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Abstract

This paper proposes a nonparametric test for conditional independence that is easy
to implement, yet powerful in the sense that it is consistent and achieves n�1=2 lo-
cal power. The test statistic is based on an estimator of the topological �distance�
between restricted and unrestricted probability measures corresponding to conditional
independence or its absence. The distance is evaluated using a family of Generically
Comprehensively Revealing (GCR) functions, such as the exponential or logistic func-
tions, which are indexed by nuisance parameters. The use of GCR functions makes the
test able to detect any deviation from the null. We use a kernel smoothing method
when estimating the distance. An integrated conditional moment (ICM) test statistic
based on these estimates is obtained by integrating out the nuisance parameters. We
simulate the critical values using a conditional simulation approach. Monte Carlo ex-
periments show that the test performs well in �nite samples. As an application, we
test the key assumption of unconfoundedness in the context of estimating the returns
to schooling.

1 Introduction

In this paper, we propose a �exible nonparametric test for conditional independence. Let
X; Y; and Z be three random vectors. The null hypothesis we want to test is that Y is
independent of X given Z, denoted

Y ? X j Z:
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Intuitively, this means that given the information in Z, X cannot provide additional infor-
mation useful in predicting Y . Dawid (1979) showed that some simple heuristic properties
of conditional independence can form a conceptual framework for many important topics
in statistical inference: su¢ ciency and ancillarity, parameter identi�cation, causal infer-
ence, prediction su¢ ciency, data selection mechanisms, invariant statistical models, and a
subjectivist approach to model-building.

An important application of conditional independence testing in economics is to test a
key assumption identifying causal e¤ects. Suppose we are interested in estimating the e¤ect
of X (e.g., schooling) on Y (e.g., income), and that X and Y are related by the equation

Y = �0 + �1X + U;

where U (e.g., ability) is an unobserved cause of Y (income) and �0 and �1 are unknown
coe¢ cients, with �1 representing the e¤ect ofX on Y . (We write a linear structural equation
here merely for concreteness.) Since X is typically not randomly assigned and is correlated
with U (e.g., unobserved ability will a¤ect both schooling and income), OLS will generally
fail to consistently estimate �1. Nevertheless, if, as in Griliches and Mason (1972) and
Griliches (1977), we can �nd a set of covariates Z (e.g., proxies for ability, such as AFQT
scores) such that

U ? X j Z; (1)

we can estimate �1 consistently by various methods: covariate adjustment, matching, meth-
ods using the propensity score such as weighting and blocking, or combinations of these
approaches.

Assumption (1) is a key assumption for identifying �1. It is called a conditional ex-
ogeneity assumption by White and Chalak (2008). It enforces the �ignorability� or �un-
confoundedness�condition, also known as �selection on observables� (Barnow, Cain, and
Goldberger, 1981).

Note that assumption (1) cannot be directly tested since U is unobservable. But if
there are other observable covariates V satisfying certain conditions (see White and Chalak,
2010), we have

U ? X j Z implies V ? X j Z;
so we can test (1) by testing its implication, V ? X j Z: Section 6 of this paper applies
this test in the context of a nonparametric study of returns to schooling.

In the literature, there are many tests for conditional independence when the variables
are categorical. But in economic applications it is common to condition on continuous
variables, and there are only a few nonparametric tests for the continuous case. Previous
work on testing conditional independence for continuous random variables includes Linton
and Gozalo (1997, �LG�), Fernandes and Flores (1999, �FF�), and Delgado and Gonzalez-
Manteiga (2001, �DG�). Su and White have several papers (2003, 2007, 2008, 2010, �SW�)
addressing this question. Although SW�s tests are consistent against any deviation from
the null, they are only able to detect local alternatives converging to the null at a rate
slower than n�1=2 and hence su¤er from the �curse of dimensionality.�

Recently, Song (2009) has proposed a distribution-free conditional independence test
of two continuous random variables given a parametric single index that achieves the local
n�1=2 rate. Speci�cally, Song (2009) tests the hypothesis

Y ? X j �� (Z) ;
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where �� (�) is a scalar-valued function known up to a �nite-dimensional parameter �, which
must be estimated.

A main contribution here is that our proposed test also achieves n�1=2 local power, de-
spite its fully nonparametric nature. In contrast to Song (2009), the conditioning variables
can be multi-dimensional; and there are no parameters to estimate. The test is motivated
by a series of papers on consistent speci�cation testing by Bierens (1982, 1990), Bierens
and Ploberger (1997), and Stinchcombe and White (1998, �StW�), among others. Whereas
Bierens (1982, 1990) and Bierens and Ploberger (1997) construct tests essentially by com-
paring a restricted parametric and an unrestricted regression model, the test in this paper
follows a suggestion of StW, basing the test on estimates of the topological distance between
unrestricted and restricted probability measures, corresponding to conditional independence
or its absence.

This distance is measured indirectly by a family of moments, which are the di¤erences
of the expectations under the null and under the alternative for a set of test functions. The
chosen test functions make use of Generically Comprehensively Revealing (GCR) functions,
such as the logistic or normal cumulative distribution functions (CDFs), and are indexed
by a continuous nuisance parameter vector . Under the null, all moments are zero. Under
the alternative, the moments are nonzero for essentially all choices of . This is in contrast
with DG (2001), which employs an indicator testing function that is not generally and
comprehensively revealing. By construction, the indicator function takes only the values
one and zero, whereas the GCR function is more �exible and hence may better present the
information.

We estimate these moments by their sample analogs, using kernel smoothing. An inte-
grated conditional moment (ICM) test statistic based on these is obtained by integrating
out the nuisance parameters. Its limiting null distribution is a functional of a mean zero
Gaussian process. We simulate critical values using a conditional simulation approach
suggested by Hansen (1996) in a di¤erent setting.

The plan of the paper is as follows. In Section 2, we explain the basic idea of the test
and specify a family of moment conditions and their empirical counterparts. This family of
moment conditions is (essentially) equivalent to the null hypothesis of conditional indepen-
dence and forms a basis for the test. In Section 3, we establish stochastic approximations
of the empirical moment conditions uniformly over the nuisance parameters. We derive
the �nite-dimensional weak convergence of the empirical moment process. We also pro-
vide bandwidth choices for practical use: a simple �plug-in�estimator of the MSE-optimal
bandwidth. In Section 4, we formally introduce and analyze our ICM test statistic. In par-
ticular, we establish its asymptotic properties under the null and alternatives and provide
a conditional simulation approach to simulate the critical values. In Section 5, we report
some Monte Carlo results examining the size and power properties of our test and compar-
ing its performance with that of a variety of other tests in the literature. In Section 6, we
study the returns to schooling, using the proposed statistic to test the key assumption of
unconfoundedness. The last section concludes and discusses directions for further research.
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2 The Null Hypothesis and Testing Approach

2.1 The Null Hypothesis

Let X, Y , and Z be three random vectors, with dimensions dX , dY ; and dZ , respectively.
Denote W = (X 0; Y 0; Z 0) 2 Rd with d = dX+dY +dZ : Given an IID sample fXi; Yi; Zigni=1,
we want to test the null that Y is independent of X conditional on Z, i.e.,

H0 : Y ? X j Z; (2)

against the alternative that Y and X are dependent conditional on Z, i.e.,

Ha : Y 6? X j Z:

Let FY jXZ(y j x; z) be the conditional distribution function of Y given (X;Z) = (x; z)
and FY jZ(y j z) be the conditional distribution function of Y given Z = z. Then we can
express the null as

FY jXZ(y j x; z) = FY jZ(y j z): (3)

The following three expressions are equivalent to one another and to (3):

FXjY Z(x j y; z) = FXjZ(x j z); (4)

FXY jZ(x; y j z) = FXjZ(x j z) FY jZ(y j z); (5)

FXY Z(x; y; z) FZ(z) = FXZ(x; z) FY Z(y; z); (6)

where we have used the standard notations for distribution functions.
Let 	 : R ! [0; 1] be a one-to-one mapping with Boreal measurable inverse. De�ne

	Y (Y ) = (	 (Y1) ; : : : ;	(YdY )) and de�ne 	X (X) and 	Z (Z) similarly. Then Y ? X j Z
is equivalent to 	Y (Y ) ? 	X (X) j 	Z (Z) : The equivalence holds because the sigma �elds
are not a¤ected by the transformation. An example of such a transformation is the normal
CDF. In practice, we may also use a linear map such as Yi ! [Yi �min(Yi)] =[max(Yi) �
min(Yi)] to map the data into a bounded set. So without loss of generality, we assume that
P (W 2 [0; 1]d) = 1 throughout the rest of the paper.

2.2 An Equivalent Null Hypothesis in Moment Conditions

The approach adopted in this paper is inspired by a series of papers on consistent speci�ca-
tion testing: Bierens (1982, 1990), Bierens and Ploberger (1997), and StW, among others.
The tests in those papers are based on an in�nite number of moment conditions indexed by
nuisance parameters. Bierens (1990) provides a consistent test of speci�cation of nonlinear
regression models. Consider the regression function g (x) = E (Y j X = x). Bierens tests
the hypothesis that the parametric functional form, f (x; �), is correctly speci�ed in the
sense that g (x) = f (x; �0) for some �0 2 �. The test statistic is based on an estimator
of a family of moments E

h
(Y � f(X; �0))e

0X
i
indexed by a nuisance parameter vector

. Under the null hypothesis of correct speci�cation, these moments are zero for all .
Bierens�s (1990) Lemma 1 shows that the converse essentially holds, due to the properties
of the exponential function, making the test capable of detecting all deviations from the
null.
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StW �nd that a broader class of functions has this property. They extend Bierens�s
result by replacing the exponential function in the moment conditions with any GCR func-
tion, and by extending the probability measures considered in the Bierens (1990) approach
to signed measures. As stated in StW, GCR functions include non-polynomial real ana-
lytic functions, e.g., exp, logistic CDF, sine, cosine, and also some nonanalytic functions
like the normal CDF or its density. Further, they point out that such speci�cation tests are
based on estimates of topological distances between a restricted model and an unrestricted
model. Following this idea, we can construct a test for conditional independence based on
estimates of a topological distance between unrestricted and restricted probability measures
corresponding to conditional independence or its absence.

To de�ne the GCR property formally, let C(F ) be the set of continuous functions on
a compact set F � Rd; and sp [H'(�)] be the span of a collection of functions H'(�): We
write ~w := (1; w0)0: The de�nition below is the same as De�nition 3.6 in StW.

De�nition 1 (StW, De�nition 3.6) We say that H' = fH : Rd ! R j H(w) =
' ( ~w0) ;  2 � � R1+dg is generically comprehensively revealing if for all � with non-empty
interior, the uniform closure of sp[H'(�)] contains C(F ) for every compact set F � Rd.

