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Abstract

The paper proposes two asymptotically valid t tests in a di¤erence-in-di¤erences (DD)
regression when the number of time periods is large while the number of individuals can be
small or large. Each of two t tests is based on a special heteroscedasticity and autocorrelation
robust (HAR) variance estimator that is tailored to inference problems in the DD setting.
The di¤erence between the two t tests is that one is based on a general form of the sandwich
variance estimator while the other is based on a special form of that estimator. The asymptotic
distributions of both t tests depend on the smoothing parameter K in the HAR variance
estimator. A testing-optimal procedure for choosing K for the t test with a special sandwich
variance estimator is developed through minimizing the type II error subject to a constraint
on the type I error of the t test. By capturing the estimation uncertainty of the HAR variance
estimators, both t tests have more accurate size than the corresponding normal tests and are
just as powerful as the latter. Compared to the nonstandard tests that are designed to reduce
the size distortion of the normal tests, the proposed t tests are just as accurate but much
more convenient to use, as the critical values are from the standard t table.

Keywords: Basis Functions, Di¤erence-in-Di¤erences, Fixed-smoothing Asymptotics, Het-
eroscedasticity and Autocorrelation Robust, Panel Data, Student�s t distribution, t test

JEL Classi�cation Number : C12, C33

1 Introduction

The paper considers estimation and inference in a di¤erence-in-di¤erences (DD) regression. To
make trustworthy inferences, we have to obtain a reliable estimator of the standard error. In
the presence of both temporal and cross-sectional dependence, the basic clustered standard error
estimator is inconsistent. If one clusters by individual, observations may be correlated for the
same individual, but they are often required to be independent for di¤erent individuals. See, for
example, Bertrand, Du�o, and Mullainathan (2004). If one clusters by time, then observations in
the same time period can have arbitrary correlation, but they are often required to be independent
across time. In this paper, we consider clustering by time but allow the clusters to be temporally
dependent. Our approach is in the spirit of Driscoll and Kraay (1998), but we employ a di¤erent
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heteroscedasticity and autocorrelation robust variance estimator. In principle, we could consider
clustering by individual and allow for spatial dependence across individuals, but this requires an
extra variable to indicate the direction and strength of the spatial dependence. In fact, if such a
variable is available, we can use the approach of Kim and Sun (2013), which treats the temporal
and cross-sectional dependence symmetrically. An advantage of the clustering-by-time approach
is that no additional information is needed, as the time index provides a natural yardstick for
the measurement of temporal dependence.

For the DD regression, the clustering-by-time approach amounts to collapsing the panel data
into time series data. Cross-sectional dependence a¤ects the variance of the collapsed time series
but has no e¤ect on its temporal dependence. To estimate the asymptotic variance of the DD
estimator, we need to estimate only the long-run variance (LRV) of some collapsed time series.
There are many nonparametric LRV estimators, among which kernel LRV estimators are popular
in applied research (see, for example, Andrews (1991)). A recent study by Yu Sun (2016) adopts
the kernel approach. In this paper, we consider the series approach to LRV estimation. The
most primitive version of this estimator is the simple averaged periodogram estimator, which
involves taking a simple average of the �rst few periodograms. The number of periodograms
is the smoothing parameter underlying this series LRV estimator. Equivalently, this approach
involves �rst projecting the time series onto a sequence of Fourier basis functions (i.e., sine and
cosine functions) and then taking the simple average of the squared projection coe¢ cients as the
LRV estimator. More general basis functions can be used. In fact, one of the advantages of the
series LRV approach is that we have the freedom to choose any sequence of basis functions. Each
basis function delivers a direct estimator of the LRV, and the series LRV estimator is a simple
average of these direct estimators. The number of terms in the average, K; which can be regarded
as the e¤ective sample size, characterizes the amount of smoothing.

A main contribution of the paper is to establish the �xed-smoothing asymptotics of the
Studentized t statistic. The �xed-smoothing asymptotics is obtained under the assumption that
K is �xed as T goes to in�nity. The cross-sectional sample size n can be �xed or grow with T:
We also assume that the policy change takes place in the middle of the time series so that the
number of pre-treatment periods is comparable to the number of post-treatment periods. The
asymptotic approximation so obtained captures the randomness of the nonparametric variance
estimator. It re�ects the e¤ect of the basis functions, the level of smoothing, and the e¤ect of
the trend function if a trend is present in the DD regression. Moreover, it is more accurate than
the widely used standard normal approximation, which fails to capture these e¤ects. The �xed-
smoothing asymptotic distribution is nonstandard. Nevertheless, it is free from any nuisance
parameter and can be simulated without too much di¢ culty.

Another contribution of the paper is the design of a new set of basis functions such that the
t statistic follows the standard t distribution under the �xed-smoothing asymptotics. This is
achieved by transforming any given set of basis functions in L2 [0; 1] : The transformation, a type
of Gram-Schmidt orthonormalization, ensures that the asymptotic variance estimator is equal in
distribution to an average of iid chi-square variates in large samples, which is necessary for the
asymptotic t approximation theory. The asymptotic t test is very convenient to use, as critical
values are readily available from standard statistical tables and programming environments.

The regressor of interest in the DD regression is a special regressor. For the treatment group,
this regressor takes the value 0 in the pre-treatment periods and switches to the value 1 in the
post-treatment periods. From a time series perspective, it has energy concentrated at the origin.
The special form of the regressor allows for two di¤erent approaches to be used in estimating
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the asymptotic variance of the DD estimator. In the �rst approach, we ignore the fact that the
regressor is special and use a general sandwich variance estimator. In a time series regression
with stationary data, this approach entails estimating the long-run variance of a product process:
the product of the regressor and the regression error. In the second approach, we take advantage
of the special form of the regressor, and we estimate the long-run variance of the regression error
process only. The resulting sandwich variance estimator collapses to a special form, which we
call the collapsed sandwich variance estimator.

Our �xed-smoothing asymptotics and t limit theory apply to both forms of variance estima-
tors, but the �xed-smoothing limiting distribution is di¤erent for di¤erent variance estimators.
This should be regarded as an attractive property, as the �nite sample distribution may be sen-
sitive to the form of the variance estimator. The transformation used to obtain the standard t
limiting distribution also depends on the form of the variance estimators. In both cases, the trans-
formation is easy to implement and requires only the computation the Cholesky decomposition
of a positive-de�nite matrix.

The smoothing parameter K plays the important role of determining the size and power
tradeo¤ of the asymptotic t tests. In the literature on LRV estimation and heteroscedasticity
and autocorrelation robust (HAR) inference, Phillips (2005) proposes to choose K by minimizing
the asymptotic MSE of the LRV estimator. However, the MSE-based choice of K may not be
optimal for testing problems. In hypothesis testing, the main objects of interest are the type I
and type II errors. The choice of K should then be targeted at these fundamental quantities.
Following Sun (2011), we develop a selection procedure that is optimal for the testing problem
at hand. In particular, we consider one of the two asymptotic t tests and choose K to minimize
its type II error while controlling its type I error.

In our simulations, we compare the performances of the �xed-smoothing tests with those of the
asymptotic normal tests. Each type of tests actually consists of four tests, re�ecting the di¤erent
combinations of whether a transformation is applied to the Fourier bases or not and which of the
two forms of the variance estimator is used. In all cases, a �xed-smoothing test is found to be
more accurate than the corresponding asymptotic normal test. Among the �xed-smoothing tests,
the t test based on the transformed bases is just as accurate as the corresponding nonstandard
test based on the original bases. These observations remain valid regardless of whether K is �xed
a priori or data driven. Power study under data-driven K-values shows that all tests have similar
power properties. In view of the size accuracy of the asymptotic t tests and their convenience to
use, we recommend using the asymptotic t tests in empirical applications.

This paper contributes to the literature on the �xed-smoothing asymptotics in general and the
asymptotic F and t test theory in particular. The asymptotic F and t tests have been developed
in Sun (2011) for trend regression, in Sun (2013) for stationary moment processes, in Sun (2014c)
for highly persistent moment processes, in Hansen (2007) for stationary panel time series, and in
Hwang and Sun (2017) for stationary data in an overidenti�ed GMM framework. Lazarus, Lewis,
Stock, and Watson (2016) provide some practical guidance on the F and t tests for time series
regressions. See also Sun and Kim (2012, 2015) for the F limit theory for the J statistic, and the
F and t limit theory for the Wald statistic and t statistic in a spatial setting. None of these papers
considers the DD regression where the regressor of interest is a special deterministic function and
is hence nonstationary by de�nition. More broadly, the paper is related to the �xed-b asymptotic
theory where kernel LRV estimators are used. See Kiefer and Vogelsang (2002a, 2002b, 2005)
and Sun (2014a) and the references therein. A paper that is closest to this paper is the paper by
Yu Sun (2016), who considers the �xed-b asymptotic theory for the DD regression. However, the
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asymptotic distribution there is complicated and not as easy to use as Student�s t distribution.
The rest of the paper is organized as follows. Section 2 presents the basic setting and in-

troduces the DD estimator and the general sandwich variance estimator. Section 3 establishes
the �xed-smoothing asymptotics of the t statistic based on the general sandwich variance esti-
mator, and Section 4 develops an asymptotically valid t test. Section 5 considers the collapsed
sandwich variance estimator and the associated t limit theory. Section 6 proposes a data-driven
and testing-optimal approach to choosing the smoothing parameter K: Section 7 reports the
simulation evidence. The last section concludes. Proofs are given in the appendix.

2 The Basic Setting and DD Estimator

We consider the di¤erence-in-di¤erences regression

Yit = �t + � (t)
0 �i + Treati � �10 + Postt � �20 + Treati � Postt � �10 + Z 0it�20 + �it;

for i = 1; 2; : : : ; n and t = 1; 2; : : : ; T; where �t is the time �xed e¤ect and � (t)
0 �i is the individual-

speci�c time trend. If � (t) = (1; t)0 and �i = (�i0; �i1)
0, for example, we have � (t)0 �i = �i0+�i1�t;

where �i0 is the individual �xed e¤ect and �i1 is the individual-speci�c linear trend coe¢ cient.
We assume that the �rst element of � (t) is 1 so that individual �xed e¤ects are always included.
Treati is a dummy variable indicating the treatment or control group. Individual i belongs to
the treatment group if Treati is equal to 1; otherwise, individual i belongs to the control group.
Without loss of generality, we assume that observations are sorted along the cross-sectional
dimension so that Treati = 1 fi � �ng for some � 2 (0; 1): Postt is a dummy variable indicating
the post-treatment periods. That is, Postt = 1 ft � �Tg for some � 2 (0; 1) : For notational
convenience, we assume that �n and �T are positive integers. Zit is a dZ � 1 vector of other
covariates. The parameter of interest is �10, which captures the e¤ect of the training program.

To estimate �10; we �rst remove the trend component � (t)
0 �i. In view of individual hetero-

geneity in the intercept and slope coe¢ cient, we detrend each time series individually. Let

Y �it = Yit �
 

TX
s=1

Yis� (s)
0
! 

TX
s=1

� (s) � (s)0
!�1

� (t) ;

Z�it = Zit �
 

TX
s=1

Zis� (s)
0
! 

TX
s=1

� (s) � (s)0
!�1

� (t)

be the detrended variables, and de�ne ��t ; Post
�
t ; and �

�
it similarly. Then

Y �it = ��t + Post
�
t � �20 + Treati � Post�t � �10 + (Z�it)0�20 + ��it:

Note that the group-speci�c e¤ect Treati � �10 has been eliminated by detrending.
Next, we remove the time �xed e¤ect ��t using the cross-sectional �xed-e¤ect transformation.

Let

~Y �it = Y �it �
1

n

nX
j=1

Y �jt; (1)

and de�ne other variables such as ~Z�it; T̂ reati; and ~�
�
it similarly. Then

~Y �it = T̂ reati � Post�t � �10 + ( ~Z�it)0�20 + ~��it: (2)
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Note that the cross-sectional �xed-e¤ect transformation eliminates both ��t and Post
�
t � �20:

Let

Xit =

�
Treati � Postt

Zit

�
, ~X�

it =

 
T̂ reati � Post�t

~Z�it

!
; (3)

and �0 = (�10; �020)
0 : Then the OLS estimator �̂ of �0 = (�10; �020)

0 is given by

�̂ =

"
nX
i=1

TX
t=1

~X�
it(
~X�
it)
0

#�1 " nX
i=1

TX
t=1

~X�
it
~Y �it

#
: (4)

The estimator �̂ is numerically identical to the �xed-e¤ects OLS estimator based on the orig-
inal equation, that is, the OLS estimator with time dummies, individual dummies, and their
interactions with the trend function.

