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Abstract

How do extreme heat shocks affect immediate hiring, layoff, and job reallocation over the
medium run for manufacturing workers? Despite rich evidence on the contemporaneous labor-
productivity impact of heat shocks, little is known about what happens to employment over
time. In a large-developing-country context, this paper provides worker-level evidence on
different labor-market adjustment margins with respect to extreme heat shocks and the un-
derlying transmission mechanism. First, exploiting rich employer-employee matched data
(RAIS), I find that quarterly heat shocks lead to significant increases in the propensity
of manufacturing-worker layoff. To separately identify the importance of the direct labor-
productivity channel among many potential transmission mechanisms, I combine detailed
municipality-level agricultural census and crop calendars to isolate heat shocks during the
local nongrowing seasons. One extra day with daily mean temperature beyond 31◦C during
the nongrowing seasons increases the probability of layoff by 0.8 percentage points, equiva-
lent to a 11% increase in the baseline layoff propensity. Second, consistent with the direct
labor productivity channel, the impact of heat shocks is stronger for workers engaging in
more routine manual-intensive tasks. Third, tracking individuals across job spells, I pro-
vide evidence on worker job reallocation. There is limited intersectoral and interregional
reallocation for manufacturing workers. A significant proportion of manufacturing workers
who experienced heat-related layoffs fail to find any formal employment within 36 months.
These results show that heat shocks lead to persistent negative employment effect in the
formal manufacturing labor market due to failure in job transitions over the medium run.
Transmission-mechanism insights also point to efficient labor-force adaptation strategies and
inform a more comprehensive cost assessment of climate-change damages.
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1 Introduction

Many developing countries located in tropical and subtropical zones are vulnerable to climate

change due to limited adaptation capacity and high baseline temperatures. Climate change is

associated with an expected increase in the frequency of extreme heat days. These drastic environ-

mental shocks could potentially bring about significant changes for the workforce in developing

economies. Despite rich micro-level evidence on the contemporaneous labor-productivity impact

of extreme heat (Adhvaryu et al., 2016; Hancock et al., 2007), little work has been done to exam-

ine the worker-level employment implications of temperature shocks over time. Answers to these

questions provide a missing perspective on how climate change affects worker welfare. Assessing

the costs of climate change within developing country institutions is also crucial for calibrating

country-specific calculation for the social cost of carbon.

In this paper, I provide worker-level evidence on different labor-market adjustment margins

with respect to extreme heat shocks and the underlying transmission mechanism. First, using

employer–employee-matched data, I find that heat shocks lead to a significant increase in the

propensity of immediate manufacturing layoff. I further isolate the direct labor-productivity chan-

nel by focusing on heat shocks during the local nongrowing seasons, exploiting rich municipality-

level agricultural census and crop calendars. Second, I examine medium-run adjustment mar-

gins. Tracking workers across employment spells, I find limited intersectoral and interregional

worker reallocation. A significant proportion of manufacturing workers fail to reallocate to an-

other formal-sector job within 36 months. Third, heat shocks during the nongrowing seasons

have more pronounced impact on workers in more routine manual-task-intensive occupations.

Heat leads to worker fatigue, lower task performance, and poorer decision making.1 Given the

abundant evidence on the direct labor-productivity impact of heat shocks, one natural question

is how much it contributes to economy-wide labor-market adjustment. Contract theory suggests

firms cannot fully insure workers against random shocks if efforts are not fully observed (Hol-

strom and Milgrom, 1987). The magnitude of impact then is an empirical question, depending

1 Using microdata from assembly lines, Somananthan et al. (2014) and Adhvaryu et al. (2016) show that daily
manufacturing labor productivity significantly decreases with temperature. See also Zander et al. (2015), Graff
Zivin and Neidell (2014), Niemela et al. (2002), Seppanen et al. (2006), Kjellstrom et al. (2009), and Park (2017).
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on the degree of firm-level adaptation and such specific labor-market features as de facto fir-

ing costs, downward wage rigidity and interaction with the informal economy. The presence

(or absence) of a direct labor-productivity channel also has important implications for climate-

change-adaptation policies.2 To separately identify the direct labor-productivity channel among

many potential mechanisms through which weather shocks could affect industrial workers,3 I

exploit unique features of Brazilian employer–employee linked administrative data (RAIS) and

rich municipality-level agricultural census. With information on individual workers’ month of

accession and separation from his/her employer, I am able to match temperature shocks with

individual employment outcomes on a quarterly basis to isolate heat shocks during local non-

growing seasons. The underlying assumption is that weather shocks during nongrowing seasons

do not operate through agricultural channels (Burgess et al., 2018; Carleton, 2017).