Intuitively, GCR functions are a class of functions indexed by  2 � whose span comes
arbitrarily close to any continuous function, regardless of the choice of �; as long as it has
non-empty interior. When there is no confusion, we simply call ' GCR if the generated
H' is GCR.

We now establish an equivalent hypothesis in the form of a family of moment conditions
following StW. Let P be the joint distribution of the random vector W , and let Q be the
joint distribution of W with Y ? X j Z. Thus, P is an unrestricted probability measure,
whereas Q is restricted. To be speci�c, P and Q are de�ned such that for any event A,

P (A) �
Z
1[(x; y; z) 2 A]dFXY Z(x; y; z) =

Z
1[(x; y; z) 2 A]dFXY jZ(x; yjz)dFZ(z) (7)

and

Q(A) �
Z
1[(x; y; z) 2 A]dFXjZ(xjz)dFY jZ(yjz)dFZ(z); (8)

where 1[�] is an indicator function. Since W 2 [0; 1]d with probability 1, the domain of the
integration in the above integrals is a cube in Rd, and is omitted for notational simplicity.
We will follow the same practice hereafter.

Note that the measure P will be the same as the measure Q if and only if the null is
true:

P (A) =

Z
1[(x; y; z) 2 A]dFXY jZ(x; yjz)dFZ(z)

H0=

Z
1[(x; y; z) 2 A]dFXjZ(xjz)dFY jZ(yjz)dFZ(z) = Q(A):

To test the null hypothesis is thus equivalent to test whether there is any deviation of P
from Q. It should be pointed out that the marginal distribution of Z is the same under P
and Q regardless of whether the null is true or not.
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Let EP and EQ be the expectation operators with respect to the measure P and the
measure Q. De�ne

�' () � EP

h
'( ~W 0)

i
� EQ

h
'( ~W 0)

i
;

where  � (0; 01; 02; 03)0 2 R1+d is a vector of nuisance parameters, ~W = (1;W 0)0; and '
is such that the indicated expectations exist for all . Under the null hypothesis, �' ()
is obviously zero for any choice of  and any choice of '; including GCR functions. To
construct a powerful test, we want �' () to be nonzero under the alternative. If �'0 (0)
is not zero under some alternative, we say that '0 can detect that particular alternative for
the choice  = 0. An arbitrary function '0 may fail to detect some alternatives for some
choices of . Nevertheless, according to StW, given the boundedness of W; the properties
of GCR functions imply that they can detect all possible alternatives for essentially all
 2 � � R1+d with � having non-empty interior. �Essentially all� 2 � means that the
set of �bad��s, i.e., the set f 2 �: �' () = 0 and Y 6? X j Zg; has Lebesgue measure
zero and is not dense in �.

Given that any deviation of P from Q can be detected by essentially any choice of
 2 �, testing H0 : Y ? X j Z is equivalent to testing

H0 : �' () = 0 for essentially all  2 � (9)

for a GCR function ' and a set � with non-empty interior. The alternative is Ha : H0 is
false.

A straightforward testing approach would be to estimate �' () and to see how far
the estimate is from zero. But if we proceed in that way, we encounter a nonparametric
estimator f̂Z of the density fZ in the denominator of the test statistic, making the analysis of
limiting distributions awkward. To avoid this technical issue, we compute the expectations
of 'fZ rather than those of ', leading to a new �distance�metric between P and Q:

�'f () = EP

h
'( ~W 0)fZ(Z)

i
� EQ

h
'( ~W 0)fZ(Z)

i
:

Using the change-of-measure technique, we have

�'f () = C
n
EP �

h
'( ~W 0)

i
� EQ�

h
'( ~W 0)

io
;

where P � and Q� are probability measures de�ned according to

P �(A) =

Z
1[(x; y; z) 2 A]fZ(z)dFXY jZ(x; yjz)dFZ(z)=C

Q� (A) =

Z
1[(x; y; z) 2 A]fZ(z)dFXjZ(xjz)dFY jZ(yjz)dFZ(z)=C (10)

with C =
R
f2Z (z) dz being the normalizing constant. Under the null of H0 : Y ? X j Z;

P � and Q� are the same measure, and so �'f () = 0 for all  2 �: Under the alternative
of Ha : Y 6? X j Z; P � and Q� are di¤erent measures. By de�nition, if ' is GCR, then its
revealing property holds for any probability measure (see De�nition 3.2 of StW). So under
the alternative, we have �'f () 6= 0 for essentially all  2 �: The behaviors of �'f ()
under the H0 and Ha imply that we can employ �'f () in place of �' () to perform our
test.
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To sum up, when ' is a GCR function, � has non-empty interior, and
R
f2Z (z) dz <1;

a null hypothesis equivalent to conditional independence is

H0 : �'f () = 0 for essentially all  2 �:

That is, the null hypothesis of conditional independence is equivalent to a family of moment
conditions indexed by . For notational simplicity, we drop the subscript and write�() :=
�'f () hereafter.

2.3 Heuristics for Rates

When the probability density functions exist, the conditional independence is equivalent to
any of the following:

fY jXZ(y j x; z) = fY jZ(y j z);
fXjY Z(x j y; z) = fXjZ(x j z);
fXY jZ(x; y j z) = fXjZ(x j z) fY jZ(y j z);

fXY Z(x; y; z) fZ(z) = fXZ(x; z) fY Z(y; z); (11)

where the notation for density functions is self explanatory. One way to test conditional
independence is to compare the densities in a given equation to see if the equality holds.
For example, Su and White�s (2008) test essentially compares fXY ZfZ with fXZfY Z . To
do that, they estimate fXY Z ; fZ ; fXZ ; and fY Z nonparametrically, so their test has power
against local alternatives at a rate of only n�1=2h�d=4, the slowest rate of the four nonpara-
metric density estimators, i.e., the rate for f̂XY Z . This rate is slower than n�1=2 and hence
re�ects the �curse of dimensionality.�The dimension here is d = dX + dY + dZ , which is at
least three and could potentially be larger.

To achieve the rate n�1=2, we do not compare the density functions directly. Instead,
our family of moment conditions indirectly measures the distance between fXY ZfZ and
fXZfY Z , so that for each given , the test statistic is based on an estimator of an average
that can achieve an n�1=2 rate, just as a semiparametric estimator would.

To better understand the moment conditions of the equivalent null, we write

�() =

Z
'( ~w0) fZ(z) fXY Z(x; y; z) dxdydz �

Z
'( ~w0)fY Z(y; z) fXZ(x; z) dxdydz:

Instead of comparing fXY ZfZ with fY ZfXZ , we now compare their integral transforms.
Before the transformation, fXY ZfZ and fY ZfXZ are functions of (x; y; z), the data points,
and those functions can only be estimated at a nonparametric rate slower than n�1=2. But
their integral transforms are now functions of . For each , the transformation is an
average of the data so that semiparametric techniques could be used here to get an n�1=2

rate. Essentially, we compare two functions by comparing their weighted averages. The two
comparisons are equivalent because of the properties of the chosen test functions. That is,
if we choose GCR functions for our test functions, de�ned on a compact index space � with
non-empty interior, and we do not detect any di¤erence between P � and Q� transforms at
an arbitrary point , then P � and Q� must agree, and as a consequence P and Q must
agree. We gain robustness by integrating over many points :
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2.4 Empirical Moment Conditions

With some abuse of notation, we write '(0 + x
01 + y

02 + z
03) � '(x; y; z;): De�ne

gXZ(x; z;) = E ['(x; Y; z;)jZ = z] =

Z
'(x; Y; z;)fY jZ(yjz)dy: (12)

Then the moment conditions can be rewritten as

�() = E ['(X;Y; Z;)fZ(Z)]� E [gXZ(X;Z;)fZ(Z)] :

The �rst term of �() is a mean of 'fZ , where ' is known and fZ can be estimated by
a kernel smoothing method. The second term is a mean of gXZfZ(Z), where the function
gXZ(x; z;) is a conditional expectation that can be estimated by a Nadaraya-Watson
estimator. Thus we can estimate �() by

�̂n;h() =
1

n

nX
i=1

h
'( ~W 0

i)f̂Z(Zi)
i
� 1

n

nX
i=1

ĝXZ(Xi; Zi;)

=
1

n

nX
i=1

24'( ~W 0
i)

1

n� 1

nX
j=1;j 6=i

Kh(Zi � Zj)

35
� 1
n

nX
i=1

24 1

n� 1

nX
j=1;j 6=i

'( ~W 0
i;j)Kh(Zi � Zj)

35 (13)

=
1

n (n� 1)

nX
i=1

nX
j=1;j 6=i

f['( ~W 0
i)� '( ~W 0

i;j)]Kh(Zi � Zj)g;

where ~W 0
i;j = 0 + X 0

i1 + Y 0j 2 + Z 0i3 and Kh(u) is a multivariate kernel function. In
this paper, we follow the standard practice and use a product kernel of the form:

Kh(u) =
1

hdu
K
�u1
h
; : : : ;

udu
h

�
with K (u1; : : : ; udu) =

duY
`=1

k(u`);

where du is the dimension of u and h � hn is the bandwidth that depends on n.
�̂n;h() is an empirical version of �(): For each  2 �; �̂n;h() is a second order U-

statistic. When �̂n;h() is regarded as a process indexed by  2 �; �̂n;h() is a U-process.
Note that ['( ~W 0

i) � '( ~W 0
i;j)]Kh(Zi � Zj) is not symmetric in i and j: To achieve the

symmetry so that the theory of U-statistics and U-processes can be applied, we rewrite
�̂n;h() as

�̂n;h() =

�
n

2

��1X
i<j

�h;2(Wi;Wj ;); (14)

where

�h;2(Wi;Wj ;) =
1

2

h
'( ~W 0

i)� '( ~W 0
i;j)

i
Kh(Zi � Zj)

+
1

2

h
'( ~W 0

j)� '( ~W 0
j;i)

i
Kh(Zj � Zi) = �h;2(Wj ;Wi;):
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3 Stochastic Approximations and Finite Dimensional Con-
vergence

3.1 Assumptions

In this subsection, we state the assumptions that are required to establish the asymptotic
properties of �̂n;h(): We start with a de�nition, which uses the following multi-index
notation: for j = (j1; : : : ; jm) with j` being nonnegative integers, we denote jjj = j1 + j2 +
� � �+ jm; j! = j1! � � � jm!, uj = uj1 � � �u

jm
m ; and Djg(u) = @jjjg(u)=@uj11 � � � @u

jm
m :

De�nition 2 G� (A; �; �;m), � > 1, is a class of functions g� (�) : Rm ! R indexed by
� 2 A satisfying the following two conditions:

(a) for each �; g� (�) is b times continuously di¤erentiable, where b is the greatest integer
that is smaller than �;

(b) let Q�(u; v) be the Taylor series expansion of g� (u) around v of order b :

Q�(u; v) =
X
j:jjj�b

Djg�(v)

j!
(u� v)j

then

sup
�2A

sup
ku�vk��

kg�(u)� g�(v)�Q�(u; v)k
ku� vk�

� �

for some constants � > 0 and � > 0:

In the absence of the index set A, we use G� (�; �;m) to denote the class of functions.
In this case, our de�nition is similar to De�nition 2 in Robinson (1988) and De�nition 2
in DG (2001). A su¢ cient condition for condition (b) is that the partial derivative of the
b-th order is uniformly Hölder continuous:

sup
�2A

sup
kv�uk��

��Djg�(u)�Djg�(v)
�� � kv � uk��b

for all j such that jjj = b:
We are ready to present our assumptions.

