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1 Introduction

This paper studies spatial heteroskedasticity and autocorrelation consistent (HAC) estima-
tion of covariance matrices of parameter estimators. As heteroskedasticity is a well known
feature of cross sectional data (e.g. White (1980)), spatial dependence is also a common
property due to interactions among economic agents. Therefore, robust inference in pres-
ence of heteroskedasticity and spatial dependence is an important problem in spatial data
analysis.

The �rst discussion of spatial HAC estimation is Conley (1996, 1999). He proposes a
spatial HAC estimator based on the assumption that each observation is a realization of a
random process, which is stationary and mixing, at a point in a two-dimensional Euclidean
space. Conley and Molinari (2007) examine the performance of this estimator using Monte
Carlo simulation. Their results show that inference is robust to the measurement error in
locations. Robinson (2005) considers nonparametric kernel spectral density estimation for
weakly stationary processes on a d-dimensional lattice.

Kelejian and Prucha (2007, hereafter KP) also develop a spatial HAC estimator. As
in many empirical studies, they model spatial dependence in terms of a spatial weighting
matrix. The di¤erence is that the weighting matrix is not assumed to be known and is not
parametrized. Typical examples of this type of processes include the spatial autoregressive
processes and spatial moving average processes. Local nonstationarity and heteroskedas-
ticity are built-in features of these type of processes. This is in sharp contrast with Conley
(1996, 1999) and Robinson (2005) in which the process is assumed to be stationary. KP em-
ploy an economic distance to characterize the decaying pattern of the spatial dependence.
The covariance of random variables at locations i and j is a function of dij;n, the economic
distance between them. As the economic distance increases, the covariance decreases in
absolute value and vice versa. The existence of such an economic distance enables us to
use the kernel method for the standard error estimation. The estimator is a weighted sum
of sample covariances with weights depending on the relative distances, that is, dij;n=dn for
some bandwidth parameter dn:

We generalize the spatial HAC estimator proposed by KP to be applicable to general
linear and nonlinear spatial models and establish its asymptotic properties. We provide
the conditions for consistency and the rate of convergence. Let E`n denote the mean of
the average number of pseudo-neighbors. By de�nition, two units are pseudo-neighbors
if their distance is less than dn: We show that the spatial HAC estimator is consistent if
E`n = o(n) and dn ! 1 as n ! 1. This result implies that the rate of convergence
of the estimator is E`n=n. Comparing our results with Andrews (1991), we �nd that the
properties of the spatial HAC estimator we consider are interestingly parallel to those of
the time series HAC estimator, even though they assume di¤erent DGPs and have di¤erent
dependence structures.

We decompose the di¤erence of the spatial HAC estimator from the true covariance
matrix into three parts. The �rst part is due to the estimation error of model parameters
and the second and third parts are bias and variance terms even if the model parameters
are known. We derive the asymptotic bias and variance and show that the estimation error
vanishes faster than the other two terms under some regularity conditions. As a result,
the truncated Mean Squared Error (MSE) of the spatial HAC estimator is dominated
by the bias and variance terms. This key result provides us the opportunity to select
the bandwidth parameter to balance the asymptotic squared bias with variance. We �nd
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that the optimal bandwidth choice depends on the weighting matrix Sn used in the MSE
criterion. Depending on which model parameter is the focus of interest, we suggest di¤erent
choices of the weighting matrix. This scheme coincides with that suggested by Politis
(2007).

We provide a data-driven implementation of the optimal bandwidth parameter and ex-
amine the �nite sample properties of our spatial HAC estimator and the associated test via
Monte Carlo simulation. We compare the performance of competing estimators using dif-
ferent choices of dn and Sn. In addition, the e¤ects of location errors and the performance of
the plug-in procedure with mis-speci�ed parametric model are examined. We also consider
the case when the observations are located irregularly and compare the performance of the
standard normal approximation with two naive bootstrap approximations for hypothesis
testing.

In addition to KP, the paper that is most closely related to ours is Andrews (1991) who
employ the asymptotic truncated MSE criterion to select the bandwidth parameter for time
series HAC estimation. His paper in turn can be traced back to the literature on spectral
density estimation. We extend Andrews (1991) to the spatial setting. The extension is
nontrivial as spatial processes are more di¢ cult to deal with, especially when they are not
weakly stationary.

The remainder of the paper is as follows. Section 2 describes the estimation problem
and the underlying spatial process we consider and introduces our spatial HAC estimator.
Section 3 establishes the consistency, the rate of convergence, and the asymptotic truncated
MSE of the spatial HAC estimator. Section 4 derives asymptotically optimal sequences of
�xed bandwidth parameters and proposes a data-dependent implementation. Section 5
studies the consistency, the rate of convergence, and the asymptotic truncated MSE of
the spatial HAC estimator with the estimated optimal bandwidth parameter. Section 6
presents Monte Carlo simulation results. Section 7 concludes.

2 Spatial Processes and HAC Estimators

In a general spatial model with moment restrictions, the asymptotic distribution of a pa-
rameter estimator often satis�es

(BnJnB
0
n)
� 1
2
p
n(�̂ � �0)

d! N(0; Ir); as n!1;
where n is the sample size, Bn is a nonstochastic r � p matrix and

Jn = var

 
1p
n

nX
i=1

Vi;n(�0)

!
=
1

n

nX
i=1

nX
j=1

E
�
Vi;n(�0)Vj;n(�0)

0� ; (1)

Vi;n(�) is a random p-vector for each � 2 � � Rr. For IV estimation of a linear regression
model, Vi;n(�) = Zi;n(Yi;n�X 0

i;n�) where Zi;n is the vector of instruments. For pseudo-ML
estimation, Vi;n(�) is the score function of the ith observation. For GMM estimation, Vi;n(�)
is the moment vector. A prime example of this setting is the spatial linear regression:

Yi;n = X 0
i;n�0 + ui;n;

where E(ui;njXi;n) = 0: The OLS estimator of �0 is

�̂ =

 
1

n

nX
i=1

Xi;nX
0
i;n

!�1 
1

n

nX
i=1

Xi;nYi;n

!
:
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Under some regularity conditions, (BnJnB0n)
� 1
2
p
n(�̂ � �0)

d! N(0; Ir) where

Jn =
1

n

nX
i=1

nX
j=1

E (Xi;nui;n) (Xj;nuj;n)
0 and Bn =

 
1

n

nX
i=1

Xi;nX
0
i;n

!�1
:

We are interested in estimating the asymptotic variance of
p
n(�̂ � �0). As Bn is often

easy to estimate by replacing �0 with �̂, our focus is on consistent estimation of Jn. By
extending the spatial HAC estimator proposed in KP, we can construct a spatial HAC
estimator of Jn as follows

1

n

nX
i=1

nX
j=1

V̂i;nV̂
0
j;nK

�
dij;n
dn

�
; (2)

where V̂i;n = Vi;n(�̂) and K(�) is a real-valued kernel function. dij;n is the economic distance
between units i and j and dn is a bandwidth or truncation parameter. We assume that
the degree of spatial dependence is a function of dij;n: More speci�cally, if dij;n is small,
Vi;n and Vj;n are highly dependent. Whereas, if it is large, the two units are rather close to
being independent.

We assume that Vi;n(= Vi;n(�0)) for i = 1; : : : ; n are generated from np common inno-
vations:

Vi;n = ~Rin~"n (3)

where

~Rin =

26664
�
~r
(1)
i1;n : : : ~r

(1)
in;n

�
: : : 0

...
. . .

...

0 : : :
�
~r
(p)
i1;n : : : ~r

(p)
in;n

�
37775

is a p�np block diagonal matrix with unknown elements, ~"(c)n =
�
~"
(c)
1n ; :::; ~"

(c)
`n ; :::; ~"

(c)
n;n

�0
and

~"n = ((~"
(1)
n )0; :::; (~"

(p)
n )0)0 is a np� 1 vector of innovations. We assume that

var
�
~"(c)n

�
= �ccIn; cov

�
~"(c)n ; ~"(d)n

�
= �cdIn

so that the variance matrix of ~"n is of the form

var(~"n) = �
 In with � = (�ij) ;

where
 denotes the Kronecker product. The process exhibited in (3) allows nonstationarity
and unconditional heteroskedasticity of Vi;n.

Let Rin := ~Rin
�
�1=2 
 In

�
and "n := ("1;n; :::; "`;n; ::::; "np;n) =

�
��1=2 
 In

�
~"n; then

Vi;n = Rin"n and var("n) = Inp:
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The matrix Rin can be written more explicitly as

Rin :=

26664
�
r
(1)
i1;n : : : r

(1)
i;np;n

�
...�

r
(p)
i1;n : : : r

(p)
i;np;n

�
37775

=

26664
�11

�
~r
(1)
i1;n : : : ~r

(1)
in;n

�
::: �1p

�
~r
(p)
i1;n : : : ~r

(p)
in;n

�
...

. . .
...

�p1
�
~r
(p)
i1;n : : : ~r

(p)
in;n

�
: : : �pp

�
~r
(p)
i1;n : : : ~r

(p)
in;n

�
37775

where �ij is the (i; j)-th element of �1=2:
We make the following assumption on "n.

Assumption 1 For each n � 1, f"`;ng are i:i:d:(0; 1) with E"4`;n � cE for a constant
cE <1.

For simplicity, we assume that "i;n is independent of "j;n for i 6= j: Our results can
be generalized but with more tedious calculations. Under Assumption 1, the covariance
matrix between Vi;n and Vj;n is given by

�ij;n :=
�

(cd)
ij;n

�
= E[Vi;nV

0
j;n] = RinR

0
jn (4)

where the (c; d)-th element of �ij;n is denoted by 
(cd)
ij;n . Accordingly, equation (1) can be

restated as

Jn =
1

n

nX
i=1

nX
j=1

�ij;n =
1

n

nX
i=1

nX
j=1

RinR
0
jn

and the (c; d)-th element of Jn is

Jn(c; d) =
1

n

nX
i=1

nX
j=1

E

npX
m=1

npX
`=1

r
(c)
im;nr

(d)
j`;n"m;n"`;n

=
1

n

nX
i=1

nX
j=1

npX
m=1

r
(c)
im;nr

(d)
jm;n:

Assumption 2 For all j = 1; 2; :::; np; and s = 1; 2; :::; p;
Pn
k=1

���r(s)kj;n��� < cR for some
constant cR, 0 < cR <1.

Assumption 3 There exists qd > 0 such that n�1
Pn
i=1

Pn
j=1 k�ij;nk d

qd
ij;n < 1 for all n,

where kAk denotes the Euclidean norm of matrix A.

Assumption 4 For k = 1; 2; :::; n

lim
n!1

1

n

nX
i=1

nX
j=1

�ij;n = lim
n!1

nX
j=1

�kj;n
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Assumptions 2 and 3 impose conditions on the persistence of the spatial process. If���ij�� � C for some constant C > 0; then Assumption 2 holds if
Pn
k=1

���~r(s)kj;n��� < cR=C: Since���~r(s)kj;n��� can be regarded as the (absolute) change of V (s)i;n in response to one unit change

in ~"(s)jn ; the summability condition requires that the aggregate response be �nite. The

condition holds trivially if the set f~r(s)kj;n; k = 1; 2; :::; ng has only a �nite number of nonzero
elements. In this case, the dependence induced by the innovation ~"(s)jn are limited to a
�nite number of units. Assumption 3 states that �ij;n decays to zero fast enough such that
n�1

Pn
i=1

Pn
j=1 k�ij;nk d

qd
ij;n is �nite for all n: This excludes the case in which the sample size

increases because of more intensive sampling within a given distance. This condition enables
us to truncate the sum

Pn
j=1 k�ij;nk and downweigh the summand without incurring a large

error. As in the time series literature, this assumption helps us control the asymptotic bias
of the spatial HAC estimator.