Since the coe¢ cients associated with Zit may not have any causal interpretation, and are
often not the parameters of interest in empirical applications, we focus only on the parameter
�10 in this paper. As an estimator of �10; the �rst element �̂1 of �̂ is often referred to as the
di¤erence-in-di¤erences estimator, as it is equal to a di¤erence in di¤erences in the simple case
with only two periods.

In this paper, we consider the asymptotics along the direction in which T ! 1: The cross-
sectional sample size n can be �xed or grow with T . In the latter case, the su¢ cient conditions
for Assumption 3.4 below require that n=T ! 0: For simplicity, we will denote the asymptotic
direction as �T !1�in both cases. Given the asymptotic direction we consider, we write

p
nT (�̂ � �0) =

"
1

nT

nX
i=1

TX
t=1

~X�
it(
~X�
it)
0

#�1 "
1p
T

TX
t=1

unt

#
;

where

unt =
1p
n

nX
i=1

~X�
it~�
�
it

is in the �clustering-by-time�format.
Let

�̂�it =
~Y �it � ( ~X�

it)
0�̂ and ûnt =

1p
n

nX
i=1

~X�
it�̂
�
it:

Then the variance of
PT
t=1 unt=

p
T can be estimated by


 =
1

T

TX
t=1

TX
s=1

QK

�
t

T
;
s

T

�
ûntû

0
ns;

where QK (�; �) is a symmetric weighting function and K is the smoothing parameter. The above
estimator belongs to the general class of quadratic long-run variance estimators, which includes
most if not all commonly used nonparametric LRV estimators as special cases.

In this paper, we focus on the series LRV estimator with QK (r; s) given by

QK (r; s) =
1

K

KX
k=1

�k (r) �k (s) ;
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where f�k (r)g are basis functions in L2[0; 1]: In the econometrics literature, the series LRV
estimator has been recently used, for example, in Phillips (2005), Müller (2007), and Sun (2011,
2013, 2014a, 2014b). Plugging the above weighting function into 
̂; we obtain


̂ =
1

K

KX
k=1


̂k

for


̂k =

"
1p
T

TX
t=1

�k

�
t

T

�
ûn;t

#"
1p
T

TX
t=1

�k

�
t

T

�
ûn;t

#0
:

Thus 
̂ is a simple average of some �direct� estimators 
̂k, and K is the e¤ective sample size.
If K is even and f�k (r)g = f

p
2 sin (2�kr) ;

p
2 cos (2�kr) ; k = 1; 2; : : : ;K=2g; then the series

LRV estimator is proportional to the spectral density estimator at the origin that takes a simple
average of the �rstK=2 periodograms. The averaged periodogram estimator is a common spectral
density estimator. In the traditional asymptotic framework, Phillips (2005) has shown that the
averaged periodogram estimator is asymptotically equivalent to the kernel LRV estimator based
on the Daniell kernel. For further discussion of series LRV estimation, see Sun (2013). A necessary
condition for 
̂ to be positive de�nite is that K � dZ +1, which will be assumed throughout the
rest of the paper.

Using 
̂ as the middle term in the sandwich variance estimator, we obtain the HAR variance
estimator:

V̂ =

"
1

nT

nX
i=1

TX
t=1

~X�
it( ~X

�
it)
0

#�1

̂

"
1

nT

nX
i=1

TX
t=1

~X�
it( ~X

�
it)
0

#�1
:

The above estimator is in the spirit of the estimator of Driscoll and Kraay (1998), who use a
kernel LRV estimator instead of our series LRV estimator. One advantage of using a series LRV
estimator is that an asymptotic t approximation theory can be developed; see Sections 4 and 5
for details.

To test the null hypothesis �10 = r0, we construct the t statistic

T =
p
nT (R�̂ � r0)p

V̂R
;

where R = (1; 0; : : : ; 0) 2 RdZ+1 and
V̂R = RV̂ R0:

3 Fixed-Smoothing Asymptotics

To investigate the asymptotic properties of �̂ and the associated t statistic, we make the following
assumptions on the basis functions and the trend function.

Assumption 3.1 The basis functions �k (�), k = 1; 2; : : : ;K; are piecewise monotonic and con-
tinuously di¤erentiable.

Assumption 3.2 There exists a d� � d� diagonal matrix D� such that

�D ([Tr]) := D� � � ([Tr])! � (r)
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uniformly over r 2 [0; 1] and

1

T

TX
t=1

�D (t) �D (t)
0 !

Z 1

0
�(r)�(r)0dr as T !1;

where
R 1
0 �(r)�(r)

0dr is positive de�nite.

For commonly used polynomial trend functions, Assumption 3.2 holds trivially. For example,
when � (t) = 1; we can choose D� = 1, in which case

1

T

TX
t=1

�D (t) �D (t)
0 = 1:

When � (t) = (1; t)0 ; we can choose D� = diag(1; 1=T ), in which case

1

T

TX
t=1

�D (t) �D (t)
0 =

1

T

�
1 0
0 1

T

� PT
t=1 1

PT
t=1 tPT

t=1 t
PT
t=1 t

2

!�
1 0
0 1

T

�

=

 
T�1

PT
t=1 1 T�2

PT
t=1 t

T�2
PT
t=1 t T�3

PT
t=1 t

2

!
!
Z 1

0
�(r)�(r)0dr:

Given that the �rst element of � (t) is a constant, the (1,1)-th element of D� is always 1.
Next, we decompose Zit into a sum of three terms:

Zit = �zt + �zi � � (t) + Zit;

where �zt and �zi � � (t) represent time �xed e¤ects and linear trend e¤ects, respectively. Let

�Ztreat�;t =
1

n�

�nX
i=1

Zit and �Zcontrol�;t =
1

n(1� �)

nX
j=�n+1

Zjt

be the averaged time series of Z for the treatment group and the control group, respectively.
De�ne

~Zit = Zit � �Z�;t and ~Z�it = ~Zit �
 

TX
s=1

~Zis� (s)0
! 

TX
s=1

� (s) � (s)0
!�1

� (t) :

We make the following assumptions on Zit:

Assumption 3.3

1

T

[Tr]X
t=1

�Ztreat�;t � �D (t)0 =
1

T

[Tr]X
t=1

�Zcontrol�;t � �D (t)0 + op(1)

uniformly over r 2 [0; 1]:

Assumption 3.4 T�1
P[Tr]
t=1

1
n

Pn
i=1

~Z�it( ~Z�it)0 ! rG uniformly over r 2 [0; 1] for some positive-
de�nite matrix G:
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Assumption 3.3 requires that, in terms of their projections onto the trend function, the
averaged time series f �Ztreat�;t g and f �Zcontrol�;t g do not di¤er systematically across the treatment
and control groups. More precisely, if for any block of the time series spanning t = [Tr1] ; [Tr1] +
1; : : : ; [Tr2] ; the projections of f �Ztreat�;t g and f �Zcontrol�;t g onto the trend function are approximately
the same, then Assumption 3.3 holds. This is similar to the �parallel paths�assumption that is
often imposed in a di¤erence-in-di¤erences regression.

Assumption 3.4 is similar to a standard assumption in the �xed-smoothing asymptotics. If
(i) T�1

P[Tr]
t=1

~Zit ~Z 0it ! rG uniformly over r 2 [0; 1] and i = 1; 2; : : : ; n
(ii) T�1

P[Tr]
s=1

~Zis�D (s)0 = op (1) uniformly over r 2 [0; 1] and i = 1; 2; : : : ; n;
then Assumption 3.4 is satis�ed. Uniformity over r in the above conditions can be obtained
by invoking a uniform law of large numbers for time series data, which typically requires some
mixing and moment conditions. Uniformity over i = 1; 2; : : : ; n can be obtained by using a
classical argument. Consider condition (i) as an example. We have

Pr

0@ max
i2f1;2;:::;ng

sup
r
jjT�1

[Tr]X
s=1

( ~Zis ~Z 0it �G)jj > "

1A �
nX
i=1

Pr

0@sup
r
jjT�1

[Tr]X
s=1

( ~Zis ~Z 0it �G)jj > "

1A :

Therefore, if the summand in the above upper bound is of order O (1=T ) uniformly over i and
n=T ! 0; then condition (i) holds. The uniform O(1=T ) bound on the summand will hold if
the mixing and moment conditions for the time series ULLN hold uniformly over i: This entails
imposing some restriction on the degree of cross-sectional heterogeneity.

To investigate the rate of information accumulation in ~X�
it; the serially detrended and cross-

sectionally demeaned regressor, we write

1

nT

[Tr]X
t=1

nX
i=1

~X�
it( ~X

�
it)
0 = S (r) :=

�
S11 (r) S12 (r)
S21 (r) S22 (r)

�
; (5)

where

S11 (r) =
1

T

[Tr]X
t=1

[Post�t ]
2 � 1
n

nX
i=1

[T̂ reati]
2;

S21 (r) =
1

T

[Tr]X
t=1

Post�t �
1

n

nX
i=1

~Z�it � T̂ reati;

S22 (r) =
1

T

[Tr]X
t=1

1

n

nX
i=1

~Z�it(
~Z�it)

0:

Let

H� (r) = 1 (r � �)�
�Z 1

0
1 (s � �) �(s)0ds

� �Z 1

0
�(s)�(s)0ds

��1
� (r)

be the projection of 1 (r � �) onto the orthogonal complement of the space spanned by the trend
function � (r). H� (r) is the limit of Post�[Tr] as T !1:

The following lemma establishes the limits of S11 (r) ; S21 (r) ; and S22 (r) :
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Lemma 3.1 Let Assumptions 3.2�3.4 hold. Then
(a) S11 (r) = S11 (r) +O

�
T�1

�
;

(b) S21 (r) = S21 (r) + op (1) ;
(c) S22 (r) = S22 (r) + op (1) ;
uniformly over r 2 [0; 1]; where

S11 (r) = � (1� �)
Z r

0
H2
� (s) ds

and
S21 (r) = 0, S22 (r) = rG:

Given that S21 (r) = 0, Lemma 3.1 shows that the regressor of interest in the serially detrended
and cross-sectionally demeaned regression is orthogonal to other regressors. The reason to include
Zit in the regression is to reduce the regression error so that we can have a more e¢ cient estimator.
The crucial assumption that drives this result is Assumption 3.3. Without this assumption, S21 (r)
will not be zero. When S21 (r) 6= 0, the additional control variable Zit may help achieve the key
identi�cation assumption: there is no systematic di¤erence in �it across the treatment and control
groups after controlling for Zit: However, if Zit is causally a¤ected by the policy change, then
controlling for Zit may block a channel through which the policy change exerts its e¤ect, leading
to a biased causal e¤ect estimator.

To establish the limiting distribution of �̂ and the asymptotic variance estimator V̂R, we
maintain the following functional central limit theorem (FCLT).

Assumption 3.5 1p
T

P[Tr]
t=1

�
1p
n

Pn
i=1 T̂ reati � �it

�
!d �B (r) for some � > 0:

When n is �xed, Assumption 3.5 is an FCLT for the time series f
Pn
i=1 T̂ reati � �it=

p
ng:

When n grows with T; then f
Pn
i=1 T̂ reati � �it=

p
ng should be regarded as a triangular array, and

Assumption 3.5 is an FCLT for a triangular array. There is a vast literature on time series FCLT,
both for cases where the underlying time series is a triangular array and for cases where it is not.
Assumption 3.5 is a high-level assumption. Su¢ cient conditions often involve some moment and
mixing conditions. For example, when n grows with T; we can invoke Theorem 7.18 of White
(2001) to show that the following conditions are su¢ cient.

