk)� 1Yi(Yj)] 1Xi(Xk) =
�
1mY (Yi)(mY (Yk))� 1mY (Yi)(mY (Yj))

�
1mX(Xi)(mX(Xk)):

As a result, L̂2n;h (Xi; Yi; Zi) is invariant to strictly monotonic transformations of fXig and fYig :
This is an appealing property that is not shared by the GCR test.

More broadly, one may argue that a conditional independence test should be invariant to
measurable and invertible transformations of all the variables fXig ; fYig ; and fZig : The DG
test is not invariant under this stronger notion of invariance. However, tests based on non-
parametric estimators of some divergence measures between probability distributions such as
Shannon�s entropy metric or Hellinger�s distance measure may be invariant in the stronger sense.
An example of such a test is SW (2008) which is based on a weighted Hellinger distance be-
tween fXY Z (x; y; z) fZ (z) and fXZ (x; z) fY Z(y; z): Like the GCR test, the omnibus tests of LG
(1997) and SW (2007) are not invariant to measurable and invertible transformations or strictly
monotonic transformations.

While transformation invariance is a pleasant property, the invariance requirement is often
invoked to reduce the class of tests under consideration so that uniformly most powerful invariance
tests (UMPI) can be designed. However, in the present context, without specifying the direction
of local alternatives, there is no uniformly most powerful test even among the class of invariance
tests. We avoid choosing a direction in order to hedge against the possibility of having no power
in other directions. The lack of a UMPI test makes the invariance requirement not as compelling
as in some other settings where a UMPI test exists.

We view the GCR test and other tests, invariant or not, as complementary. For example, while
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the SW (2008) test, which is invariant, can be powerful in detecting high-frequency alternatives,
it su¤ers from the curse of dimensionality, as discussed above. In contrast, the GCR test, which
is not invariant, does not su¤er from the curse of dimensionality and is more powerful against
low-frequency departures. In addition, the GCR test may be made invariant to strictly monotonic
transformations if we convert the data fXig and fYig to ranks before applying the GCR test. A
systematic study of this rank-based GCR test is beyond the scope of this paper.

3 Stochastic Approximations and Finite Dimensional Conver-
gence

3.1 Assumptions

In this subsection, we state the assumptions that are required to establish the asymptotic prop-
erties of �̂n;h(
): We start with a de�nition, which uses the following multi-index notation:
for j = (j1; : : : ; jm) with j` being nonnegative integers, we denote jjj = j1 + j2 + � � � + jm;
j! = j1! � � � jm!, uj = uj1 � � �u

jm
m ; and Djg(u) = @jjjg(u)=@uj11 � � � @u

jm
m :

De�nition 2 G� (A; �; �;m), � > 1, is a class of functions g� (�) : Rm ! R indexed by � 2 A
satisfying the following two conditions:

(a) for each �; g� (�) is b times continuously di¤erentiable, where b is the greatest integer that
is smaller than �;

(b) let Q�(u; v) be the Taylor series expansion of g� (u) around v of order b :

Q�(u; v) =
X

j:jjj�b;j 6=0

Djg�(v)

j!
(u� v)j

then

sup
�2A

sup
ku�vk��

kg�(u)� g�(v)�Q�(u; v)k
ku� vk�

� �

for some constants � > 0 and � > 0:

In the absence of the index set A, we use G� (�; �;m) to denote the class of functions. In this
case, our de�nition is similar to De�nition 2 in Robinson (1988) and De�nition 2 in DG (2001).
A su¢ cient condition for condition (b) is that the partial derivative of the b-th order is uniformly
Hölder continuous:

sup
�2A

sup
kv�uk��

��Djg�(u)�Djg�(v)
�� � ���b

for all j such that jjj = b:
We are ready to present our assumptions.

Assumption 1 (IID) (a) fWi 2 [0; 1]dgni=1 is an IID sequence of random variables on the
complete probability space (
;F ; P ) ; (b) each element Z` of Z is supported on [0; 1]; (c) the
distribution of Z admits a density function fZ (z) with respect to the Lebesgue measure.

Assumption 2 (Smoothness of the Densities) (a) fZ (�) 2 Gq+1 (�; �; dZ) for some integer
q > 0 and some constants � > 0 and � > 0; (b) DjfZ (�z) = 0 for all 0 � jjj � q and all �z on
the boundary of [0; 1]dZ ; (c) the conditional distribution functions FY jZ ; FXjZ ; and FXY jZ admit
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the respective densities fY jZ(yjz); fXjZ(xjz); and fXY jZ(x; yjz) with respect to a �nite counting
measure, or the Lebesgue measure or their product measure; (d) as functions of z indexed by x; y;
or (x; y) 2 A; fXjZ(xjz); fY jZ(yjz) and fXY jZ(xjz) belong to Gq+1 (A; �; �; dZ) with A = [0; 1]dX ;
[0; 1]dY or [0; 1]dX+dY .

Assumption 3 (GCR) (a) � is compact with non-empty interior; (b) ' 2 G� (�; �; 1).

Assumption 4 (Kernel Function) The univariate kernel k (�) is the qth order symmetric and
bounded kernel k : R! R such that

(a)
R
k(v)dv = 1,

R
vjk(v)dv = 0 for j = 1; 2; : : : ; q � 1;

(b) k (v) = O((1 + jvj�)�1) for some � > q2 + q + 2:

Assumption 5 (Bandwidth) The bandwidth h = hn satis�es
(a) nhdZ !1 as n!1;
(b)

p
nhq = o(1); i.e., h = o(n�1=(2q)) as n!1:

Some discussions on the assumptions are in order. The IID condition in Assumption 1 is
maintained for convenience. Analogous results hold under weaker conditions, but we leave explicit
consideration of these aside.

Assumptions 2(a) and (d) are needed to control the smoothing bias. Under Assumptions 1(b)
and 2(a), we have

R
f2Z (z) dz <1: So it is not necessary to state the square integrability of fZ (z)

as a separate assumption. In assumption 2(d), the smoothness condition is with respect to the
conditioning variable Z. It does not require the marginal distributions of X and Y to be smooth.
In fact, X and Y could be either discrete or continuous. In addition, from a technical point
of view, we only need to assume that there exists a version of the conditional density functions
satisfying Assumption 2(d).

Assumption 2(b) is a technical condition, which helps avoid the boundary bias problem, a
well-known problem for density estimation at the boundary. The GCR approach of StW requires
the boundedness of the random vectors, so we have to deal with the boundary bias problem. If As-
sumption 2(b) does not hold, we can transform Z into Z� = (��1 (Z1) ;��1 (Z2) ; : : : ;��1 (ZdZ ))

0;
where � : [0; 1]! [0; 1] is strictly increasing and q + 1 times continuously di¤erentiable with in-
verse ��1. Now

P fZ� < zg = P fZ1 < �(z1) ; : : : ; ZdZ < �(zdZ )g
= FZ (� (z1) ; : : : ;�(zdZ )) ;

and the density of Z� is fZ� (z) = fZ (� (z))�
0 (z1) : : :�0 (zdZ ) : So if �

(i) (0) = �(i) (1) = 0 for
i = 0; : : : ; q; then Assumption 2(b) is satis�ed for the transformed random vector Z� and we can
work with Z� rather than Z: We can do so because Y ? X j Z if and only if Y ? X j Z�: An
example of � is the CDF of a beta distribution:

�(v) =
1

B(q + 1; q + 1)

Z v

0
xq (1� x)q dx := B(v; q + 1; q + 1)

B(1; q + 1; q + 1)

where B(v; q + 1; q + 1) =
R v
0 x

q (1� x)q dx is the incomplete beta function.
The idea of using transformations to remove the boundary bias has a long history; see Geenens

(2014) and the references therein. However, our idea is di¤erent here. In Geenens (2014) and the
related literature, in order to reduce the boundary bias, a transformation is employed to map a
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bounded support into an unbounded support. This approach clearly is not compatible with the
GCR framework we use here. Our idea is to transform the data so that the probability mass
around the boundary is relatively small. This is a viable approach as long as our focus is not the
pdf of the original data per se. This idea may be of independent interest.

Another often used approach to handle the boundary problem is to trim the data when Z is
boundedly supported. Let Z" be a proper subset of the support of Z satisfying P [Zi 2 Z"] = 1�"
for some " approaching zero at a certain rate. In this approach, we replace Kh(Zi � Zj) in the
de�nition of �̂n;h(
) by Kh(Zi�Zj) � 1 [Zi 2 Z"] � 1 [Zj 2 Z"]. For example, this approach is used
in Li and Fan (2003, page 745) in a di¤erent context. Note that the use of transformation or
trimming is more of theoretical importance, as they are necessary to achieve the parametric

p
n

rate of convergence of �̂n;h(
) to �(
). In practice, transformation and trimming may or may
not be important. When the probability mass near the boundary is relatively small, they are
likely to be unimportant. In this case, we may skip the transformation or trimming and ignore
the boundary bias in practice.