Assumption 1 (IID) (a) fWi 2 [0; 1]dgni=1 is an IID sequence of random variables on the
complete probability space (
;F ; P ) ; (b) each element Z` of Z is supported on [0; 1]; (c) the
distribution of Z admits a density function fZ (z) with respect to the Lebesgue measure.

Assumption 2 (Smoothness of the Densities) (a) fZ (�) 2 Gq+1 (�; �; dZ) for some in-
teger q > 0 and some constants � > 0 and � > 0; (b) DjfZ (�z) = 0 for all 0 � jjj � q and
all �z on the boundary of [0; 1]dZ ; (c) the conditional distribution functions FY jZ ; FXjZ ; and
FXY jZ admit the respective densities fY jZ(yjz); fXjZ(xjz); and fXY jZ(x; yjz) with respect
to a �nite counting measure, or the Lebesgue measure or their product measure; (d) as
functions of z indexed by x; y; or (x; y) 2 A; fXjZ(xjz); fY jZ(yjz) and fXY jZ(xjz) belong
to Gq+1 (A; �; �; dZ) with A = [0; 1]dX ; [0; 1]dY or [0; 1]dX+dY .

Assumption 3 (GCR) (a) � is compact with non-empty interior; (b) ' 2 G� (�; �; 1).
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Assumption 4 (Kernel Function) The univariate kernel k (�) is the qth order symmet-
ric and bounded kernel k : R! R such that

(a)
R
k(v)dv = 1,

R
vjk(v)dv = 0 for j = 1; 2; : : : ; q � 1;

(b) k (v) = O((1 + jvj�)�1) for some � >
�
q2 + 2q + 2

�
:

Assumption 5 (Bandwidth) The bandwidth h = hn satis�es
(a) nhdZ !1 as n!1;
(b)

p
nhq = o(1); i.e., h = o(n�1=(2q)) as n!1:

Some discussions on the assumptions are in order. The IID condition in Assumption
1 is maintained for convenience. Analogous results hold under weaker conditions, but we
leave explicit consideration of these aside. If we know the support of Z`; then a linear map,
if necessary, can be used to ensure that Z` is supported on [0; 1]: In this case, the support
condition in Assumption 1(b) is innocuous. When the support of Z` is not known, we can
estimate the endpoints of the support by mini=1;:::;n (Z`i) and maxi=1;:::;n(Z`i): Under some
conditions, these estimators converge to the true endpoints at the rate of 1=n. As a result,
the estimation uncertainty has no e¤ect on our asymptotic results.

Assumptions 2(a) and (d) are needed to control the smoothing bias. Under Assumptions
1(b) and 2(a), we have

R
f2Z (z) dz <1: So it is not necessary to state the square integra-

bility of fZ (z) as a separate assumption. In assumption 2(d), the smoothness condition is
with respect to the conditioning variable Z. It does not require the marginal distributions
of X and Y to be smooth. In fact, X and Y could be either discrete or continuous. In
addition, from a technical point of view, we only need to assume that there exists a version
of the conditional density functions satisfying Assumption 2(d).

Assumption 2(b) is a technical condition, which helps avoid the boundary bias problem,
a well-known problem for density estimation at the boundary. The GCR approach of StW
requires the boundedness of the random vectors, and so we have to deal with the boundary
bias problem. If Assumption 2(b) does not hold, we can transform Z into ~Z = (��1 (Z1) ;
��1 (Z2) ; : : : ;��1 (ZdZ ))

0; where � : [0; 1] ! [0; 1] is strictly increasing and q + 1 times
continuously di¤erentiable with inverse ��1. Now

P
n
~Z < z

o
= P fZ1 < �(z1) ; : : : ; ZdZ < �(zdZ )g

= FZ (� (z1) ; : : : ;�(zdZ )) ;

and the density of ~Z is f ~Z (z) = fZ (� (z))�
0 (z1) : : :�0 (zdZ ) : So if �

(i) (0) = �(i) (1) = 0

for i = 0; : : : ; q; then Assumption 2(b) is satis�ed for the transformed random vector ~Z
and we can work with ~Z rather than Z: We can do so because Y ? X j Z if and only if
Y ? X j ~Z: An example of � is the CDF of a beta distribution:

�(v) =
1

B(q + 1; q + 1)

Z v

0
xq (1� x)q dx := B(v; q + 1; q + 1)

B(1; q + 1; q + 1)

where B(v; q + 1; q + 1) =
R v
0 x

q (1� x)q dx is the incomplete beta function.
If a kernel with compact support is used, we can remove the dominating boundary bias

by normalization. See, for example, Li and Racine (2007, pp. 31). In this case, we do not
need to assume fZ (�) to be zero on the boundary.

10



From a theoretical point of view, it is necessary to reduce the boundary bias to a certain
order so that �̂n;h() is asymptotically centered at �(). However, if Zi takes values in a
closed subset of its support with probability close to one, the boundary e¤ect will be small.
In this case, we may skip the transformation and ignore the boundary bias in practice.

Assumption 3(a) is needed only when we attempt to establish the uniformity of some
asymptotic properties over �: Like Assumption 2, Assumption 3(b) helps control the
smoothing bias. It is satis�ed by many GCR functions such as exp (�) ; normal PDF,
sin (�) ; and cos (�).

The conditions on the high order kernel in Assumption 4 are fairly standard. For
example, both Robinson (1988) and DG (2001) make a similar assumption. The only
di¤erence is that Robinson (1988) and DG (2001) require that � > q + 1; while we require
a stronger condition that � >

�
q2 + 2q + 2

�
in Assumption 4(b). The stronger condition is

needed to control the boundary bias, which is absent in Robinson (1988) and DG (2001),
as they assume that Z has an unbounded support. Assumption 4(b) is not restrictive. It
is satis�ed by typical kernels used in practice, as they are either supported on [0; 1] or have
exponentially decaying tails.

Assumption 5(a) ensures that the degenerate U-statistic in the Hoe¤ding decomposition
of �̂n;h() is asymptotically negligible. Assumption 5(b) removes the dominating bias of
�̂n;h(): See Lemmas 1 and 2 below. A necessary condition for Assumption 5 to hold is
that 2q > dZ .

3.2 Stochastic Approximations

To establish the asymptotic properties of �̂n;h(); we develop some stochastic approxima-
tions, using the theory of U-statistics and U-processes pioneered by Hoe¤ding (1948).

Let �h;1(w;) = E�h;2(w;Wj ;): Using Hoe¤ding�s H-decomposition, we can decom-
pose �̂n;h() as

�̂n;h() = �h() +Hn;h() +Rn;h();

where

�h() = E�h;2(Wj ;Wi;) = E�h;1(Wi;) (15)

Hn;h() =
2

n

nX
i=1

~�h;1(Wi;) (16)

Rn;h () =

�
n

2

��1X
i<j

~�h;2(Wi;Wj ;) (17)

and

~�h;1(Wi;) = �h;1(Wi;)��h ()

~�h;2(Wi;Wj ;) = �h;2(Wi;Wj ;)� �h;1(Wi;)� �h;1(Wj ;) + �h () :

The sum of the �rst two terms in the H-decomposition is known as the Hájek projection.
For easy reference, we denote it as

~�n;h() = �h() +Hn;h(): (18)

11



By construction, Hn;h() and Rn;h () are uncorrelated zero mean random variables. We
show that the projection remainder Rn;h() is asymptotically negligible, and as a result
�̂n;h() and its Hájek projection ~�n;h() have the same limiting distribution.

For each given  and h; Rn;h () is a degenerate second order U-statistic with kernel
~�h;2 (�; �;) : According to the theory of U-statistics (e.g., Lee, 1990), we have

var [Rn;h ()] =
2

n(n� 1)var [~�h;2(Wi;Wj ;)] :

This can also be proved directly by observing that ~�h;2(Wi;Wj ;) is uncorrelated with
~�h;2(W`;Wm;) if (i; j) 6= (`;m) :

If h were �xed, then it follows from the basic U-statistic theory thatRn;h() = op (1=
p
n)

for each  2 �: However, in the present setting, h ! 0 as n ! 1, so the basic U-
statistic theory does not directly apply. Nevertheless, we can still show that Rn;h () is
still op

�
n�1=2

�
under Assumption 5(a). In fact, we can prove a stronger result, as Lemma

1 shows.

Lemma 1 Under Assumptions 1�5(a), if h ! 0 as n ! 1, then sup2�
p
nRn;h () =

op(1).

We proceed to establish a stochastic approximation of the Hájek projection ~�n;h().
Note that both �h() and Hn;h() depend on h. Using a Taylor expansion, we can separate
terms independent of h from those associated with h in �h() and Hn;h(). By using a
higher order kernel K and controlling the rate of h so that it shrinks fast enough, we can
ensure that the terms associated with h vanish asymptotically, as in Powell, Stock, and
Stoker (1989).

More speci�cally, we �rst show that �h() = �()+O(h
q), where q is the order of the

kernel k. Then we show that Hn;h() = 2n
�1Pn

i=1 f�1(Wi;)� E [�1(Wi;)]g + Op(h
q),

where

�1(Wi;) � 1

2
'(0 +X

0
i1 + Y

0
i 2 + Z

0
i3)fZ(Zi)

�1
2

Z
'(0 +X

0
i1 + y

02 + Z
0
i3) fY Z(y; Zi)dy

+
1

2

Z
'(0 + x

01 + y
02 + Z

0
i3) fXY Z(x; y; Zi)dxdy

�1
2

Z
'(0 + x

01 + Y
0
i 2 + Z

0
i3) fXZ(x;Zi)dx:

Under Assumption 5(b),
p
nhq ! 0, which makes both the second term of �h() and the

second term of Hn;h() vanish asymptotically. The following lemma presents these results
formally.