Condition 3.1 (i) E 1
nT

P[Tr]
t=1

Pn
i=1 T̂ reati � �it = 0:

(ii) E(jn�1=2
Pn
i=1 T̂ reati � �itj�) � � <1 for some � > 2:

(iii) The sequence fn�1=2
Pn
i=1 T̂ reati ��itgTt=1 is �-mixing with �-mixing coe¢ cient satisfying

� (m) = O
�
m��=(��2)+e� for some � > 2 and e > 0:

(iv) var[(nT )�1=2
Pn
i=1

PT
t=1 T̂ reati � �it] > C > 0 for su¢ ciently large T .

9



To verify Condition 3.1(i), we note that

1

nT

[Tr]X
t=1

 
nX
i=1

T̂ reati � �it

!

= (1� �)� � 1
T

[Tr]X
t=1

24 1
n�

n�X
i=1

�it �
1

n (1� �)

nX
i=n�+1

�it

35
= (1� �)� � 1

T

[Tr]X
t=1

�
��treat�;t � ��control�;t

�
:

So Condition 3.1(i) holds if

E
1

T

[Tr]X
t=1

�
��treat�;t � ��control�;t

�
= 0; (6)

that is, if there is no systematic di¤erence in the averages of ��treat�;t and ��control�;t over t = [Tr1] ; : : : ; [Tr2]
for any r2 > r1: This is a version of the �parallel paths�assumption in the DD regression.

Condition 3.1(ii) is a type of Rosenthal inequality. It holds if the cross-sectional dependence
is weak enough and �it has enough moments. See, for example, Doukhan (1994, Sec 1.4.1).
Condition 3.1(iii) is a standard mixing condition. If each time series �it satis�es the given mixing
condition, then Condition 3.1(iii) holds. Condition 3.1(iv) rules out the degenerate case in which
the variance goes to zero.

Lemma 3.2 Let Assumptions 3.3�3.5 hold. Then

p
nT (�̂1 � �10)!d �

� (1� �)

R 1
0 H� (r) dB (r)R 1
0 H

2
� (r) dr

d
=

�

� (1� �)
qR 1

0 H
2
� (r) dr

N(0; 1): (7)

For Lemma 3.2 to hold, we need Assumption 3.5 for only r = � and 1 and

1p
T

TX
t=1

�D (t)
1p
n

nX
i=1

T̂ reati � �it !d �

Z 1

0
�D (r) dB (r) :

In this case, (6) needs to hold for only r = � and 1. That is, the averages of ��treat�;t and ��control�;t
over the pre-treatment periods (and post-treatment periods) are the same in the mean sense.
This is the usual �parallel paths�assumption for identi�cation in the absence of a linear trend.
We maintain the stronger Assumption 3.5 for technical convenience and for establishing the
asymptotic distribution of the asymptotic variance estimator to be de�ned later.

Note that we obtain the
p
nT rate of convergence of �̂1 when both T and n approach in-

�nity, because we have implicitly assumed weak cross-sectional dependence. The Rosenthal-
type inequality in Condition 3.1(ii) holds only if the cross-sectional dependence is weak enough.
If there is a group e¤ect in �it such that �it = Treati � e

(1)
t + (1� Treati) � e

(2)
t + ~�it for

some sequences e(1)t and e
(2)
t where f~�itg are independent for di¤erent i or t, then Condition

3.1(ii) cannot hold when n ! 1: In this case, we have to use a di¤erent argument. In-

stead of requiring that n�1=2T�1=2
P[Tr]
t=1 (

Pn
i=1 T̂ reati � �it) satisfy an FCLT, we require that

10



n�1T�1=2
P[Tr]
t=1 (

Pn
i=1 T̂ reati � �it) satisfy an FCLT. As a consequence,

p
nT asymptotic normal-

ity in Lemma 3.2 will be reduced to
p
T asymptotic normality. To re�ect this, we need to

make some minor changes to our theoretical results and their proofs, but our proposed testing
procedures remain asymptotically valid without any modi�cation.

Lemma 3.3 Let Assumptions 3.1�3.5 hold. Then

V̂R !d �2
1

K

KX
k=1

�Z 1

0
�Hk (r) dB (r)

�2 �
� (1� �)

Z 1

0
H2
� (s) ds

��2
jointly with (7), where

�Hk (r) =
�
�k (r)� ��H2;k

�
H� (r)�

�Z 1

0
�k (s)H� (s) � (s)

0 ds

� �Z 1

0
� (s) � (s)0 ds

��1
� (r)

and

��H2;k =

�Z 1

0
�k (s)H

2
� (s) ds

� �Z 1

0
H2
� (s) ds

��1
:

The term ��H2;kH� (r) in �
H
k (r) re�ects the e¤ect of the estimation uncertainty in �̂1 on the

asymptotic distribution of V̂R. If ��H2;k = 0 for all k; that is, the basis functions are orthogonal
to the information accumulation process as re�ected in H2

� (�) ; then this term vanishes, and
the estimation error in �̂1 has no e¤ect on the asymptotic distribution of V̂R: The remaining
terms in �Hk (r) are the L

2 projection of �k (r)H� (r) onto the orthogonal complement of the
space spanned by the trend function � (r) : The projection is present because we do not observe
�it: Even if we know the true �0; we can only hope to recover ��it; the projected version of �it:
For this reason, the stochastic approximation of the series LRV estimator involves the termPT
t=1�k (t=T )Post

�
t ���it: Rearranging the projecting operation, this term is numerically identical

to
PT
t=1 (�k (t=T )Post

�
t )
� ��it; where (�k (t=T )Post�t )

� is the projected version of �k (t=T )Post�t :
As T !1, the e¤ect of this projection is manifested in the L2 projection of �k (r)H� (r) : It is
useful to point out that, by construction, �Hk (r) is orthogonal to 1 fr � �g ; � (r) ; and H� (r) :

Note that the estimation uncertainty in �̂2 has no e¤ect on the asymptotic distribution of V̂R:
This is due to the information orthogonality given in Lemma 3.1.

Theorem 3.1 Let Assumptions 3.1�3.5 hold. Then

T!d T1 :=

R 1
0 H� (r) dB (r)�

1
K

PK
k=1

hR 1
0 �

H
k (r) dB (r)

i2�1=2 :
Like the �nite sample distributions, the limiting distribution of T depends on the trend

function included in the regression, the basis functions used in the asymptotic variance estimation,
and the number of basis functions used. This is an attractive feature of the �xed-smoothing
approximation, as it captures the e¤ects of the trend function and the variance estimator, which
clearly a¤ect the �nite sample distribution of T:

The limiting distribution T1 is the same regardless of whether time �xed e¤ects or individual
�xed e¤ects are included in the regression. Moreover, it does not depend on the relative sizes
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of the two groups. These features make the limiting distribution easy to use. However, it does
depend on the length of the post-treatment periods relative to that of the pre-treatment periods.

Figure 1 plots the nonstandard critical values against the value of K: The critical values are
for a two-sided 5% test. We consider two choices of � (t) : � (t) = 1 and � (t) = (1; t)0; leading to a
model with no any trend and a model with linear trends, respectively. It is clear that the critical
values depend on �, which characterizes the time at which the policy change takes place. They
also depend on the form of the trend function � (t) and the number of basis functions used. In
all cases, the critical value decreases with K and approaches the standard normal critical value,
i.e., 1.96, as K increases. While the standard normal critical value stays the same regardless of
the time at which the policy change takes place, the form of the trend function, and the number
of basis functions, the nonstandard critical value is tailored to each speci�c case. That is why
the asymptotic nonstandard test has more accurate size than the asymptotic normal test.

2 4 6 8 10 12 14 16 18 20
K

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

without trend (  = 0.5)
with trend (  = 0.5)
without trend (  = 0.7)
with trend (  = 0.7)

Figure 1: Nonstandard �xed-smoothing critical values for models with and without linear trends
and for di¤erent values of �

4 Asymptotic t Test

The limiting distribution is pivotal but nonstandard. One advantage of using the series LRV
estimator is that we have the freedom to choose the basis functions. We hope to choose a set of
basis functions such that T1 becomes the standard t distribution.
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De�ne

�0 =
1

kH�k2

Z 1

0
H� (r) dB (r) s N(0; 1);

�k =
1

kH�k2

Z 1

0
�Hk (r) dB (r) for k = 1; : : : ;K

where kH�k2 = (
R 1
0 H

2
� (s) ds)

1=2: Then

T1 =
�0�

1
K

PK
k=1 �

2
k

�1=2 :
Note that for k = 1; : : : ;K;

cov (�0; �k) = kH�k�22
Z 1

0
�Hk (r)H� (r) dr = kH�k

�2
2

Z 1

0

�
�k (r)� ��H2;k

�
H2
� (r) dr = 0;

using the de�nition of ��H2;k and
R 1
0 H� (s) � (s)

0 ds = 0: So �0 is independent of �k for k =
1; 2; : : : ;K: If �k s iid N(0; 1) for k = 1; : : : ;K; then T1 follows the standard t distribution with
K degrees of freedom:

Some simple calculations show that for k1; k2 = 1; 2; : : : ;K;

cov(�k1 ; �k2) =

Z 1

0

Z 1

0
�k1 (r)C

H
� (r; s) �k2 (s) drds;

where

CH� (r; s) =
H� (r)

kH�k2

(
� (r � s)�H� (r)H� (s)� � (r)0

�Z 1

0
� (t) � (t)0 dt

��1
� (s)

)
H� (s)

kH�k2

is the implied covariance kernel and � (�) is the Dirac delta function such thatZ 1

0

Z 1

0
�k1 (r)H� (r) � (r � s) �k2 (s)H� (s) drds =

Z 1

0
�k1 (r) �k2 (r)H

2
� (r) dr:

To ensure that �k s iid N(0; 1) for k = 1; 2; : : : ;K, we require thatZ 1

0

Z 1

0
�k1 (r)C

H
� (r; s) �k2 (s) drds = 1 fk1 = k2g for k1; k2 = 1; : : : ;K: (8)

Instead of searching for the basis functions that satisfy (8), we search for their discrete versions:
the basis vectors. For each basis function �k (r) ; the corresponding basis vector is de�ned as

�k =

�
�k

�
1

T

�
;�k

�
2

T

�
; : : : ;�k

�
T

T

��0
:

We focus on the basis vectors for two reasons. First, it is computationally more convenient to
obtain the basis vectors. Second, it is the basis vectors that are actually used in the variance
estimation.
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Let CH be the T � T matrix whose (i; j)-th element is equal to

CH�

�
i

T
;
j

T

�
=

"
1

T

TX
t=1

H2
�

�
t

T

�#�1�
TH2

�

�
i

T

�
1fi = jg �H2

�

�
i

T

�
H2
�

�
j

T

�

�H�
�
i

T

�
�

�
i

T

�"
1

T

TX
`=1

�

�
`

T

�
�

�
`

T

�0#�1
�

�
j

T

�
H�

�
j

T

�9=; :

By de�nition, CH is a positive-de�nite symmetric matrix. For any two vectors `1; `2 2 RT , we
de�ne the inner product

h`1; `2i = `01CH`2=T
2; (9)

which makes RT a Hilbert space. The discrete analogue of (8) is

h�k1 ;�k2i = 1 fk1 = k2g for k1; k2 = 1; : : : ;K: (10)

Note that (10) is di¤erent from the usual orthonormality in the Euclidean sense. In gen-
eral, the basis vectors f�kg do not satisfy (10) even if they are orthonormal according to
the usual inner product in RT : However, given any set of candidate basis functions or vec-
tors f�k; k = 1; 2; : : : ;Kg, we can make them satisfy the above conditions via the Gram-Schmidt
orthogonalization.

More speci�cally, we let

~�1 = �1;

~�2 = �2 �
h�2;~�1i
h~�1;~�1i

~�1;

. . .

~�K = �K �
h�K ;~�K�1;i
h~�K�1;~�K�1i

~�K�1 � : : :�
h�K ;~�1i
h~�1;~�1i

~�1:

By construction,
D
~�k1 ;

~�k2

E
= 0 for k1 6= k2: Let

~�k;H =
~�krD
~�k; ~�k

E ;
then f~�1;H ; : : :; ~�K;Hg is a set of bases in RT that satis�es the conditions in (10).