Assumption 3(a) is needed only when we attempt to establish the uniformity of some asymp-
totic properties over �: Like Assumption 2, Assumption 3(b) helps control the smoothing bias.
It is satis�ed by many GCR functions such as exp (�) ; normal PDF, sin (�) ; and cos (�).

The conditions on the high order kernel in Assumption 4 are fairly standard. For example,
both Robinson (1988) and DG (2001) make a similar assumption. The only di¤erence is that
Robinson (1988) and DG (2001) require that � > q+1; while we require a stronger condition that
� > q2+q+2 in Assumption 4(b). The stronger condition is needed to control the boundary bias,
which is absent in Robinson (1988) and DG (2001), as they assume that Z has an unbounded
support. Assumption 4(b) is not restrictive. It is satis�ed by typical kernels used in practice, as
they are either supported on [0; 1] or have exponentially decaying tails.

Assumption 5(a) ensures that the degenerate U-statistic in the Hoe¤ding decomposition of
�̂n;h(
) is asymptotically negligible. Assumption 5(b) removes the dominating bias of �̂n;h(
):
See Lemmas 3 and 4 below. A necessary condition for Assumption 5 to hold is that 2q > dZ .

3.2 Stochastic Approximations

To establish the asymptotic properties of �̂n;h(
); we develop some stochastic approximations,
using the theory of U-statistics and U-processes pioneered by Hoe¤ding (1948).

Let �h;1(w;
) = E�h;2(w;Wj ;
): Using Hoe¤ding�s H-decomposition, we can decompose
�̂n;h(
) as

�̂n;h(
) = �h(
) +Hn;h(
) +Rn;h(
);

where

�h(
) = E�h;2(Wj ;Wi;
) = E�h;1(Wi;
) (18)

Hn;h(
) =
2

n

nX
i=1

~�h;1(Wi;
) (19)

Rn;h (
) =

�
n

2

��1X
i<j

~�h;2(Wi;Wj ;
) (20)
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and

~�h;1(Wi;
) = �h;1(Wi;
)��h (
)

~�h;2(Wi;Wj ;
) = �h;2(Wi;Wj ;
)� �h;1(Wi;
)� �h;1(Wj ;
) + �h (
) :

The sum of the �rst two terms in the H-decomposition is known as the Hájek projection. For
easy reference, we denote it as

~�n;h(
) = �h(
) +Hn;h(
): (21)

By construction, Hn;h(
) and Rn;h (
) are uncorrelated zero mean random variables. We show
that the projection remainder Rn;h(
) is asymptotically negligible, and as a result �̂n;h(
) and
its Hájek projection ~�n;h(
) have the same limiting distribution.

For each given 
 and h; Rn;h (
) is a degenerate second order U-statistic with kernel ~�h;2 (�; �;
) :
According to the theory of U-statistics (e.g., Lee, 1990), we have

var [Rn;h (
)] =
2

n(n� 1)var [~�h;2(Wi;Wj ;
)] :

This can also be proved directly by observing that ~�h;2(Wi;Wj ;
) is uncorrelated with ~�h;2(W`;Wm;
)
if (i; j) 6= (`;m) :

If h were �xed, then it follows from the basic U-statistic theory that Rn;h(
) = op (1=
p
n) for

each 
 2 �: However, in the present setting, h ! 0 as n ! 1, so the basic U-statistic theory
does not directly apply. Nevertheless, we can still show that Rn;h (
) is still op

�
n�1=2

�
under

Assumption 5(a). In fact, we can prove a stronger result, as Lemma 3 shows.

Lemma 3 Under Assumptions 1�5(a), if h! 0 as n!1, then sup
2�
p
nRn;h (
) = op(1).

We proceed to establish a stochastic approximation of the Hájek projection ~�n;h(
). Note
that both �h(
) and Hn;h(
) depend on h. Using a Taylor expansion, we can separate terms
independent of h from those associated with h in �h(
) and Hn;h(
). By using a higher order
kernel K and controlling the rate of h so that it shrinks fast enough, we can ensure that the
terms associated with h vanish asymptotically, as in Powell, Stock, and Stoker (1989).

More speci�cally, we �rst show that �h(
) = �(
)+O(h
q), where q is the order of the kernel

k. Then we show that Hn;h(
) = 2n
�1Pn

i=1 f�1(Wi;
)� E [�1(Wi;
)]g+Op(hq), where

�1(Wi;
) � 1

2
'(
0 +X

0
i
1 + Y

0
i 
2 + Z

0
i
3)fZ(Zi)

�1
2

Z
'(
0 +X

0
i
1 + y

0
2 + Z
0
i
3) fY Z(y; Zi)dy

+
1

2

Z
'(
0 + x

0
1 + y
0
2 + Z

0
i
3) fXY Z(x; y; Zi)dxdy

�1
2

Z
'(
0 + x

0
1 + Y
0
i 
2 + Z

0
i
3) fXZ(x;Zi)dx:

Under Assumption 5(b),
p
nhq ! 0, which makes both the second term of �h(
) and the second

term of Hn;h(
) vanish asymptotically. The following lemma presents these results formally.

Lemma 4 Let Assumptions 1�4 and 5(b) hold. Then
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(a)
p
n [�h (
)��(
)] = o (1) uniformly over 
 2 �;

(b)
p
nHn;h(
) = 2=

p
n
Pn

i=1 f�1(Wi;
)� E [�1(Wi;
)]g+ op (1) uniformly over 
 2 �:

It follows from Lemmas 3 and 4 that

p
n
h
�̂n;h(
)��(
)

i
=

p
nHn;h(
) +

p
nRn;h (
) +

p
n [�h(
)��(
)]

=
p
nHn;h(
) + op (1) =

2p
n

nX
i=1

f�1(Wi;
)� E [�1(Wi;
)]g+ op (1)

uniformly over 
 2 �: So
p
n
h
�̂n;h(
)��(
)

i
and 2=

p
n
Pn

i=1 f�1(Wi;
)� E [�1(Wi;
)]g have
the same limiting distribution for each 
 2 �:

3.3 Finite Dimensional Convergence

In this subsection, we view �̂n;h (
) as a U-process indexed by 
 and consider its �nite-dimensional
convergence.

Let �s = f
1;
2; :::;
sg for some s <1 and 
` 2 �; and de�ne

�̂n;h(�s) := [�̂n;h(
1); �̂n;h(
2); :::; �̂n;h(
s)]
0:

Similarly, we de�ne �(�s) := [�(
1);�(
2); :::;�(
s)]
0. Theorem 5 below establishes the as-

ymptotic normality of
p
n
h
�̂n;h(�s)��(�s)

i
.

Theorem 5 Let Assumptions 1�5 hold. Then

p
n
h
�̂n;h(�s)��(�s)

i
d! N (0;
) ;

where the (`;m) element of 
 is


 (`;m) := �� (
`;
m) = 4cov [�1(Wi;
`); �1(Wi;
m)] : (22)

If, in addition, H0 holds, then �(
) = 0, and

�� (
`;
m) = 4E [�(Wi;
`)�(Wi;
m)] ;

where

�(Wi;
) =
1

2
E
h
'( ~W 0

i
)fZ(Zi)jXi; Yi; Zi

i
� 1
2
E
h
'( ~W 0

i
)fZ(Zi)jXi; Zi

i
(23)

�1
2
E
h
'( ~W 0

i
)fZ(Zi)jYi; Zi
i
+
1

2
E
h
'( ~W 0

i
)fZ(Zi)jZi
i
:

Theorem 5 is of interest in its own right. For example, we can use it to construct a Wald test.
There may be some power loss if s is small. When s is large enough such that �s approximates
� very well, then the power loss will be small. The idea can be motivated from the method of
sieves. We do not pursue this here but refer to Huang (2009) for more discussions. Instead, we
consider the ICM tests in the next section. Theorem 5 is an important �rst step in obtaining the
asymptotic distributions of the ICM statistics.
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Observe that �̂n;h(
) is not symmetric inX and Y; whereas the hypothesis Y ? X j Z is. How-
ever,

p
n[�̂n;h(
)��h(
)] is asymptotically equivalent to 2=

p
n
Pn

i=1 [�1 (Wi;
)� E�1 (Wi;
)] :
It can be readily checked that �1 (W ;
) is symmetric in Y and X. Alternatively, we can follow
the de�nition of gXZ in (14) and de�ne gY Z(y; z;
), gZ (z;
), and gXY Z (x; y; z;
) as

gY Z(y; z;
) = E [' (X; y; z;
) jZ = z]

gZ(z;
) = E [' (X;Y; z;
) jZ = z]

gXY Z (x; y; z;
) = E [' (x; y; z;
) jZ = z] = ' (x; y; z;
)

where the last equality is tautological. Then

�1(W ;
) =
1

2
[gXY Z (X;Y; Z;
)� gXZ (X;Z;
)� gY Z (Y; Z;
) + gZ (Z;
)] fZ (Z) ;

which is clearly symmetric in Y and X: If we construct another estimator, say �̂�n;h(
); by

switching the roles of X and Y , we can show that �̂�n;h and �̂n;h(
) are asymptotically equivalent

in the sense that
p
n[�̂�n;h � �̂n;h(
)] = op (1) uniformly over 
 2 �: So there is no asymptotic

gain in taking an average of �̂n;h(
) and �̂�n;h. This point is further supported by the symmetry
of �(W ;
) in X and Y:

3.4 Bandwidth Selection

Although any choice of bandwidth h satisfying Assumption 5 will deliver the asymptotic distri-
bution in Theorem 5, in practice we need some guidance on how to select h. Ideally we should
select an h that would give us the greatest power for a given size of test, but deriving that
procedure would be complicated enough to justify another study. Moreover, it would only make
a di¤erence for higher order results. Thus, for the present purposes, we just provide a simple
�plug-in�estimator of the MSE-minimizing bandwidth proposed by Powell and Stoker (1996).

Since the test statistic is based on �̂n;h(
), which estimates �(
), it is appealing to choose
an h that minimizes the mean squared error (MSE) of �̂n;h(
). After some tedious but straight-
forward calculations, we get

MSE
h
�̂n;h(
)

i
= (�h (
)��(
))2 + var

h
�̂n;h(
)

i
= fE [B5(W ;
)]g2 h2q + o(h2q) + var

h
�̂n;h(
)

i
= fE [B5(W ;
)]g2 h2q + o(h2q)

+4n�1var [�1 (W ;
)] + 4n
�1C0 (
)h

q + o(n�1hq)

�4n�2var [�1 (W ;
)] + 2n�2E [� (W ;
)]h�dZ

+o
�
n�2h�dZ

�
� 2n�2�(
)2 + o(n�2);

where B5 is de�ned in (47) in the appendix, and � (W ;
) is de�ned by

E
h
k�h;2 (Wi;Wj ;
)k2 jWi

i
= � (Wi;
)h

�dZ + �� (Wi; h;
) ; where

E (k�� (Wi; h;
)k) = o
�
h�dZ

�
:
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The term 4n�1var [�1(W ;
)]�4n�2var [�1 (W ;
)] does not depend on h. The term 2n�2�(
)2
must be of smaller order than 4n�1C0hq, and 4n�1C0hq must be of smaller order than fE [B5 (W ;
)]g2 h2q;
otherwise there would be a contradiction to Assumption 5(b). So the leading term ofMSE[�̂n;h(
)]
that involves h is

MSE1

h
�̂n;h(
)

i
= fE [B5 (W ;
)]g2 h2q + 2n�2E [� (W ;
)]h�dZ : (24)

By minimizing MSE1

h
�̂n;h(
)

i
; we obtain the optimal bandwidth

h� =

�
dZ � E [� (W ;
)]

q � fE [B5 (W ;
)]g2

�1=(2q+dZ)
�
�
1

n

�2=(2q+dZ)
: (25)

Now Assumption 5(a) is satis�ed:

n (h�)dZ � n1�2dZ=(2q+dZ) � n(2q�dZ)=(2q+dZ) !1; given 2q > dZ :

And so is Assumption 5(b):

p
n (h�)q � n1=2�2q=(2q+dZ) � n�(2q�dZ)=2(2q+dZ) = o(1); given 2q > dZ :

The optimal bandwidth depends on the unknown quantities E [� (W ;
)] and E [B5 (W ;
)].
Here we follow the standard practice (e.g., Powell and Stoker (1996)) and use a simple plug-in
estimator of h�: Let h0 be an initial bandwidth. Suppose E

�
�h;2(Wi;Wj ;
)

4
�
= O(h���2dZ0 ) for

some � > 0, and let % = max f� + 2dZ ; 2q + dZg. If h0 ! 0 and nh%0 ! 1, then by Proposition
4.2 of Powell and Stoker (1996),

�̂ � �̂ (h0) =

�
n

2

��1X
i<j

hdZ0 � [�h0;2(Wi;Wj ;
)]
2 p! E [� (Wi;
)] ; (26)

and

B̂5 �
�̂n;�h0(
)� �̂n;h0(
)

(�h0)
q � hq0

for some 0 < � 6= 1 p! E [B5 (W ;
)] :

The estimator B̂5 given above is a �slope�between two points (h
q
0; �̂n;h0(
)) and (�h

q
0; �̂n;�h0(
)).

To get a more stable estimator, we could use a regression of �̂n;h0(
) on h
q
0 for various values of

h0. Given �̂ and B̂5; the plug-in estimator of h� is

ĥ =

"
dZ � �̂
q � B̂25

#1=(2q+dZ)
�
�
1

n

�2=(2q+dZ)
: (27)

In practice we can choose q large enough so that % = maxf�+2dZ , 2q+ dZg = 2q+ dZ ; then
we can choose the initial bandwidth to be h0 = o

�
n�1=(2q+dZ)

�
. The data driven ĥ depends on


. We may choose di¤erent bandwidths for di¤erent 
�s. This is what we follow in our Monte
Carlo experiments.

Powell and Stoker (1996) mention one technical proviso: �̂n(
; ĥ) is not guaranteed to be
asymptotically equivalent to �̂n(
;h

�) since the MSE calculations are based on the assumption
that h is deterministic. The suggested solution is to discretize the set of possible scaling constants,
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replacing ĥ with the closest value, ĥy, in some �nite set. The estimation uncertainty in ĥy is small
enough that it will not a¤ect the asymptotic MSE.

4 An Integrated Conditional Moment Test

In this section, we �integrate out�
 to get an integrated conditional moment (ICM) type test
statistic, following Bierens (1990) and StW (1998).

4.1 The Test Statistic and its Asymptotic Null Distribution

If ' is GCR, testing H0 : Y ? X j Z is equivalent to testing H0 : � (
) = 0 for essentially all

 2 �: In other words, if we view �̂n;h(
) as a random function in 
, we are testing whether its
mean function �(
) is zero on �. If � is compact, we can show that

p
n�̂n;h(
) converges to

a zero mean Gaussian process under the null. Based on
p
n�̂n;h(
), we construct the ICM test

statistic

Mn = n

Z
�

h
�̂n;h(
)

i2
d� (
) ;

where � is a probability measure on � that is absolutely continuous with respect to the Lebesgue
measure on �. Here we integrate [�̂n;h(
)]

2; which gives a Cramer-von Mises (CM) type test.
Alternatively, we could integrate j�̂n;h(
)jp; 1 � p � 1: The choice p =1 (which gives the max-
imum over �) yields a Kolmogorov-Smirnov (KS) type test. We work with p = 2 for concreteness
and because CM-type tests often outperform KS-type tests.

To establish the weak convergence of Mn, we �rst show that
p
n[�̂n;h(�)��(�)] converges to

a Gaussian process. De�ne

�n(
) =
2p
n

nX
i=1

f�1(Wi;
)� E [�1(Wi;
)]g .

Then Lemmas 3 and 4 imply that

sup

2�

���pn h�̂n;h(
)��(
)
i
� �n(
)

��� = op (1) :

Theorem 6 below shows that �n(�) converges to a zero mean Gaussian process and so doesp
n[�̂n;h(�)��(�)].

Theorem 6 Let Assumptions 1�5 hold. Then
(a) �n(�)

d! Z (�);
(b)
p
n[�̂n;h(�)��(�)]

d! Z (�) ; where Z is a zero mean Gaussian process on � with covariance
function

cov (Z(
1);Z(
2)) = 4cov [�1 (W ;
1) ; �1 (W ;
2)] � �� (
1;
2) . (28)

If H0 also holds, then

Tn(�) �
p
n�̂n;h(�)

d! Z (�) .

Let M : C (�)! R+ be k�k1 continuous. Then the continuous mapping theorem (Billingsley
1999, p. 20) implies that

M [Tn(�)]
d!M [Z(�)]
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under the null hypothesis. For example, with M [Tn(�)] =
R
� [Tn(
)]

2 d� (
) ; we have

Mn �M [Tn(�)] =
Z
�
[Tn(
)]

2 d� (
) = n

Z
�

h
�̂n;h(
)

i2
d� (
)

d!
Z
�
[Z(
)]2 d� (
)

under H0:

4.2 Global and Local Alternatives

The global alternatives for our conditional independence test can always be written as

Ha : fZ(z)fXY Z (x; y; z)� fY Z(y; z)fXZ(x; z) = �(x; y; z); (29)

for some nontrivial and nonzero function �(x; y; z). Then under Ha, we have

�(
) =

Z
'( ~w0
)�(x; y; z)dxdydz:

This will be nonzero for essentially all 
 2 � provided that ' is GCR. It follows from Theorem
6 that

lim
n!1

Pr(Mn > cn) = 1

for any critical value cn = o(n): That is, the test is consistent: as the sample size increases, the
test will eventually detect the alternative Ha.