Assessing the labor-market impact of heat shocks from the perspective of worker welfare also

requires data on gross instead of net employment flows. Aggregate employment at the firm level

provided in industrial surveys only gives net flows and could not inform us of worker displacement

if it is accompanied by worker inflow. This issue is particularly important given the multiple,

and potentially opposing, channels through which extreme heat could affect the industrial labor

market. For example, if temperature increase causes agricultural outmigration into manufactur-

ing due to lower crop yields, we may observe an increase in net firm-level employment. In reality,

this increase could be accompanied by agricultural workers substituting existing manufacturing

workers, and/or existing workers being laid off due to lower manufacturing labor productivity.

Observing worker-level job accession and separation allows me to directly address incumbent

worker welfare, whereas the previous literature mostly focused on firm welfare (Colmer, 2017;

Santangelo, 2015)

For developing countries, labor-market transitional costs could interact with environmental shocks

to further exacerbate the cost of climate change. In particular, if significant cost exists in job

transitions, only accounting for the immediate adjustment margins would lead to an underesti-

2For example, installing air conditioners in factories versus adopting heat-resistant crops.
3 Direct labor-productivity channel: Adhvaryu et al. (2016), Somanathan et al. (2014), Heal and Park (2014);

interindustry linkages: input–output linkages: Acemoglu et al. (2012), agricultural local-demand channel: San-
tangelo (2015), Henderson et al. (2017), agricultural labor reallocation: Colmer (2016), agricultural income and
nutrition channel: Garg et al. (2017)
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mation of total worker welfare losses. To understand medium-run adjustment margins, I exploit

the employer–employee linkage feature of RAIS and provide evidence on worker reallocation.

Tracking each worker across job spells, I decompose postlayoff transition outcomes into seven

collectively exhaustive, mutually exclusive channels by the industry and region of the worker’s

next job. This helps us better understand the medium-run labor adjustment margins through an

examination of worker reallocation between sectors and across municipalities.

First, I find quarterly heat shocks lead to significant manufacturing-labor-market churn. Isolating

the direct labor-productivity channel, I show that extreme heat days4 during nongrowing seasons

lead to a higher propensity for manufacturing layoff but has no significant impact on manufac-

turing hiring. In terms of magnitude, swapping a day with daily mean temperature below 17◦C

for one with daily mean temperature beyond 31◦C during the nongrowing seasons increases the

probability of layoff by 0.8 percentage points, equivalent to a 11% increase in the baseline layoff

propensity. These results are robust to including a rich set of fixed effects controlling for state-

and industry-specific seasonality, state and industry growth trends, time-invariant municipality

characteristics, and lagged weather shocks.

Second, in terms of medium-run adjustment margins and worker reallocation, I find limited in-

tersectoral and interregional reallocation for manufacturing workers and a significant failure rate

to reallocate. 59% of manufacturing workers find another job in the same industry either locally

or in a different municipality. However, 24.3% of all formal manufacturing workers laid off due to

heat shocks fail to find any formal sector job within 36 months. This suggests over the medium

run, environmental shocks interact with labor-market transitional costs to trigger prolonged un-

employment or switching to the informal economy.

Third, consistent with the direct labor-productivity channel, the impact of heat shocks is het-

erogeneous by occupational task intensity and by gender. Matching worker occupational codes

with measures from the Dictionary of Occupational Titles (DOT), I find that manufacturing

workers engaging in more routine-manual-intensive tasks are more likely to be laid off during the

nongrowing seasons, pointing to a potential source of distributional impact of climate change.