Lemma 2 Let Assumptions 1�4 and 5(b) hold. Then
(a)

p
n [�h ()��()] = o (1) uniformly over  2 �;

(b)
p
nHn;h() = 2=

p
n
Pn

i=1 f�1(Wi;)� E [�1(Wi;)]g+op (1) uniformly over  2 �:

12



It follows from Lemmas 1 and 2 that
p
n
h
�̂n;h()��()

i
=

p
nHn;h() +

p
nRn;h () +

p
n [�h()��()]

=
p
nHn;h() + op (1) =

2

n

nX
i=1

f�1(Wi;)� E [�1(Wi;)]g+ op (1)

uniformly over  2 �: So
p
n
h
�̂n;h()��()

i
and 2=

p
n
Pn

i=1 f�1(Wi;)� E [�1(Wi;)]g
have the same limiting distribution for each  2 �:

3.3 Finite Dimensional Convergence

In this subsection, we view �̂n;h () as a U-process indexed by  and consider its �nite-
dimensional convergence.

Let �s = f1;2; :::;sg for some s <1 and ` 2 �; and de�ne

�̂n;h(�s) := [�̂n;h(1); �̂n;h(2); :::; �̂n;h(s)]
0:

Similarly, we de�ne �(�s) := [�(1);�(2); :::;�(s)]
0. Theorem 3 below establishes the

asymptotic normality of
p
n
h
�̂n;h(�s)��(�s)

i
.

Theorem 3 Let Assumptions 1�5 hold. Then

p
n
h
�̂n;h(�s)��(�s)

i
d! N (0;
) ;

where the (`;m) element of 
 is


 (`;m) := �� (`;m) = 4cov [�1(Wi;`); �1(Wi;m)] : (19)

If, in addition, H0 holds, then �() = 0, and

�� (`;m) = 4E [�(Wi;`)�(Wi;m)] ;

where

�(Wi;) =
1

2
E
h
'( ~W 0

i)fZ(Zi)jXi; Yi; Zi

i
� 1
2
E
h
'( ~W 0

i)fZ(Zi)jXi; Zi

i
(20)

�1
2
E
h
'( ~W 0

i)fZ(Zi)jYi; Zi
i
+
1

2
E
h
'( ~W 0

i)fZ(Zi)jZi
i
:

Theorem 3 is of interest in its own right. For example, we can use it to construct a
Wald test. There may be some power loss if s is small. When s is large enough such that
�s approximates � very well, then the power loss will be small. The idea can be motivated
from the method of sieves. We do not pursue this here but refer to Huang (2009) for
more discussions. Instead, we consider the ICM tests in the next section. Theorem 3 is an
important �rst step in obtaining the asymptotic distributions of the ICM statistics.

Observe that �̂n;h() (hence ~�n;h()) is not symmetric in X and Y; whereas the hy-
pothesis Y ? X j Z is. However

p
n[�̂n;h() � �h()] is asymptotically equivalent to

13



2=
p
n
Pn

i=1 [�1 (Wi;)� E�1 (Wi;)] : It can be readily checked that �1 (W ;) is symmet-
ric in Y and X. Alternatively, we can follow the de�nition of gXZ in (12) and de�ne
gY Z(y; z), gZ (z), and gXY Z (x; y; z;) as

gY Z(y; z;) = E [' (X; y; z;) jZ = z]

gZ(z;) = E [' (X;Y; z;) jZ = z]

gXY Z (x; y; z;) = E [' (x; y; z;) jZ = z] = ' (x; y; z;)

where the last equality is tautological. Then

�1(W ;) =
1

2
[gXY Z (X;Y; Z;)� gXZ (X;Z;)� gY Z (Y; Z;) + gZ (Z;)] fZ (Z) ;

which is clearly symmetric in Y and X: If we construct another estimator, say ��n;h(); by
switching the roles of X and Y , we can show that ��n;h() and �̂n;h() are asymptotically
equivalent in the sense that

p
n[ ��n;h()� �̂n;h()] = op (1) uniformly over  2 �: So there

is no asymptotic gain in taking an average of �̂n;h() and ��n;h(). This point is further
supported by the symmetry of �(W ;) in X and Y:

3.4 Bandwidth Selection

Although any choice of bandwidth h satisfying Assumption 5 will deliver the asymptotic
distribution in Theorem 3, in practice we need some guidance on how to select h. Ideally
we should select an h that would give us the greatest power for a given size of test, but
deriving that procedure would be complicated enough to justify another study. Moreover,
it would only make a di¤erence for higher order results. Thus, for the present purposes, we
just provide a simple �plug-in�estimator of the MSE-minimizing bandwidth proposed by
Powell and Stoker (1996).

Since the test statistic is based on �̂n;h(), which estimates �(), it is appealing to
choose an h that minimizes the mean squared error (MSE) of �̂n;h(). After some tedious
but straightforward calculations, we get

MSE
h
�̂n;h()

i
= (�h ()��())2 + var

h
�̂n;h()

i
= fE [B5(W ;)]hq + o(hq)g2 + var

h
�̂n;h()

i
= fE [B5(W ;)]g2 h2q + o(h2q) + var

h
�̂n;h()

i
= fE [B5(W ;)]g2 h2q + o(h2q)

+4n�1var [�1 (W ;)] + 4n
�1C0 ()h

q + o(n�1hq)

�4n�2var [�1 (W ;)] + 2n�2E [� (W ;)]h�dZ

+o
�
n�2h�dZ

�
� 2n�2�()2 + o(n�2);

where B5 is de�ned in (43) in the appendix, and � (W ;) is de�ned by

E
h
k�h;2 (Wi;Wj ;)k2 jWi

i
= � (Wi;)h

�dZ + �� (Wi; h;) ; where

E (k�� (Wi; h;)k) = o
�
h�dZ

�
:
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The term 4n�1var [�1(W ;)] � 4n�2var [�1 (W ;)] does not depend on h. The term
2n�2�()2 must be of smaller order than 4n�1C0hq, and 4n�1C0hq must be of smaller
order than fE [B5 (W ;)]g2 h2q; otherwise there would be a contradiction to Assumption
5(b). So the leading term of MSE[�̂n;h()] that involves h is

MSE1

h
�̂n;h()

i
= fE [B5 (W ;)]g2 h2q + 2n�2E [� (W ;)]h�dZ : (21)

By minimizing MSE1

h
�̂n;h()

i
; we obtain the optimal bandwidth

h� =

�
dZ � E [� (W ;)]

q � fE [B5 (W ;)]g2

�1=(2q+dZ)
�
�
1

n

�2=(2q+dZ)
: (22)

Now Assumption 5(a) is satis�ed:

n (h�)dZ � n1�2dZ=(2q+dZ) � n(2q�dZ)=(2q+dZ) !1; given 2q > dZ :

And so is Assumption 5(b):
p
n (h�)q � n1=2�2q=(2q+dZ) � n�(2q�dZ)=2(2q+dZ) = o(1); given 2q > dZ :

The optimal bandwidth depends on the unknown quantities E [� (W ;)] and E [B5 (W ;)].
Here we follow the standard practice (e.g., Powell and Stoker (1996)) and use a simple
plug-in estimator of h�: Let h0 be an initial bandwidth. Suppose E

�
�h;2(Wi;Wj ;)

4
�
=

O(h���2dZ0 ) for some � > 0, and let % = max f� + 2dZ ; 2q + dZg. If h0 ! 0 and nh%0 !1,
then by Proposition 4.2 of Powell and Stoker (1996),

�̂ � �̂ (h0) =

�
n

2

��1X
i<j

hdZ0 � [�h0;2(Wi;Wj ;)]
2 p! E [� (Wi;)] ; (23)

and

B̂5 � �̂n;�h0()� �̂n;h0()

(�h0)
q � hq0

for some 0 < � 6= 1 (24)

p! E [B5 (W ;)] :

The estimator B̂5 given above is a �slope�between two points (h
q
0; �̂n;h0()) and (�h

q
0; �̂n;�h0()).

To get a more stable estimator, we could use a regression of �̂n;h0() on h
q
0 for various

values of h0. Given �̂ and B̂5; the plug-in estimator of h� is

ĥ =

"
dZ � �̂
q � B̂25

#1=(2q+dZ)
�
�
1

n

�2=(2q+dZ)
: (25)

In practice we can choose q large enough so that % = maxf�+2dZ , 2q+dZg = 2q+dZ ;
then we can choose the initial bandwidth to be h0 = o

�
n�1=(2q+dZ)

�
. The data driven ĥ

depends on . We may choose di¤erent bandwidths for di¤erent �s. This is what we follow
in our Monte Carlo experiments.

Powell and Stoker (1996) mention one technical proviso: �̂n(; ĥ) is not guaranteed
to be asymptotically equivalent to �̂n(;h

�) since the MSE calculations are based on the
assumption that h is deterministic. The suggested solution is to discretize the set of possible
scaling constants, replacing ĥ with the closest value, ĥy, in some �nite set. The estimation
uncertainty in ĥy is small enough that it will not a¤ect the asymptotic MSE.
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4 An Integrated Conditional Moment Test

In this section, we �integrate out� to get an integrated conditional moment (ICM) type
test statistic, following Bierens (1990) and StW (1998).

4.1 The Test Statistic

If ' is GCR, testing H0 : Y ? X j Z is equivalent to testing H0 : � () = 0 for essentially all
 2 �: In other words, if we view �̂n;h() as a random function in , we are testing whether
its mean function�() is zero on �. If � is compact, we can show that

p
n�̂n;h() converges

to a zero mean Gaussian process under the null. Based on
p
n�̂n;h(), we construct the

ICM test statistic

Mn = n

Z
�

h
�̂n;h()

i2
d� () ;

where � is a probability measure on � that is absolutely continuous with respect to the
Lebesgue measure on �. Here we integrate [�̂n;h()]

2; which gives a Cramer-von Mises
(CM) type test. Alternatively, we could integrate j�̂n;h()jp; 1 � p � 1: The choice
p = 1 (which gives the maximum over �) yields a Kolmogorov-Smirnov (KS) type test.
We work with p = 2 for concreteness and because CM-type tests often outperform KS-type
tests. As Boning and Sowell (1999) show, choosing � to be the uniform density has a certain
optimality property in a closely related context.

4.2 Asymptotic Distribution of the Test Statistic

To establish the weak convergence ofMn, we �rst show that
p
n
h
�̂n;h(�)��(�)

i
converges

to a Gaussian process. De�ne

�n() =
2p
n

nX
i=1

f�1(Wi;)� E [�1(Wi;)]g .

Then Lemmas 1 and 2 imply that

sup
2�

���pn h�̂n;h()��()
i
� �n()

��� = op (1) :

Theorem 4 shows that �n(�) converges to a zero mean Gaussian process and so doesp
n
h
�̂n;h(�)��(�)

i
.