To construct a local alternative, we consider a mixture distribution of the form

Ha;n : fXY Z (x; y; z) =

��
1� cp

n

�
fY jZ(yjz) +

cp
n
~�(yjx; z)

�
fXZ (x; z) ; (30)

where c is a constant and ~�(yjx; z) is a conditional density function of ~Y given ( ~X; ~Z) such that
~Y 6? ~X j ~Z: By construction, ~�(yjx; z) is a nontrivial function of x and z: That is, the distribution
of W is a mixture of two distributions: one satis�es the null of conditional independence and the
other does not. The mixing proportion is local to unity. Equivalently, we can rewrite the local
alternative as

Ha;n : fXY Z (x; y; z) = fY jZ(y; z) fXZ(x; z) +
� (x; y; z)p

n
(31)

for � (x; y; z) = c
�
~�(yjx; z)� fY jZ(yjz)

�
fXZ(x; z): Since ~�(yjx; z) depends on x; ~�(yjx; z) �

fY jZ(yjz) cannot be a zero function. Hence when ' is GCR and c > 0;

�' (
) :=

Z
'( ~w0
)� (x; y; z) dxdydz 6= 0 (32)

for essentially all 
 2 �:
Under Assumptions 1�5 and the local alternative Ha;n, we can use the same arguments as in

the proof of Theorem 6 to show that

Mn =

Z
�
[Tn(
)]

2 d� (
)
d!
Z
�
[Z(
) + �' (
)]2 d� (
) .

The essentially nonzero mean is the source of the power of the ICM test against the local alter-
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native.
The above local alternative asymptotics can be used to guide the choice of the weighting

function �: Using Mercer�s theorem, we can represent the covariance kernel �� (
1;
2) as

�� (
1;
2) =
1X
j=1

�jej(
1)ej(
2)

where �j is the eigenvalue of the covariance kernel and ej(�) is the corresponding eigen function
such that

R
��� (
1;
2) ej (
1) d
1 = �jej (
2) : fej(�)g also forms a set of complete orthonormal

bases in L2 (�). Boning and Sowell (1999) show that choosing � to be the uniform density
delivers a test with the greatest weighted average local power against the set of local alternatives
whose limiting local mean functions f�' (
)g assign weights �2j to �ej(
): This provides some
theoretical justi�cation of the uniform weighting, which is used in our simulation study.

4.3 Calculating the Asymptotic Critical Values

Under the null, Mn has a limiting distribution given by a functional of a zero mean Gaussian
process whose covariance function depends on the DGP. The asymptotic critical values thus
depend on the DGP and cannot be tabulated. One could follow Bierens and Ploberger (1997)
and obtain upper bounds for the asymptotic critical values. Here, we use the conditional Monte
Carlo approach suggested by Hansen (1996) to simulate the asymptotic null distribution.

To apply this approach, we construct a process T �n(�); which follows the desired zero mean
Gaussian process conditional on fWig. The desired conditional covariance function for T �n is

cov [T �n(
1); T
�
n(
2)j fWigni=1] =

4

n

nX
i=1

�̂h;1(Wi;
1) �̂h;1(Wi;
2) � �̂� (
1;
2) ;

where

�̂h;1(Wi;
) = (n� 1)�1
nX

j=1;j 6=i
�h;2(Wi;Wj ;
):

It is straightforward to show that under Assumptions 1-5 and the null hypothesis,

�̂� (
1;
2)
p! �� (
1;
2) .

A typical T �n(�) is constructed by generating fVig
n
i=1 as IID standard normal random variables

independent of fWig and setting

T �n(
) =
2p
n

nX
i=1

�̂h;1(Wi;
)Vi. (33)

Following the arguments similar to the proof of Theorem 2 in Hansen (1996), we can show that
under the null hypothesis,

M�
n =

Z
�
[T �n(
)]

2 d� (
)
d!
Z
�
[Z(
)]2 d� (
) ;

provided that Assumptions 1-5 hold. Simulation results show that the empirical pdf�s of Mn and
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M�
n are fairly close. To save space, we do not report the results here, but they are available in

Huang (2009).
To approximate the distribution of Mn, we follow the steps below:

(i) generate fVibgni=1 IID N(0; 1) random variables;

(ii) set

T �n;b(
) �
2p
n

nX
i=1

�̂h;1(Wi;
)Vib;

(iii) set M�
n;b �M

h
T �n;b(�)

i
=
R
�

h
T �n;b(
)

i2
d� (
) :

This gives a simulated sample (M�
n;1; :::;M

�
n;B), whose empirical distribution should be close

to the true distribution of the actual test statistic Mn under the null. Then we can compute the
proportion of simulated values that exceedMn to get the simulated asymptotic p value. We reject
the null hypothesis if the simulated p value lies below the speci�ed level for the test. As Hansen
(1996) points out, B is under the control of the econometrician and can be chosen su¢ ciently
large to obtain a good approximation.

5 Monte Carlo Experiments

In this section, we perform some Monte Carlo simulation experiments to examine the �nite sample
performance of our conditional independence test.

For all simulations, we generate IID f(Xi; Yi; Zi)g. We choose '(�) to be the standard normal
PDF, and k(u) be the sixth-order Gaussian kernel (q = 6). The number of replications for each
experiment is 1000, and the number of replications for simulating M�

n is 999.

5.1 Level and Power Studies

We consider three data generating processes. Under DGP 1, the sample f(Xi; Yi; Zi)g is generated
according to

Y = �X + Z + "Y ;

X = Z + Z2 + "X ;

where �
"X
"Y

�
s N

�
0;

�
�2X 0
0 �2Y

��
= N

�
0;

�
4 0
0 1

��
and

Z s N(0; �2Z) = N(0; 3):

When � = 0, the null is true; otherwise the alternative holds.
DGP 2 is a modi�cation of DGP 1 that focuses on the consequences of fat-tailed distributions.

Under DGP 2, "X and "Y are proportional to the Student t with 3 degrees of freedom:

"X s 2t3; "Y s t3; "X ? "Y :
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DGP 3 is another modi�cation of DGP 1. Under this DGP, we allow skewness, choosing both
"X and "Y to be centered chi-square distributions:

"X s 2
�
�21 � 1

�
; "Y s

�
�21 � 1

�
; "X ? "Y :

We transform each variable so that its range is comparable to the support of the GCR function
'(�): For the standard normal PDF, the support is the real line but the function is e¤ectively
zero out of the interval [�4; 4]:We transform each variable to be supported on this interval. This
can be achieved by using the transformation below:

Xi !
8

�
arctan

0@ Xi � �Xq�
Xi � �X

�2
=(n� 1)

1A :

We transform Yi and Zi analogously. The conditional independence test is then applied to the
transformed data. We ignore the boundary bias here as our suggested bias-removing transfor-
mation does not give rise to qualitatively di¤erent results. Although any compact � with a
non-empty interior can be used, we take � = [�1; 1]4: This choice ensures that f ~W 0

i
;
 2�g can
take any value in the e¤ective support of '(�):

To compute the ICM statistic Mn; we need to compute the integral
R
� [Tn(
)]

2 d� (
) where
� is the uniform distribution. In the absence of a closed-form expression, we recommend using
the Monte Carlo integration method. For each simulation replication, we choose 100 
s�s ran-
domly from the uniform distribution on [�1; 1]4 and approximate the integral by the averageP100

s=1 T
2
n(
s)=100: We have also tried using 50 random draws, but the results are e¤ectively the

same. Note that T 2n(
s) depends on the bandwidth parameter h: In our simulation experiments,
we employ the data-driven bandwidth ĥ (
s) in (27) with h0 = n�1=[3(2q+dZ)] and � = 0:5: We
use di¤erent bandwidths for di¤erent 
�s. Given the bandwidth ĥ (
s) ; we compute the statistic
T 2n(
s) as T

2
n(
s) = n�̂2

n;ĥ(
s)
(
s) : The average of T

2
n(
s) gives us the ICM statistic Mn:

We study the �nite sample size and power of the test against conditional mean dependence.
We use

�
X;Y jZ

=
cov (X;Y jZ)
�XjZ�Y jZ

=
��2X

�X

q
�2�2X + �

2
Y

=
4�

2
p
4�2 + 1

to indicate the strength of the dependence between X and Y , conditional on Z. Since both XjZ
and Y jZ are normal under DGP 1, in this case �

X;Y jZ
fully captures the dependence between X

and Y , conditional on Z.
We plot the power of the tests for � ranging from �0:9 to 0:9: For this, we choose

� =
�
X;Y jZ

2

r�
1� �2

X;Y jZ

� for �
X;Y jZ

= �0:9;�0:8; :::; 0:9:

Figures 1-3 report the size and power properties of our GCR test. The size and power look
fairly good for sample sizes as small as 100, and they look very good when the sample size reaches
200. When the sample size is small, the levels of the tests approach their nominal value from
below, delivering conservative tests. When the sample size increases to 200; our tests become
fairly accurate in size. The shape and location of the power curves are well expected. The power
curves are also close to be symmetric, re�ecting the equal capacity of our test to detect positive
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and negative dependence. The size and power of the test are close to each other across the
three DGP�s. This lends some support that the performance of our test is robust to the data
distribution.