Assumption 4 states that in large samples the row sum of the covariance matrix is the
same across di¤erent rows. This assumption is related to covariance stationarity but they
are quite di¤erent. If the spatial process is covariance stationary and the units are located
on a regular lattice, then the assumption holds trivially for every sample size n: On the other
hand, the assumption holds for nonstationary processes such as the spatial AR processes
as long as the units are not distributed very unevenly. In addition, the assumption is not
for a �nite sample size. It holds for any spatial process which is not stationary for a �nite
sample size but becomes approximately stationary in large samples. The assumption allows
us to derive a neat expression for the asymptotic variance of the spatial HAC estimator. It
can be relaxed if we are interested only in the consistency result.

The spatial HAC estimator we consider is based on (2) but it also allows for measure-
ment errors in the economic distances as follows

Ĵn =
1

n

nX
i=1

nX
j=1

V̂i;nV̂
0
j;nK

�
d�ij;n
dn

�
; (5)

where d�ij;n = dij;n + �ij;n and �ij;n denotes the measurement error. Data on economic
distances available to econometricians usually contain measurement errors. For example,
the economic distance between two countries may be measured by transportation cost
in international trade and this inevitably involves some measurement error. Sometimes
the economic distance may be estimated from another related model. The underlying
estimation error is a special case of measurement errors.

Assumption 5 (i) f�ij;ng are independent of f"`;ng: (ii) �ij;n = o(dn) as dn !1.
(iii) n�1

Pn
i=1

Pn
j=1 k�ij;nkE j�ij;nj

qd <1 for all n:

Assumption 5 is weaker than the restriction on measurement errors in KP and Con-
ley (1999). They require the measurement errors to be bounded by a �nite constant.
However, there may be a case when the measurement error grows as the distance of
two units becomes farther. We allow this. �ij;n can increase as dij;n increases as long
as Assumptions 5(ii) and (iii) hold. Under this assumption, it is straightforward that
n�1

Pn
i=1

Pn
j=1 k�ij;nkE(d�ij;n)qd < 1 for all n. Essentially, measurement errors in dis-

tance can not be so large as to change the summability of n�1
Pn
i=1 k�ij;nkE(d�ij;n)q:
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Let `i;n =
Pn
j=1 1fd�ij;n � dng and `n = 1=n

Pn
i=1 `i;n. If we call unit j a pseudo-

neighbor of unit i if d�ij;n � dn; then `i;n is the number of pseudo-neighbors that unit i has
and `n is the average number of pseudo-neighbors. Here we use the terminology �pseudo-
neighbor� in order to di¤erentiate it from the common usage of �neighbor� in spatial
modeling. We maintain the following assumption on the number of pseudo-neighbors.

Assumption 6 (i) For all i = 1; 2; :::; n; `i;n � CE`n for some constant C. (ii) E j`i;n � E`nj =
o(E`n) as dn !1 and n!1:

Assumption 6(i) is very weak as C can be a large constant. Assumption 6(ii) says that
the number of pseudo-neighbors for each unit i is close to the average number of pseudo-
neighbors. This assumption is also weak as it allows `i;n to be di¤erent from `n as long as
the di¤erence does not grow too fast as n increases. This assumption rules out the case
that the units are distributed very unevenly in space.

3 Asymptotic Properties of Spatial HAC Estimators

This section presents the consistency conditions, the rate of convergence, and the asymp-
totic truncated MSE of the �xed bandwidth kernel spatial HAC estimator. We begin by
introducing the assumption on the kernel used in the spatial HAC estimator.

Assumption 7 (i) The kernel K : R! [0; 1] satis�es K(0) = 1;K(x) = K(�x);K(x) = 0
for jxj � 1. (ii) For all x1; x2 2 R there is a constant, cL < 0, such that

jK(x1)�K(x2)j � cL jx1 � x2j :

(iii) (E`n)
�1E

Pn
j=1K

2
�
d�ij;n
dn

�
! �K for all i.

Examples of kernels which satisfy Assumptions 7 (i) and (ii) are the Bartlett, Tukey-
Hanning and Parzen kernels. The quadratic spectral (QS) kernel does not satisfy Assump-
tion 7(i) because it does not truncate. We may generalized our results to include the QS
kernel but this requires a considerable amount of work. Assumption 7(iii) is more of an
assumption on the distribution of the units. In the case of a 2-dimensional lattice structure,
we have

�K =
1

�

Z 1

�1

Z p
1+x2

�
p
1�x2

K2(
p
x2 + y2)dydx =

Z 1

�1
K2(r)dr

This relationship also holds for other structures if the units are not distributed very un-
evenly. In �nite samples, we may use

�Kn = (n`n)
�1

nX
i=1

nX
j=1

K2

�
d�ij;n
dn

�

for �K:
Since the spatial process of Vi;n is locally nonstationary, Ĵn is not a weighted average

of the periodogram at di¤erent frequencies. Therefore, the kernel functions which generate
positive semi-de�nite (psd) HAC estimators under the assumption of covariance stationarity
do not necessarily guarantee the positive semi-de�niteness of Ĵn. KP introduce a class of
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kernel functions which generate psd spatial HAC estimators in �nite samples when the
distance measure corresponds to a Euclidean norm in Rp, p � 1. Let '(x) be a function
de�ned by

'(x) = �
�p
2

�Z 1

0

�
2

rx

� p�2
2

J p�2
2
(rx)dF (r); x � 0

where F is a probability distribution function on [0;1) and J p�2
2
is a Bessel function of

order (p� 2)=2. Then
[' (kzi � zjk)]ni;j=1

is psd for any points z1; : : : ; zn in Rp. Note that ' : [0;1) ! R with '(0) = 1. If the
kernel function K(x) can be rewritten as '(x) for some probability distribution function
FK (�) and d�ij;n=dn = kzi � zjkp, then Ĵn is psd.

The asymptotic variance of Ĵn depends on g; the limit value of Jn :

g := lim
n!1

Jn = lim
n!1

1

n

nX
i=1

nX
j=1

�ij;n:

The asymptotic bias of Ĵn is determined by the smoothness of the kernel at zero and the
rate of decaying of the spatial dependence as a function of the distance. De�ne

Kq0 = lim
x!0

1�K(x)
jxjq0 ; for q0 2 [0;1):

and let q = maxfq0 : Kq0 < 1g be the Parzen characteristic exponent of K(x). The
magnitude of q re�ects the smoothness of K(x) at x = 0. We assume q � qd throughout
the paper. Let

g(q)n =
1

n

nX
i=1

nX
j=1

�ij;nE(d
�
ij;n)

q; g(q) = lim
n!1

g(q)n := lim
n!1

1

n

nX
i=1

nX
j=1

�ij;nE(d
�
ij;n)

q:

Next we introduce additional assumptions required to obtain the asymptotic properties
of Ĵn.

Assumption 8 (i)
p
n
�
�̂ � �0

�
= Op(1). (ii) supiE sup�2�n kVi;n (�) k2 < 1 where �n

is a small neighborhood around �0: (iii) supiE sup�2�n k
@
@�0Vi;n(�)k

2 < 1. (iv) For r =
1; :::; p;

supiE sup�2�n k
@2

@�@�0V
(r)
i;n (�)k2 <1. (v) supi;a;b

P1
j=1

EV (r)j;n V
(r)
b;n

@
@�0V

(s)
i;n

@
@�V

(s)
a;n

 <1 for
r; s = 1; : : : ; p.

Assumption 8(i) usually holds by the asymptotic normality of parameter estimators.
Assumption 8(ii) is implied by Assumptions 1 and 2. Assumptions 8(iii), (iv) and (v) are
trivial in a linear regression case.

We de�ne the MSE criterion as

MSE

�
n

E`n
; Ĵn; S

�
=

n

E`n
E
h
vec(Ĵn � Jn)0Svec(Ĵn � Jn)

i
;
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where S is some p2� p2 weighting matrix and vec(�) is the column by column vectorization
function. We also de�ne ~Jn as the pseudo-estimator that is identical to Ĵn but is based on
the true parameter, �0, instead of �̂. That is,

~Jn =
1

n

nX
i=1

nX
j=1

Vi;nV
0
j;nK

�
d�ij;n
dn

�
:

Under the assumptions above, the e¤ect of using �̂ instead of �0 on the asymptotic property
is op(1) as Theorem 1(c) states below. Therefore, we use ~Jn to analyze the asymptotic
properties of Ĵn. Notwithstanding, if �̂ has an in�nite second moment, the underlying
estimation error can dominate the MSE criterion. To circumvent the undue in�uence of �̂
on the criterion of performance, we follow Andrews (1991) and replace the MSE criterion
with a truncated MSE criterion. We de�ne

MSEh

�
n

E`n
; Ĵn; Sn

�
= E

�
min

����� nE`nvec(Ĵn � Jn)0Snvec(Ĵn � Jn)
���� ; h��

where Sn is a p2 � p2 weighting matrix that may be random. The criterion which we base
on for the optimality result is the asymptotic truncated MSE, which is de�ned as

lim
h!1

lim
n!1

MSEh

�
n

E`n
; Ĵn; Sn

�
:

This criterion yields the same value as the asymptotic MSE when �̂ has well de�ned mo-
ments, but does not diverge to in�nity when �̂ has in�nite second moments.

Assumption 9 (i) E"8l;n <1. (ii) Sn
p! S for a positive de�nite matrix S:

Let tr denote the trace function and Kpp the p2 � p2 commutation matrix. Under the
assumptions above, we have the following theorem.

Theorem 1 Suppose that Assumptions 1-7 hold, E`n and dn !1 and E`n=n! 0.

(a) limn!1 n
E`n

var
�
vec ~Jn

�
= �K(I +Kpp) (g 
 g).

(b) limn!1 dqn(E ~Jn � Jn) = �Kqg
(q).

(c) If Assumption 8 holds and d2qn E`n
n ! � 2 (0;1), then

q
n
E`n

�
Ĵn � Jn

�
= Op(1) andq

n
E`n

�
Ĵn � ~Jn

�
= op(1).

(d) Under the conditions of part (c) and Assumption 9,

lim
h!1

lim
n!1

MSEh

�
n

E`n
; Ĵn; Sn

�
= lim
h!1

lim
n!1

MSEh

�
n

E`n
; ~Jn; Sn

�
= lim
n!1

MSE

�
n

E`n
; ~Jn; S

�
=
1

�
K2
q

�
vecg(q)

�0
S
�
vecg(q)

�
+ �Ktr (S(I +Kpp)(g 
 g)) :
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Proofs are given in the appendix. For each element of ~Jn, limn!1 n
E`n

cov
�
~Jrs;n; ~Jcd;n

�
=

�K (grcgsd + grdgsc) and limn!1 dqn(E ~Jrs;n� Jrs;n) = �Kqg
(q)
rs . Theorem 1(a) and (b) show

that the asymptotic variance and bias of ~Jn depend on the choice of the bandwidth. When
we increase the bandwidth, the bias decreases and the variance increases because E`n
increases with dn.

The second part of Theorem 1(c) shows that, compared with the variance term in
part (a) ; the e¤ect of using Vi;n(�̂) instead of Vi;n (�0) in the construction of the spatial
HAC estimator is of a smaller order. Therefore, the rate of convergence is obtained by
balancing the variance and the squared bias. Accordingly, E`n = o(n) is the condition for
the consistency of Ĵn and its rate of convergence is

p
E`n=n (= O(d�qn )). If we assume that

E`n = O(d�n) for some � > 0, then the rate of convergence can be rewritten as nq=(�+2q).
The results here are di¤erent from those provided by KP. In their paper, the condition for
consistency is E`n = o(n� ) where � � 1

2 and the rate of convergence is n
q=(�+4q). They

obtain this slower rate of convergence by balancing the terms from the estimation error in
�̂ and the asymptotic bias. Their rate is not the best obtainable because their bound for
the estimation error term is too loose.