Theorem 4 Let Assumptions 1�5 hold. Then
(a) �n(�)

d! Z (�);
(b)

p
n
h
�̂n;h(�)��(�)

i
d! Z (�) ; where Z is a zero mean Gaussian process on � with

covariance function

cov (Z(1);Z(2)) = 4cov [ �1 (W ;1) ; �1 (W ;2)] � �� (1;2) . (26)

If H0 also holds, then

Tn(�) �
p
n�̂n;h(�)

d! Z (�) .
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Let M : C (�) ! R+ be k�k1 continuous. Then applying the continuous mapping
theorem (Billingsley 1999 p. 20), we get

M [Tn(�)]
d!M [Z(�)]

under the null hypothesis. For example, with M [Tn(�)] =
R
� [Tn()]

2 d� () ; we have

Mn �M [Tn(�)] =
Z
�
[Tn()]

2 d� () = n

Z
�

h
�̂n;h()

i2
d� ()

d!
Z
�
[Z()]2 d� ()

under H0:

4.3 Global and Local Alternatives

The global alternatives for our conditional independence test can always be written as

Ha : fZ(z)fXY Z (x; y; z)� fY Z(y; z)fXZ(x; z) = �(x; y; z); (27)

for some nontrivial and nonzero function �(x; y; z). Then under Ha, we have

�() =

Z
'( ~w0)�(x; y; z)dxdydz:

This will be nonzero for essentially all  2 � provided that ' is GCR. It follows from
Theorem 4 that

lim
n!1

Pr(Mn > cn) = 1

for any critical value cn = o(n): That is, the test is consistent: as the sample size increases,
the test will eventually detect the alternative Ha.

To construct a local alternative, we consider a mixture distribution of the form

Ha;n : fXY Z (x; y; z) =

��
1� cp

n

�
fY jZ(yjz) +

cp
n
~�(yjx; z)

�
fXZ (x; z) ; (28)

where c is a constant and ~�(yjx; z) is a conditional density function of ~Y given ( ~X; ~Z) such
that ~Y 6? ~X j ~Z: By construction, ~�(yjx; z) is a nontrivial function of x and z: That is,
the distribution of W is a mixture of two distributions: one satis�es the null of conditional
independence and the other does not. The mixing proportion is local to unity. Equivalently,
we can rewrite the local alternative as

Ha;n : fXY Z (x; y; z) = fY jZ(y; z) fXZ(x; z) +
� (x; y; z)p

n

for � (x; y; z) = c
�
~�(yjx; z)� fY jZ(yjz)

�
fXZ(x; z): Since ~�(yjx; z) depends on x; ~�(yjx; z)�

fY jZ(yjz) cannot be a zero function. Hence when ' is GCR and c > 0;

�' () :=

Z
'( ~w0)� (x; y; z) dxdydz 6= 0

for essentially all  2 �:
Under Assumptions 1�5 and the local alternative Ha;n, we can use the same arguments

as in the proof of Theorem 4 to show that

Mn =

Z
�
[Tn()]

2 d� ()
d!
Z
�
[Z() + �' ()]2 d� () .

The essentially nonzero mean is the source of the power of the ICM test against the local
alternative.
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4.4 Calculating the Asymptotic Critical Values

Under the null,Mn has a limiting distribution given by a functional of a zero mean Gaussian
process whose covariance function depends on the DGP. The asymptotic critical values thus
depend on the DGP and cannot be tabulated. One could follow Bierens and Ploberger
(1997) and obtain upper bounds for the asymptotic critical values. Here, we use the condi-
tional Monte Carlo approach suggested by Hansen (1996) to simulate the asymptotic null
distribution.

To apply this approach, we construct a process T �n(�); which follows the desired zero
mean Gaussian process conditional on fWig. The desired conditional covariance function
for T �n is

cov [T �n(1); T
�
n(2)j fWigni=1] =

4

n

nX
i=1

�̂h;1(Wi;1) �̂h;1(Wi;2) � �̂� (1;2) ;

where

�̂h;1(Wi;) = (n� 1)�1
nX

j=1;j 6=i
�h;2(Wi;Wj ;):

It is straightforward to show that under Assumptions 1-5 and the null hypothesis,

�̂� (1;2)
p! �� (1;2) .

A typical T �n(�) is constructed by generating fVig
n
i=1 as IID standard normal random

variables independent of fWig and setting

T �n() =
2p
n

nX
i=1

�̂h;1(Wi;)Vi. (29)

Following the arguments similar to the proof of Theorem 2 in Hansen (1996), we can show
that under the null hypothesis,

M�
n =

Z
�
[T �n()]

2 d� ()
d!
Z
�
[Z()]2 d� () ;

provided that Assumptions 1-5 hold.
Simulation results show that the empirical PDFs of Mn and M�

n are fairly close. To
save space, we do not report the results here, but they are available in Huang (2009).

To approximate the distribution of Mn, we follow the steps below:

� generate fVibgni=1 IID N(0; 1) random variables;

� set
T �n;b() �

2p
n

nX
i=1

�̂h;1(Wi;)Vib;

� set M�
n;b �M

h
T �n;b(�)

i
=
R
�

h
T �n;b()

i2
d� () :
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This gives a simulated sample (M�
n;1; :::;M

�
n;B), whose empirical distribution should be

close to the true distribution of the actual test statistic Mn under the null. Then we can
compute the proportion of simulated values that exceedMn to get the simulated asymptotic
p value. We reject the null hypothesis if the simulated p value lies below the speci�ed level
for the test. As Hansen (1996) points out, B is under the control of the econometrician
and can be chosen su¢ ciently large to obtain a good approximation.

4.5 A Rescaled ICM Test

The variance of
p
n�̂n;h() depends on : It is plausible that by rescaling

p
n�̂n;h() by

its standard deviation, one might obtain a somewhat better test. Thus, consider

~Tn() �
p
n�̂n;h()

�̂� ()
and

~Mn �M
h
~Tn(�)

i
=

Z
�

h
~Tn()

i2
d� () ;

where

�̂2� () = �̂� (;) = 4n
�1

nX
i=1

[�̂h;1(Wi;)]
2 � 4

h
�̂n;h()

i2
:

Proposition 5 Suppose Assumptions 1-5 hold and that inf2� �� () > 0: Then under the
null hypothesis,

~Tn (�) =
p
n�̂n;h(�)
�̂� (�)

d! ~Z (�) ,

where ~Z is a zero mean Gaussian process on � with covariance function

cov
�
~Z(1); ~Z(2)

�
=

�� (1;2)

�� (1)�� (2)
� �� (1;2) .

By the continuous mapping theorem, we have

~Mn
d!
Z
�

h
~Z()

i2
d� () :

De�ne

~T �n() �
2

�̂n ()
� 1p

n

nX
i=1

�̂h;1(Wi;)Vi

with fVigni=1 IID N(0; 1), independent of fWig: Then we can follow the proof of Theorem
2 in Hansen (1996) to show that

~M�
n �

Z
�

h
~T �n()

i2
d� ()

d!
Z
�

h
~Z()

i2
d� () :

As a result, the critical value of ~Mn can be obtained by simulating ~M�
n: Simulation results

not reported here show that the empirical PDFs of ~Mn and ~M�
n are fairly close.

Although we do not give formal statements, results analogous to those for Mn hold
under the local and global alternatives. Simulation results in the next section suggest that
the rescaled ICM test has somewhat better power for most experiments.
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5 Monte Carlo Experiments

In this section, we perform some Monte Carlo simulation experiments to examine the �nite
sample performance of our conditional independence test.

For all simulations, we generate IID f(Xi; Yi; Zi)g. We choose '(�) to be the standard
normal PDF, and k(u) be the sixth-order Gaussian kernel (q = 6). The number of replica-
tions for each experiment is 1000, and the number of replications for simulating M�

n or ~M
�
n

is 999.

5.1 Level and Power Studies

5.1.1 DGP 1

We �rst generate a sample f(Xi; Yi; Zi)g using the DGP

Y = �X + Z + "Y

X = Z + Z2 + "X ;

where �
"X
"Y

�
s N

�
0;

�
�2X 0
0 �2Y

��
= N

�
0;

�
4 0
0 1

��
and

Z s N(0; �2Z) = N(0; 3):

When � = 0, the null is true; otherwise the alternative holds.
We normalize each variable so that its support is comparable to that of the GCR

function '(�): For the standard normal PDF, the support is the real line but the function is
e¤ectively zero out of the interval [�4; 4]:We normalize each variable to be supported on this
interval. This can be achieved by taking ~Xi = 8 [Xi �min(Xi)] =[max(Xi)�min (Xi)]� 4:
We normalize Yi and Zi analogously. The conditional independence test is then applied
to ~Xi; ~Yi; and ~Zi. Although any compact � with a non-empty interior can be used, we
take � = [�1; 1]4: This choice ensures that f ~W 0

i; 2�g can take any value in the e¤ective
support of '(�):

To compute the ICM statistic Mn; we need to compute the integral
R
� [Tn()]

2 d� ().
In the absence of a closed-form expression, we recommend using the Monte Carlo integration
method. For each simulation replication, we choose 100 s�s randomly from the uniform
distribution on [�1; 1]4 and approximate the integral by the average

P100
s=1 T

2
n(s)=100:We

have also tried using 50 random draws, but the results are e¤ectively the same. Note
that T 2n(s) depends on the bandwidth parameter h: In our simulation experiments, we
employ the data-driven bandwidth ĥ (s) in (25) with h0 = n�1=[3(2q+dZ)] and � = 0:5:
We use di¤erent bandwidths for di¤erent �s. Given the bandwidth ĥ (s) ; we compute
the statistic T 2n(s) as T

2
n(s) = n�̂2

n;ĥ(s)
(s) : The average of T

2
n(s) gives us the ICM

statistic Mn: The rescaled ICM statistic ~Mn is computed similarly.
We use DGP 1 to study the �nite sample size and power of the test against conditional

mean dependence. We use

�
X;Y jZ

=
cov (X;Y jZ)
�XjZ�Y jZ

=
��2X

�X

q
�2�2X + �

2
Y

=
4�

2
p
4�2 + 1
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to indicate the strength of the dependence between X and Y , conditional on Z. Since
both XjZ and Y jZ are normal, �

X;Y jZ
fully captures the dependence between X and Y ,

conditional on Z.
We plot the power of the tests for � ranging from �0:9 to 0:9: For this, we choose

� =
�
X;Y jZ

2

r�
1� �2

X;Y jZ

� for �
X;Y jZ

= �0:9;�0:8; :::; 0:9:

The size and power look fairly good for sample sizes as small as 100, and they look
very good when the sample size reaches 200. The �non-standardized� results in Figure 1
correspond to Mn; and the �standardized� results in Figure 2 correspond to ~Mn. When
the sample size is small, the levels of the tests approach their nominal value from below,
delivering conservative tests. When the sample size increases to 200; our tests become
fairly accurate in size. The power functions show that ~Mn performs better than Mn in this
experiment. This may be due to some e¢ ciency improvements associated with the partial
GLS correction embodied in ~Mn.