5.2 Comparison with Other Tests

We now compare our GCR test with other conditional independence tests. Su and White�s (2008)
test essentially compares fXY Z fZ with fXZ fY Z and can detect local alternatives at the rate
n�1=2h�d=4: Su and White�s (2007) test essentially compares fY jX;Z with fY jZ and can detect
local alternatives at the rate n�1=2h�(dX+dZ)=4: Our test compares integral transforms and can
detect local alternatives at the rate n�1=2. We �rst compare all three tests using DGP1. Figure 4
shows the power functions when the sample size is 100. It is clear that our GCR test outperforms
the SW 2007 test, which in turn outperforms the SW 2008 test. More speci�cally, while our GCR
test has almost the same empirical size as the SW 2007 test, it is more powerful than the SW
2007 test. The SW 2008 test is very conservative and has almost no power when � is small in
absolute value. That is, when the departure from the null is small, the SW 2008 test is less able
to detect it, compared with our GCR test and the SW 2007 test.

Figure 5 shows the power functions when the sample size is increased to 200. We see that the
power of our GCR test improves faster than the power of SW 2007, which again improves faster
than the power of SW 2008. These results are consistent with the local alternative rate results.

Finally, we compare the power function of our GCR test with the tests proposed by LG
(1997) and DG (2001, Sec 5.2). Figure 6 reports the results for DGP 1 with n = 200. We
report only the results for the Cramer-von Mises type test for each method, as the results for the
Kolmogorov-Smirnov type test are qualitatively similar. In the �gure, �LG�and �DG�represent
the Cramer-von Mises type tests of LG (1997) and DG (2001, Sec 5.2), respectively. The �gure
demonstrates the clear advantage of our GCR test. It is as accurate in size as the LG test but
more powerful than the latter test. The GCR test has better �nite sample performances than
the DG test in terms of both size accuracy and local power under the alternatives considered.

In all the �gures, we also report the �gold standard� t-test. This is as good a test as one
could want, in the sense that it is the parametric maximum likelihood test for � = 0 in a correctly
speci�ed linear model. Although our test is not as powerful as the t-test, which is reasonable since
our test is fully nonparametric, our GCR test does outperform all other nonparametric tests.
On the other hand, the t-test measures only linear dependence. In the presence of nonlinear
dependence, the t-test may be less powerful than the nonparametric tests. This is supported by
simulation results not reported here.

6 Application to Returns to Schooling

As stated in the introduction, one important application of tests for conditional independence is
to test a key assumption identifying causal e¤ects. In this section, we provide an example.

In the literature on returns to schooling, the most widely investigated structural equation is
a Mincer (1974) type semi-logarithmic human capital earnings function:

lnYi = �0 + �1Si + �2EXP i + �3EXP2i + Ui; (34)

where the subscript i indexes individuals, lnYi is log hourly wage, Si is years of completed
schooling, EXP i is years of work experience, EXP2i is work experience squared, and Ui represents
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unobserved drivers of lnYi; centered at zero. The e¤ect of interest is �1; the e¤ect of an additional
year of schooling on wage. In what follows, we drop the i subscript.

Least squares estimates of the Mincer equation su¤er from the well-known ability bias prob-
lem, which is caused by the dependence of schooling on unobserved ability. To make this explicit,
let U = A+ "; where A represents unobserved ability, and rewrite the Mincer equation as

lnY = �0 + �1S + �2EXP + �3EXP 2 +A+ ". (35)

One method empirical researchers have adopted to address the ability bias issue is to �nd
proxies Z for ability, for example IQ or AFQT scores, and include these as regressors (e.g.,
Griliches and Mason, 1972; Griliches, 1977; and Blackburn and Neumark, 1993). Now consider
the regression of lnY on S; EXP ; and Z :

�(S;EXP ; Z) = E(lnY j S;EXP ; Z)
= E(�0 + �1S + �2EXP + �3EXP2 +A+ " j S;EXP ; Z)
= �0 + �1S + �2EXP + �3EXP2 + E(A+ " j S;EXP ; Z)
= �0 + �1S + �2EXP + �3EXP2 + E(A+ " j EXP ; Z):

The last equality is justi�ed by a conditional mean independence assumption,

E(A+ " j S;EXP ; Z) = E(A+ " j EXP ; Z):

If this holds, then we have
(@=@s)�(S;EXP ; Z) = �1;

so that the e¤ect of interest, �1; is identi�ed and can be consistently estimated.
There is no reason a priori that the wage equation must have the speci�c Mincer form,

however. More generally, one can consider a nonparametric speci�cation

lnY = r(S;X;U);

where r is an unknown function; X contains observable factors determining wages, including
EXP, as well as other factors like job tenure, region, sex, race, etc.; and U = (A; "):

An important e¤ect of interest here is

�1(S;X;U) = (@=@s)r(S;X;U);

the marginal e¤ect of schooling on wage. This e¤ect depends on all drivers of wage, including
unobservables, U; so �1(S;X;U) is not identi�able without further potentially strong restrictions.
Nevertheless, just as in the linear case, it is possible to identify and estimate certain expectations
of �1(S;X;U) given suitable ability proxies Z; as

(@=@s)�(s; x; z) = (@=@s)E(lnY j S = s;X = x;Z = z)

= E((@=@s)r(S;X;U) j S = s;X = x;Z = z)

= E(�1(s;X;U) j X = x;Z = z) � ��1(s; x; z):
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The crucial condition justifying the third equality is conditional independence:

(A; ") ? S j (X;Z) (36)

This is called a �conditional exogeneity�assumption by White and Chalak (2008). It implies the
�ignorability�or �unconfoundedness�condition, also known as �selection on observables�in the
literature, ensuring identi�cation of causal e¤ects.

Thus, if (36) holds, and even if the speci�c Mincer function (35) does not, we can still
identify the average marginal e¤ect of schooling ��1(s; x; z) and consistently estimate this by
various methods. If (36) fails, then the marginal e¤ect of interest is no longer identi�ed (see, e.g.,
White and Chalak, 2008, theorem 4.1).

We cannot test (36) directly, as A and " are unobservable. However, following White and
Chalak (2010), if we can observe V such that

V = f (A; ";X;Z; �) (37)

� ? S j (A;X;Z);

where f denotes some unknown function and � is unobserved, then

(A; ") ? S j (X;Z) implies V ? S j (X;Z):

Thus, we can test unconfoundedness by testing the implied condition

H0 : V ? S j (X;Z): (38)

Equation (37) provides some guidance about how to choose V . The conditional independence
requirement on � is particularly plausible when � is a measurement error, so that both Z and
V could be error-laden proxies for ability. Here, we test (38) using data from the National
Longitudinal Survey of Youth 1979 (NLSY 79). In particular, we use the data from survey year
2000 and restrict the sample to white males.1 We use the age-adjusted standardized AFQT in
year 1980 as Z. V includes math and verbal scores for preliminary scholastic aptitude tests from
1981 high school transcripts. To satisfy (37), we use years of schooling beyond high school as S,
so that V is not a¤ected by S. X includes actual work experience in survey year 2000 and total
tenure with employer in survey year 2000.

To implement the test, we choose '(�) to be the standard normal PDF, and let k(�) be the
sixth-order Gaussian kernel. We choose 
 and other metaparameters as described in the Monte
Carlo section. Applying our GCR test, we �nd that we do not reject the null hypothesis (38) at
the 5% level. Thus, we do not �nd evidence refuting the approach commonly used by empirical
researchers.

7 Concluding Remarks

In this paper, we develop a �exible nonparametric test for conditional independence that is simple
to implement, yet powerful. It is consistent against any deviation from the null and achieves local
power at the parametric n�1=2 rate, despite its nonparametric character. It is also very �exible
as it allows for a rich class of GCR functions.