It is also interesting that the asymptotic properties of the spatial HAC estimator are very
similar to those of the time series HAC estimator even though their DGPs and dependence
structures are di¤erent from each other. Instead of using dn as the bandwidth parameter,
we can also use E`n as the bandwidth parameter. In the time series case, dn = E`n:
Substituting this relationship into Theorem 1, we obtain the same results as given in Parzen
(1957), Hannan (1970) and Andrews (1991).

4 Optimal Bandwidth Parameter and Data Dependent Band-
width Selection

This section presents a sequence of optimal bandwidth parameters which minimize the
asymptotic truncated MSE of Ĵn and gives a data-driven implementation. We also consider
the choice of the weighting matrix Sn.

We obtain the optimal bandwidth parameter directly as a corollary to Theorem 1(d).
Let d?n be the optimal bandwidth parameter. Then

d?n = argmin
dn

1

d2qn
K2
q

�
vec g(q)

�0
Sn

�
vec g(q)

�
+
E`n
n

�Ktr (Sn(I +Kpp)(g 
 g)) (6)

If the relation between E`n and dn is speci�ed, (6) can be restated in an explicit form. For
example, we may assume that E`n = �nd

�
n and �n = O(1) for some � > 0. Then (6) is

reduced to:

d?n = argmin
dn

1

d2qn
K2
q

�
vec g(q)

�0
Sn

�
vec g(q)

�
+
�nd

�
n

n
�Ktr (Sn(I +Kpp)(g 
 g))

=

 
nqK2

q�(q)

�n�

! 1
2q+�

(7)

where

�(q) =

�
vec g(q)

�0
Sn
�
vec g(q)

�
�Ktr (Sn(I +Kpp)(g 
 g))

:
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Corollary 2 Suppose Assumptions 1-9 hold. Assume that E`n = �nd
�
n for some � > 0,

�n = � + o(1). Then, for any sequence of bandwidth parameters fdng such that d
2q
n E`n
n !

� 2 (0;1), fd?ng is preferred in the sense that

lim
h!1

lim
n!1

�
MSEh

�
n2q=(2q+�); Ĵn(dn); Sn

�
�MSEh

�
n2q=(2q+�); Ĵn(d

?
n); Sn

��
� 0:

The inequality is strict unless dn = d?n + o(n
1=(2q+�)):

In general, � is equal to the dimension of the space. In the time series case, � = 1 while
in the two dimensional regular lattice case, � = 2: As a result, the optimal bandwidth d?n
depends on the dimension of space. Given the nonparametric nature of our estimator, this
is not surprising. In contrast, KP suggest using dn = [n1=4]; which is rate optimal only if
q = 1 and � = 2: In general, both the rate and constant are suboptimal.

d?n is a function of g and g(q) which are unknown in �nite samples. Therefore, the
optimal bandwidth d?n is not feasible in practice. For this reason, a data dependent estima-
tion procedure is needed for implementation. Among several data dependent bandwidth
selection methods, plug-in methods are appropriate in this case because we consider the
estimation of Jn at given data. In the plug-in methods, unknown parameters are estimated
using a parametric or nonparametric method (e.g. Andrews (1991). Newey and West
(1987, 1994)). The former yields a less variable bandwidth parameter but may introduce
an asymptotic bias due to the mis-speci�cation of the parametric model. In contrast, the
latter does not require the knowledge of the DGP, but it converges more slowly than the
former, which causes bandwidth selection to be less reliable. Since the optimal bandwidth
involves g(q); a quantity that is very hard to estimate, we focus on the parametric plug-in
method in this paper. In fact, the rate of convergence for a nonparametric estimator of g(q)

is generally slower than that for g itself.
Figure 1 presents the percentage increase in MSE relative to the minimum MSE as

a function of the bandwidth. The graph is based on the spatial AR(1) process Vn =
�WnVn + "n on a square grid of integers, where Wn is a contiguity matrix whose threshold

is
p
2 and "i;n

i:i:d� N(0; 1). The sample size is n = 400: As a standard practice, Wn is
row-standardized and its diagonal elements are zero. The curve is U-shaped for each � and
therefore our goal is to choose the bandwidth which is reasonably close to d?n. As argued
by Andrews (1991), good performance of a HAC estimator only requires the automatic
bandwidth parameter to be near the optimal bandwidth value and not precisely equal to
it.

The simplest and most popular approximating parametric model is the spatial AR(1)
model for V (c)n , c = 1; : : : ; p. Depending on the correlation structure, spatial MA(q) or
spatial ARMA(p,q) models can also be used. As an example, consider the case that V (c)n

follows a spatial AR(1) process of the form:

V (c)n = �cW
(c)
n V (c)n + ~"(c)n = (In � �cW (c)

n )�1~"(c)n ;

where ~"(c)i;n
i:i:d� (0; �2") and W

(c)
n is a spatial weight matrix. W (c)

n is determined a priori and
by convention it is row-standardized and its diagonal elements are zero. See Anselin (1988).
We can estimate �c by quasi-maximum likelihood (QML) or spatial two stage least squares
(2SLS) estimators (e.g. Kelejian and I.R. Prucha (1998)). In fact, a simple OLS estimator
can be used. If the spatial AR(1) model is the true data generating process, then the OLS
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Figure 1: Spatial AR(1) Process : Vn = �WnVn + "n, n = 400

estimator is inconsistent while the QML and 2SLS estimators are consistent. Since the
spatial AR(1) model is likely to be misspeci�ed, the QML and 2SLS estimators are not
necessarily preferred.

Let �"(c)n =
�
In � �̂cW (c)

n

�
V
(c)
n , �"n =

�
�"
(1)
n ; :::; �"

(p)
n

�
and �̂ = n�1�"0n�"n: De�ne

Âcd =

�
1

n
V̂ (c)0n (In � �̂cW (c))0(In � �̂dW (d)

n )V̂ (d)n

� h
(In � �̂cW (c)

n )�1
i h
(In � �̂dW (d)

n )�1
i0
(8)

where its (i; j)-th element is denoted by â(cd)ij for i; j = 1; : : : ; n. Then, we estimate gcd and

g
(q)
cd by

ĝcd =
1

n

nX
i=1

nX
j=1

â
(cd)
ij ; ĝ

(q)
cd =

1

n

nX
i=1

nX
j=1

â
(cd)
ij

�
d�ij;n

�q
: (9)

Consequently, the data dependent bandwidth parameter estimator, d̂n, based on the spatial
AR(1) model is

d̂n = argmin
dn

1

d2qn
K2
q

�
vec ĝ(q)

�0
Sn

�
vec ĝ(q)

�
+ �K

`n
n
tr (Sn(I +Kpp)(ĝ 
 ĝ)) : (10)
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For spatial MA(1) and spatial ARMA(1,1) models, (8) is restated as

Âcd =

�
1

n
V̂ (c)0n

�
In + �̂cM

(c)0
n

��1
(In + �̂dM

(d)
n )�1V̂ (d)n

��
In + �̂cM

(c)
n

�
(In + �̂dM

(d)0
n )

Âcd =

�
1

n
V̂ (c)0n (In � �̂cW (c)0

n )
�
In + �̂dM

(c)0
n

��1
(In + �̂dM

(d)
n )�1(I � �̂dW (d)

n )V̂ (d)n

�
�

(In � �̂cW (c)
n )�1(In + �̂cM

(c)
n )(In + �̂dM

(d)0
n )(In � �̂dW (d)0

n )�1

respectively. �c andM
(c)
n are the coe¢ cient and the (n�n) weighting matrix for the spatial

MA component. Extension to spatial AR(p), spatial MA(q), spatial ARMA(p; q) models
for p; q � 2 is straightforward.

The choice of the weighting matrix Sn is another important problem. A traditional
choice suggested by Andrews (1991) is

Ŝn = (B̂n 
 B̂n)0 ~S(B̂n 
 B̂n)0;
where ~S is a r2� r2 diagonal weighting matrix. For this choice of Ŝn, the asymptotic trun-
cated MSE criterion reduces to the asymptotic truncated MSE of B̂nĴnB̂0n with weighting
matrix ~S provided that B̂n � Bn = op(E`n=n). When ~S is an identity matrix, we obtain
the MSE of the sum of the elements in B̂nĴnB̂0n.

While Ŝn is consistent for the objective we are interested in, as Politis (2007) points
out, it yields a single optimal bandwidth for estimating all elements of a covariance matrix
but each element has its own individual optimal bandwidth. In particular, the cost of
using a single optimal bandwidth increases when the process V (s)n is signi�cantly di¤erent
for di¤erent s. This is typical in a spatial context. Considering this, we propose using
di¤erent weighting matrices for di¤erent elements of the covariance matrix when Vn has a
heterogenous dependence structure. Let Srs;n denote the weighting matrix for estimating
Ĵrs;n. Then, a natural choice of Srs;n is the diagonal matrix in which the element corre-
sponding to Ĵrs;n is 1 and others are zero. We can also choose the weighting matrix such
that the asymptotic truncated MSE criterion reduces to the asymptotic truncated MSE of
a subvector of the parameter estimator �̂:

One concern of this method is that it does not guarantee Ĵn to be psd, which is often
regarded as a desirable property of Ĵn. However, we can attain positive semi-de�niteness
with a simple modi�cation suggested by Politis (2007). As Ĵn is symmetry, Ĵn(d̂n) =
Û �̂Û 0, where Û is an orthogonal matrix and �̂ = diag(�̂1; : : : ; �̂p) is a diagonal matrix
whose diagonal elements are the eigenvalues of Ĵn. Let �̂+ = diag(�̂+1 ; : : : ; �̂

+
p ) where

�̂+s = max(�̂s; 0). Then, we de�ne our modi�ed estimator as

Ĵn(d̂n)
+ = Û �̂+Û 0:

As each eigenvalue of Ĵn(d̂n)+ is nonnegative, it is psd. Theorem 4.1 in Politis (2007) shows
that Ĵn(d̂n)+ converges Jn at the same rate as Ĵn(d̂n). In fact, it is not hard to show that
the truncated AMSE of Ĵn(d̂n)+ is smaller than that of Ĵn:

5 Properties of Data Dependent Bandwidth Parameter Es-
timators

In this section, we consider the consistency condition, rate of convergence, and asymptotic
truncated MSE of spatial HAC estimators with the data dependent bandwidth parameter
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estimator. Let

�gcd = P lim
n!1

1

n

nX
i=1

nX
j=1

â
(cd)
ij ; �g

(q)
cd = P lim

n!1
1

n

nX
i=1

nX
j=1

â
(cd)
ij E

�
d�ij;n

�q
:

be the probability limits of ĝcd and ĝ
(q)
cd respectively. De�ne

�dn = argmin
dn

1

d2qn
K2
q

�
vec �g(q)

�0
Sn

�
vec �g(q)

�
+ �K

E`n
n
tr (Sn(I +Kpp) (�g 
 �g)) :

We study the properties of Ĵn(d̂n) by investigating Ĵn( �dn) because the asymptotic properties
of Ĵn(d̂n) are equivalent to those of Ĵn( �dn) as stated in Theorem 2 below. For Theorem 2,
we introduce the following assumption.

Assumption 10
p
n
�
�dn
d̂n
� 1
�
= Op(1).

Since �dn is the probability limit of the parametric plug-in estimator d̂n; the assumption
holds if ĝcd and ĝ

(q)
cd converge to �gcd and �g

(q)
cd respectively at the parametric rate. This is a

rather weak assumption.

Let ^̀i;n =
Pn
j=1 1

�
d�ij;n � d̂n

�
, �̀i;n =

Pn
j=1 1fdij;n � �dng, ^̀n = n�1

Pn
i=1

^̀
i;n and

�̀
n = n�1

Pn
i=1

�̀
i;n. The next theorem summarizes the properties of the spatial HAC

estimator with d̂n.