5.1.2 DGP 2

DGP 2 is a modi�cation of DGP 1 that focuses on the consequences of fat-tailed distribu-
tions. Here, "X and "Y are proportional to the Student t with 3 degrees of freedom:

"X s 2t3; "Y s t3; "X ? "Y :

The power functions forMn are plotted in Figure 3, and those for ~Mn are plotted in Figure
4. We see that the power is a little but not a lot worse than for the normal distributions of
DGP 1.

5.1.3 DGP 3

DGP 3 is another modi�cation of DGP 1. This time we allow skewness, choosing both "X
and "Y to be centered chi-square distributions:

"X s 2
�
�21 � 1

�
; "Y s

�
�21 � 1

�
; "X ? "Y :

The power functions of Mn are plotted in Figure 5 and those for ~Mn are plotted in Figure
6. Here, the power is slightly better than that for DGP 1. Overall, the size and power
properties of our tests are robust to the data distribution.

5.2 Comparison with Other Tests

In this section we compare the standardized ICM test ~Mn with other conditional indepen-
dence tests. Su and White�s (2008) test essentially compares fXY Z fZ with fXZ fY Z and
can detect local alternatives at the rate n�1=2h�d=4: Su and White�s (2007) test essentially
compares fY jX;Z with fY jZ and can detect local alternatives at the rate n�1=2h�(dX+dZ)=4:
Our test compares integral transforms and can detect local alternatives at the rate n�1=2.
We �rst compare all three tests using DGP1. Figure 7 shows the power functions when
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the sample size is 100. The GCR test in the �gure is the test we propose. It is clear that
our test outperforms the SW 2007 test, which in turn outperforms the SW 2008 test. More
speci�cally, while our GCR test has almost the same empirical size as the SW 2007 test, it
is more powerful than the SW 2007 test. The SW 2008 test is very conservative and has
almost no power when � is small in absolute value. That is, when the departure from the
null is small, the SW 2008 test is less able to detect it, compared with our GCR test and
the SW 2007 test.

Figure 8 shows the power functions when the sample size is increased to 200. We see
that the power of our GCR test improves faster than the power of SW 2007, which again
improves faster than the power of SW 2008. These results are consistent with the local
alternative rate results.

Finally, we compare the power function of our ~Mn test with the tests proposed by LG
(1997) and DG (2001). Figure 9 reports the results for DGP 1 with n = 200. We report
only the results for the Cramer-von Mises type test for each method, as the results for the
Kolmogorov-Smirnov type test are qualitatively similar. In the �gure, �LG� and �DG�
represent the Cramer-von Mises type tests of LG (1997) and DG (2001), respectively. The
�gure demonstrates the clear advantage of our GCR test. It is as accurate in size as the
LG test but more powerful than the latter test. The GCR test has better �nite sample
performances than the DG test in terms of both size and power properties.

In all the �gures, we also report the �gold standard� t-test. This is as good a test as
one could want, in the sense that it is the parametric maximum likelihood test for � = 0 in
a correctly speci�ed linear model. Although our test is not as powerful as the t-test, which
is reasonable since our test is fully nonparametric, our GCR test does outperform all other
nonparametric tests. On the other hand, the t-test measures only linear dependence. In the
presence of nonlinear dependence, the t-test may be less powerful than the nonparametric
tests. This is supported by simulation results not reported here.

6 Application to Returns to Schooling

As stated in the introduction, one important application of tests for conditional indepen-
dence is to test a key assumption identifying causal e¤ects. In this section, we provide an
example.

In the literature on returns to schooling, the most widely investigated structural equa-
tion is a Mincer (1974) type semi-logarithmic human capital earnings function:

lnYi = �0 + �1Si + �2EXP i + �3EXP2i + Ui; (30)

where the subscript i indexes individuals, lnYi is log hourly wage, Si is years of completed
schooling, EXP i is years of work experience, EXP2i is work experience squared, and Ui
represents unobserved drivers of lnYi; centered at zero. The e¤ect of interest is �1; the
e¤ect of an additional year of schooling on wage. In what follows, we drop the i subscript.

Least squares estimates of the Mincer equation su¤er from the well-known ability bias
problem, which is caused by the dependence of schooling on unobserved ability. To make
this explicit, let U = A+ "; where A represents unobserved ability, and rewrite the Mincer
equation as

lnY = �0 + �1S + �2EXP + �3EXP 2 +A+ ". (31)
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One method empirical researchers have adopted to address the ability bias issue is to
�nd proxies Z for ability, for example IQ or AFQT scores, and include these as regressors
(e.g., Griliches and Mason, 1972; Griliches, 1977; and Blackburn and Neumark, 1993). Now
consider the regression of lnY on S; EXP ; and Z :

�(S;EXP ; Z) = E(lnY j S;EXP ; Z)
= E(�0 + �1S + �2EXP + �3EXP2 +A+ " j S;EXP ; Z)
= �0 + �1S + �2EXP + �3EXP2 + E(A+ " j S;EXP ; Z)
= �0 + �1S + �2EXP + �3EXP2 + E(A+ " j EXP ; Z):

The last equality is justi�ed by a conditional mean independence assumption,

E(A+ " j S;EXP ; Z) = E(A+ " j EXP ; Z):

If this holds, then we have
(@=@s)�(S;EXP ; Z) = �1;

so that the e¤ect of interest, �1; is identi�ed and can be consistently estimated.
There is no reason a priori that the wage equation must have the speci�c Mincer form,

however. More generally, one can consider a nonparametric speci�cation

lnY = r(S;X;U);

where r is an unknown function; X contains observable factors determining wages, including
EXP, as well as other factors like job tenure, region, sex, race, etc.; and U = (A; "):

An important e¤ect of interest here is

�1(S;X;U) = (@=@s)r(S;X;U);

the marginal e¤ect of schooling on wage. This e¤ect depends on all drivers of wage, includ-
ing unobservables, U; so �1(S;X;U) is not identi�able without further potentially strong
restrictions. Nevertheless, just as in the linear case, it is possible to identify and estimate
certain expectations of �1(S;X;U) given suitable ability proxies Z; as

(@=@s)�(s; x; z) = (@=@s)E(lnY j S = s;X = x;Z = z)

= E((@=@s)r(S;X;U) j S = s;X = x;Z = z)

= E(�1(s;X;U) j X = x;Z = z) � ��1(s; x; z):

The crucial condition justifying the third equality is conditional independence:

(A; ") ? S j (X;Z) (32)

This is called a �conditional exogeneity� assumption by White and Chalak (2008). It
implies the �ignorability� or �unconfoundedness� condition, also known as �selection on
observables�in the literature, ensuring identi�cation of causal e¤ects.

Thus, if (32) holds, and even if the speci�c Mincer function (31) does not, we can still
identify the average marginal e¤ect of schooling ��1(s; x; z) and consistently estimate this
by various methods. If (32) fails, then the marginal e¤ect of interest is no longer identi�ed
(see, e.g., White and Chalak, 2008, theorem 4.1).
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We cannot test (32) directly, as A and " are unobservable. However, following White
and Chalak (2010), if we can observe V such that

V = f (A; ";X;Z; �) (33)

� ? S j (A;X;Z);

where f denotes some unknown function and � is unobserved, then

(A; ") ? S j (X;Z) implies V ? S j (X;Z):

Thus, we can test unconfoundedness by testing the implied condition

H0 : V ? S j (X;Z): (34)

Equation (33) provides some guidance about how to choose V . The conditional inde-
pendence requirement on � is particularly plausible when � is a measurement error, so that
both Z and V could be error-laden proxies for ability. Here, we test (34) using data from
the National Longitudinal Survey of Youth 1979 (NLSY 79). In particular, we use the data
from survey year 2000 and restrict the sample to white males.1 We use the age-adjusted
standardized AFQT in year 1980 as Z. V includes math and verbal scores for preliminary
scholastic aptitude tests from 1981 high school transcripts. To satisfy (33), we use years of
schooling beyond high school as S, so that V is not a¤ected by S. X includes actual work
experience in survey year 2000 and total tenure with employer in survey year 2000.

To implement the test, we choose '(�) to be the standard normal PDF, and let k(�) be
the sixth-order Gaussian kernel. We choose  and other metaparameters as described in the
Monte Carlo section. Applying our ~Mn test, we �nd that we do not reject the null hypothesis
(34) at the 5% level. Thus, we do not �nd evidence refuting the approach commonly used by
empirical researchers, providing some support for parametric or nonparametric estimation
of e¤ects of interest.

7 Concluding Remarks

In this paper, we develop a �exible nonparametric test for conditional independence that is
simple to implement, yet powerful. It is consistent against any deviation from the null and
achieves local power at the parametric n�1=2 rate, despite its nonparametric character. It
is also very �exible as it allows for a rich class of GCR functions.

There are several useful directions for future research. First, we have assumed that the
data are IID. But this is not essential for the results. We may straightforwardly extend
the approach to a time-series framework, so that we could test, for example, nonlinear
Granger causality. Another extension could be to modify the test so that it can be used
when Z contains both discrete and continuous variables. This is often relevant in applied
microeconomics. This extension has been considered in Chapter 3 of Huang (2009). A
third direction is to further study the bandwidth selection problem. Here, we choose the
bandwidth to minimize the mean squared error of �̂n;h(). Ideally, however, one should
choose the bandwidth that optimizes the trade-o¤ between size and power.

1To restrict the sample so that it is suitable for estimating a wage equation for survey year 2000, we
drop those who were enrolled in high school or college in survey year 2000, and we exclude those who were
in active armed forces, self-employed, or working in a family business in survey year 2000. We also drop
those whose hourly wage was not in the range ($1; $1000].
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8 Appendix of Proofs

Throughout the proofs, we use C to denote a constant that may be di¤erent across di¤erent
equations or lines.