Let � = (�1; : : :;�K): To obtain ~�H = (~�1;H ; : : :; ~�K;H) in a matrix programming envi-
ronment, we �rst compute the upper triangular factor RH of the Cholesky decomposition of
�0CH�=T

2 such that �0CH�=T 2 = R0HRH : We can then let

~�H = � (RH)
�1 :

For such a choice of ~�H , we have

(~�H)
0CH ~�H=T

2 =
�
R0H
��1

�CH� (RH)
�1 =T 2 =

�
R0H
��1

R0HRH (RH)
�1 = IK ;

so the conditions in (10) are satis�ed.
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As T ! 1; �0CH�=T 2 converges to the variance �� of � = (�1; : : : ; �K)0. This implies that
RH converges to the upper triangular factor of the Cholesky decomposition of ��: As a result,
every transformed basis vector is approximately equal to a linear combination of the original
basis vectors. The implied basis function is thus equal to a linear combination of the original
basis functions. Therefore, if Assumption 3.1 holds for the original basis functions, it also holds
for the transformed basis functions.

Using f~�k;Hg as the basis vectors for construction of the asymptotic variance estimator, we
have

T1 =d
�0�

1
K

PK
k=1 �

2
k

�1=2 =d tK :
That is, the t statistic T is asymptotically distributed as the standard t distribution with K
degrees of freedom.

To sum up, the asymptotic t test consists of the following steps:

1. Estimate the parameter of interest.

(a) Detrend each time series separately, and then remove the cross-sectional average from
each detrended variable.

(b) Estimate �10 and �20 by running the OLS regression

~Y �it = ~X�
it�0 + ~�

�
it;

where ~Y �it and ~X�
it are the transformed variables given in (1) and (3), respectively.

Denote the estimates by �̂1 and �̂2 and the residual by �̂�it:

2. Construct the transformed basis vectors.

(a) Letting Post�t be the detrended �Post�dummy

Post�t = Postt �
 

TX
s=1

Posts � � (s)0
! 

TX
s=1

� (s) � (s)0
!�1

� (t)

and

kPost�k =
(
1

T

TX
t=1

[Post�t ]
2

)1=2
(11)

be its empirical norm, construct the following vectors and matrices:

HT =
�
[Post�1 ]

2 ; [Post�2 ]
2 ; : : : ; [Post�T ]

2
�0
2 RT�1;

A =
1

T

TX
t=1

� (t) � (t)0 2 Rd��d� ;

B =

0@ Post�1 � � (1)
0

: : :
Post�T � � (T )

0

1A 2 RT�d� ;

CH =
1

kPost�k2
�
T � diag (HT )�HTH

0
T �BA�1B0

�
2 RT�T :
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(b) Let � = [�1; : : : ;�K ] 2 RT�K be the matrix of the original basis vectors. For
example, when K is even, we can take the columns of � to be

�2j�1 =
hp
2 cos(2j� � 1=T );

p
2 cos(2j� � 2=T ); : : : ;

p
2 cos(2j� � T=T )

i0
; (12)

�2j =
hp
2 sin(2j� � 1=T );

p
2 sin(2j� � 2=T ); : : : ;

p
2 sin(2j� � T=T )

i0
; (13)

for j = 1; 2; :::;K=2:
Compute the upper triangular factor RH of the Cholesky decomposition of�0CH�=T 2

such that �0CH�=T 2 = R0HRH :

(c) Compute the matrix ~�H = [~�1;H ; : : :; ~�K;H ] = � (RH)
�1 : Each column of ~�H con-

sists of a transformed basis vector.

3. Compute the variance estimator and the t-statistic.

(a) Letting


̂ =
1

K

KX
k=1

"
1p
T

TX
t=1

~�k;H;tûn;t

#"
1p
T

TX
t=1

~�k;H;tûn;t

#0
;

where ûnt = n�1=2
Pn
i=1

~X�
it�̂
�
it and ~�k;H;t is the t-th element of ~�k;H , compute

V̂ =

"
1

nT

nX
i=1

TX
t=1

~X�
it( ~X

�
it)
0

#�1

̂

"
1

nT

nX
i=1

TX
t=1

~X�
it( ~X

�
it)
0

#�1
:

(b) Construct the t statistic for testing the null H0 : �10 = r0 :

T =
p
nT (�̂1 � r0)p

V̂11
;

where V̂11 is the (1,1)-th element of V̂ :

(c) On the basis of T; perform the asymptotic t test using the critical values from Student�s
t distribution with K degrees of freedom.

5 Alternative Variance Estimator and Asymptotic t Test

Lemma 3.2 shows that

p
nT (�̂1 � �10)!d N

 
0;

�2

� (1� �)
1

� (1� �)
R 1
0 H

2
� (r) dr

!
: (14)

All the components in the asymptotic variance other than �2 can be estimated easily: More
speci�cally, � (1� �)

R 1
0 H

2
� (r) dr can be estimated by

S11 (1) =
1

T

TX
t=1

[Post�t ]
2 � 1
n

nX
i=1

[T̂ reati]
2;
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and � (1� �) can be estimated by n�1
Pn
i=1[T̂ reati]

2: It su¢ ces to estimate �2, the long-run

variance of
Pn
i=1 T̂ reati � �it=

p
n, in order to make inference about �10:

The series estimator of �2 can be constructed as

�̂2 =
1

K

KX
k=1

(�̂k)
2;

where

�̂k =
1p
T

TX
t=1

�k

�
t

T

�
1p
n

nX
i=1

T̂ reati � �̂�it:

The asymptotic variance of �̂1 can then be estimated by

�̂2 = �̂2 �
"
1

n

nX
i=1

(T̂ reati)
2

#�2(
1

T

TX
t=1

[Post�t ]
2

)�1
:

The corresponding t statistic is

~T =
p
nT (�̂1 � �10)

�̂
:

While V̂R is the sandwich variance estimator in the most general form, �̂2 can be regarded as
a special form of the sandwich estimator: a �collapsed� sandwich estimator. They are asymp-
totically equivalent when K approaches in�nity. However, when K is �xed, they have di¤erent
limiting distributions.

The above construction, which provides an alternative to the one in Section 4, is speci�c to
the DD setting where the regressor of interest Post�t is a deterministic function whose energy is
concentrated at the origin. This setting is similar to trend regressions or cointegrating regressions
where the regressors have energy concentrated at the origin.

Theorem 5.1 Let Assumptions 3.1�3.5 hold. Then
(a)

�̂2 !d �2
1

K

KX
k=1

�Z 1

0
�Hk (r) dB (r)

�2
�
�
� (1� �)

Z 1

0
H2
� (s) ds

��2
jointly with (7), where

�Hk (r) = �k (r)� (PH�k) �H� (r)�
�Z 1

0
�k (s) � (s)

0
� �Z 1

0
� (s) � (s)0 ds

��1
� (r)

and

PH�k =

�Z 1

0
�k (r)H� (r) dr

� �Z 1

0
H2
� (s) ds

��1
:

(b)

~T!d ~T1 :=

R 1
0 H� (r) dB (r)�

1
K

PK
k=1

hR 1
0 �

H
k (r) dB (r)

i2�1=2 �R 1
0 H

2
� (s) ds

�1=2 :
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Theorem 5.1(a) is analogous to Lemma 3.3. The term (PH�k)H� (r) in �Hk (r) re�ects the
e¤ect of the estimation uncertainty in �̂1: If the projection of �k (r) onto H� (r) is zero, then
this term disappears. The remaining terms in �Hk (r) are the L

2 projection of �k (r) onto the
orthogonal complement of the space spanned by the trend functions in � (r) : We can also write

�Hk (r) = �k (r)� ~ck � 1 (r � �)� ~d0k � � (r)

for

~ck = PH�k and ~dk =
�Z 1

0
�(s)�(s)0ds

��1�Z 1

0
[�k (s)� (PH�k) � 1 (s � �)] �(s)ds

�
:

So, �Hk (r) is the L
2 projection of �k (r) onto the orthogonal complement of the space spanned

by 1 (r � �) and the trend function � (r) : Theorem 5.1(b) is analogous to Theorem 3.1. Like T1;
the asymptotic distribution ~T1 is pivotal, and it captures the e¤ects of the trend function, the
basis functions, and the time at which the policy change takes place.

While it is not hard to simulate the nonstandard critical values, it is more convenient to
use critical values that are readily available from standard statistical tables and programming
environments. Let

�0 =

R 1
0 H� (r) dB (r)�R 1
0 H

2
� (s) ds

�1=2
and

�k =

Z 1

0
�Hk (r) dB (r) ; k = 1; :::;K;

which are all normal. Then
~T1 =

�0�
1
K

PK
k=1 �

2
k

�1=2 :
Since

cov(�0; �k) =

�Z 1

0
H2
� (s) ds

��1=2 Z 1

0
H� (r) �

H
k (r) dr = 0; for k = 1; 2; : : : ;K;

�0 and �k are independent for k = 1; 2; : : : ;K: Also some calculations show that

cov(�k1 ; �k2) =

Z 1

0
�Hk1 (r) � �

H
k2 (r) dr =

Z 1

0

Z 1

0
�k1 (r)C

H
� (r; s) �k2 (s) drds;

where

CH� (r; s) = � (r � s)� H� (r)H� (s)R 1
0 H

2
� (t) dt

� � (r)0
�Z 1

0
� (t) � (t)0 dt

��1
� (s) : (15)

We can orthonormalize the basis functions f�k (r)g so that �k becomes iid N(0; 1): In this case,
the asymptotic distribution of ~T becomes a t distribution, leading to an alternative asymptotic t
test.

The steps for the alternative asymptotic t test are similar to those given at the end of Section
4. For completeness, we outline the steps below.

1. Follow the same step as before to estimate the parameter of interest.
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2. Transform the original basis vectors.

(a) Let � = (� (1)0 ; : : : ; � (T )0)0 2 RT�d� and Post� = (Post�1 ; : : : ; Post�T )
0 2 RT�1. Con-

struct the projection matrix

CH = T
h
IT�T � Post� �

�
Post� 0Post�

��1
(Post� )0 � �

�
� 0�
��1

� 0
i
:= T �MPost;� :

(16)

(b) Let RH be the upper triangular factor of the Cholesky decomposition of �0CH�=T 2,
where, as before,� = [�1; : : : ;�K ] is the matrix of the original basis vectors. Compute
the matrix

�H = [�1;H; : : : ;�K;H] = � (RH)
�1 :

3. Compute the variance estimator and perform the t test.

(a) Estimate the asymptotic variance of �̂ by

�̂2 = �̂2 �
"
1

n

nX
i=1

(T̂ reati)
2

#�2(
1

T

TX
t=1

[Post�t ]
2

)�1
;

where

�̂2 =
1

K

KX
k=1

"
1p
T

TX
t=1

�k;H;t
1p
n

nX
i=1

T̂ reati � �̂�it

#2
and �k;H;t is the t-th element of the vector �k;H.

(b) Perform the test using ~T =
p
nT (�̂1 � �10)=�̂ as the test statistic and Student�s t

distribution with K degrees of freedom as the reference distribution.

6 Testing-Optimal Choice of K

In this section, we propose a testing-optimal choice of the smoothing parameter K: The proposed
method is based on high-order approximations of the type I and type II errors of the asymptotic
t test in the previous section.

We consider the DD regression without additional covariates Zit and assume that the error
term �it is Gaussian. More general models with non-Gaussian errors or with covariates that
can vary in arbitrary ways across both the time dimension and the cross-sectional dimension
require highly technical arguments. For example, when the errors are not Gaussian, we have to
follow the most general approach to develop Edgeworth expansions for time series data. This
often requires highly technical assumptions that are di¢ cult to verify. See, for example, Sun and
Phillips (2009) for the technical assumptions and a full-�edged Edgeworth expansion. While the
asymptotic testing-optimal rule for smoothing-parameter choice that we develop for the special
case may not be theoretically optimal for more general cases in large samples, it may still be quite
informative in �nite samples. The results of our simulations lend some support to this possibility.