Theorem 3 Suppose Assumptions 1-10 hold.

(a)
q

n
E �̀n

�
Ĵn(d̂n)� Jn

�
= Op(1) and

q
n
E �̀n

�
Ĵn(d̂n)� Ĵn( �dn)

�
= op(1).

(b) Let �� = limn!1
�d2qn E �̀n
n . Then,

lim
h!1

lim
n!1

MSEh

�
n

E �̀n
; Ĵn(d̂n); Sn

�
= lim
h!1

lim
n!1

MSEh

�
n

E �̀n
; Ĵn( �dn); Sn

�
=
1

��
K2
q

�
vecg(q)

�0
S
�
vecg(q)

�
+ �Ktr (S(I +Kpp) (g 
 g)) :

Proofs are given in the appendix. Theorem 2(a) implies that Ĵn(d̂n)
p! Jn as long

as E �̀n = o(n) and Ĵn(d̂n) and Ĵn( �dn) have the same asymptotic properties. If the ap-
proximating parametric model is correct, that is, ĝ

p! g and ĝ(q)
p! g(q), fd̂ng has some

optimality properties as a result of Theorem 1(d) and Corollary 1.

Corollary 4 Suppose Assumptions 1-10 hold. Assume that E`n = �nd
�
n for some � > 0

and �n = � + o(1). Then for any sequence of data dependent bandwidth estimators f _dng
such that for some �xed sequence, fdng, which satis�es limn!1 d2qn E`n

n ! � 2 (0;1) we
have

lim
h!1

lim
n!1

�
MSEh

�
n2q=(2q+�); Ĵn( _dn); Sn

�
�MSEh

�
n2q=(2q+�); Ĵn(dn); Sn

��
= 0;
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d̂n is preferred in the sense that

lim
h!1

lim
n!1

�
MSEh

�
n2q=(2q+�); Ĵn( _dn); Sn

�
�MSEh

�
n2q=(2q+�); Ĵn(d̂n); Sn

��
� 0:

The inequality is strict unless dn = d?n + o(n
1=(2q+�)).

6 Monte Carlo Simulation

In this section, we study the properties of the spatial HAC estimator with Monte Carlo
simulation. First, we compare the performance of the spatial HAC estimator based on d̂n
with other bandwidth selection procedures and the heteroskedasticity robust covariance
estimator of White (1980). We evaluate them using the MSE criterion and the coverage
accuracy of the associated CIs. Second, we examine the robustness of our bandwidth choice
procedure to the mis-speci�cation in the spatial weighting matrices and the approximating
parametric model. We also examine its robustness to the presence of measurement errors
in distance. Third, for studentized tests, we compare the normal approximation with some
naive bootstrap approximations. Fourth, we evaluate the performance of the spatial HAC
estimator with bandwidth parameter d̂n when the units are distributed irregularly on the
lattice. Finally, we use di¤erent weighting matrices in the MSE criterion and evaluate the
e¤ect of the resulting bandwidth choice on the MSE of a standard error estimator.

The data generating process we consider here is

yn = Xn�0 + un (11)

un = �0W0nun + "n; j�0j < 1; (12)

with "i;n
i:i:d:� N(0; 1). We assume a lattice structure, in which each unit is located on

a square grid of integers. W0n is a contiguity matrix and units i and j are neighbors if
dij;n �

p
2. Following convention, it is row-standardized and its diagonal elements are zero.

We consider three di¤erent sizes of lattices, 20 � 20 (n = 300; 400), 25 � 25 (n = 400)
and 32 � 32 (n = 1024). The ranges of dn we consider are from 1 to 27 for the 20 � 20
lattice, from 1 to 34 for the 25 � 25 lattice and from 1 to 44 for the 32 � 32 lattice. We
use a location model in the �rst part and a univariate regression model in the second part.
The estimand of interest is the covariance matrix of

p
n(�̂� �0). We use the Parzen kernel,

which is de�ned as follows:

K(x) =

8<:
1� 6x2 + 6jxj3; for 0 � jxj � 1=2;
2(1� jxj)3; for 1=2 � jxj � 1;
0; otherwise:

6.1 Location Model

For the location model, model (11) reduces to

yi;n = �0 + ui;n:

Without loss of generality, we set �0 = 1: A natural estimator of �0 is �̂ = n�1
Pn
i=1 yi;n

and ûn = yn � �̂:
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We use the spatial AR(1) as the approximating parametric model. The concentrated
log-likelihood function for the spatial AR(1) process is

logL(ûnj�) = �
n

2
log (ûn � �Wnûn)

0 (ûn � �Wnûn) + log jIn � �Wnj+ const:

See Lee (2004). For a given spatial weighting matrix Wn; we estimate � by the QML
method, that is

�̂ = �̂ (Wn) = argmax
�
logL(ûnj�):

Depending on the choice ofWn; we obtain a di¤erent �̂ and hence a di¤erent bandwidth
parameter d̂n(Wn) from equation (10). To �nd d̂n; we search the minimizer numerically
instead of using the plug-in version of (7). In our simulation experiment, we take Wn to
be the contiguity matrix in which units i and j are neighbors if dij;n � D, a threshold
parameter. We consider three values for the threshold: D = 1;

p
2; 2; leading to three

bandwidth choices d̂(`)n ; d̂n and d̂
(h)
n : Note that when D =

p
2; the spatial weighting matrix

is equal to the true spatial weighting matrix W0n. We also consider the case with measure
errors in distance. When dij;n > 1, we take P (�ij;n = �1) = P (�ij;n = 0) = P (�ij;n =
1) = 1=3. We use the contiguity matrix as the weighting matrix and take the threshold
parameter to be

p
2: This gives us the data driven bandwidth estimator d̂(e).

KP suggest taking dKPn = [n
1
4 ], where [z] denotes the largest integer that is less than

or equal to z. We compare the performances of d̂(`)n ; d̂n, d̂
(h)
n and d̂(e) with that of dKPn :

We also include the heteroskedasticity consistent estimator of White (1980, 1984) in our
comparison. The estimator is de�ned to be

INID =
1

n� 1

nX
i=1

û2i;n;

which can be regarded as the SHAC estimator with bandwidth set to be 0.
Table 1 presents the ratio of the MSE of the spatial HAC estimator with di¤erent

bandwidth choices to the spatial HAC estimator with the infeasible �nite sample optimal
bandwidth ~dn. It also reports the average bandwidth choice in each scenario. As in the time
series case, d̂n performs much better with positive spatial dependence than with negative
spatial dependence. When � is positive, the ratio is usually less than 1.20 even with incorrect
Wn and measurement errors. When � is negative, the ratio is higher than 1.20 for all cases.
Table 1 also illustrates how mis-speci�cation in the spatial weighting matrix a¤ects our
choice of bandwidth. If Wn includes fewer units as neighbors, the bandwidth estimator
tends to be smaller than the one with correctWn. In contrast, ifWn includes more units as
neighbors, the bandwidth estimator tends to be larger. This coincides with our intuition.
If we think we have a larger neighborhood, we need to choose a larger bandwidth to re�ect
the dependence structure.

Table 1 also presents the performance of the spatial HAC estimator with measurement
errors. The e¤ects of measurement errors are related to the mis-speci�cation of Wn. For
a given bandwidth parameter, positive measurement errors lead to a smaller number of
neighbors and vice versa. Whereas, in contrast to the mis-speci�cation of Wn, measure-
ment errors are di¤erent across di¤erent individuals. Table 1 shows that the estimator
contaminated by measurement errors performs very poorly compared to other estimators
when � is negative, while it performs reasonably well when � is positive.
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Table 1 also compares d̂n with dKPn . As dKPn depends only on the sample size, it is
invariant to the spatial dependence. Thus, it performs relatively well when it is close to ~dn
(e.g. � = �0:3) but it is inferior to d̂n in most senarios.

Table 2 provides the bias, variance and MSE of the spatial HAC estimators with di¤erent
bandwidth selection and those of INID. We use SHAC0, SHACl, SHACh, SHACe and
SHACKP to denote the spatial HAC estimators with d̂n, d̂

(l)
n , d̂

(h)
n , d̂(e)n and d̂KPn respectively.

We can see that SHAC0 is reasonably accurate in general but that it su¤ers from severe
underestimation when � is extremely high. Spatial HAC estimators do not capture high
dependence well even if we choose a large bandwidth since spatial HAC estimators are
constructed with the estimated residuals not the true disturbances. Our asymptotic theory
does not capture the e¤ect of demeaning on the SHAC estimator. This is analogous to the
time series case, see for example, Sun, Phillips and Jin (2008) and Sun and Phillips (2008).

When there is no spatial dependence (� = 0), SHAC0 is quite reliable in that the RMSE
is only 12% of the true value even though INID is slightly more accurate. When there exists
some spatial dependence, SHAC0 is much more accurate than INID. Furthermore, INID
is rarely improved with an increasing sample size, which is in sharp contrast to SHAC0.
For example, when � = 0:3 and n = 400, the MSE of SHAC0 is less than a third of that
of INID. When n = 1024, the di¤erence increases with the former less than a �fth of the
latter. Therefore, when there is no spatial dependence, the loss of e¢ ciency from using
a spatial HAC estimator with data dependent bandwidth is small. Whereas, there is a
remarkable reduction in RMSE by using a spatial HAC estimator when there exists spatial
dependence.

Table 2 also shows how mis-speci�cation in Wn and measurement errors a¤ect the per-
formance of the spatial HAC estimator using the bandwidth choice we suggest. Comparing
SHACe with SHAC0; we �nd that measurement errors lead to higher MSE. However, the
di¤erence in MSE is not very large, re�ecting the robustness of the SHAC to the presence
of measurement errors. Similarly, mis-speci�cation in Wn is not critical in our simulation
design. Among the three bandwidth choices d̂(l)n , d̂

(h)
n , d̂(e)n ; none of them performs con-

sistently better than others and the di¤erence gets smaller when n = 1024. Compared to
SHACKP , all of them tend to yield smaller MSEs especially when n = 400 and � is high.

Table 3 reports the empirical coverage probabilities of CIs associated with di¤erent
spatial HAC estimators. The results in this table are similar to the ones in Table 2. All of
the estimators yield very accurate CIs when there is no spatial dependence. In contrast,
when there is spatial dependence, INID is clearly inferior to spatial HAC estimators. As
the sample size increases, the coverage accuracy improves for all of the estimators except
INID. Compared to SHACKP , spatial HAC estimators using our data dependent bandwidth
choice are more reliable as the dependence increases even in the presence of measurement
errors or mis-speci�cation in the spatial weighting matrix.

Table 3 shows that, when � = 0:9 or 0:95, the error in coverage probability (ECP) is
substantial. For example, when � = 0:95; the ECP for the 95% CI with SHAC0 is 16.2%
even when n = 1024. As seen in Table 2, the downward bias of spatial HAC estimators
becomes very large when spatial dependence is very high. For this reason, the CIs tend to
be very tight. The ECP comes from two sources. First, the spatial HAC estimator is biased
downward. Second, the CIs are based on the asymptotic normal approximation. In order
to alleviate this problem, we investigate the performance of some bootstrap procedures in
Table 5.
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Table 4 shows the performance of d̂n with misspeci�ed parametric models. As the
parametric plug-in method is likely to biased, robustness of the spatial HAC estimator to
the mis-speci�cation of the approximating parametric model is a highly desirable property.
Consider the case that un follows a SAR(p) process:

un = �Wn1un + �
2Wn2un + � � �+ �pWnpun + "n:

The thresholds for W1n, W2n, W3n and W4n are dij;n �
p
2,
p
2 < dij;n � 2, 2 < dij;n <

p
5

and
p
5 < dij;n � 2

p
2 respectively. Regardless of the number of lags the true process has,

we use spatial AR(1) as the approximating parametric model. Table 4 illustrates that as
the number of lags increases, the accuracy of the spatial HAC estimator using the spatial
AR(1) model becomes lower. However, comparison with dKPn clearly shows that the plug-in
method using spatial AR(1) model performs reasonably well. For example, when � = 0:4
and the DGP is SAR(4) the empirical coverage probability of the 99% CI with SHAC0 is
91.9% and that with SHACKP is 86.5%.