4Defined as daily mean temperatures above 31◦C.
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This paper provides a missing perspective on the aggregate employment implications of extreme

temperature shocks associated with climate change and establishes an underlying mechanism

using rich microdata. On the aggregate level, temperature shocks have been shown to negatively

affect GDP per capita, labor income, economic growth, and exports (Dell et al., 2012; Jones and

Olken, 2010; Park, 2017). Manufacturing output changes due to heat shocks are also observed

with firm-level evidence from China, India and Indonesia (Colmer, 2017; Deschenes et al., 2018;

Somanathan et al., 2014). On the micro-level, evidence from labs, call centers and selected factory

assembly lines points to a large negative labor-productivity impact of heat shocks (Adhvaryu et

al., 2016; Zander et al., 2015; Graff Zivin and Neidell, 2014; Niemela et al., 2002; Seppanen et

al., 2006; Kjellstrom et al., 2009). In contrast, we know surprisingly little about the employment

impact of extreme heat shocks, the associated worker displacement and welfare losses, and the

importance of the direct labor-productivity channel as a transmission mechanism. Findings in

this paper suggest the direct impact of thermal stress on manufacturing workers leads to signifi-

cantly higher layoff propensity. Identifying the worker-displacement effect is uniquely achieved by

examining administrative individual-level data, uncovering a previously ignored source of worker

welfare loss from climate change.

Second, this paper offers broader labor-market implications of environmental shocks through

various adjustment margins. In addition to the immediate employment effects, labor-reallocation

results suggest high worker adjustment costs to extreme heat shocks during worker–firm re-

matching. I provide first evidence that heat shocks lead to persist negative employment effect

in the formal manufacturing labor market due to failure in job transitions over the medium

run. To study worker reallocation, I follow empirical methodology recently used in the trade

literature to examine the regional labor-market consequence of tariff reductions (Dix-Carneiro

and Kovak, 2017a; Menezes-Filho and Muendler, 2011; Autor et al., 2014). Compared with more

permanent shocks from trade liberalization, I show that even less persistent temperature shocks

lead to significant failure to reallocate, contributing to prolonged individual-worker welfare losses.

Next, I begin by describing the data and presenting relevant empirical facts. Section 3 presents

the baseline empirical specification and net impact. Section 4 introduces my methodology to
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identify the direct labor-productivity channel and main results on transmission mechanisms.

Section 5 focuses on medium-run adjustment margins in job reallocation. Section 6 discusses

the heterogeneous impact. Section 7 offers further discussions and robustness checks. Section 8

concludes.

2 Data and Empirical Facts

2.1 Data

Worker-level data comes from the Brazilian administrative records Relação Anual de Informações

Sociais (RAIS), covering the years from 1990 to 2000. This employer–employee matched contract-

level data includes more than 90% of all formally employed workers in Brazil (Menezes-Filho and

Muendler, 2011). The records are created to provide information for the federal wage-supplement

program (Abono Salarial) and the employer-contribution program (FGTS).

RAIS provides data on worker-level contracts with the firm–plant registration number and the

worker ID. Since workers are identified by a unique ID number, which is fixed over time, I am able

to track each worker across employers. The finest geographic unit of identification is a Brazilian

municipality, which I use to match the administrative records with gridded weather variables. For

each worker, there is information on education, tenure, gender, monthly wage, occupation, and

month of accession into and separation from each contract. I also have plant-level information

on sector, ownership, and plant size.

To construct the worker sample, I take the list of all worker IDs ever to have appeared in RAIS,

draw a 10% random sample, and track the selected worker IDs through the years across multiple

job spells. In the case of multiple jobs, only the highest paying, last formal employment of the

quarter is kept for each worker (Menezes-Filho and Muendler, 2011). For layoffs, I examine job

spells conditional on the worker being employed at the beginning of the quarter. Cases of quit-

ting, transfers, retirement, and death are excluded from the analysis. Since we do not observe

the worker during unemployment, hiring is defined at the region–industry level.