In the absence of Zit; the DD estimator �̂1 is numerically identical to the OLS estimator based
on the regression model

M�Yt =M� � Postt �
p
n� (1� �) �10 +M�et; (17)
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where

Yt =
p
n� (1� �)

0@ 1

n�

n�X
i=1

Yit �
1

n(1� �)

nX
i=n�+1

Yit

1A =
1p
n

nX
i=1

T̂ reati � Yit;

et =
p
n� (1� �)

0@ 1

n�

n�X
i=1

�it �
1

n (1� �)

nX
i=n�+1

�it

1A =
1p
n

nX
i=1

T̂ reati � �it; (18)

and M� = IT � � (�� 0)�1 � 0: In fact, it is easy to rigorously establish the numerical equivalence.
To highlight the estimation method behind �̂1, in this section we write

�̂1 = �̂1;OLS =
1p

n� (1� �)
�
Post0 �M� � Post

��1 �
Post0 �M� � Y

�
;

where Post = (Post1; Post2; :::; PostT )0 and Y = (Y1;Y2; :::;YT )0 :
Denote the variance matrix of e = (e1; e2; :::; eT )

0 by 
. On the basis of (17), we can also
estimate �1 by the generalized least-squares estimator:

�̂1;GLS =
1p

n� (1� �)

h
(M�Post)

0 �M�
M
0
�

��
M�Post

i�1 h
(M�Post)

0 �M�
M
0
�

��
M�Y

i
;

where (M�
M
0
� )
� is the Moore-Penrose pseudoinverse of M�
M

0
� :

By direct calculation, it�s easy to show that E(�̂1;GLS��10)(�̂1;GLS� �̂1;OLS) = 0. In addition,
letting

ê� = [IT �M� � Post �
�
Post0 �M� � Post

��1
Post0 �M� ]M�e

be the OLS residual, we can show that

E(�̂1;GLS � �10) (ê� )0 = 0:

Hence �̂1;GLS� �10 is independent of both �̂1;GLS� �̂1;OLS and ê� : Using the de�nition of et given
in (18), we can show that ê� =

Pn
i=1 T̂ reati � �̂�it=

p
n: It then follows that

�̂2 =
1

K

KX
k=1

"
1p
T

TX
t=1

�k;H;tê
�
t

#2
[� (1� �)]�2

(
1

T

TX
t=1

[Post�t ]
2

)�1
; (19)

which is a quadratic form in ê�t . Therefore, �̂1;GLS � �10 is also independent of �̂2.
Let 	 and  be the cdf and pdf of the standard norm distribution, respectively. Denote

�2GLS = var
hp

nT (�̂1;GLS � �10)
i
. Using the independence of �̂1;GLS � �10 from �̂1;GLS � �̂1;OLS
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and �̂2; we obtain, for any z 2 R,

P

 p
nT (�̂1;OLS � �10)

�̂
� z

!
= P

 p
nT (�̂1;OLS � �10)

�GLS

�GLS
�̂

� z

!

= P

0@pnT (�̂1;GLS � �10)
�GLS

� z�̂

�GLS
+

p
nT
�
�̂1;GLS � �̂1;OLS

�
�GLS

1A
= E	

0@ z�̂

�GLS
+

p
nT
�
�̂1;GLS � �̂1;OLS

�
�GLS

1A
= E	

�
z�̂

�GLS

�
+ E

24 � z�̂

�GLS

� pnT ��̂1;GLS � �̂1;OLS�
�GLS

35+O �E[pnT (�̂1;GLS � �̂1;OLS)]2�
= E	

�
z�̂

�GLS

�
+O

�
E[
p
nT (�̂1;GLS � �̂1;OLS)]2

�
;

where the last equation holds because �̂ does not change and �̂1;GLS � �̂1;OLS changes sign when
e is replaced by �e: Similarly, we have

P

 p
nT (�̂1;OLS � �10)

�̂
� z

!
= E	

�
� z�̂

�GLS

�
+O

�
E[
p
nT (�̂1;GLS � �̂1;OLS)]2

�
:

Let G (�) be the cdf of the �21 distribution. Then

P

 �����
p
nT (�̂1;OLS � �10)

�̂

����� � z

!
= EG

�
z2�̂2

�2GLS

�
+O

�
E[
p
nT (�̂1;GLS � �̂1;OLS)]2

�
:

Our asymptotic expansion is based on the above approximation. Further expansions require us

to approximate the asymptotic bias and variance of �̂2 and establish the rateO
�
E[
p
nT (�̂1;GLS � �̂1;OLS)]2

�
:

To this end, we maintain the following assumption.

Assumption 6.1 (a) fetg is a stationary Gaussian process with a spectral density that is twice
continuously di¤erentiable and bounded above and away from zero uniformly over n in a neigh-
borhood around the origin.

(b) For �HF (r) =
�
�H1 (r) ; :::;�

H
K (r)

�0
; the smallest eigen value of

R 1
0 �

H
F (r) �

H
F (r)

0 dr is
bounded away from zero uniformly over K:

(c) The basis functions f�k (r)g and � (r) are twice continuously di¤erentiable.
(d) For �F (r) = [�1 (r) ; :::;�K (r)]

0; _�F (i) =
h
_�1 (r) ; :::; _�K (r)

i
; and _�k (r) = d�k (r) =dr;

the following holds: Z 1

0
k�F (r)k2 dr = O (K)

k�F (i)k2 = O(K); i = 0; 1


 _�F (i)


2 = O(K3); i = 0; �; and 1;

where k�k is the Euclidean norm.
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The conditions on the spectral density in Assumption 6.1 ensure that E[
p
nT (�̂1;GLS �

�̂1;OLS)]
2 = O (1=T ). They are also needed for evaluating the asymptotic bias and variance

of �̂2: The other conditions in Assumption 6.1 are further restrictions on the basis functions and
trend functions. It is not hard to show that they are satis�ed for Fourier basis functions and
polynomial trend functions.

Let t�=2K be the 1 � �=2 quantile of Student�s t-distribution with K degrees of freedom; and
let ��1 be the 1 � � quantile of the �21 distribution. Let G�2(�) and G3;�2(�) be the cdf�s of
the noncentral �21 and �

2
3 distributions with noncentrality parameter �

2. The following theorem
establishes high-order approximations to the type I and type II errors of the asymptotic t test
based on ~T.

Theorem 6.1 Let Assumptions 3.2 and 6.1 hold. Consider the asymptotics under which K !1
such that K=T + T=K2 ! 0.

(a) The type I error of the t test based on ~T satis�es

P (j~Tj > t
�=2
K jH0) = �� K2 �B

T 2
G0(��1 )�

�
1 + o

�
1

K

�
+ o

�
K2

T 2

�
+O

�
1

T

�
: (20)

(b) Under the local alternative H1(�2) : �1 � �10 = (nT )�1=2�%; where % = �� with equal
probability 1/2, the type II error of the t test based on ~T satis�es

P (j~Tj < t
�=2
K jH1(�2)) = G�2(�

�
1 ) +

K2 �B

T 2
G0�2(�

�
1 )�

�
1

+
�2

2K
G03;�2(�

�
1 )�

�
1 + o

�
1

K

�
+ o

�
K2

T 2

�
+O

�
1

T

�
; (21)

where �B = B=�2;

B = �!(2)(0)
1X

p=�1
p2�2e;p; �

2 =
1X

p=�1
�2e;p; �

2
e;p = E(etet�p);

!(2)(0) =
1

2
lim
K!1

1

K3

Z 1

0

_�F (s)
0
�Z 1

0
�HF (s)

�
�HF (s)

�0
ds

��1
_�F (s) ds

=
1

2
lim
K!1

1

K3
tr

 �Z 1

0
�HF (s)

�
�HF (s)

�0
ds

��1 Z 1

0

_�F (s) _�F (s)
0 ds

!
:

The above results are similar to Theorem 5 in Sun (2011) with p = 1 but with a di¤erent
�B. Suppose we use the Fourier basis functions �2j�1 =

p
2 cos (2�j) and �2j =

p
2 sin (2�j)

for j = 1; :::;K=2: If � (t) is a vector of polynomial trend functions, then Proposition 9.1 in the
appendix shows that !(2)(0) = �2=6: This gives rise to a B̂ that is di¤erent from what is obtained
in Sun (2011). The di¤erence is due to the use of cosine basis functions in Sun (2011), while we
use both cosine and sine basis functions.

Following Sun (2011), we can ignore the high-order terms and approximate the type I and
type II errors by

eI = �� K2 �B

T 2
G0(��1 )�

�
1 ;

eII = G�2(�
�
1 ) +

K2 �B

T 2
G0�2(�

�
1 )�

�
1 +

�2

2K
G03;�2(�

�
1 )�

�
1 :
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To obtain an optimal smoothing parameter K for testing, we propose to choose K by mini-
mizing the type II error while controlling the type I error. More speci�cally, we solve the following
problem:

min eII s:t: eI � ��;

where � > 1 is a tolerance parameter. We allow the type I error to be di¤erent from the nominal
type I error �; but it cannot be larger than ��: For example, when � = 1:2 and � = 5%, the
upper bound is 6% rather than 5%: Our approach to selecting K has a decision-theoretic basis,
as it amounts to selecting K to minimize a loss function that is a weighted average of type I
and type II errors with the weight given by the implied Lagrangian multiplier for the constraint
eI � ��. See Sun, Phillips, and Jin (2011) for related ideas.

Following an argument similar to that in Sun (2011), we �nd that the optimal K for the
above problem is

Kopt =

(
�2G03;�2(�

�
1 )

4 �B
�
G0
�2
(��1 )� �optG0(��1 )

�)1=3 T 2=3; (22)

where

�opt =

8<:0; if �B > 0
G0
�2
(��1 )

G0(��1 )
+ �2

j �Bj1=2G0
3;�2

(��1 )[�
�
1 ]
3=2[G0(��1 )]

1=2

4[(��1)�]3=2T ; if �B � 0:
(23)

The optimal Kopt in (22) depends on the noncentrality parameters � and �. As in Sun (2011),
we allow � to depend on the sample size T . For a larger T , we may require � to be closer to 1.
We suggest choosing �2 so that the �rst-order power of the asymptotic two-sided t test is 75%,
that is, choosing �2 so that 1�G�2(�

�
1 ) = 75% for a given signi�cance level �. We refer to Sun

(2011) for more detailed discussions on how to choose � and �2.
For practical implementation, we use the parametric plug-in approach to estimate the un-

known B and �2. Suppose we use the simple AR(1) plug-in by �tting an AR(1) model to

êt =
Pn
i=1 T̂ reati � �̂it=

p
n. Let �̂e be the estimated AR coe¢ cient and �̂2e be the estimated error

variance. Then the plug-in estimators of �2 and �B are

�̂2 =
�̂2e

(1� �̂e)2
; and �Best = �2!

(2)(0)�̂e

(1� �̂e)2
;

and the plug-in estimator of K is

K̂opt =

8>><>>:
�

(1��̂e)2
8!(2)(0)j�̂ej

�1=3�G0
3;�2

(��1 )�
2

G0
�2
(��1 )

�1=3
T 2=3; if �Best > 0�

(1��̂e)2
2!(2)(0)j�̂ej

�1=2 �
(��1)�
G0(��1 )�

�
1

�1=2
T; if �Best < 0:

(24)

It is clear that for j�̂ej 2 (0; 1); K̂ decreases as j�̂ej increases. A smaller K is desired in the
presence of stronger autocorrelation. Intuitively, when the autocorrelation is high, we should use
only very few periodogram coordinates that are close to the origin. We do so in order to avoid
smoothing bias, which can be large if smoothing is taken over a wide window in the frequency
domain. For a given window size K; the larger the value of j�ej, the larger the absolute smoothing
bias.
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7 Simulation Evidence

In our simulations, we consider the following data generating process

Yit = �t + � (t)
0 ai + Treati � �10 + Postt � �20 + Treati � Postt � �10 + �it;

for i = 1; 2; : : : ; n and t = 1; 2; : : : ; T where Treati = 1 fi � 0:5ng and Postt = 1 ft � 0:5Tg : The
error term follows independent AR(1) processes with AR parameter �:

�it = ��it�1 + e
�
it with �i0 = 0:

While fe�itg is iid over time, there is cross-sectional dependence. We consider the case with
n = m2 for some positive integer m: Individuals are assumed to be located on a regular m �m
integer lattice so that we can write

e�it = e�i1;i2;t for 1 � i1; i2 � m;

where (i1; i2) is the location of the i-th individual. For each time period t; e�it is a spatial average
of iid innovations:

e�(i1;i2);t = � (vi1�1;i2;t + vi1;i2�1;t + vi1+1;i2;t + vi1;i2+1;t)

+ �2 (vi1�2;i2;t + vi1;i2�2;t + vi1+2;i2;t + vi1;i2+2;t)

+ �2 (vi1+1;i2+1;t + vi1�1;i2�1;t + vi1+1;i2�1;t + vi1�1;i2+1;t) + vi1;i2;t;

where vi1;i2;t is iid N(0; 1) across i1; i2; and t: That is, e
�
it s SMA(2), a spatial moving average

of order 2 according to the taxicab distance.
For the trend component, we consider two common cases. In the �rst case, � (t) = 1,

i.e., there is no trending function, and only individual �xed e¤ects are included. In this case,
time series detrending reduces to demeaning. In the second case, � (t) = (1; t)0 ; i.e., there
are both individual �xed e¤ects and linear time trends. For other model parameters, we take
� = �0:6;�0:3; 0; 0:3; 0:6; and 0:9 and set � to be � = 0 and 0:5: We set all other parameters to
zero, as all the tests we consider are invariant to them. The (n; T ) combinations under consid-
eration are

�
42; 50

�
; (42; 100); (42; 200);

�
82; 50

�
; (82; 100); (82; 200);

�
162; 50

�
; (162; 100); and

(162; 200):
We are interested in testing H0 : �10 = 0 with two-sided alternatives so that each test rejects

the null when the absolute value of the t statistic is large enough. We consider two signi�cance
levels: � = 5% and � = 10%: We �rst examine the �nite sample performances of the tests with
the general sandwich variance estimator and then examine those of the tests with the alternative
variance estimator presented in Section 5.