Table 5 examines bootstrap approximation as an alternative to the normal approxima-
tion. Both i.i.d. naive bootstrap and wild bootstrap are considered. The procedure for
the i.i.d. naive bootstrap we use here is as follows:

(S.1) At each location i, draw y�i;n randomly from fyi;n; i = 1; : : : ; ng with replacement.

(S.2) Estimate the model parameter � by �̂� = n�1
P
y�i;n:

(S.3) Construct the spatial HAC estimator based on the bootstrap sample but use the
bandwidth parameter d̂n.

(S.4) Compute the t-stat in the bootstrap world.

(S.5) Repeat S.1-S.4 to obtain the empirical distribution of the bootstrapped t-stat.

(S.6) Use critical values from the empirical distribution in (S.5) to construct CIs.

We also implement the wild bootstrap, which is proposed by Liu (1988) to account for
unknown form of heteroskedasticity. The procedure is the same as that for the iid bootstrap
except that (S.1) is replaced by (W.1)

(W.1) At each location, compute the residual ûi;n = yi;n � �̂ and generate the bootstrap
observation y�i;n :

y�i;n =

�
�̂ + ûi;n with probability 0:5;
�̂ � ûi;n with probability 0:5:

See Davidson and Flachaire (2001) for more details.

(S.1) and (W.1) eliminate spatial dependence of the bootstrap sample. Gonçalves and
Vogelsang (2008) show that the i.i.d. naive bootstrap provides a valid approximation
to the ��xed-b� asymptotic distribution in time series regressions. Under the ��xed-b�
speci�cation, the bandwidth is set proportional to the sample size and the associated test
statistic converges to a non-standard limiting distribution (e.g. Kiefer and Vogelsang (2002,
2005)). Gonçalves and Vogelsang (2008) introduce a naive bootstrap procedure to obtain
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the critical values from the non-standard distribution. Bester, Conley, Hansen and Vogel-
sang (2008) have extended the ��xed-b� asymptotics and the naive bootstrap procedure
to spatial HAC estimation. Their results are not applicable to our setting for two reasons.
First, we adopt the traditional asymptotics framework in which the bandwidth or the num-
ber of pseudo-neighbors grows at a slower rate than the sample size. Second, the spatial
processes we consider allow for nonstationarity and heteroskedasticity which are ruled out
in Bester, Conley, Hansen and Vogelsang (2008). However, the idea of using bootstrap to
capture the randomness of the HAC estimator is still applicable. When the bandwidth is
large, the bias of the HAC estimator is small and the main task is to capture the �nite
sample variation of the HAC estimator. By ignoring the spatial dependence hence the bias
of the HAC estimator, the iid bootstrap and wild bootstrap do exactly this.

The bootstrap method can be justi�ed in the traditional framework. Under some regu-
larity assumptions and E`n = o(n); the t-statistic or Wald statistic converges in distribution
to the standard normal distribution or a chi-square distribution. In the bootstrap world,
the corresponding test statistic obviously converges to the same distribution. Therefore,
the iid bootstrap and wild bootstrap can be viewed as a valid method to obtain critical
values from the standard normal or Chi-square distribution. Whether the critical values
are second order correct, however, is beyond the scope of this paper.

Table 5 shows that the bootstrap methods implemented here improve the accuracy of
the CIs compared to the standard normal approximation, especially when the dependence
is extremely high. As we have seen in previous tables, the standard normal approximation
yields a large size distortion when spatial dependence is very high. However, we don�t �nd
this problem from the bootstrap procedures. Between the i.i.d. naive bootstrap and the
wild bootstrap, there is no signi�cant di¤erence. For example, when � = 0:95; the empirical
coverage probabilities of the 95% CI by the i.i.d. naive bootstrap and the wild bootstrap
are 87.0% and 84.9% respectively, while that of CLT is 65.9%.

Table 6 illustrates the performance of the spatial HAC estimator with d̂n when the units
are located irregularly on the lattice. We generate un using the spatial AR(1) process on
20� 20 and 25� 25 lattices and randomly sample 300 and 400 locations from the lattices
respectively without replacement. We estimate the location model with the observations on
those 300 and 400 locations. We condition on the same set of locations we sample in each
simulation. Table 6 shows that irregularity in location does not adversely a¤ect the perfor-
mance of the spatial HAC estimators with d̂n. The result is con�rmed by comparing Table
6 with Tables 2 and 3 in which the observations are regularly spaced. This corroborates
our asymptotic results as they do not require a regular lattice structure.

6.2 Univariate Model

In the second part, the regression model we consider is

yi;n = �+ �xi;n + ui;n

where � = 1, � = 5; xn = (xi;n) is the standardized version of ~xn; which follows a spatial
process of the form:

~xn =  W0n~xn + �n;

with �in
i:i:d� U [0; 1]. Here we assume the spatial process of ~xn and un have the same

weighting matrix W0n. Let Xn be the design matrix with i-th row Xi;n = [1; xi;n]: In view
of the standardization, n�1X 0

nXn is the 2� 2 identity matrix.
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We consider two di¤erent weighting matrices: Sn = �Sn or Ŝn where

�Sn =

2664
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

3775 and Ŝn =
2664
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

3775 :
The �rst choice �Sn is suggested by Andrews (1991) in time series HAC estimation. For this
choice, the MSE criterion reduces to the MSE of Ĵ11;n + Ĵ22;n + 2Ĵ12;n: The second choice
is designed to select the variance of �̂ and the corresponding MSE is the MSE of Ĵ22;n:

Table 7 reports the bias and MSE of the SHAC estimator Ĵ22;n for the above two
weighting matrices. The coverage probability of the associated 95% CI is also reported.
When  = 0:3, Ŝn always yields more accurate Ĵ22;n if � > 0. In the case that � is very
high, the reduction in MSE and improvement in coverage accuracy by using Ŝn over �Sn are
remarkable. For example, when � = 0:95 and n = 400, the MSE of Ĵ22;n with weighting
matrix Ŝn is 27.23 while that with �Sn is 50.10. The empirical coverage probability of the
CI with Ŝn is 91.2% and that with �Sn is 76.6%. When n = 1024, the di¤erence is still very
large but become less dramatic. When  = 0:9, Ŝn performs better than �Sn in most cases
although the margin of improvement is small.

7 Conclusion

In this paper, we study the asymptotic properties of the spatial HAC estimator. We estab-
lish the consistency conditions, the rate of convergence and the asymptotic truncated MSE
of the estimator. We also determine the optimal bandwidth parameter which minimizes
the asymptotic truncated MSE. As this optimal bandwidth parameter is not feasible in
practice, we suggest a data dependent bandwidth parameter estimator using a parametric
plug-in method. Monte Carlo simulation results show that the data dependent bandwidth
choice we suggest performs reasonably well compared to other bandwidth selection pro-
cedures in terms of both the MSE criterion and the coverage accuracy of CIs. They also
con�rm the robustness of our bandwidth choice procedure to the mis-speci�cation in the
spatial weighting matrix and the approximating parametric model, irregularity and sparsity
in spatial locations, and the presence of measurement errors.

Instead of using the asymptotic truncated MSE criterion, we can study the optimal
bandwidth selection based on a criterion that is most suited for hypothesis testing or CI
construction. It is interesting to extend the methods by Sun, Phillips and Jin (2008) and
Sun and Phillips (2008) on time series HAC estimation to the spatial setting.
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Table 1: Ratio of the MSE of Spatial HAC Estimators with Di¤erent Bandwidths to the
MSE of the Spatial HAC Estimator with Finite Sample Optimal Bandwidth, ~dn

�
-0.5 -0.3 0 0.3 0.5 0.7 0.9 0.95

d̂n 1.43 1.49 3.36 1.09 1.06 1.04 1.21 1.14
(4.8) (4.2) (2.7) (5.1) (6.9) (9.3) (21.9) (26.8)

d̂
(l)
n 2.31 1.92 2.60 1.14 1.11 1.06 1.05 1.12

(4.2) (3.6) (2.4) (4.4) (6.0) (8.1) (14.7) (25.3)

d̂
(h)
n 1.24 1.28 5.09 1.14 1.12 1.15 1.32 1.14

(5.5) (4.8) (3.4) (5.9) (8.3) (12.1) (26.9) (27.0)

d̂
(e)
n 7.22 2.27 5.27 1.22 1.19 1.21 1.33 1.14

(3.2) (3.4) (3.1) (6.0) (8.6) (12.7) (27.0) (27.0)

dKPn 2.40 1.40 4.44 1.20 1.68 2.07 1.99 1.73

d?n 1.31 1.33 1.00 1.02 1.00 1.01 1.33 1.14
(4.9) (4.1) (1.0) (4.9) (7.0) (9.8) (27.0) (27.0)

~dn (6.3) (5.3) (1.3) (5.4) (7.1) (9.2) (13.7) (16.6)

Notes: (1) sample size n = 400. (2) dKPn = 4 when n = 400. (3) number in parenthesis
represents the average value of bandwidth choice.
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Table 2: Bias, Variance, and MSE of Spatial HAC Estimators with Di¤erent Bandwidth
Choices in a Location Model with Spatial AR(1) Error

Bias Variance MSE (RMSE/True Value)
Estimator n=400 n=1024 n=400 n=1024 n=400 n=1200

� = 0
SHAC0 -0.008 -0.004 0.015 0.007 0.015 (0.12) 0.007 (0.08)
SHACl -0.006 -0.003 0.012 0.006 0.012 (0.11) 0.006 (0.07)
SHACh -0.015 -0.006 0.023 0.011 0.023 (0.15) 0.011 (0.10)
SHACe -0.014 -0.006 0.024 0.012 0.024 (0.15) 0.012 (0.11)
SHACKP -0.018 -0.020 0.020 0.019 0.020 (0.14) 0.020 (0.14)
INID -0.001 0.001 0.005 0.002 0.005 (0.07) 0.002 (0.04)

� = 0:3
SHAC0 -0.399 -0.323 0.140 0.080 0.299 (0.27) 0.184 (0.21)
SHACl -0.448 -0.375 0.113 0.064 0.314 (0.27) 0.205 (0.22)
SHACh -0.346 -0.271 0.193 0.109 0.313 (0.27) 0.182 (0.21)
SHACe -0.561 -0.283 0.207 0.118 0.337 (0.28) 0.198 (0.22)
SHACKP -0.519 -0.322 0.060 0.068 0.329 (0.28) 0.172 (0.20)
INID -1.001 -1.000 0.005 0.002 1.006 (0.49) 1.000 (0.49)

� = 0:5
SHAC0 -1.066 -0.846 0.805 0.465 1.941 (0.35) 1.180 (0.27)
SHACl -1.186 -0.965 0.631 0.363 2.039 (0.36) 1.294 (0.28)
SHACh -0.960 -0.732 1.125 0.641 2.046 (0.36) 1.178 (0.27)
SHACe -0.986 -0.753 1.196 0.688 2.169 (0.37) 1.255 (0.28)
SHACKP -1.703 -1.128 0.174 0.217 3.074 (0.44) 1.490 (0.30)
INID -2.859 -2.855 0.008 0.004 8.182 (0.71) 8.153 (0.71)