One important caveat is that RAIS only covers formal sector employment, defined as working
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with a signed work card. Informal jobs are a significant portion of the Brazilian labor mar-

ket. According to the 1991 Demographic Census for workers aged 18–64, 28% of manufacturing

and 55% of nontradable sector employment is informal (Dix-Carneiro and Kovak, 2017a). Ad-

ditionally, 89% of agricultural employment is informal. As a robustness check for results on the

agricultural sector, I restrict analysis to sugarcane workers only, where workers are predominantly

formal and unionized. Comparing with the household survey PNAD, Davis (2017) documents

that roughly 60% of sugarcane employment is captured in RAIS. Layoffs are defined in this paper

as layoff from the formal sector, which means the worker can be either unemployed or employed

informally. Formal sector layoff is meaningful for individual welfare because workers need the

signed work card to claim employment-related benefits and labor protections.

Data on weather outcomes are from the ERA-Interim reanalysis archive. I obtain measures of

daily mean temperature, dew point temperature, and cumulative rainfall on a 0.125◦×0.125◦ grid.

Relative humidity is calculated from dry bulb and dew point temperature based on Lawrence

(2005). Weather variables are then linked to each municipality using GIS data from the Global

Administrative Borders.

Regional crop production data are from the Municipal Agricultural Production Survey (PAM),

maintained through the data portal (SIDRA) by the Brazilian Institute of Geography and Statis-

tics (IBGE). This survey provides the annual production value, area, and average yield of all

temporary and permanent crops in Brazil by municipality. I use the municipality crop specific

production value from the PAM to determine the main crop of each municipality. To identify

the nongrowing seasons of each municipality, I use the Brazilian crop calendars collected by the

USDA World Agricultural Outlook Board. These calendars provide regional crop-growing cycles

in Brazil by sowing, growing, and harvest stages and allow me to distinguish between growing

and nongrowing seasons of major crops in Brazil. Finally, for heterogeneity analysis, I use the

occupational-task intensity measures from the Dictionary of Occupational Titles constructed by

Autor, Levy, and Murnane (2003).5 An underlying assumption here is that the relative ranking

of occupational task intensity is preserved across U.S. and Brazilian occupations.

5Concordance from the US Census occupational codes to the ISCO-88, and to the Brazilian occupational
codes CBO are from Autor and Dorn (2013), the Center for Longitudinal Studies in UCL, and Muendler et al.
(2004).
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2.2 Empirical Facts

In this section, I first briefly review the literature on thermal stress and labor productivity. Next,

I show the raw distribution of daily average temperature during the sample period of analysis in

Brazil. Third, I present the spatial distribution of extreme heat shocks to illustrate from where

the temperature variations exploited in later sections come.

One focus of this paper is to identify the direct labor-productivity channel as a transmission

mechanism through which heat affects manufacturing employment. To put the extreme heat

shocks in Brazil into context, I briefly review key evidence on thermal stress and labor per-

formance. A large body of literature has documented a highly nonlinear relationship between

temperature and individual labor productivity. Recent evidence from selected Indian garment

factories documents 29.5◦C as the physiological threshold above which temperature strongly im-

pedes human functioning (Adhvaryu et al., 2016). Meta-analysis in ergonomics (Pilcher et al.,

2002; Hancock et al., 2007) summarizing multiple experimental studies reveals that task per-

formance losses start to occur with the Wetbulb Global Temperature (WBGT) equivalent of

28◦C, at 80% relative humidity and normal sea level air pressures. Sharp performance losses are

observed with the WBGT equivalent of 32◦C. On the aggregate level, Hsiang (2010) estimates

that economic production losses begin at 29◦C.

As an important emerging economy, Brazil spans several climate zones and provides rich regional

temperature variations. Figure 1 plots the probability density distribution of daily average tem-

perature of all municipalities in Brazil, from 1990 to 2000. The mean is 22.82◦C, with 3.43% of

the observations above 29◦C, and 0.24% of observations above 31◦C. Throughout this paper, I

define an extreme-heat day as having daily mean temperature above 31◦C. With climate change,

this graph is expected to develop a fatter right tail. Because of the nonlinear relationship be-

tween labor productivity and temperature, one expects to observe a strong impact of days in the

extreme-heat category.