There are several useful directions for future research. First, we have assumed that the data
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are IID. But this is not essential for the results. We may straightforwardly extend the approach to
a time-series framework, so that we could test, for example, nonlinear Granger causality. Another
extension could be to modify the test so that it can be used when Z contains both discrete and
continuous variables. This is often relevant in applied microeconomics. This extension has been
considered in Chapter 3 of Huang (2009). A third direction is to further study the bandwidth
selection problem. Here, we choose the bandwidth to minimize the mean squared error of �̂n;h(
).
Ideally, however, one should choose the bandwidth that optimizes the trade-o¤ between size and
power.
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Figure 1: Power functions of the GCR test for DGP 1 with nominal size 5%
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Figure 2: Power functions of the GCR test for DGP 2 with nominal size 5%
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Figure 3: Power functions of the GCR test for DGP 3 with nominal size 5%
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Figure 4: Power functions of the 5% GCR test, SW2007 test, and SW2008 test under DGP1 with
sample size 100
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Figure 5: Power functions of the 5% GCR test, SW2007 test, and SW2008 test under DGP1 with
sample size 200
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Figure 6: Power functions of the 5% GCR test, LG 1997 test, and DG 2001 test under DGP1
with sample size 200
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Figure 7: Power functions of the 5% GCR test, LG 1997 test, and DG 2001 test under DGP1
with sample size 500
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8 Appendix

8.1 Proofs of the Main Results

Throughout the proofs, we use C to denote a constant that may be di¤erent across di¤erent
equations or lines.

Proof of Lemma 3: For the pointwise result, we use Assumption 1 and the theory of
U-statistics to obtain

var
�p
nRn;h (
)

�
=

2

(n� 1)var [~�h;2(Wi;Wj ;
)]

� 2
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and so
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where 'max = sup
2� supW2[0;1]d '( ~W
0
); which is �nite under Assumption 3. Using Assumption

2, we have
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where
R
is the integral over the support of K (�) : It follows from Assumption 4 that

R
K2(u)du =�R1
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�dZ

<1 andZ
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Combining this with (39), we have, using Assumption 5(a):
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�
1

hdZ

�
= O(n� 1

nhdZ
) = o(n):

This implies that Rn;h (
) = op (1=
p
n) pointwise for each 
 2 �:

To show the uniformity result that sup
2�Rn;h (
) = op (1=
p
n) ; we employ the theory of

U-processes. In particular, we apply Proposition 4 in DG (2001) with their k = 2: The class
of functions under consideration is K = f�h;2(Wi;Wj ;
) : 
 2 �g : Since j�h;2(Wi;Wj ;
)j �
2'max jKh(Zi � Zj)j ; we can use K (Wi;Wj) = 2'max jKh(Zi � Zj)j as the envelope function. As
sets of linear functions whose subgraphs are half planes, both f ~Wi
 : 
 2 �g and f ~Wij
 : 
 2 �g
are VC-type. Under Assumption 3(b), it is clear that f'( ~Wi
) : 
 2 �g and f'( ~Wij
) : 
 2 �g
also are VC-type. Multiplying by a �xed function Kh(�) will not change their VC property
and the associated VC characteristics. Therefore f�h;2(Wi;Wj ;
) : 
 2 �g is VC type with VC
characteristics independent of h: Applying Proposition 4 in DG (2001), we have
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Proof of Lemma 4: Part (a). We �rst establish an expansion of
R
[0;1]dZ Kh(u�z)fZ (u) du;
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Here we have used Assumptions 2(a) and 4(b).
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Using the above result, we have
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for some constant ~� > 0. Therefore  (z; ~x; ~z;
) 2 Gq+1
�
[0; 1]dX+dZ � �; �; ~�'max

�
: In addition,

note that

 (z; ~x; ~z;
) =

"Z
[0;1]dY

'(~x; y; ~z;
)fY jZ(yjz)dy
#
fZ (z) ;

36



which, combined with Assumption 2(b), implies thatDj
z (�z; ~x; ~z;
) = 0 for all �z on the boundary

on [0; 1]dZ : Given these two properties, we can follow the same steps in showing (41) to obtainZ
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Part (b). By de�nition
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��h (
)

=
2

n

nX
i=1

[�1(Wi;
)� E�1(Wi;
)] +
1

n

nX
i=1

B5(Xi; Yi; Zi;
)h
q

� (�h (
)��(
)) + o(hq)

where the o(hq) term holds uniformly over 
 2 �:
Since B5(Xi; Yi; Zi;
) is continuous in 
; E sup
2� jB5(Xi; Yi; Zi;
)j <1; (Xi; Yi; Zi) is IID,

and � is compact, we can use a standard textbook argument to show that a ULLN applies to
n�1

Pn
i=1B5(Xi; Yi; Zi;
): That is, sup
2�

��n�1Pn
i=1B5(Xi; Yi; Zi;
)

�� = O(1): Combining this
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with part (a), we have

Hn;h(
) =
2

n

nX
i=1

f�1(Wi;
)� E [�1(Wi;
)]g+Op(hq)

=
2

n

nX
i=1

f�1(Wi;
)� E [�1(Wi;
)]g+ op(
1p
n
)

uniformly over 
 2 �:
�

Proof of Theorem 5. As a direct implication of Lemmas 3 and 4, we have

p
n
h
�̂n;h(�s)��(�s)

i
=
2

n

nX
i=1

f�1(Wi; �s)� E [�1(Wi; �s)]g+ op (1)

uniformly over 
 2 �: The asymptotic normality now follows by applying the Lindeberg-Levy
CLT.

If in addition H0 holds, then �(�s) = 0 and

�1(Wi; 
) =
1

2
'(Xi; Yi; Zi;
)fZ(Zi)�

1

2

Z
'(Xi; y; Zi;
)fY Z(y; Zi)dy

+
1

2

Z
'(x; y; Zi;
)fXY Z(x; y; Zi)dxdy �

1

2

Z
'(x; Yi; Zi;
)fXZ(x;Zi)dx;

(under H0) =
1

2
E [' (Xi; Yi; Zi;
) fZ(Zi)jXi; Yi; Zi]�

1

2
E [' (Xi; Yi; Zi;
) fZ(Zi)jXi; Zi]

+
1

2
E [' (Xi; Yi; Zi;
) fZ(Zi)jZi]�

1

2
E [' (Xi; Yi; Zi;
) fZ(Zi)jYi; Zi]

= �(Wi;
):

Thus, given H0 we have

 (`;m) = 4E [�(Wi;
`)�(Wi;
m)] :

�

Proof of Theorem 6: Given Lemmas 3 and 4, it su¢ ces to prove part (a). Theorem
5 shows that for a �nite number of 
�s, f�n(
1); �n(
2); : : : ; �n(
s)g is asymptotically normal.
Also, 
 2 � � R1+d with � a compact (hence totally bounded) set. To complete the proof, we
need to show that �n(
) is stochastically equicontinuous (e.g., see Andrews, 1994). For this, we
use Theorems 4�6 in Andrews (1994). In view of the de�nition of �1(Wi;
) in (42) and Theorem
6 in Andrews (1994), we only need to verify that each of the four terms satis�es Ossiander�s L2

entropy condition.
For the �rst term in (42), ' (Wi;
) fZ(Zi) belongs to the type IV class if we can verify that

E

(
[fZ(Zi)]

2 sup

1:k
1�
k<�

j' (Wi;
1)� ' (Wi;
)j2
)
� C� (48)

for any 
 2�; for any � > 0 in a neighborhood of 0, and for some �nite constants C > 0 and
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 > 0. Under Assumption 3, ' (Wi;
) is di¤erentiable in 
. Given that

E






fZ(Zi) sup
2�
@ [' (Wi;
) =@
]







2

<1

and � is bounded, we can show that (48) holds by the mean value theorem and Cauchy-Schwarz
inequality.

Similarly, we can show that the other three terms in �1(Wi;
) also belong to the type IV

class. Hence �n(�)
d! Z (�).

�

8.2 Standardization with Estimated Location and Scale Parameters

In this subsection, we show that the estimation errors in the location and scale parameters do
not a¤ect the �rst order asymptotic properties of our GCR test.

Suppose that our raw data is ( �Xi; �Yi; �Zi): For notational simplicity, we assume that each of
random variables �Xi; �Yi; �Zi is a scalar. Let �x and �x be the location and scale parameters of
�Xi and let �̂x and �̂x be their sample or estimated versions. De�ne �y, �z, �y; and �z and their
sample versions similarly. Let

Xi = 	

 
�Xi � �x
�x

!
; X̂i = 	

 
�Xi � �̂x
�̂x

!

Yi = 	

 
�Yi � �y
�y

!
; Ŷi = 	

 
�Yi � �̂y
�̂y

!