7.1 Size accuracy with the general sandwich variance estimator

There are two groups of tests with the general sandwich variance estimator. The �rst group of
tests uses the sine and cosine basis functions: �2j�1(x) =

p
2 cos(2j�x), �2j(x) =

p
2 sin(2j�x); j =

1; : : : ;K=2. There are two tests in this group: the nonstandard �xed-smoothing test and the stan-
dard normal test. The former uses nonstandard critical values which are obtained by simulations,
as discussed at the end of Section 3. The latter uses standard normal critical values. The second
group of tests is based on the sine and cosine basis functions, but we do not use them directly.
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Instead, we employ the transformation given in Section 4 to obtain a new set of basis vectors,
which is then used in the asymptotic variance estimation. There are also two tests in this group:
the standard �xed-smoothing t test, which uses critical values from the t distribution with K
degrees of freedom and the standard normal test, which uses standard normal critical values.

Figures 2 and 3 plot the empirical null rejection probabilities of 5% tests against the values
of K when n = 64; T = 100; and when the model contains no linear trend, i.e., � (t) = 1: The
di¤erence between these two �gures is that Figure 2 reports the case with no cross-sectional
dependence (i.e., � = 0) while Figure 3 reports the case with cross-sectional dependence (i.e.,
� = 0:5): Several patterns emerge from both �gures. First, the nonstandard test and the standard
t test have more accurate size than the standard normal tests, especially whenK is small. Second,
as K increases, the di¤erence between a �xed-smoothing test and the corresponding standard
normal test diminishes. This is well expected: when K is large, the t critical value becomes close
to the standard normal critical value. When the plain vanilla sine and cosine bases are used, the
�xed-smoothing critical value also approaches the standard normal critical value as K increases.
See Figure 1. Intuitively, when K is large, the estimation uncertainty in the asymptotic variance
estimator becomes small, and there is not much room for the �xed-smoothing asymptotics �
which is designed to capture this estimation uncertainty � to achieve a better result. Third, for
the two �xed-smoothing tests, the size accuracy of the standard t test is very close to that of the
nonstandard test. When the time series dependence is not strong, e.g., � � 0:6; the empirical
null rejection probabilities are virtually the same across these two �xed-smoothing tests. When
the time series dependence is strong, e.g., � = 0:9; the nonstandard test is slightly more accurate
than the standard t test. Fourth, comparing these two �gures, we can see that the cross-sectional
dependence does not a¤ect the size properties of any of the four tests: the empirical rejection
probabilities are almost the same no matter whether cross-sectional dependence is present or not.
Finally, for the asymptotic normal tests, it pays to employ the transformed basis vectors rather
than the original basis vectors. Transformation is desirable even if one does not want to use the
�xed-smoothing asymptotic approximations. However, in terms of size accuracy, the asymptotic
normal tests are dominated by the nonstandard test and the standard t test, even if transformed
basis vectors are used.

Figures 4 and 5 are similar to Figures 2 and 3, respectively, but the data generating process
for each individual contains a linear trend. It is clear that all the patterns identi�ed from Figures
2 and 3 are still applicable. Comparing Figures 4 and 5 with Figures 2 and 3, we see that the
size properties depend on whether a linear trend is included in the data generating process or
not. It appears that the e¤ect of the linear trend interacts with the strength of the temporal
dependence. When the AR parameter is large, e.g., � = 0:9; it is bene�cial to have a linear trend.
A possible explanation is that detrending can help reduce strong temporal dependence without
introducing too much extra variation from the trend estimation.

We also investigate the e¤ect of the sample size on test performance. Simulation results
not reported here show that the null rejection probabilities remain more or less the same for
di¤erent values of n when the time series sample size stays the same. This is compatible with
the asymptotic results that the cross-sectional dependence does not a¤ect the size properties of
any of the tests. To estimate the asymptotic variance, we essentially collapse the panel data into
time series data. The cross-sectional dependence and cross-sectional sample size do not a¤ect the
persistence of the collapsed time series. As a result, they do not a¤ect the size properties of any
of the tests. On the other hand, when there is substantial temporal dependence, all tests become
more accurate as T increases. In addition, as T increases, the di¤erence between the standard t

25



test and the nonstandard test diminishes. When T = 200 and for all the cross-sectional sample
sizes considered, the two tests have almost identical null rejection probabilities.

7.2 Size accuracy with the alternative variance estimator

We now turn to the tests based on the alternative variance estimator. We consider the same
set of four tests as before, but each test statistic is based on the �collapsed�sandwich variance
estimator constructed in Section 5. To save space, we report only the case with a linear trend but
no cross-sectional dependence in Figure 6. This �gure is representative of all other cases. The
qualitative observations for the cases with a general sandwich variance estimator remain valid.
In particular, the �xed-smoothing nonstandard test and the t test are more accurate than the
asymptotic normal tests, especially when K is small and the AR parameter is large.

Comparing Figure 6 with Figure 4, we see that it does not matter much whether we use the
general sandwich variance estimator or the collapsed sandwich variance estimator: for each test,
the di¤erence in the null rejection probability is small. Nevertheless, for the nonstandard test
based on the original sine and cosine bases, the general sandwich variance estimator leads to
somewhat improved size performance. For the other three tests, the collapsed sandwich variance
estimator performs slightly better. When the collapsed sandwich variance estimator is used in
place of the general sandwich variance estimator, the size di¤erence between the standard t test
and the nonstandard test becomes smaller.

To sum up the simulation results discussed thus far, we see that the �xed-smoothing tests
(both the t test and the nonstandard test) are more accurate than the asymptotic normal tests.
The di¤erence between the t test and the nonstandard test is small, especially when the temporal
dependence is weak or the time series is long. The cross-sectional dependence and the sample
size n do not have much e¤ect on the size properties of any of the tests. For each type of test,
the form of the sandwich variance estimator has a small e¤ect on the size accuracy.

7.3 Size and power under data-driven choice of K

Table 1 reports the size of each of the eight tests we considered in Sections 7.1 and 7.2. We use
the data-driven K̂opt given in (24), but we make two adjustments. First, we use the truncated
LS estimator

~�e =
�̂e
j�̂ej

0:97 +

�
�̂e �

�̂e
j�̂ej

0:97

�
1 fj�̂ej � 0:97g

instead of the original estimator �̂e in computing K̂opt: Second, we truncate K̂opt to be between
2 and T=2, and we round it to the greatest even number less than K̂opt: Rounding is used to
speed up the computation. It has a minimal e¤ect on test performances and is not necessary
in practical implementation. � is chosen to be 1.2 when T = 100. It is clear from Table 1 that
the �xed-smoothing tests are more accurate than the standard normal tests in almost all cases,
especially when the AR parameter is positive. The only exceptions are the cases with a negative
AR parameter, in which case the �xed-smoothing tests tend to under-reject. Overall, the �xed-
smoothing tests have quite accurate size. Among the �xed-smoothing tests, the standard t test
appears to be more accurate than the corresponding nonstandard test.

Figure 7 presents the size-adjusted power of the eight tests considered. Note that the tests
with the same test statistic have identical size-adjusted power. In our setting, given the same
basis vectors and the form of the asymptotic variance estimator, the �xed-smoothing test and
the normal test have the same size-adjusted power. Thus it su¢ ces to consider four tests that
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re�ect the two type of basis vectors and the two form of the variance estimator. Figure 7 reports
the case with a linear trend but no cross-sectional dependence (i.e., � (t) = (1; t)0 and � = 0):
The �gures for the other cases are similar. The basic observation is that all four tests have more
or less the same size-adjusted power function. In other words, the basis transformation and the
form of the asymptotic variance estimator have almost no e¤ect on the size-adjusted power. This,
coupled with its size accuracy and convenience to use, suggests that we use the t tests in empirical
applications.

8 Conclusion

This paper develops two asymptotically valid t tests in the DD regressions when T is relatively
large. These t tests employ standard t critical values and are thus easy to use. They are more
accurate than the normal tests but have the same power properties. The cross-sectional sample
size n can be �xed or grow with T: Simulations show that the proposed t tests work well even
when n is comparable to T: Given these attractive properties, we recommend using the t tests in
place of the normal tests in empirical applications.

There are a few possible extensions. First, when the underlying process is persistent, we can
use prewhitening to reduce the size distortion of the proposed t tests. This extension is straight-
forward. Second, while the paper considers only panel data, it is easy to see that the proposed
procedures would work for repeated cross-section data as well. In that case, the only change
needed would be to switch the order of detrending and averaging. Instead of �rst detrending
each time series and then taking an average within each group, as we do in this paper, for re-
peated cross-section data we would �rst take an average within each group and then detrend the
averaged data for each group. Finally, we consider the case where there is only one policy change.
We do not imagine that there would be much di¢ culty in allowing for multiple policy changes,
with possibly heterogeneous e¤ects, but we leave the details to future research.
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Figure 2: Empirical null rejection probabilities of 5% two-sided tests with the general sandwich
variance estimator when n = 64; T = 100; � = 0, and there is no time trend
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Figure 3: Empirical null rejection probabilities of 5% two-sided tests with the general sandwich
variance estimator when n = 64; T = 100; � = 0:5, and there is no time trend
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Figure 4: Empirical null rejection probabilities of 5% two-sided tests with the general sandwich
variance estimator when n = 64; T = 100; � = 0, and there are linear time trends
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Figure 5: Empirical null rejection probabilities of 5% two-sided tests with the general sandwich
variance estimator when n = 64; T = 100; � = 0:5, and there are linear time trends
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Figure 6: Empirical null rejection probabilities of 5% two-sided tests with the collapsed sandwich
variance estimator when n = 64; T = 100; � = 0, and there are linear time trends
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Table 1: Empirical size of di¤erent 5% tests in DD regression with sample size n = 64; T = 100;
and data-driven choice of K

General Sandwich Variance Collapsed Sandwich Variance
Transformed Bases Fourier Bases Transformed Bases Fourier Bases
t1 N1 T11 N1 t2 N2 T2;1 N2

� = 1; � = 0
� = �0:6 0.034 0.053 0.044 0.059 0.034 0.051 0.047 0.062
� = �0:3 0.036 0.056 0.046 0.060 0.037 0.056 0.046 0.062
� = 0 0.047 0.061 0.053 0.064 0.047 0.060 0.054 0.064
� = 0:3 0.054 0.081 0.066 0.085 0.055 0.080 0.065 0.083
� = 0:6 0.045 0.102 0.067 0.115 0.046 0.102 0.064 0.113
� = 0:9 0.042 0.255 0.107 0.344 0.036 0.226 0.092 0.302