� = 0:7
SHAC0 -3.900 -3.063 9.004 5.409 24.21 (0.44) 14.79 (0.34)
SHACl -4.195 -3.421 7.149 4.043 24.75 (0.44) 15.75 (0.36)
SHACh -3.753 -2.714 12.747 7.811 26.83 (0.46) 15.18 (0.35)
SHACe -3.896 -2.767 12.992 8.114 28.17 (0.47) 15.77 (0.36)
SHACKP -6.876 -5.054 0.871 1.219 48.15 (0.62) 26.76 (0.46)
INID -9.731 -9.705 0.024 0.010 94.71 (0.87) 94.20 (0.87)

� = 0:9
SHAC0 -60.21 -40.81 871.2 708.4 4496.6 (0.66) 2374.1 (0.48)
SHACl -55.92 -43.28 781.5 566.4 3908.4 (0.61) 2439.2 (0.49)
SHACh -62.90 -50.72 958.3 886.6 4914.3 (0.69) 3459.0 (0.58)
SHACe -63.17 -50.48 945.6 869.2 4936.6 (0.69) 3417.0 (0.58)
SHACKP -85.73 -73.70 26.7 42.7 7376.6 (0.84) 5474.0 (0.73)
INID -98.49 -97.92 0.5 0.2 9700.0 (0.97) 9587.7 (0.97)

� = 0:95
SHAC0 -285.0 -221.5 10590 11099 91790 (0.74) 60140 (0.61)
SHACl -283.6 -209.1 10372 10443 90810 (0.74) 54150 (0.57)
SHACh -285.0 -247.2 10606 13318 91850 (0.74) 74400 (0.67)
SHACe -285.9 -247.6 10469 13245 92210 (0.74) 74560 (0.67)
SHACKP -373.4 -339.8 215 365 139610 (0.92) 115810 (0.84)
INID -402.3 -399.4 4 1 161880 (0.99) 159490 (0.99)
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Table 3: Empirical Coverage Probabilities of Nominal 99%, 95% and 90% CIs Constructed
Using Spatial HAC Estimators in a Location Model with Spatial AR(1) Error

99% 95% 90%
Estimator n=400 n=1024 n=400 n=1024 n=400 n=1024

� = 0
SHAC0 98.8 99.1 95.2 95.1 90.5 90.7
SHACl 98.8 99.1 95.3 95.1 90.9 90.6
SHACh 98.8 99.1 95.2 95.2 90.4 90.4
SHACe 99.0 99.1 95.2 94.9 90.6 90.0
SHACKP 98.9 98.9 95.4 94.9 90.5 90.0
INID 98.9 99.0 95.8 95.7 91.3 91.3

� = 0:3
SHAC0 97.6 98.2 91.9 93.1 86.7 86.7
SHACl 97.2 98.1 91.9 92.7 86.6 86.1
SHACh 97.8 98.4 92.1 93.5 87.3 87.2
SHACe 97.8 98.0 91.9 93.3 86.4 86.9
SHACKP 97.2 98.2 91.4 93.2 85.7 86.8
INID 94.0 94.0 84.6 84.0 76.4 77.6

� = 0:5
SHAC0 96.8 97.7 90.6 91.8 83.5 85.4
SHACl 96.5 97.3 90.3 91.4 82.6 84.8
SHACh 96.7 97.6 90.7 92.0 83.4 86.2
SHACe 96.7 97.6 90.2 91.5 83.1 85.9
SHACKP 95.0 96.9 87.4 90.7 79.1 83.6
INID 84.3 83.8 70.8 72.3 63.9 64.6

� = 0:7
SHAC0 95.3 96.9 87.7 89.4 79.7 83.4
SHACl 95.0 96.4 86.9 89.0 79.8 82.5
SHACh 95.5 96.9 86.3 89.8 80.0 83.6
SHACe 95.1 96.8 85.8 89.4 79.5 83.3
SHACKP 89.6 94.2 77.8 85.3 69.2 78.1
INID 66.5 66.7 53.3 54.2 46.2 47.7

� = 0:9
SHAC0 84.5 93.3 73.3 84.2 66.7 78.8
SHACl 87.2 93.3 77.3 84.4 69.6 78.3
SHACh 81.5 89.3 71.0 79.4 64.1 74.0
SHACe 81.4 89.5 70.8 79.8 64.0 74.6
SHACKP 68.8 82.1 56.8 70.4 48.9 62.5
INID 35.2 37.4 27.2 28.8 23.2 24.8

� = 0:95
SHAC0 77.0 87.9 65.9 78.8 59.7 72.2
SHACl 77.5 89.5 66.7 80.8 59.9 73.6
SHACh 76.9 83.4 65.9 73.2 59.7 66.6
SHACe 76.9 83.4 65.9 73.1 59.7 66.6
SHACKP 55.1 70.3 43.6 59.5 36.3 52.2
INID 24.5 25.8 18.6 17.8 15.0 14.8

22



Table 4: Performance of the Spatial HAC Estimator with Bandwidth d̂n under Misspeci�ed
Approximating Parametric Model

SAR(2) SAR(3) SAR(4)
SHAC0 SHACKP SHAC0 SHACKP SHAC0 SHACKP

� = 0:2
Bias -0.357 -0.400 -0.385 -0.431 -0.392 -0.437
MSE 0.208 0.204 0.249 0.231 0.238 0.237

(0.26) (0.26) (0.27) (0.27) (0.27) (0.27)
99% 97.8 97.5 97.4 97.3 97.4 97.3
95% 92.0 91.6 91.8 91.5 91.8 91.5
90% 87.1 86.3 86.5 85.9 86.5 85.8

� = 0:3
Bias -0.795 -1.020 -0.962 -1.231 -1.115 -1.307
MSE 0.880 1.123 1.222 1.607 1.498 1.802

(0.35) (0.39) (0.37) (0.43) (0.39) (0.44)
99% 96.5 95.9 96.2 95.1 95.9 94.7
95% 90.1 88.0 89.9 87.5 89.7 87.1
90% 83.3 80.6 82.2 79.3 82.2 78.6

� = 0:4
Bias -1.999 -2.850 -3.204 -4.495 -3.971 -5.480
MSE 5.141 8.335 12.40 20.52 18.59 30.41

(0.44) (0.56) (0.49) (0.64) (0.52) (0.67)
99% 94.1 91.9 93.3 88.6 91.9 86.5
95% 87.0 81.4 84.2 77.0 82.6 73.6
90% 80.2 73.4 77.3 68.6 75.4 66.9

� = 0:5
Bias -8.067 -11.95 -41.95 -57.33 -202.8 -249.9
MSE 78.65 144.0 1988.0 3294.3 43653 62499

(0.55) (0.74) (0.68) (0.88) (0.79) (0.95)
99% 91.2 81.1 83.1 63.6 72.3 43.8
95% 81.4 68.3 72.6 50.2 62.6 34.5
90% 74.4 60.7 65.8 42.8 53.4 28.1

Note: (1) Number in parenthesis represents the ratio of the RMSE to the true value. (2)
dKPn = 4.

23



Table 5: Empirical Coverage Probability of Nominal 99%, 95%, 90% Con�dence Intervals
Constructed Using the Bootstrap and Standard Normal Approximations

Normal i.i.d. Bootstrap Wild Bootstrap
� = 0:0

99% 98.8 99.0 98.9
95% 95.2 95.4 95.5
90% 90.5 90.8 91.4

� = 0:3
99% 97.6 97.9 98.1
95% 91.9 92.5 93.1
90% 86.7 87.8 88.1

� = 0:5
99% 96.8 97.7 97.8
95% 90.6 91.8 92.0
90% 83.5 86.2 86.2

� = 0:7
99% 95.3 96.8 97.2
95% 87.7 90.6 90.6
90% 79.7 83.6 83.9

� = 0:9
99% 84.5 96.0 95.4
95% 73.3 88.6. �87.3
90% 66.7 82.5 81.2

� = 0:95
99% 77.0 95.0 94.2
95% 65.9 87.0 84.9
90% 59.7 80.8 77.4
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Table 6: Performance of the Spatial HAC Estimator with Bandwidth d̂n in the Presence of
Irregulairty and Sparsity in Spatial Locations

n = 300; (20� 20) n = 400; (25� 25)
SHAC0 SHACKP SHAC0 SHACKP

� = 0
Bias -0.011 -0.021 -0.007 -0.027
MSE 0.015 0.022 0.010 0.023

(0.12) (0.15) (0.10) (0.15)
99% 99.1 98.8 99.1 99.1
95% 95.2 95.0 96.1 96.0
90% 90.1 89.5 92.8 92.0

� = 0:3
Bias -0.323 -0.364 -0.270 -0.229
MSE 0.195 0.186 0.126 0.108

(0.25) (0.24) (0.22) (0.20)
99% 97.6 97.5 97.6 97.9
95% 92.3 91.7 92.3 86.7
90% 86.6 86.2 86.7 86.8

� = 0:5
Bias -0.773 -1.107 -0.613 -0.667
MSE 1.013 1.364 0.591 0.588

(0.32) (0.37) (0.28) (0.28)
99% 96.6 95.7 98.0 97.9
95% 90.0 88.5 92.3 92.3
90% 84.3 80.8 85.2 85.0

� = 0:7
Bias -2.340 -4.204 -1.737 -2.564
MSE 9.67 18.29 4.845 7.222

(0.40) (0.55) (0.35) (0.42)
99% 94.0 89.9 96.3 94.9
95% 87.2 80.4 88.9 84.6
90% 80.3 70.8 80.5 77.1

� = 0:9
Bias -27.75 -49.62 -18.48 -32.66
MSE 1189.7 2480.2 507.7 1084.5

(0.55) (0.80) (0.48) (0.70)
99% 87.7 69.6 90.8 78.3
95% 77.6 57.1 80.4 63.8
90% 70.3 50.4 71.1 55.4

� = 0:95
Bias -139.8 -213.2 -87.4 -145.4
MSE 25120 45588 10210 21268

(0.66) (0.89) (0.57) (0.82)
99% 80.6 55.2 85.2 62.3
95% 69.2 44.6 72.6 49.6
90% 62.4 38.5 63.9 42.4

Note: Number in parenthesis represents the ratio of RMSE to the true value25



Table 7: Bias and MSE of Ĵ22;n and Empirical Coverage of the Associated CIs with Band-
width Selected Using Di¤erent Weighting Matrices in the Truncated AMSE Criterion

�
n  0 0.3 0.5 0.7 0.9 0.95

Bias -0.016 -0.056 -0.110 -0.235 -0.922 -2.036
Ŝn MSE 0.021 0.032 0.062 0.208 3.909 27.23

0.3 95% 93.8 93.8 93.2 92.6 91.5 91.2
Bias -0.012 -0.063 -0.121 -0.271 -2.060 -5.290

�Sn MSE 0.017 0.044 0.109 0.406 8.535 50.10
95% 94.0 93.0 92.1 91.0 82.5 76.6

400 Bias -0.035 -0.311 -0.721 -2.021 -13.89 -41.41
Ŝn MSE 0.035 0.226 0.998 7.140 321.7 2859.4

0.9 95% 93.1 90.7 89.7 86.8 82.4 78.8
Bias -0.026 -0.318 -0.724 -2.009 -14.92 -48.84

�Sn MSE 0.028 0.219 0.967 7.013 355.4 3540.7
95% 93.2 91.1 89.9 87.1 79.2 70.5
Bias -0.006 -0.044 -0.090 -0.190 -0.734 -1.661

Ŝn MSE 0.009 0.014 0.031 0.105 1.783 12.06
0.3 95% 95.2 95.2 94.8 94.6 94.0 93.0

Bias -0.004 -0.041 -0.073 -0.165 -0.876 -3.1326
1024 �Sn MSE 0.007 0.022 0.058 0.210 3.503 24.15