Zi = 	

 
�Zi � �z
�z

!
; Ẑi = 	

 
�Zi � �̂z
�̂z

!

where 	 is a function mapping R into a bounded set [a; b]. Then (Xi; Yi; Zi) 2 [a; b]3: Our
asymptotic development so far has been based on (Xi; Yi; Zi) which is not feasible in general, as
we do not know the location and scale of each random variable. In practice we have to use the
feasible version (X̂i; Ŷi; Ẑi): De�ne ��n;h(
) in the same manner as �̂n;h(
) but with (Xi; Yi; Zi)

replaced by (X̂i; Ŷi; Ẑi), i.e.,

��n;h(
)

=
1

n (n� 1)
X
i;j

h
'(
0 + X̂

0
i
1 + Ŷ

0
j 
2 + Ẑ

0
i
3)� '(
0 + X̂ 0

i
1 + Ŷ
0
j 
2 + Ẑ

0
i
3)

i
Kh(Ẑj � Ẑi):

The question is whether the estimation uncertainty in the location and scale parameters
a¤ect the asymptotic distribution of our GCR test. The answer is no, provided that the following
additional assumptions hold.

Assumption 6 (a) 	 (�) is three times di¤erentiable with derivatives 	(k) (�) satisfying
supu2R

��	(k) (u)uk�� <1 for k = 1; 2; 3:
(b) �̂v � �v = Op (1=

p
n) and �̂v � �v = Op (1=

p
n) for v = x; y; z:
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(c) the kernel function k(�) is continuously di¤erentiable with a bounded derivative k(1) (�) andR1
�1

�
k(1) (u)

�j
ukdu <1 for j = 1; 2 and k = 1; 2; 3:

(d) nhdZ+1 !1:

All of the above assumptions are mild. Assumption 6(a) is satis�ed for 	(x) = arctan(x) and
the normal CDF. If �v and �v are the mean and standard deviation respectively, then Assumption
6(b) holds under some moment conditions. In the absence of enough moments, we can let �v
and �v be the median and interquartile range respectively, in which case Assumption 6(b) can
still hold under mild conditions. Assumption 6(c) holds for the commonly used kernel functions.
Assumption 6(d) is given for the multivariate case. It holds for the bandwidth rule given in
(27) when q > dZ=2 + 1: In particular, when dZ = 1; we only need q � 2; which holds for any
symmetric kernel.

Theorem 7 Let Assumptions 1�6 hold. Then under the null and the local alternative given in
(31),

p
n[ ��n;h(
)� �̂n;h(
)] = op (1) uniformly over 
 2 �.

Proof of Theorem 7: We let

G1x

�
�Xi

�
� G1

�
�Xi;�x; �x

�
�
@	
�
�Xi��x
�x

�
@ (�x; �x)

0 = 	(1)

 
�Xi � �x
�x

! 
� 1
�x

� �Xi��x
�2x

!

G2x

�
�Xi

�
� G2

�
�Xi;�x; �x

�
�

@2	
�
�Xi��x
�x

�
@ (�x; �x) @ (�x; �x)

0

= 	(2)

 
�Xi � �x
�x

! 
� 1
�x

� �Xi��x
�2x

! 
� 1

�x
;�

�Xi � �x
�2x

!

+	(1)

 
�Xi � �x
�x

! 
0 1

�2x

1
�2x

2( �Xi��x)
�3x

!

and

�nx =

� p
n (�̂x � �x)p
n (�̂x � �x)

�
:

Under Assumption 6(a), the elements ofG1v (�), G2v(�) and the third derivatives of	((x� �v) =�v)
with respect to �v and �v for v = x; y; z are bounded functions on R. It follows from Assumption
6(a) and (b) that

X̂i �Xi =
1p
n
G1x

�
�Xi

�0
�nx +

1

n
�0nxG2x

�
�Xi

�
�nx +Op

�
1

n
p
n

�
;

uniformly over i. Similarly,

Ŷi � Yi =
1p
n
G1y

�
�Yi

�0
�ny +

1

n
�0nyG2y

�
�Yi

�
�ny +Op

�
1

n
p
n

�
and

Ẑi � Zi =
1p
n
G1z

�
�Zi

�0
�nz +

1

n
�0nzG2z

�
�Zi

�
�nz +Op

�
1

n
p
n

�
;
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uniformly over i:
Using Assumption 6(d), we now have

p
n ��n;h(
)�

p
n�̂n;h(
)

=
1

n (n� 1)
X
i;j

h
'( ~W 0

i
)� '( ~W 0
ij
)

ip
n
h
Kh(Ẑj � Ẑi)�Kh(Zj � Zi)

i
+

1

n (n� 1)
X
i;j

h
'(1)( ~W 0

i
)
ip

n
h
(X̂i �Xi)

0
1 + (Ŷi � Yi)0
2 + (Ẑi � Zi)0
3
i
Kh(Ẑj � Ẑi)

� 1

n (n� 1)
X
i;j

'(1)( ~W 0
ij
)

p
n
h
(X̂i �Xi)

0
1 + (Ŷj � Yj)0
2 + (Ẑi � Zi)0
3
i
Kh(Ẑj � Ẑi) + op (1)

= I1(
) + I2x(
) + I2y(
) + I2z(
) + op (1)

uniformly over 
 2 � where

I1(
) =
1

n (n� 1)
X
i;j

h
'( ~W 0

i
)� '( ~W 0
ij
)

ip
n
h
Kh(Ẑj � Ẑi)�Kh(Zj � Zi)

i
;

I2x(
) =
1

n (n� 1)
X
i;j

h
'(1)( ~W 0

i
)� '(1)( ~W 0
ij
)

i hp
n(X̂i �Xi)

0
1

i
Kh(Ẑj � Ẑi);

I2y(
) =
1

n (n� 1)
X
i;j

h
'(1)( ~W 0

i
)
p
n(Ŷi � Yi)0
2 � '(1)( ~Wij
)

p
n(Ŷj � Yj)0
2

i
Kh(Ẑj � Ẑi);

I2z(
) =
1

n (n� 1)
X
i;j

h
'(1)( ~W 0

i
)� '(1)( ~W 0
ij
)

ip
n(Ẑi � Zi)0
3Kh(Ẑj � Ẑi):

We �rst show that sup
2� jI1(
)j = op (1) : Noting that under Assumption 6(c),

p
nKh(Ẑj � Ẑi)

=

p
n

h
K

0B@Zj � Zi
h

+

h
G1z( �Zj)�G1z( �Zi)

i0
�nz

p
nh

+
�0nz

h
G2z( �Zj)�G2z( �Zi)

i
�nz

nh
+Op

�
1

n
p
nh

�1CA
=

p
n

h
K

0B@Zj � Zi
h

+

h
G1z( �Zj)�G1z( �Zi)

i0
�nz

p
nh

+
�0nz

h
G2z( �Zj)�G2z( �Zi)

i
�nz

nh

1CA+Op� 1

nh2

�

=

p
n

h
K

0B@Zj � Zi
h

+

h
~G1z (Zj)� ~G1z (Zi)

i0
�nz

p
nh

+
�0nz

h
~G2z (Zj)� ~G2z (Zi)

i
�nz

nh

1CA+ op (1)
uniformly over 
 2 � where

~G1z (Z) := G1z
�
�z + �z	

�1 (Z)
�
and ~G2z (Z) := G2z

�
�z + �z	

�1 (Z)
�
;
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we have

p
nKh(Ẑj � Ẑi)�

p
nKh(Zj � Zi)

=
1

h2
K(1)

�
Zj � Zi

h

�h
~G1z (Zj)� ~G1z (Zi)

i0
�nz

+
1p
nh2

K(1)

�
Zj � Zi

h

�
�0nz

h
~G2z (Zj)� ~G2z (Zi)

i
�nz + op (1)

uniformly over 
 2 �; where the op (1) term follows from the Markov inequality. As a result

I1(
) = I11;�(
) + I12;�(
) + I13;�(
) + op (1) ;

uniformly over 
 2 � where I11;�(
) = I 011(
)�nz and I12;�(
) = �0nzI12(
)�nz with

I11(
) =
1

n (n� 1)
X
i;j

h
'( ~W 0

i
)� '( ~W 0
ij
)

i 1
h
K(1)

�
Zj � Zi

h

� ~G1z (Zj)� ~G1z (Zi)

h

and

I12(
) =
1

n (n� 1)
X
i;j

h
'( ~W 0

i
)� '( ~W 0
ij
)

i 1p
n

1

h
K(1)

�
Zj � Zi

h

� ~G2z (Zj)�G2z
�
~Zi

�
h

:

Without loss of generality and for notational simplicity, we consider the case when only one
of �z and �z has to be estimated. In this case, all of G1z (�) ; G2 (�) and �nz are scalars. Let