Proof of Lemma 1: For the pointwise result, we use Assumption 1 and the theory of
U-statistics to obtain

var
�p
nRn;h ()

�
=

2

(n� 1)var [~�h;2(Wi;Wj ;)]

� 2

(n� 1)var [�h;2(Wi;Wj ;)] �
2

(n� 1)E
�
�2h;2(Wi;Wj ;)

�
:

So it su¢ ces to show that E
h
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i
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and so
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2
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where 'max = sup2� supW2[0;1]d '( ~W
0); which is �nite under Assumption 3. Using As-

sumption 2, we have

EK2
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Z
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It follows from Assumption 4 that
R
K2(u)du =

�R
k2(v)dv

�dZ <1 andZ
K2(u) kuk du

=

Z
k2(u1) � � � k2(udZ )

q
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�
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Therefore

EK2
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�
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hdZ

�
:

Combining this with (35), we have, using Assumption 5(a):

Ej�h;i;j()j2 = O

�
1

hdZ

�
= O(n� 1

nhdZ
) = o(n):

This implies that Rn;h () = op (1=
p
n) pointwise for each  2 �:

To show the uniformity result that sup2�Rn;h () = op (1=
p
n) ; we employ the the-

ory of U-processes. In particular, we apply Proposition 4 in DG (2001) with their k =
2: The class of functions under consideration is K = f�h;2(Wi;Wj ;) :  2 �g : Since
j�h;2(Wi;Wj ;)j � 2'max jKh(Zi � Zj)j ; we can use K (Wi;Wj) = 2'max jKh(Zi � Zj)j
as the envelope function. As sets of linear functions whose subgraphs are half planes, both
f ~Wi :  2 �g and f ~Wij :  2 �g are VC-type. Under Assumption 3(b), it is clear that
f'( ~Wi) :  2 �g and f'( ~Wij) :  2 �g also are VC-type. Multiplying by a �xed function
Kh(�) will not change their VC property and the associated VC characteristics. Therefore
f�h;2(Wi;Wj ;) :  2 �g is VC type with VC characteristics independent of h: Applying
Proposition 4 in DG (2001), we have
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Proof of Lemma 2: Part (a). We �rst establish an expansion of
R
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Here we have used Assumptions 2(a) and 4(b).
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where we have used Assumption 2(b). Similarly when z` 2 (1� h�; 1]; Z (1�z`)=h

�z`=h
k (v`) dv`

!
fZ (z) � Ch�(q+1):

If we choose � 2 ( q
q+1 ; 1�

q
q2+q+1

); which is feasible, then

sup
z2[0;1]dZ

�����
 Z (1�z`)=h

�z`=h
k (v`) dv`

!
fZ (z)� fZ (z)

����� � Chq+e

for some e > 0: Repeating the above arguments for other elements of z; we obtain

sup
z2[0;1]dZ

�����
dZY
`=1

"Z (1�z`)=h

�z`=h
k (v`) dv`

#
fZ (z)� fZ (z)

����� � Chq+e:

By the same argument, we can show that under Assumption 4 and 2(a)(b):

sup
z2[0;1]dZ

������
X

j:0<jjj�q�1
hjjj

DjfZ(z)

j!

dZY
`=1

Z (1�z`)=h

�z`=h
k(v`)v

j`
` dv`

������ � Chq+e

and

sup
z2[0;1]dZ

������
X
jjj=q

h
��j�� DjfZ(z)

j!

dZY
`=1

"Z (1�z`)=h

�z`=h
k(v`)v

j`
` dv`

#
�
�q
q!

"
dZX
`=1

@qfZ (z)

@zq`

#
hq

������ � Chq+e;

where

�q =

Z
vqk(v)dv:

We have therefore proved that

sup
z2[0;1]dZ

�����
Z
[0;1]dZ

Kh(u� z)fZ (u) du�
(
fZ (z) +

�q
q!

"
dZX
`=1

@qfZ (z)

@zq`

#
hq

)����� � Chq+e: (37)

Using the above result, we have

E
�
'(0 +X

0
i1 + Y

0
i 2 + Z

0
i3)Kh(Zi � Zj)

�
= E fE ['(Xi; Yi; Zi;)Kh(Zj � Zi)jWi]g

= E

(
'(Xi; Yi; Zi;)

"Z
[0;1]dZ

Kh(u� Zi)fZ (u) du
#)

= E'(Xi; Yi; Zi;)

(
fZ (Zi) +

�q
q!

"
dZX
`=1

@qfZ (Zi)

@Zqi`

#
h

)
+ o(hq)

= E ['(Xi; Yi; Zi;)fZ(Zi)] + h
qC1() + o(h

q);
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where

C1() �
�q
q!
E

(
'(Xi; Yi; Zi;)

"
dZX
`=1

@qfZ (Zi)

@Zqi`

#)
and the o(hq) term holds uniformly over  2 �:

Next, let

 (z; ~x; ~z;) =

Z
[0;1]dY

'(~x; y; ~z;)fY Z(y; z)dy

be a function of z indexed by (~x; ~z;): Since '(~x; y; ~z;) and fY Z(y; z) are bounded, we
can exchange di¤erentiation with integration to obtain

Dj
z [ (z; ~x; ~z;)] =

Z
[0;1]dY

'(~x; y; ~z;)Dj
z [fY Z(y; z)] dy;

where Dj
z [�] is the partial di¤erentiation operator with respect to z: So according to As-

sumption 2(a) and (d),  (z; ~x; ~z;) is q + 1 times continuously di¤erentiable with respect
to z: Furthermore, under Assumption 3 and for j with jjj = q; we have,

sup
x1;z1;

sup
kz(1)�z(2)k��

���Dj

z(1)

h
 
�
z(1); ~x; ~z;

�i
�Dj

z(2)

h
 
�
z(2); ~x; ~z;

�i���
= sup

x1;z1;
sup

kz(1)�z(2)k��

Z
[0;1]dY

'(~x; y; ~z;) �
���Dj

z

h
fY Z(y; z

(1))
i
�Dj

z

h
fY Z(y; z

(2))
i��� dy

� 'max sup
kz(1)�z(2)k��

Z
[0;1]dY

���Dj
z

h
fY Z(y; z

(1))
i
�Dj

z

h
fY Z(y; z

(2))
i��� dy

= 'max

Z
[0;1]dY

~�
�z(1) � z(2)� dy

� ~�'max �
z(1) � z(2)

for some constant ~� > 0. Therefore  (z; ~x; ~z;) 2 Gq+1
�
[0; 1]dX+dZ � �; �; ~�'max

�
: In

addition, note that

 (z; ~x; ~z;) =

"Z
[0;1]dY

'(~x; y; ~z;)fY jZ(yjz)dy
#
fZ (z) ;

which, combined with Assumption 2(b), implies that Dj
z (�z;x1; z1;) = 0 for all �z on the

boundary on [0; 1]dZ : Given these two properties, we can follow the same steps in showing
(37) to obtain Z

[0;1]dZ
Kh(u� ~z) (u; ~x; ~z;) du

=  (~z; ~x; ~z;) +
�q
q!

"
dZX
`=1

@q (u; ~x; ~z;)

@uq`

����
u=~z

#
hq + o (hq)

=  (~z; ~x; ~z;) +
�q
q!

"
dZX
`=1

Z
'(~x; y; ~z;)

@qfY Z(y; ~z)

@~zq`
dy

#
hq + o (hq)
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uniformly over  2 � and (~x; ~z) 2 [0; 1]dX+dZ . Using this result, we have

E ['(Xi; Yj ; Zi;)Kh(Zi � Zj)]
= E ['(Xi; Yj ; Zi;)Kh(Zj � Zi)]

= E

�Z
Kh(u� Zi)

�Z
'(Xi; y; Zi;)fY Z (y; u) dy

�
du

�
= E

�Z
Kh(u� Zi) (u;Xi; Zi;) dz

�
= E (Zi;Xi; Zi;) + C2()h

q + o(hq)

uniformly over  2 � where

C2() =
�q
q!
E

(
dZX
`=1

Z
'(Xi; y; Zi)

@qfY Z (y; Zi)

@Zqi`
dy

)
:

By de�nition,  (Zi;Xi; Zi;) = gXZ(Xi; Zi;): So

E ['(Xi; Yj ; Zi;)Kh(Zi � Zj)] = EgXZ(Xi; Zi;) + C2()h
q + o(hq)

uniformly over  2 �:
Let C3() � C1()� C2(); then

�h() � E
h
�̂n;h()

i
= Ef['(Xi; Yi; Zi;)Kh(Zi � Zj)� '(Xi; Yj ; Zi;)Kh(Zi � Zj)g
= E ['(Xi; Yi; Zi)fZ(Zi)] + C1()h

q + o(hq)

�fE [gXZ(Xi; Zi;)] + C2()h
q + o(hq)g

= �() + C3()h
q + o(hq)

uniformly over  2 �: It then follows that under Assumption 5(b)

E
h
�̂n;h()

i
= �() + o

�
n�1=2

�
uniformly over  2 �:

Part (b). By de�nition

Hn;h() =
2

n

nX
i=1

~�h;1(Wi;) =
2

n

nX
i=1

f�h;1(Wi;)��h ()g ;

where �h;1(Wi;) = E [�h(Wi;Wj ;)jWi] for j 6= i: Using the same arguments in proving
part (a), we have

sup
2�

sup
Wi2[0;1]d

�����h;1(Wi;)�
�
�1(Wi;) +

1

2
B5(Xi; Yi; Zi;)h

q

����� � Chq+e;
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where

�1(Wi;)

=
1

2
'(Xi; Yi; Zi;)fZ(Zi)�

1

2

Z
'(Xi; y; Zi;)fY Z(y; Zi)dy

+
1

2

Z
'(x; y; Zi;)fXY Z(x; y; Zi)dxdy �

1

2

Z
'(x; Yi; Zi;)fXZ(x;Zi)dx; (38)

B1(Xi; Yi; Zi;) �
�q
q!
'(Xi; Yi; Zi;)

dZX
`=1

@qfZ (Zi)

@Zqi`
; (39)

B2(Xi; Zi;) �
�q
q!

dZX
`=1

Z
'(Xi; y; Zi;)

@qfY Z(y; Zi)

@Zqi`
dy; (40)

B3(Zi;) �
�q
q!

dZX
`=1

Z
@q ['(x; y; Zi;)fXY Z(x; y; Zi)]

@Zqi`
dxdy; (41)

B4(Yi; Zi;) �
�q
q!

dZX
`=1

Z
@q ['(x; Yi; Zi;)fXZ(x;Zi)]

@Zqi`
dx; (42)

and

B5(Xi; Yi; Zi;) = B1(Xi; Yi; Zi;)�B2(Xi; Zi;)�B4(Yi; Zi;) +B3(Zi;): (43)

It is easy to see that E�1(Wi;) = � () : So

Hn;h() =
2

n

nX
i=1

�
�1(Wi;) +

1

2
B5(Xi; Yi; Zi;)h

q

�
��h ()

=
2

n

nX
i=1

[�1(Wi;)� E�1(Wi;)] +
1

2n

nX
i=1

B5(Xi; Yi; Zi;)h
q

� (�h ()��()) + o(hq)

where the o(hq) term holds uniformly over  2 �:
Since B5(Xi; Yi; Zi;) is continuous in ; E sup2� jB5(Xi; Yi; Zi;)j < 1; (Xi; Yi; Zi)

is IID, and � is compact, we can use a standard textbook argument to show that a ULLN
applies to n�1

Pn
i=1B5(Xi; Yi; Zi;): That is, sup2�

��n�1Pn
i=1B5(Xi; Yi; Zi;)

�� = O(1):
Combining this with part (a), we have

Hn;h() =
1

n

nX
i=1

f�1(Wi;)� E [�1(Wi;)]g+Op(hq)

=
1

n

nX
i=1

f�1(Wi;)� E [�1(Wi;)]g+ op(
1p
n
)

uniformly over  2 �:
�
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Proof of Theorem 3. As a direction implication of Lemmas 1 and 2, we have

p
n
h
�̂n;h(�s)��(�s)

i
=

2

n

nX
i=1

f�1(Wi; �s)� E [�1(Wi; �s)]g+ op (1)

uniformly over  2 �: The asymptotic normality now follows by applying the Lindeberg-
Levy CLT.