Figure 2 plots the spatial distribution of daily mean temperature, averaged over the period from

1990 to 2000. Figure 3 illustrates the spatial distribution of extreme-heat days. For each mu-

nicipality, I aggregate the number of days with daily mean temperature above 31◦C from 1990
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to 2000. The white regions did not experience an extreme-heat day during the sample period,

such as the Amazons. The colored municipalities had from 1 to 471 days of extreme heat. The

municipality in the 95th percentile experienced 46 days of extreme heat cumulatively during the

sample period. Since extreme-heat shocks display spatial clustering, I include municipality fixed

effects in all subsequent analysis to control for any region-specific time-invariant characteristics

that correlate with temperature.

Although extreme heat days are rare in Brazil during the period of my analysis (1990–2000),

climate projections indicate these days will drastically increase based on our current emission

trajectory (Sanford et al., 2014). Figure 4 plots the projected change (compared to the base-

line period 1986–2005) in annual extreme-heat days, defined as daily mean heat index above

35◦C, equivalent to daily mean temperature above 31◦C with relative humidity at 60%. Pre-

dictions are made assuming the Representative Concentration Pathway 8.5 scenario, which we

would surpass without sharp downward transitions. The underlying data comes from the Cou-

pled Model Intercomparison Project (CMIP5) used in the Intergovernmental Panel on Climate

Change (IPCC) fifth assessment report, and the World Bank Group’s Climate Knowledge Portal.

Figure 4 shows large regional disparity in predicted increase of extreme-heat days. For the period

2040–2059, the predicted change in annual extreme-heat days is 0.95 for a southern municipal-

ity like Sao Paulo, 69.75 days for a central municipality such as Palmas, and 34.5 days for a

northeastern municipality such as Teresina. Later in my analysis, I discuss how these differences

in predicted heat exposure could lead to large variations in regional manufacturing employment

outcomes.
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Figure 1: Distribution of daily average temperature

This figure plots the probability density distribution of daily mean temperature for all municipalities in Brazil,
from 1990 to 2000. Daily mean temperature (t2m) on the X-axis is measured in terms of degrees Celsius. The
two red vertical lines represent the 29◦C and 31◦C thresholds.

Figure 2: Spatial distribution of daily mean temperature from 1990 to 2000

This map plots the spatial distribution of daily mean temperature, averaged over the period from 1990 to 2000.
The finest geographic unit is a Brazilian municipality. Ranges in the legend are in terms of degrees Celsius.
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Figure 3: Spatial distribution of extreme heat shocks (daily mean temp > 31◦C)

This map illustrates the spatial distribution of cumulative extreme-heat days. For each municipality, “t2mBin8”
represents the total number of days with daily mean temperature above 31◦C from 1990 to 2000. The finest
geographic unit is a Brazilian municipality.
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Figure 4: Prediction of future extreme heat days: CMIP5, RCP8.5, access1_0

This chart shows the predicted change in annual count of extreme-heat days, defined as daily mean heat index
above 35◦C, relative to the reference period (1986–2005). These days represent extremely uncomfortable conditions
and are equivalent to daily mean temperature of 31◦C, at relative humidity 60%. The point estimates are given for
three randomly selected cities: Sao Paulo, Palmas. and Teresina, located in the south, central, and northeast regions
in Brazil. Projections are given by the Coupled Model Intercomparison Project (CMIP5) under the “access1_0”
model, assuming the Representative Concentration Pathway 8.5 (RCP 8.5) scenario. These data are available
through the World Bank Group’s Climate Knowledge Portal, and covers periods 2020–2039, 2040–2059, 2060–
2079, and 2080–2099.

3 Baseline: Immediate Impact

Do quarterly temperature shocks lead to changes in the propensity of manufacturing worker layoff

and hiring? Existing literature provides ample evidence on the labor-productivity impact of heat

shocks. Whether these productivity shocks cause changes in employment outcomes, however, is

largely unexplored. A rather complex array of institutional, firm- and worker-specific factors mat-

ter for the employment implications of heat-related productivity shocks. These include, but are

not limited to, the labor-market institutions on hiring and firing costs, the presence of nominal

wage rigidity, the degree of firm-level adaptation, heterogeneity in workers’ sensitivity to heat,

and firm managers’ attitudes towards ambiguity of quality signals (Ilut et al., 2018). Section 7
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of this paper provides suggestive evidence on how some of these factors matter in the Brazilian

context.