~Kh(Zj ; Zi) =
1

h
K(1)

�
Zj � Zi

h

� h ~G1z (Zj)� ~G1z (Zi)
i

h
;

and

!h (Wi;Wj ;
) =
1

2

h
'( ~W 0

i
)� '( ~W 0
ij
)

i
~Kh(Zj ; Zi) +

1

2

h
'( ~W 0

j
)� '( ~W 0
ji
)

i
~Kh(Zi; Zj);

we can rewrite I11(
) as

I11(
) =
1

n (n� 1)
X
i6=j

h
'( ~W 0

i
)� '( ~W 0
ij
)

i
~Kh(Zj ; Zi)

=
2

n (n� 1)
X
i<j

!h (Wi;Wj ;
) ;

which is a U process. Letting

!h;1 (w;
) = E!h (w;Wj ;
)

and using Hoe¤ding�s H-decomposition, we have

I11(
) = EI11(
) +
2

n

nX
i=1

[!h;1 (Wi;
)� E!h;1 (Wi;
)] +R
!
n;h (
) ;
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where

R!n;h (
) =
2

n (n� 1)
X
i<j

!h (Wi;Wj ;
)� !h;1 (Wi;
)� !h;1 (Wj ;
) + E!h (Wi;Wj ;
) :

We proceed to use the theory of U processes to evaluate the order of I11(
): To compute
EI11(
); we observe that for ~u and ~u� between 0 and u;

E'( ~W 0
i
)

~Kh(Zj ; Zi)

= E

Z 1

0
'(Xi;Yi; Zi;
)

1

h
K(1)

�
z � Zi
h

� h ~G1z (z)� ~G1z (Zi)
i

h
fZ (z) dz

= E

Z (1�Zi)=h

�Zi=h
'(Xi;Yi; Zi;
)K

(1) (u)

h
~G1z (Zi + uh)� ~G1z (Zi)

i
h

fZ (Zi + uh) du

= E

Z (1�Zi)=h

�Zi=h
'(Xi;Yi; Zi;
)K

(1) (u)u
h
~G
(1)
1z (Zi + ~u

�h)
i �
fZ (Zi) + f

0
Z (Zi + ~uh)uh

�
du

= E'(Xi;Yi; Zi;
) ~G
(1)
1z (Zi) fZ (Zi)

�Z 1

�1
K(1) (u)udu

�
+O(h);

and

E
h
'( ~W 0

ij
)
i
~Kh(Zj ; Zi)

= E

Z 1

0

Z 1

0
'(Xi;y; Zi;
)

1

h
K(1)

�
z � Zi
h

� h ~G1z (z)� ~G1z (Zi)
i

h
fY Z (y; z) dzdy

= E

Z 1

0

Z (1�Zi)=h

�Zi=h
'(Xi;y; Zi;
)K

(1) (u)

h
~G1z (Zi + uh)� ~G1z (Zi)

i
h

fY Z (y; Zi + uh) dudy

= E

Z 1

0

Z (1�Zi)=h

�Zi=h
'(Xi;y; Zi;
)K

(1) (u)u
h
~G
(1)
1z (Zi + ~u

�h)
i
[fY Z (y; Zi) +DzfY Z (y; Zi + ~uh)uh] dudy

=

�
E

Z 1

0
'(Xi;y; Zi;
) ~G

(1)
1z (Zi) fY Z (y; Zi) dy

� �Z 1

�1
K(1) (u)udu

�
+O(h) (49)

where the O(h) terms hold uniformly over 
 2 �: Under the null hypothesis, the expectation in
(49) becomes

E

Z 1

0
'(Xi;y; Zi;
) ~G

(1)
1z (Zi) fY jZ (y; Zi) f(Zi)dy

= E

Z
'(Xi;y; Zi;
) ~G

(1)
1z (Zi) fY jZ;X (yjZi; Xi) f(Zi)dy

= E'(Xi;Yi; Zi;
) ~G
(1)
1z (Zi) fZ (Zi) :

Under the local alternative hypothesis, we have

fXY Z (x; y; z)

fXZ(x; z)
= fY jZ(y; z) +

� (x; y; z)p
nfXZ(x; z)

:
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That is

fY jX;Z (yjx; z) = fY jZ(y; z) +
� (x; y; z)p
nfXZ(x; z)

:

So the expectation in (49) becomes

E

Z 1

0
'(Xi;y; Zi;
) ~G

(1)
1z (Zi) fY jZ (y; Zi) f(Zi)dy

= E

Z 1

0
'(Xi;y; Zi;
) ~G

(1)
1z (Zi)

�
fY jX;Z (yjXi; Zi)�

� (Xi; y; Zi)p
nfXZ(Xi; Zi)

�
f(Zi)dy

= E'(Xi;Yi; Zi;
) ~G
(1)
1z (Zi) fZ (Zi)

�E
Z 1

0
'(Xi;y; Zi;
) ~G

(1)
1z (Zi)

�
� (Xi; y; Zi)p

nfXZ(Xi; Zi)fY jX;Z (yjXi; Zi)

�
fY jX;Z (yjXi; Zi) dyf(Zi)

= E'(Xi;Yi; Zi;
) ~G
(1)
1z (Zi) fZ (Zi)�

1p
n
E'(Xi;y; Zi;
) ~G

(1)
1z (Zi)

� (Xi; Yi; Zi)

fXY Z(Xi; Y; Zi)
f(Zi):

Therefore,

sup

2�

jEI11(
)j =
�
O (h) = o(1); under the null
O (1=

p
n+ h) = o(1); under the local alternative

Following the same argument for proving Lemma 3, we can show that

sup

2�

R!n;h (
) = Op

 
1

n

�
E
h
~Kh(Zj ; Zi)

i2�1=2!
:

But

E ~K2
h(Zj ; Zi)

=
1

h

Z 1

0

Z 1

0

1

h

�
K(1)

�
z2 � z1
h

��2 h ~G1z (z2)� ~G1z (z1)
i2

h2
fZ (z1) fZ (z2) dz1dz2

=
1

h2

Z 1

0

Z 1�z1=h

z1=h

h
K(1) (u)

i2 h ~G1z (z1 + uh)� ~G1z (z1)
i2

h
fZ (z1) fZ (z1 + uh) dudz1

= O(
1

h2
)

and hence sup
2�
���R!n;h (
)��� = Op (1=(nh)) = op(1):

By de�nition,

!h;1 (Wi;
) =
1

2
E
n
['(Xi; Yi; Zi;
)� '(Xi; Yj ;Zi;
)] ~Kh(Zj ; Zi)jWi

o
+
1

2

n
E ['(Xj ; Yj ; Zj ;
)� '(Xj ; Yi;Zj ;
)] ~Kh(Zj ; Zi)jWi

o
:
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Note that

E
n
['(Xi; Yi; Zi;
)] ~Kh(Zj ; Zi)jWi

o
=

Z 1

0
['(Xi; Yi; Zi;
)]

1

h
K(1)

�
z � Zi
h

� h ~G1z (z)� ~G1z (Zi)
i

h
fZ (z) dz

=

Z 1�Zi=h

�Zi=h
['(Xi; Yi; Zi;
)]K

(1) (u)

h
~G1z (Zi + uh)� ~G1z (Zi)

i
h

fZ (Zi + uh) du

= ['(Xi; Yi; Zi;
)] fz(Zi) ~G
(1)
1z (Zi)

�Z 1

�1
K(1) (u)udu

�
+Op(h)

uniformly over i and 
 2 �: Following the same steps, we can approximate other conditional
expectations in !h;1 (Wi;
) and obtain

sup

2�

sup
Wi2[0;1]d

j!h;1 (Wi;
)� !1 (Wi;
)j = Op (h)

where

!1 (Wi;
) = �1(Wi;
) ~G
(1)
1z (Zi)

�Z 1

�1
K(1) (u)udu

�
and �1(Wi;
) is de�ned in (42). Using this result and a uniform law of large numbers, we have

2

n

nX
i=1

[!h;1 (Wi;
)� E!h;1 (Wi;
)]

=
2

n

nX
i=1

[!1 (Wi;
)� E!1 (Wi;
)] +Op (h) = op (1) :

This, combined with sup
2� jEI11j = o (1) and sup
2�
���R!n;h (
)��� = op (1) ; yields sup
2� jI11 (
)j =

op (1) : Similarly, we can show that sup
2� jI12 (
)j = op (1) : So sup
2� jI1 (
)j = op (1) :
Following the same arguments, we can show that sup
2� jI2v (
)j = op (1) for v = x; y; z: We

have therefore proved that

sup

2�

���pn ��n;h(
)�
p
n�̂n;h(
)

��� = op (1)

as desired.
�
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