�(t) = 1; � = 0:5
� = �0:6 0.034 0.052 0.044 0.058 0.033 0.054 0.046 0.064
� = �0:3 0.037 0.054 0.045 0.058 0.036 0.056 0.045 0.061
� = 0 0.045 0.058 0.051 0.061 0.045 0.058 0.051 0.061
� = 0:3 0.053 0.079 0.064 0.084 0.053 0.079 0.062 0.083
� = 0:6 0.045 0.105 0.067 0.119 0.042 0.103 0.063 0.114
� = 0:9 0.040 0.262 0.110 0.347 0.035 0.229 0.091 0.305

�(t) = (1; t)0 ; � = 0
� = �0:6 0.042 0.063 0.045 0.076 0.034 0.054 0.057 0.078
� = �0:3 0.041 0.058 0.047 0.073 0.036 0.054 0.048 0.067
� = 0 0.047 0.059 0.051 0.072 0.044 0.056 0.050 0.062
� = 0:3 0.053 0.076 0.060 0.098 0.049 0.072 0.057 0.079
� = 0:6 0.044 0.099 0.053 0.155 0.035 0.087 0.052 0.111
� = 0:9 0.029 0.183 0.047 0.297 0.020 0.131 0.056 0.215

� = (1; t)0 ; � = 0:5
� = �0:6 0.049 0.072 0.051 0.083 0.040 0.063 0.064 0.083
� = �0:3 0.044 0.066 0.051 0.082 0.040 0.060 0.052 0.072
� = 0 0.049 0.065 0.056 0.080 0.046 0.061 0.052 0.068
� = 0:3 0.057 0.081 0.069 0.109 0.054 0.077 0.062 0.085
� = 0:6 0.048 0.106 0.059 0.162 0.041 0.092 0.059 0.115
� = 0:9 0.034 0.195 0.055 0.310 0.023 0.138 0.058 0.223

Note: The t tests, denoted by �t�, are based on t critical values. The normal test, denoted by
�N�, are based on standard normal critical values. The nonstandard tests, denoted by �T �, are
based on simulated nonstandard critical values.
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Figure 7: Size-adjusted power of the tests with di¤erent variance estimators and basis functions
for n = 64, T = 100 in the presence of linear trends but no cross sectional dependence.
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9 Appendix of Proofs

Proof of Lemma 3.1. Part (a). We have
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where the last line follows from some simple calculations.
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Proof of Lemma 3.2. In view of Lemma 3.1, we have
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as desired.

We will need the following lemma to prove Lemma 3.3.
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Proof of Lemma 9.1. De�ne S (0) = 0: Recalling the de�nition of S (r) in 5, we have
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Under the piecewise monotonicity condition in Assumption 3.1 , for some �nite � we can partition
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where the op (1) term in the �rst inequality re�ects the case when t and t+ 1 belong to di¤erent
partitions and �(�)j�takes �+�or ���depending on whether �k (t=T ) is increasing or decreasing
on the interval [IjL; IjU ]: As a result,
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Proof of Lemma 3.3. (a) Using Lemma 9.1, we have
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Note that
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Using Assumption 3.5, we have

1p
T

TX
t=1

�
�k

�
t

T

�
Post�t

��  1p
n

nX
i=1

T̂ reati � �it

!

!d �

Z 1

0

(
�k (r)H� (r)�

�Z 1

0
�k (s)H� (s) � (s)

0
� �Z 1

0
� (s) � (s)0 ds

��1
� (r)

)
dB (r) :

Combining this with (29) and Lemma 3.2 yields
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It then follows that
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This completes the proof of Lemma 3.3.

Proof of Theorem 3.1. Using Lemmas 3.2 and 3.3, we immediately have

T =

p
nT
�
�̂1 � �10

�
p
V̂R

!d 1

� (1� �)

R 1
0 H� (r) dB (r)R 1
0 H

2
� (r) dr

� (1� �)
R 1
0 H

2
� (s) ds�

1
K

PK
k=1

hR 1
0 �

H
k (r) dB (r)

i2�1=2
=

R 1
0 H� (r) dB (r)�

1
K

PK
k=1

hR 1
0 �

H
k (r) dB (r)

i2�1=2 := T1:

Proof of Theorem 5.1. (a) We have

�̂k =
1p
T

TX
t=1

�k

�
t

T

�
1p
n

nX
i=1

T̂ reati � �̂�it

=
1p
T

TX
t=1

�k

�
t

T

�
1p
n

nX
i=1

T̂ reati � ��it

� 1p
T

TX
t=1

�k

�
t

T

�
1p
n

nX
i=1

T̂ reati �
 
T̂ reati � Post�t

~Z�it

!0 �
�̂ � �0

�
: (30)

Let �
�k

�
t

T

���
= �k

�
t

T

�
�
"
1

T

TX
s=1

�k

� s
T

�
� �D (s)0

#"
1

T

TX
s=1

�D (s) �D (s)
0
#�1

�D (t) :

Then the �rst term in (30) satis�es
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The second term in (30) satis�es
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To obtain an upper bound for I2, we have, using Assumption 3.3:
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uniformly in r. Combining this with a proof similar to that of Lemma 9.1, we have
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Combining this with (31) yields
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Part (a) follows immediately.
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To prove Theorem 6.1, we need to �rst prove the following lemma, which establishes the asymp-
totic bias and variance of �̂2:
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where CH is de�ned in (16);
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The above representation is in the same format as what we would obtain in the case of kernel
LRV estimation.
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&!0+

1� !k (&)
&

.

Denote _�k (s) = d�k (s) =ds: Noting that

��k (s� &) = �k (s� &)� ck1 (s� & � �)

= �k (s)� _�k (s) & � ck1 (s � �) + ck1 f� � s < � + &g+ o (&)
= ��k (s)� [ _�k (s) & � ck1 fs 2 [�; � + &)g] + o (&) ;
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as & ! 0+, we have

!
(1)
k (0) = lim

&!0+

1� 1
1�j&j

R min(1+&;1)
max(0;&) ��k (s) �

�
k (s� &) ds

&

= lim
&!0+

1� & �
R 1
& �

�
k (s) �

�
k (s� &) ds

&

= lim
&!0+

1� & �
R 1
& [�

�
k (s)]

2 ds

&
+ lim
&!0+

1

&

Z 1

&
��k (s) [ _�k (s) & � ck1 fs 2 [�; � + &)g] ds

= �1 + ��k (0)
2 + lim

&!0+

1

&

Z 1

&
��k (s) [ _�k (s) & � ck1 fs 2 [�; � + &)g] ds;

where

lim
&!0+

1

&

Z 1

&
��k (s) [ _�k (s) & � ck1 fs 2 [�; � + &)g] ds

= lim
&!0+

R 1
0 �

�
k (s) [ _�k (s) & � ck1 fs 2 [�; � + &)g] ds

&

� lim
&!0+

R &
0 �

�
k (s) [ _�k (s) & � ck1 fs 2 [�; � + &)g] ds

&

=

Z 1

0
��k (s) _�k (s) ds� ck��k (�) :

Therefore,

!
(1)
k (0) = �1 + ��k (0)

2 +

Z 1

0
[�k (s)� ck1 (s � �)] _�k (s) ds� ck��k (�)

= �1 + ��k (0)
2 +

1

2

h
�k (1)

2 � �k (0)2
i
� ck (�k (1)� �k (�))� ck��k (�)

= �1 + ��k (0)
2 +

1

2

hn
[��k (1) + ck]

2 � ��k (0)
2
oi
� ck [��k (1)� ��k (�)]� ck��k (�)

= �1 + ��k (0)
2 +

1

2

h
��k (1)

2 � ��k (0)
2
i
+
1

2
c2k

= �1 + 1
2

h
��k (1)

2 +��k (0)
2
i
+
1

2
c2k:

So,

!(1)(0) =
1

2
lim
K!1

1

K2

KX
k=1

h
��k (1)

2 +��k (0)
2
i
+
1

2
lim
K!1

1

K2

KX
k=1

c2k:

Using ��k (r) =
PK
j=1�

H
j (r)R

(j;k)
1 ; we have

KX
k=1

��k (0)
2 =

KX
k=1

KX
j=1

�Hj (0)R
(j;k)
1

KX
i=1

�Hi (0)R
(i;k)
1

=
KX
i=1

KX
j=1

�Hi (0)�
H
j (0)

KX
k=1

R(i;k)1 R(j;k)1

= �HF (0)
0
�Z 1

0
�HF (r) �

H
F (r)

0 dr

��1
�HF (0) :
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Similarly,
KX
k=1

��k (1)
2 = �HF (1)

0
�Z 1

0
�HF (r) �

H
F (r)

0 dr

��1
�HF (1) :

Using (36) and Assumption 6.1 (d), we have

KX
k=1

��k (0)
2 = O

�

�HF (0)

2� = O

 
KX
k=1

h
�k (0)� 1 (0 � �) ~ck � � (0)0 ~dk

i2!

= O

 
KX
k=1

h
�k (0)� � (0)0 ~dk

i2!
= O

 
KX
k=1

�k (0)
2

!
+O

 
KX
k=1




 ~dk


2
!

= O
�
k�F (0)k2

�
+O

�Z 1

0
k�F (r)k2 dr

�
= O (K) :

Similarly,
KX
k=1

��k (1)
2 = O

�

�HF (1)

2� = O (K) :

Therefore,

!(1)(0) =
1

2
lim
K!1

1

K2

KX
k=1

c2k � O (1) � lim
K!1

1

K2

KX
k=1

~c2k

= O (1) � lim
K!1

1

K2

Z 1

0
k�F (r)k2 dr = 0:

We proceed to evaluate !(2)(0): Letting & = 1= (KS) ; we have

1� !k
�
1
KS

��
1
KS

�2 =
1� !k (&)

&2
=
1

&2

�
1� 1

1� &

Z 1

&
��k (s) �

�
k (s� &) ds

�
=

1

&2 (1� &)

�
1� & �

Z 1

&
��k (s) �

�
k (s� &) ds

�
:

Using the assumption that �k (�) is twice continuously di¤erentiable, as & ! 0+ we have

��k (s� &) = �k (s� &)� ck1 (s� & � �)

= �k (s)� _�k (s) & +
1

2
��k (s) &

2 � ck1 (s � �)+ck1 f� � s < � + &g+ o
�
&2
�

= ��k (s)� _�k (s) & +
1

2
��k (s) &

2 + ck1 fs 2 [�; � + &)g+ o
�
&2
�
;

where ��k (s) = d2�k (s) =ds
2: So,

1

&2 (1� &)

�
1� & �

Z 1

&
��k (s) �

�
k (s� &) ds

�
=
1

&2

�
1� & �

Z 1

&
[��k (s)]

2 ds+

Z 1

&
��k (s) _�k (s) &ds�ck

Z 1

0
��k (s) 1 fs 2 [�; � + &)g ds

�
(1 + o (&))

�
Z 1

&
��k (s)

1

2
��k (s) ds (1 + o (&)) + o (1) :
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In the proof of !(1)(0) = 0, we have e¤ectively shown that

1

K

KX
k=1

1� & �
R 1
& [�

�
k (s)]

2 ds+
R 1
& �

�
k (s) _�k (s) &ds�ck

R 1
0 �

�
k (s) 1 fs 2 [�; � + &)g ds

&
= O(1);

and so

1

K3

KX
k=1

1� & �
R 1
& [�

�
k (s)]

2 ds+
R 1
& �

�
k (s) _�k (s) &ds�ck

R 1
0 �

�
k (s) 1 fs 2 [�; � + &)g ds

&2

= O

�
1

K2&

�
= O

�
KS

K2

�
= O

�
S

K

�
= O

�
T

K2

�
= o (1) ;

where the last equality follows from the rate condition in the lemma. As a consequence, we have

!(2)(0) = �1
2
lim
K!1

1

K3

KX
k=1

Z 1

0
��k (s) ��k (s) ds

= �1
2
lim
K!1

1

K3

KX
k=1

Z 1

0
[�k (s)� ck1 (s � �)] ��k (s) ds

= �1
2
lim
K!1

1

K3

KX
k=1

Z 1

0
�k (s) ��k (s) ds+

1

2
lim
K!1

1

K3

KX
k=1

ck [ _�k (1)� _�k (�)] :

Using (34), (35), and Assumption 6.1(d), we have�����
KX
k=1

ck [ _�k (1)� _�k (�)]

����� �
 

KX
k=1

c2k

!1=2 KX
k=1

[ _�k (1)� _�k (�)]
2

!1=2

= O(
p
K)

 
KX
k=1

[ _�k (1)� _�k (�)]
2

!1=2
;

and by the same argument as in (34) we have

KX
k=1

[ _�k (1)� _�k (�)]
2 � 2

KX
k=1

8<:
24 KX
j=1

h
_�j (1)� _�j (�)

i
R(j;k)1

352 + �[ _� (1)� _� (�)]0 dk
	29=;

� 2
KX
k=1

24 KX
j=1

h
_�j (1)� _�j (�)

i
R(j;k)1

352 +O KX
k=1

kdkk2
!