If in addition H0 holds, then �(�s) = 0 and

�1(Wi; ) =
1

2
'(Xi; Yi; Zi;)fZ(Zi)�

1

2

Z
'(Xi; y; Zi;)fY Z(y; Zi)dy

+
1

2

Z
'(x; y; Zi;)fXY Z(x; y; Zi)dxdy �

1

2

Z
'(x; Yi; Zi;)fXZ(x;Zi)dx;

(under H0) =
1

2
E [' (Xi; Yi; Zi;) fZ(Zi)jXi; Yi; Zi]�

1

2
E [' (Xi; Yi; Zi;) fZ(Zi)jXi; Zi]

+
1

2
E [' (Xi; Yi; Zi;) fZ(Zi)jZi]�

1

2
E [' (Xi; Yi; Zi;) fZ(Zi)jYi; Zi]

= �(Wi;):

Thus, given H0 we have


 (`;m) = 4E [�(Wi;`)�(Wi;m)] :

�

Proof of Theorem 4: Given Lemmas 1 and 2, it su¢ ces to prove part (a). Theorem 3
shows that for a �nite number of �s, f�n(1); �n(2); : : : ; �n(s)g is asymptotically normal.
Also,  2 � � R1+d with � a compact (hence totally bounded) set. To complete the proof,
we need to show that �n() is stochastically equicontinuous (e.g., see Andrews, 1994). For
this, we use Theorems 4�6 in Andrews (1994). In view of the de�nition of �1(Wi;) in
(38) and Theorem 6 in Andrews (1994), we only need to verify that each of the four terms
satis�es Ossiander�s L2 entropy condition.

For the �rst term in (38), ' (Wi;) fZ(Zi) belongs to the type IV class if we can verify
that

E

(
[fZ(Zi)]

2 sup
1:k1�k<�

j' (Wi;1)� ' (Wi;)j2
)
� C� (44)

for any  2�; for any � > 0 in a neighborhood of 0, and for some �nite constants C > 0
and  > 0. Under Assumption 3, ' (Wi;) is di¤erentiable in . Given that

E

fZ(Zi) sup2�
@ [' (Wi;) =@]


2

<1

and � is bounded, we can show that (44) holds by the mean value theorem and Cauchy-
Schwarz inequality.
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Similarly, we can show that the other three terms in �1(Wi;) also belong to the type

IV class. Hence �n(�)
d! Z (�).

�

Proof of Proposition 5: Since

sup


�����
p
n�̂n;h()

�̂n ()
�
p
n�̂n;h()

�� ()

�����
� sup



hp
n�̂n;h()

i
sup


���� �̂n ()� �� ()�̂n ()

���� sup


1

�� ()
;

it su¢ ces to show that sup j1� �� () =�̂n ()j = op(1). Under the given conditions, this
follows from the proof of uniform consistency of 
̂ given in Huang (2009, Ch. 1, Theorem
6). �

33



References

[1] Andrews, D.W.K. (1994), �Empirical Process Methods in Econometrics,� in Engle,
R.F. and McFadden, D.L. (eds.), Handbook of Econometrics, vol. IV. Amsterdam:
Elsevier, pp. 2248�2296.

[2] Barnow, B.S., Cain, G.G., Goldberger, A.S. (1981), �Issues in the Analysis of Selec-
tivity Bias,� in Stromsdorfer, W.E. and Farkas, G. (eds.), Evaluation studies review
annual, Vol. 5. Beverly Hills, CA: Sage, pp. 43�59.

[3] Bierens, H.J. (1982), �Consistent Model Speci�cation Tests,�Journal of Econometrics,
20,105-134.

[4] Bierens, H.J. (1990), �A Consistent Conditional Moment Test of Functional Form,�
Econometrica, 58, 1443�1458.

[5] Bierens, H.J., Ploberger, W. (1997), �Asymptotic Theory of Integrated Conditional
Moment Tests,�Econometrica, 65, 1129�1151.

[6] Billingsley, P. (1999). Convergence of Probability Measures. New York, NY: John
Wiley & Sons, Inc.

[7] Blackburn, M., Neumark, D. (1993), �Omitted-Ability Bias and the Increase in the
Return to Schooling,�Journal of Labor Economics, vol. 11, 521�544.

[8] Boning, W.B., Sowell, F. (1999), �Optimality for the integrated conditional moment
test,�Econometric Theory, Vol. 15, 710�718.

[9] Dawid, A.P. (1979), �Conditional Independence in Statistical Theory,�Journal of the
Royal Statistical Society, Series B 41, 1-31.

[10] Delgado, M., Gonzalez-Manteiga, W. (2001), �Signi�cance Testing in Nonparametric
Regression Based on the Bootstrap,�Annals of Statistics, 29, 1469�1507.

[11] Fernandes, M., Flores, R. (2002), �Tests for Conditional Independence, Markovian
Dynamics and Noncausality,�European University Institute Discussion Paper.

[12] Griliches, Z. (1977), �Estimating the Returns to Schooling: Some Econometric Prob-
lems,�Econometrica, 45, l�22.

[13] Griliches, Z., Mason, W.M., (1972), �Education, Income, and Ability,�The Journal of
Political Economy, Vol. 80, No. 3, pp. S74�S103.

[14] Hansen, B. E. (1996), �Inference when a Nuisance Parameter is Not Identi�ed under
the Null Hypothesis,�Econometrica, 64, 413�430.

[15] Hoe¤ding, W. (1948), �A Class of Statistics with Asymptotically Normal Distribu-
tion,�Annals of Mathematical Statistics, 19, 293�325.

[16] Huang, M. (2009), �Essays On Testing Conditional Independence,�
Ph.D. dissertation, University of California, San Diego. Available at
http://escholarship.org/uc/item/15t6n3h6.

34



[17] Lee, A.J. (1990), U-statistics: Theory and Practice. New York: CRC Press.

[18] Li, Q. and Racine, J. S. (2007), Nonparametric Econometrics, Princeton University
Press.

[19] Linton, O., and Gozalo, P. (1997), �Conditional Independence Restrictions: Testing
and Estimation,�Yale University Cowles Foundation for Research in Economics Dis-
cussion Paper.

[20] Mincer, J. (1974), Schooling, Experience, and Earnings. New York: Columbia Univer-
sity Press.

[21] Powell, J.L., Stock, J.H., Stoker, T.M. (1989), �Semiparametric Estimation of Index
Coe¢ cients,�Econometrica, 57, 1403�1430.

[22] Powell, J.L., Stoker, T.M. (1996), �Optimal Bandwidth Choice for Density-weighted
Averages�, Journal of Econometrics, 75, 291�316.

[23] Robinson, P. M. (1988), �Root-N-consistent Semiparametric Regression,�Economet-
rica, 56, 931�954.

[24] Song, K. (2009), �Testing Conditional Independence Via Rosenblatt Transforms,�An-
nals of Statistics, 37, 4011�4045.

[25] Stinchcombe, M., White, H. (1998), �Consistent Speci�cation Testing with Nuisance
Parameters Present Only Under the Alternative,�Econometric Theory, 14, 295�324.

[26] Su, L., White, H. (2003), �Testing Conditional Independence Via Empirical Likeli-
hood,�UCSD Department of Economics Discussion Paper.

[27] Su, L., White, H. (2007), �A Consistent Characteristic Function-Based Test for Con-
ditional Independence,�Journal of Econometrics, 141, 807�834.

[28] Su, L., White, H. (2008), �A Nonparametric Hellinger Metric Test for Conditional
Independence,�Econometric Theory, 24, 829-864.

[29] Su, L., White, H. (2010), �Testing Structural Change in Partially Linear Models,�
Econometric Theory, 26, 1761�1806.

[30] White, H., Chalak, K. (2008), �Identifying Structural E¤ects in Nonseparable Systems
Using Covariates,�UCSD Department of Economics Discussion Paper.

[31] White, H., Chalak, K. (2009), �Settable Systems: An Extension of Pearl�s Causal
Model with Optimization, Equilibrium, and Learning,�Journal of Machine Learning
Research, 10, 1759�1799.

[32] White, H., Chalak, K. (2010), �Testing a Conditional Form of Exogeneity,�Economics
Letters, 109, 88�90.

35



0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

ρX,Y|Z

Em
pi

ric
al

 R
ej

ec
tio

n 
Fr

eq
ue

nc
y

n=50
n=100
n=200
5%

Figure 1: Power functions of non-standardized ICM test (Mn) for DGP 1 with nominal size
5%
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Figure 2: Power functions of standardized ICM test ( ~Mn) for DGP 1 with nominal size 5%

36



0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

ρX,Y|Z

Em
pi

ric
al

 R
ej

ec
tio

n 
Fr

eq
ue

nc
y

n=50
n=100
n=200
5%

Figure 3: Power functions of non-standardized ICM test (Mn) for DGP 2 with nominal size
5%
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Figure 4: Power functions of standardized ICM test ( ~Mn) for DGP 2 with nominal size 5%
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Figure 5: Power functions of non-standardized ICM test (Mn) for DGP 3 with nominal size
5%
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Figure 6: Power functions of standardized ICM test ( ~Mn) for DGP 3 with nominal size 5%
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Figure 7: Power functions of the 5% standardized GCR test, SW2007 test, and SW2008
test under DGP1 with sample size 100
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Figure 8: Power functions of the 5% standardized GCR test, SW2007 test, and SW2008
test under DGP1 with sample size 200
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Figure 9: Power functions of the 5% standardized GCR test, LG 1997 test, and DG 2001
test under DGP1 with sample size 200
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