95% 95.2 95.1 94.3 94.0 92.4 88.4
Bias -0.018 -0.245 -0.548 -1.507 -10.24 -30.42

Ŝn MSE 0.014 0.127 0.567 4.092 191.0 1780.9
0.9 95% 95.9 94.1 92.7 91.4 88.7 86.9

Bias -0.013 -0.247 -0.540 -1.456 - 9.731 -29.58
�Sn MSE 0.011 0.122 0.544 3.986 195.9 1976.7

95% 95.8 94.1 93.0 91.6 89.2 85.7
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APPENDIX

Proof of Theorem 1

For notational simplicity, we re-order the individuals and make new indices. For i(j) =
1; :::; `j;n, d�i(j)j;n � dn, and for i(j) = `j+1;n; : : : ; n, d�i(j)j;n > dn.
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(c)
al;nr

(d)
bk;nK

�
d�ab;n
dn

��35 ;
C3;n =

1

nE`n

npX
l=1

npX
k=1

E

24� nX
i=1

nX
j=1

r
(r)
il;nr

(s)
jk;nK

�
d�ij;n
dn

��� nX
a=1

nX
b=1

r
(c)
ak;nr

(d)
bl;nK

�
d�ab;n
dn

��35 :
C1;n can be restated as

1

E`n

nX
i=1

nX
j=1

nX
a=1

nX
b=1

E

�
K

�
d�ij;n
dn

�
K

�
d�ab;n
dn

�� 
1

n

npX
l=1

r
(r)
il;nr

(s)
jl;nr

(c)
al;nr

(d)
bl;n

�
E"4l;n � 3

�!
:
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Therefore,

jC1;nj �
1

nE`n

npX
l=1

��E"4l;n � 3�� nX
i=1

nX
j=1

nX
a=1

nX
b=1

E

�
K

�
d�ij;n
dn

�
K

�
d�ab;n
dn

�� ���r(r)il;nr(s)jl;nr(c)al;nr(d)bl;n���
� 1

nE`n

npX
l=1

��E"4l;n � 3��
 

nX
i=1

���r(r)il;n���
!0@ nX

j=1

���r(s)jl;n���
1A nX

a=1

���r(c)al;n���
! 

nX
b=1

���r(d)bl;n���
!

� c4R
E`n

1

n

npX
l=1

��E"4l;n � 3�� � c4RcEp

E`n
= o(1)

using Assumptions 1 and 2.
C2;n can be restated as

1

nE`n
E

24 npX
l=1

npX
k=1

nX
i=1

nX
j=1

nX
a=1

nX
b=1

r
(r)
il;nr

(s)
jk;nr

(c)
al;nr

(d)
bk;nK

�
d�ij;n
dn

�
K

�
d�ab;n
dn

�35
=

1

nE`n
E

24 nX
i=1

nX
j=1

nX
a=1

nX
b=1

K

�
d�ij;n
dn

�
K

�
d�ab;n
dn

� npX
l=1

r
(r)
il;nr

(c)
al;n

! 
npX
k=1

r
(s)
jk;nr

(d)
bk;n

!35
=

1

nE`n
E

24 nX
i=1

`i;nX
j(i)=1

nX
a=1

`a;nX
b(a)=1

K

 
d�ij(i);n

dn

!
K

 
d�ab(a);n

dn

!

(rc)
ia;n

(sd)
j(i)b(a);n

35 : (A.1)

In order to prove that (A.1) converges to �Kgrcgsd, it su¢ ces to �rst show that

lim
n!1

1

nE`n
E

24 nX
i=1

`i;nX
j(i)=1

nX
a=1

`a;nX
b(a)=1

K2

 
d�ij(i);n

dn

!

(rc)
ia;n

(sd)
j(i)b(a);n

35
= lim
n!1

1

nE`n
E

24 nX
i=1

`i;nX
j(i)=1

nX
a=1

`a;nX
b(a)=1

K2

 
d�ab(a);n

dn

!

(rc)
ia;n

(sd)
j(i)b(a);n

35
= �Kgrcgsd; (A.2)

and then show that

lim
n!1

1

nE`n
E

24 nX
i=1

`i;nX
j(i)=1

nX
a=1

`a;nX
b(a)=1

K2

 
d�ij(i);n

dn

!

(rc)
ia;n

(sd)
j(i)b(a);n

35
= lim
n!1

1

nE`n
E

24 nX
i=1

`i;nX
j(i)=1

nX
a=1

`a;nX
b(a)=1

K

 
d�ij(i);n

dn

!
K

 
d�ab(a);n

dn

!

(rc)
ia;n

(sd)
j(i)b(a);n

35 :
(A.3)
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Let (sd)�{;b(a);n
= 1

E`n

P`i;n
j(i)=1


(sd)
j(i)b(a);n

. Then,

lim
n!1

1

nE`n
E

24 nX
i=1

`i;nX
j(i)=1

nX
a=1

`a;nX
b(a)=1

K2

 
d�ij(i);n

dn

!

(rc)
ia;n

(sd)
j(i)b(a);n

35
= lim
n!1

1

nE`n
E

24 nX
i=1

`i;nX
j(i)=1

nX
a=1

`a;nX
b(a)=1

K2

 
d�ij(i);n

dn

!

(rc)
ia;n

(sd)
�{;b(a);n

35
+ lim
n!1

1

nE`n
E

24 nX
i=1

`i;nX
j(i)=1

nX
a=1

`a;nX
b(a)=1

K2

 
d�ij(i);n

dn

!

(rc)
ia;n

�

(sd)
j(i)b;n

� (sd)�{;b(a);n

�35 : (A.4)

For the �rst term in (A.4), under the Assumption 7(i),

lim
n!1

1

nE`n
E

24 nX
i=1

`i;nX
j(i)=1

nX
a=1

`a;nX
b(a)=1

K2

 
d�ij(i);n

dn

!

(rc)
ia;n

(sd)
�{;b(a);n

35
= lim
n!1

E

24 1
n

nX
i=1

nX
a=1


(rc)
ia;n

`a;nX
b(a)=1


(sd)
�{;b(a);n

1

E`n

`i;nX
j(i)=1

K2

 
d�ij(i);n

dn

!35
= lim
n!1

 
1

n

nX
i=1

nX
a=1


(rc)
ia;n

!
E

0@ 1

E`n

`a;nX
b(a)=1

`i;nX
j(i)=1


(sd)
j(i)b(a);n

1A24 1

E`n

nX
j=1

K2

�
d�ij;n
dn

�35 : (A.5)

Note that������ 1E`n
`a;nX
b(a)=1

`i;nX
j(i)=1


(sd)
j(i)b(a);n

� 1

E`n

E`nX
b(a)=1

E`nX
j(i)=1


(sd)
j(i)b(a);n

������ �
������ 1E`n

E`nX
b(a)=`a;n+1

E`nX
j(i)=1


(sd)
j(i)b(a);n

������
(A.6)

+

������ 1E`n
E`nX
b(a)=1

E`nX
j(i)=`i;n+1


(sd)
j(i)b(a);n

������+
������ 1E`n

E`nX
b(a)=`a;n+1

E`nX
j(i)=`i;n+1


(sd)
j(i)b(a);n

������ :
We proceed to show that the expected value of each term is o (1) : We consider the �rst
term only as the proofs for the other two terms are similar. By the Markov inequality,

P

�
j`a;n � E`nj

E`n
� "

�
� 1

"
E

���� `a;nE`n
� 1
����! 0

using Assumption 6 (ii): That is, for any " > 0; there exists a N0 > 0 such that for n � N0

P (`a;n =2 B(E`n; ")) � ";
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where B(E`n; ") = (b(1� ")E`nc ; d(1 + ")E`ne) : Now

E

������ 1E`n
E`nX

b(a)=`a;n+1

E`nX
j(i)=1


(sd)
j(i)b(a);n

������ � E
1

E`n

E`nX
b(a)=`a;n+1

0@ E`nX
j(i)=1

���(sd)j(i)b(a);n

���
1A

= E

0@ 1

E`n

E`nX
b(a)=`a;n+1

0@ E`nX
j(i)=1

���(sd)j(i)b(a);n

���
1A������ `a;n 2 B(E`n; ")

1AP (`a;n 2 B(E`n; "))

+ E

0@ 1

E`n

E`nX
b(a)=`a;n+1

0@ E`nX
j(i)=1

���(sd)j(i)b(a);n

���
1A������ `a;n =2 B(E`n; ")

1AP (`a;n =2 B(E`n; "))

� 2"

24 1

2"E`n

d(1+")E`neX
b(a)=b(1�")E`nc

0@ E`nX
j(i)=1

���(sd)j(i)b(a);n

���
1A35+O(1)P (`a;n =2 B(E`n; ")) ;

which can be made arbitrarily small when n ! 1: So the �rst term in (A.6) is indeed
op (1) : Hence

E

������ 1E`n
`a;nX
b(a)=1

`i;nX
j(i)=1


(sd)
j(i)b(a);n

� 1

E`n

E`nX
b(a)=1

E`nX
j(i)=1


(sd)
j(i)b(a);n

������ = o (1) : (A.7)

Since (E`n)
�1Pn

j=1K
2
�
d�ij;n=dn

�
= (`i;n=E`n) `

�1
i;n

Pn
j=1K

2
�
d�ij;n=dn

�
is bounded, we

also have

E

24������ 1E`n
`a;nX
b(a)=1

`i;nX
j(i)=1


(sd)
j(i)b(a);n

� 1

E`n

E`nX
b(a)=1

E`nX
j(i)=1


(sd)
j(i)b(a);n

������ 1

E`n

nX
j=1

K2

�
d�ij;n
dn

�35 = o(1):

As a result

lim
n!1

1

nE`n
E

24 nX
i=1

`i;nX
j(i)=1

nX
a=1

`a;nX
b(a)=1

K2

 
d�ij(i);n

dn

!

(rc)
ia;n

(sd)
�{;b(a);n

35
= lim
n!1

1

n

nX
i=1

nX
a=1


(rc)
ia;nE

240@ 1

E`n

E`nX
b(a)=1

E`nX
j(i)=1


(sd)
j(i)b(a);n

1A0@ 1

E`n

nX
j=1

K2

�
d�ij;n
dn

�1A35
= lim
n!1

 
1

n

nX
i=1

nX
a=1


(rc)
ia;n

!
lim
n!1

0@ 1

E`n

E`nX
b(a)=1

E`nX
j(i)=1


(sd)
j(i)b(a);n

1A lim
n!1

E

24 1

E`n

nX
j=1

K2

�
d�ij;n
dn

�35
= �Kgrcgsd;

using Assumption 7(ii).
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For the second term in (A.4), we have������ 1

nE`n
E

24 nX
i=1

`i;nX
j(i)=1

nX
a=1

`a;nX
b(a)=1

K2

 
d�ij(i);n

dn

!