= O (1)

0@ KX
j=1

h
_�j (1)� _�j (�)

i21A+O KX
k=1




 ~dk


2
!

= O
�
K3
�
+O (K) = O

�
K3
�
;

where we have used (36). The above bounds imply that
���PK

k=1 ck [ _�k (1)� _�k (�)]
��� = O

�
K2
�
:

Hence

lim
K!1

1

K3

KX
k=1

ck [ _�k (1)� _�k (�)] = 0 and !
(2)(0) = �1

2
lim
K!1

1

K3

KX
k=1

Z 1

0
�k (s) ��k (s) ds:
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It now su¢ ces to compute the above limit. We haveZ 1

0
�k (s) ��k (s) ds =

Z 1

0
�k (s) d _�k (s) = �k (s) _�k (s) j10 �

Z 1

0
[ _�k (s)]

2 ds

= �k (1) _�k (1)� �k (0) _�k (0)�
Z 1

0
[ _�k (s)]

2 ds:

Under Assumption 6.1(d), we have�����
KX
k=1

�k (i) _�k (i)

�����
=

������
KX
k=1

240@ KX
j1=1

�j1 (i)R
(j1;k)
1 � � (i)0 dk

1A0@ KX
j2=1

_�j2 (i)R
(j2;k)
1 � _� (i)0 dk

1A35������
�

������
KX
j2=1

KX
j1=1

�j1 (i)
_�j2 (i)

KX
k=1

R(j1;k)1 R(j2;k)1

������+
�����
KX
k=1

d0k� (i) _� (i)
0 dk

�����
+

������
KX
k=1

KX
j1=1

KX
j2=1

�j1 (i) _� (i)
0 ~dj2R

(j1;k)
1 R(j2;k)1

������+
������
KX
j1=1

KX
j2=1

� (i)0 ~dj1 _�j2 (i)
KX
k=1

R(j1;k)1 R(j2;k)1

������
� k�F (i)k




 _�F (i)


+O KX
k=1




 ~dk


2
!
+
�
k�F (i)k+




 _�F (i)


� KX
k=1




 ~dk


2
!1=2

= O
�
K2
�
+O (K) + k�F (i)kO(

p
K) +




 _�F (i)


O(pK) = O
�
K2
�
:

It then follows that for ~dF = ( ~d1; :::; ~dK)0 we have

!(2)(0) =
1

2
lim
K!1

1

K3

KX
k=1

Z 1

0
[ _�k (s)]

2 ds

=
1

2
lim
K!1

1

K3

KX
k=1

Z 1

0

24 KX
j=1

_�j (s)R
(j;k)
1 � _� (s)0 dk

352 ds
=
1

2
lim
K!1

1

K3

KX
k=1

Z 1

0

24 KX
j=1

_�j (s)R
(j;k)
1

352 ds+ 1
2
lim
K!1

1

K3

KX
k=1

d0k

�Z 1

0
_� (s) _� (s)0 ds

�
dk

� lim
K!1

1

K3

KX
j1=1

KX
j2=1

�Z 1

0
d0j1 _� (s)

_�j2 (s) ds

� KX
k=1

R(j1;k)1 R(j2;k)1 :

But
1

2
lim
K!1

1

K3

KX
k=1

d0k

�Z 1

0
_� (s) _� (s)0 ds

�
dk = 0;
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lim
K!1

1

K3

KX
j1=1

KX
j2=1

�Z 1

0

~d0j1 _� (s)
_�j2 (s) ds

� KX
k=1

R(j1;k)1 R(j2;k)1

= lim
K!1

1

K3

Z 1

0

_�F (s)
0
�Z 1

0
�HF (s) �

H
F (s) ds

��1 h
~dF _� (s)

i
ds = 0;

and so

!(2)(0) =
1

2
lim
K!1

1

K3

KX
j1=1

KX
j2=1

Z 1

0

_�j1 (s)
_�j2 (s) ds

1X
k=1

R(j1;k)1 R(j2;k)1

=
1

2
lim
K!1

1

K3

Z 1

0

_�F (s)
0
�Z 1

0
�HF (s)

�
�HF (s)

�0
ds

��1
_�F (s) ds:

Combining the above results, we can conclude that

E(�̂2 � �2) = �
�
K

T

�2
!(2)(0)

1X
p=�1

jpj2 �2e;p + o
�
K2

T 2

�
+O

�
1

T

�
; (37)

as desired.

Proposition 9.1 Suppose we use the Fourier basis functions �2j�1(s) =
p
2 cos (2�js) and

�2j(s) =
p
2 sin (2�js) for j = 1; :::;K=2 and � (r) is a vector of polynomial trend functions.

Then !(2)(0) = �2=6.

Proof of Proposition 9.1. Letting m (r) :=
�
1 (r � �) ; � (r)0

�0
, we have

�Hk (r) = �k (r)�m (r)
0 #k;

where

#k =

�Z 1

0
m (r)m (r)0 dr

��1 �Z 1

0
m (r) �k (r) dr

�
:

Some simple calculations show thatZ 1

0
�Hk (r) �

H
j (r) dr

=

Z 1

0

�
�k (r)�m (r)0 #k

� �
�j (r)�m (r)0 #j

�
= 1 fk = jg � #0j

Z 1

0
�k (r)m (r) dr � #0k

Z 1

0
�j (r)m (r) dr + #

0
k

�Z 1

0
m (r)m (r)0 dr

�
#j

= 1 fk = jg � #0j
�Z 1

0
m (r)m (r)0 dr

�
#k

= 1 fk = jg � ~#0j ~#k;

where

~#k =

�Z 1

0
m (r)m (r)0 dr

�1=2
#k =

�Z 1

0
m (r)m (r)0 dr

��1=2 �Z 1

0
m (r) �k (r) dr

�
:
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Next, we evaluate
R 1
0 m (r) �k (r) dr: The absolute value of the �rst element is of the form����Z 1

�

p
2 cos (2�kr) dr

���� = p2 ����sin (2�k�)2�k

���� � C

k
or�Z 1

�

p
2 sin (2�kr) dr

�
=
p
2

����1� cos (2�k�)2�k

���� � C

k
:

The absolute value of each of the other elements is of the form����Z 1

0
� (r)

�p
2 cos 2�kr

�
dr

���� = p
2

2�k

����Z 1

0
� (r) d (sin 2�kr)

����
=

p
2

2�k

����Z 1

0
sin (2�kr) _� (r) dr

���� � C

k

or ����Z 1

0
� (r)

�p
2 sin 2�kr

�
dr

���� = p
2

2�k

����Z 1

0
� (r) d (cos 2�kr)

����
=

p
2

2�k

����� (1)� � (0)� Z 1

0
cos (2�kr) _� (r) dr

���� � C

k
:

In the above, the absolute value and inequality should be understood elementwise. Therefore,�����Z 1

0
m (r) �k (r) dr

����� � C

k
(38)

for some constant C:
Let ~# = (~#1; :::; ~#K)0 2 RK�(d�+1): Then�Z 1

0
�HF (s)

�
�HF (s)

�0
ds

��1
=
h
IK � ~#~#0

i�1
= IK + ~#(Id�+1 � ~#0 ~#)�1 ~#0 := IK + ~#�(~#

�
)0;

where ~#� = ~#(Id�+1 � ~#0 ~#)�1=2: In view of (38), we have (~#�k)
0 ~#�k � C=k2:

It then follows that

!(2)(0) =
1

2
lim
K!1

1

K3
tr

(�Z 1

0
�HF (s)

�
�HF (s)

�0
ds

��1 Z 1

0

_�F (s) _�F (s)
0 ds

)

=
1

2
lim
K!1

1

K3
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8>>>>>><>>>>>>:
h
IK + ~#�(~#

�
)0
i
0BBBBBB@
(2�)2 0 0 ::: 0

0 (2�)2 0 0

::: :::
. . . . . . :::

0 0
. . . [2� (K=2)]2 0

0 ::: ::: 0 [2� (K=2)]2

1CCCCCCA

9>>>>>>=>>>>>>;
= lim
K!1

1

K3

K=2X
j=1

(2�j)2 +
1

2
lim
K!1

1

K3

K=2X
j=1

h
(~#�2j�1)

0 ~#�2j�1 + (~#
�
2j)

0 ~#�2j

i
(2�j)2

= lim
K!1

1

K3

K=2X
j=1

(2�j)2 =
1

6
�2:
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Proof of Theorem 6.1 . Part (a). We �rst establish a moment bound for �̂2=�2GLS: Under
Assumption 6.1(a), we have

p
nTE[(�̂1;GLS � �̂1;OLS)]2 = O (1=T ) ; and so

�2GLS = �
2 [� (1� �)]�2

(
1

T

TX
t=1

[Post�t ]
2

)�1
+O

�
1

T

�
: (39)

Using Lemma 9.2, we have
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�
�̂2

�2GLS
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�
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"
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�
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�
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T

��
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=
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�
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T 2
B
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�
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�
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�
1

T

�
=
K2

T 2
�B + o

�
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T 2

�
+O

�
1

T

�
and

E

�
�̂2

�2GLS
� 1
�2
= E

"
�̂2

�2

�
1 +O

�
1

T

��
� 1
#2

=
2

K
(1 + o(1)) +O

�
1

T

�
:

Then, by applying (39) and (37), we have

P

 �����
p
nT (�̂1;OLS � �10)

�̂

����� � z

!
= EG

�
z2�̂2

�2GLS

�
+O

�
1

T

�
;

= EG(z2) +G0
�
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�
E

�
�̂2
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�
z2 +

1

2
G00(z2)E

�
�̂2

�2GLS
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z4

+ o

�
1

K

�
+ o

�
K2

T 2

�
+O

�
1

T

�
:

= G(z2) +
K2

T 2
�BG0

�
z2
�
z2 +

1

K
G00(z2)z4 + o

�
1

K

�
+ o

�
K2

T 2

�
+O

�
1

T

�
:

Using this, we have

P

 �����
p
nT (�̂1;OLS � �10)

�̂

����� > t
�=2
K

!

= 1�G((t�=2K )2)� K2 �B

T 2
G0((t

�=2
K )2)(t

�=2
K )2

� 1
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�=2
K )4 + o

�
1

K

�
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�
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�
+O

�
1

T

�
: (40)

On the other hand, we have

(t
�=2
K )2 = ��1 �

1

K

G00(��1 )

G0(��1 )
(��1 )

2 + o

�
1

K

�
: (41)
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See equation (14) in Sun (2011). Combining (40) and (41) yields

P

 �����
p
nT (�̂1;OLS � �10)
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����� > t
�=2
K

!
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1
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�
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= �� K2 �B
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�
:

Part (b). Under H1(�2); we have
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p
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�
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�
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�
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:

Therefore, we have
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K
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�=2
K )2)(t

�=2
K )4
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�
1

K

�
+ o

�
K2

T 2

�
+O

�
1

T

�
= G�2(�

�
1 ) +

K2 �B

T 2
G0�2(�

�
1 )�

�
1 +

�2

2K
G03;�2(�

�
1 )�

�
1 + o(

1

K
) + o

�
K2

T 2

�
+O

�
1
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�
;

where we have used the result that

G00�2
�
��p
�
� G00 (��1 )

G0 (��1 )
G0�2

�
��p
�
=

�2

2��1
G03;�2 (�

�
1 ) ;

which follows from simple calculations. For details of the calculation, see the proof of Theorem
5 in Sun (2011).
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