(rc)
ia;n

�

(sd)
j(i)b(a);n

� (sd)�{;b(a);n

�35������
=

������ 1

nE`n
E

24 nX
i=1

nX
a=1


(rc)
ia;n

`i;nX
j(i)=1

K2

 
d�ij(i);n

dn

! `a;nX
b(a)=1

�

(sd)
j(i)b(a);n

� (sd)�{;b(a);n

�35������
=

������ 1nE
24 nX
i=1

nX
a=1


(rc)
ia;n

0@ 1

`i;n

`i;nX
j(i)=1

K2

 
d�ij(i);n

dn

!1A `i;n
E`n

`a;nX
b(a)=1

�

(sd)
j(i)b(a);n

� (sd)�{;b(a);n

�35������
� C

1

n

nX
i=1

nX
a=1

���(rc)ia;n

���E
������
`a;nX
b(a)=1

�

(sd)
j(i)b(a);n

� (sd)�{;b(a);n

������� (A.8)

by Assumption 6. Note that for some generic constant C������
`a;nX
b(a)=1

�

(sd)
j(i)b(a);n

� (sd)�{;b(a);n

�������
�
�����
nX
b=1


(sd)
j(i)b;n

1
�
d�ab;n < dn

	�����+
������ 1E`n

nX
b=1

nX
j=1


(sd)
jb;n1

�
d�ab;n < dn; d

�
ij;n < dn

	������
�

nX
b=1

���(sd)j(i)b;n

���+ sup
b

nX
j=1

���(sd)jb;n

��� 1

E`n

nX
b=1

1
�
d�ab;n < dn

	

�
nX
b=1

���(sd)j(i)b;n

���+
0@sup

b

nX
j=1

���(sd)jb;n

���
1A `a;n
E`n

� C + C
`a;n
E`n

:

By Assumption 6(i), E limn!1
`a;n
E`n

� limn!1 E`a;n
E`n

� C: Invoking the dominated conver-
gence theorem and Assumption 4 yields

lim
n!1

E

������
`a;nX
b(a)=1

�

(sd)
j(i)b(a);n

� (sd)�{;b(a);n

������� = EP lim
n!1

������
`a;nX
b(a)=1

�

(sd)
j(i)b(a);n

� (sd)�{;b(a);n

������� :
Using the same argument for proving (A.7) and combining the result with Assumption 4,

we deduce that P limn!1
���P`a;n

b(a)=1

�

(sd)
j(i)b(a);n

� (sd)�{;b(a);n

���� = 0: Hence the second term in

(A.4) is op (1) :
By a symmetric argument, we obtain the result that

lim
n!1

1

nE`n
E

24 nX
i=1

`i;nX
j(i)=1

nX
a=1

`a;nX
b(a)=1

K2

 
d�ab(a);n

dn

!

(rc)
ia;n

(sd)
jb;n

35 = �Kgrcgsd:

The next step is to prove (A.3). In view of previous derivations, it su¢ ces to show that

lim
n!1

E

24 1

nE`n

nX
i=1

`i;nX
j(i)=1

nX
a=1

`a;nX
b(a)=1

"
K

 
d�ij(i);n

dn

!
�K

 
d�ab(a);n

dn

!#2

(rc)
ia;n

(sd)
jb;n

35 = 0: (A.9)
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But

E

24 1

nE`n

nX
i=1

`i;nX
j(i)=1

nX
a=1

`a;nX
b(a)=1

"
K

 
d�ij(i);n

dn

!
�K

 
d�ab(a);n

dn

!#2

(rc)
ia;n

(sd)
jb;n

35
= E

24 1

nE`n

X
(i;j(i);a;b(a))2I1

"
K

 
d�ij(i);n

dn

!
�K

 
d�ab(a);n

dn

!#2

(rc)
ia;n

(sd)
jb;n

35
+

1

nE`n

X
(i;j(i);a;b(a))2I2

"
K

 
d�ij(i);n

dn

!
�K

 
d�ab(a);n

dn

!#2

(rc)
ia;n

(sd)
jb;n

:= F1n + F2n;

where
I1 =

n
(i; j(i); a; b(a)) :

���d�ij(i);n � d�ab(a);n��� � 2cno ;
and

I2 =
n
(i; j(i); a; b(a)) :

���d�ij(i);n � d�ab(a);n��� > 2cno :
For F1n; we have

F1n � E

������ 1

nE`n

X
(i;j(i);a;b(a))2I1

"
K

 
d�ij(i);n

dn

!
�K

 
d�ab(a);n

dn

!#2

(rc)
ia;n

(sd)
jb;n

������
� c2L
nE`n

X
(i;j(i);a;b(a))2I1

�����d
�
ij(i);n

dn
�
d�ab(a);n

dn

�����
2 ���(rc)ia;n

(sd)
jb;n

���
� 4c2Lc

2
n

d2n

 
1

n

nX
i=1

nX
a=1

���(rc)ia;n

���!
0@ 1

E`n

`i;nX
j(i)=1

`a;nX
b(a)=1

���(rc)jb;n

���
1A = O

�
c2n
d2n

�

using equation (A.7). For F2n we note that if
���d�ij(i);n � d�ab(a);n��� > 2cn; then either d�ia;n > cn

or d�j(i)b(a);n > cn: Otherwise, if both d�ia;n � cn and d�j(i)b(a);n � cn; then

d�ij(i);n � d
�
ab(a);n

� d�ia;n + d
�
ab(a);n

+ d�b(a)j(i);n � d
�
ab(a);n

� 2cn;

and
d�ij(i);n � d

�
ab(a);n

� d�ij(i);n � d
�
ia;n � d�ij(i);n � d

�
j(i)b(a);n

� �2cn:

These two inequalities imply that
���d�ij(i);n � d�ab(a);n��� � 2cn; a contradiction. Without the
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loss of generality, we assume that d�ia;n > cn for
�
i; j(i); a; b(a)

�
2 I2: In this case

F2n � E

������ 1

nE`n

X
(i;j(i);a;b(a))2I2

"
K

 
d�ij(i);n

dn

!
�K

 
d�ab(a);n

dn

!#2

(rc)
ia;n

(sd)
j(i)b(a);n

������
� E

1

nE`n

X
(i;j(i);a;b(a))2I2

����d�ia;n�q (rc)ia;n
(sd)
j(i)b(a);n

�
d�ia;n

��q���
= E

1

nE`n

nX
i=1

X
a:d�ia;n2[cn;dn]

�
d�ia;n

�q ���(rc)ia;n

��� `i;nX
j(i)=1

`a;nX
b(a)=1

���(sd)j(i)b(a);n

��� �d�ia;n��q

� E

 
1

n

nX
i=1

nX
a=1

�
d�ia;n

�q ���(rc)ia;n

���!
0@ 1

E`n

`i;nX
j(i)=1

`a;nX
b(a)=1

���(sd)j(i)b(a);n

���
1A c�qn

= o(c�qn ):

By choosing cn such that cn !1 but cn=dn ! 0; we have

F1n = o (1) and F2n = o(1)

and (A.3) is proved.
With the same procedure, it is straightforward that limn!1C3;n = �Kgrdgsc. Therefore,

lim
n!1

n

E`n
cov

�
~Jrs;n; ~Jcd;n

�
= �K(grcgsd + grdgsc):

In terms of matrix form,

lim
n!1

n

E`n
var
�
vec
�
~Jn

��
= �K(I +Kpp) (g 
 g) ;

where g = [grs], r; s = 1; : : : ; n.

(b) Asymptotic Bias: limn!1 dpn(E ~Jn � Jn) when dn !1:

By Assumption 5(ii) and the dominated convergence theorem, we have

dqn

�
E ~Jn � Jn

�
= �E

0@ 1
n

nX
i=1

nX
j=1

�ij;n
�
d�ij;n

�q 241�K
�
d�ij;n
dn

�
�
d�ij;n
dn

�q
351A

= �Kq
1

n

nX
i=1

nX
j=1

�ij;nE
�
d�ij;n

�q
+ o(1):

Therefore,

lim
n!1

dqn(E ~Jn � Jn) = �Kq lim
n!1

1

n

nX
i=1

nX
j=1

�ij;nE
�
d�ij;n

�q
= �Kqg

(q);

where g(q)rs is (r; s)-th element of g(q).
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(c)
q

n
E`n

�
Ĵn � Jn

�
= Op(1) and

q
n
E`n

�
Ĵn � ~Jn

�
= op(1)

By (a) and (b) the �rst part of (c) is implied by the second part. Therefore, it su¢ ces to

show that
q

n
E`n

�
Ĵn � ~Jn

�
= op(1). This holds if and only if

q
n
E`n

�
b0Ĵnb� b0 ~Jnb

�
= op(1)

for any b 2 Rp. In consequence, we can consider the case that Jn is a scalar random variable
without loss of generality. Using a Taylor expansion, we haver

n

E`n

�
Ĵn � ~Jn

�
=

r
n

E`n

1

n

nX
i=1

nX
j=1

K

�
d�ij;n
dn

�h
V̂i;nV̂

0
j;n � Vi;nV 0j;n

i
:= 2L1;n

p
n
�
�̂ � �0

�
+
p
n
�
�̂ � �0

�0
L2;n

p
n
�
�̂ � �0

�
+
p
n
�
�̂ � �0

�0
L3;n

p
n
�
�̂ � �0

�
(A.10)

where

L1;n =

r
E`n
n

1p
n

nX
j=1

Vj;n
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Therefore, under Assumption 8(i) it su¢ ces to show that L1;n = op(1), L2;n = op(1) and
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where the last equality follows from Assumption 8(iv). By Assumption 8(ii), we have
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as �!1. This implies that
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uniformly over i: Hence L2;n = op (1) : Using the same procedure, we can show that L3;n =
op (1) under Assumption 8(iii).

The next step is to show L1;n = op(1). By Markov inequality and Assumption 8(v):
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� C 0
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where the last inequality follows from Assumption 6. Combining this with the de�nition of

L1n, we obtain L1;n = Op

�q
E`n
n

�
= op (1) :
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(d) Asymptotic Truncated MSE

To establish the �rst and second equalities of Theorem 1(d), we introduce two lemmas
from Andrews (1991). For proofs, see Lemmas A1 and A2 in Andrews (1991).

Lemma 5 If f�ng is bounded sequence of random variables such that �n
p! 0, then E�n !

0.

Lemma 6 Let fXng be a sequence of nonnegative rv�s for which supn�1EX1+�
n < 1 for

some � > 0. Then, limh!1 limn!1(EminfXn; hg � EXn) = 0.
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as n!1. Here the op (1) term follows from Theorem 1(c). Also j�nj � h. By Lemma 5 ,
E�n ! 0. Since this holds for all h, the �rst equality of Theorem 1(d) holds.

The second equality of Theorem 1(d) is obtained by showing that
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�
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; ~Jn; S

�
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�
: (A.14)

Under Assumption 8(ii), (A.13) holds by applying Lemma 5. Equation (A.14) holds by
applying Lemma 6 with

Xn =

���� nE`nvec( ~Jn � Jn)0S( ~Jn � Jn)
���� :

It is easy to see that supn�1EX
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where
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By Theorem 1(a) and (b), it is straightforward to show that D3n; D4n and D5n are O(1)
under Assumption 9(ii). The proofs for D1n and D2n are similar and we focus only on D1n
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For G2n; we have:
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where the last equality holds by the independence of f"`;ng from f�ij;ng. Since f"l;ng is
independent and E"8l;n <1, it su¢ ces to show that
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where the O(�) term also satis�es EOp
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Combining the above proof, we obtain G2n = O(1). Hence D1n = O (1) :
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Proof of Corollary 1
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Proof of Theorem 2
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The third term M3n is zero when d̂n � �dn: We assume that d̂n > �dn below. Therefore, it
su¢ ces to show M1n = op(1), M2n = op(1) and M3n = op (1) : We consider the case that
Vi;n is a scalar here as the proof for the vector case is similar.
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where the �rst inequality uses Assumption 7(ii) and the Op (1) and op (1) terms hold asp
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To compute the order of the above upper bound, we note that
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so the upper bound in (A.19) is o (1), which implies that M2n = op (1) :
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The �rst equality of Theorem 2(b) holds by applying Lemma 5 in the same way as in

proof of the �rst equality of Theorem 1(d). Then the second equality of Theorem 2(b)
holds by Theorem 1(d).

Proof of Corollary 2

By Corollary 4 and Theorem 2(b),
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n2q=(2q+�); Ĵn( �dn); Sn

��
(A.21)

Since �g = g and �g(q) = g(q), �dn = d?n. Corollary 1 implies that the expression in (A.21) is
� 0 with the inequality being strict unless dn = d?n + o(n

1=(2q+�)).
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