Other than the direct labor-productivity channel, there are multiple potential mechanisms through

which heat shocks could affect the manufacturing labor market. Given what we know about tem-

perature and crop yields (Lobell et al., 2011), heat shocks could influence manufacturing through

various interindustry linkages with agriculture, including agricultural outmigration, changes in

farmer income and local demand, and changes in raw material prices. Section 4 discusses this

issue in greater detail and addresses the identification challenge of transmission channels by iso-

lating heat shocks during the local nongrowing seasons. Before diving into the mechanisms, I

start with a baseline empirical specification and examine the net impact of heat shocks through

all combined channels.

3.1 Empirical Strategy

The baseline empirical framework is a fixed-effect model

Yijmt =
∑

βkTempbin
k
m,t + f(Rainm,t, Humiditym,t) + α1Xit

+ θqy + θyr + θqr + Φyj + Φqj + Φrj + τm + εijmt, (1)

where Yijmt is the binary outcome of worker layoff, for worker i, employed in industry j, residing

in municipality m, at time t. Allowing for nonlinear effects, Tempbinkm,t is the number of days in

a quarter with daily mean temperature within the specified range k.6 f(Rainm,t, Humiditym,t)

controls for the cumulative rainfall and relative humidity. Xit is a vector of worker and plant-level

controls including worker education, occupation categories, tenure, potential labor-force experi-

ence, plant size, and plant skill composition.

To causally identify the effect of heat shocks on worker layoff, a rich set of fixed effects are

included to control for confounders that could be correlated with temperature and to rule out

spurious relationships. First, since we are examining individual layoff decisions at the quarterly

frequency, it is crucial to include controls for seasonality which may correlate within-year employ-

6Tempbin1, where t < 17◦C, is omitted.
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ment cycles with temperature fluctuations. To control for state-specific employment seasonality,

I include Quarter × State fixed effects, and, for industry-specific seasonality, I include Industry

× Quarter fixed effects.

One may also imagine that a general warming trend in temperature might be correlated with

national business cycles during this period. I address this concern by including Quarter × Year

fixed effects. Further, warmer regions may have different institutions or other geographic fea-

tures that lead to different employment patterns. To control for any time-invariant municipal

characteristics, I include Municipality fixed effects. Finally, I include State × Year and Industry

× Year fixed effects to control for state and industry growth trends, and State × Industry fixed

effects for regional industrial patterns. This also means the temperature variations I exploit are

deviations from averages, instead of variations in raw temperature. Standard errors are clustered

at the mesoregion level to allow for serial and spatial correlation.

3.2 Results

We first examine the baseline immediate impact of heat shocks on individual layoff and hiring,

separately for manufacturing and agricultural workers. These results show that, after pooling

together all seasons and several potential mechanisms, temperature shocks significantly influence

individual labor-market outcomes.

We start with individual outcomes on layoff. Figure 5 illustrates that the probability of manufacturing-

worker layoff increases in a nonlinear manner as temperature increases.7 Specifically, this figure

plots the regression coefficients associated with each daily mean temperature bin, where the

<17◦C bin is the omitted category. The coefficient βk is interpreted as the estimated impact

of one additional day with daily mean temperature in temperature bin k on the propensity

for worker layoff, relative to the impact of a day with daily mean temperature less than 17◦C.

We start to see a significant effect with an additional day where daily mean temperature goes

beyond 27◦C. The point estimate indicates that swapping a day with daily mean temperature

below 17◦C for one with daily mean temperature beyond 31◦C increases the probability of layoff

7Coefficients are multiplied by 100.
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by 0.236 percentage point, or a 3% increase in the baseline propensity (7.867 percentage points).

Similarly for agricultural workers, in Figure 6, we see that all estimates associated with daily

mean temperature beyond 27◦C are positively significant at the 5% level.

Next, we look at changes in baseline hiring rates. Since we do not observe the worker if he or

she is unemployed, I construct region–industry hiring shares by aggregating the total number

of individual accessions in each quarter at the municipality–industry level, normalized by each

municipality’s population in 1999. The empirical framework follows Equation 1, except that we

do not include worker- or plant-level controls. Figure 7 shows that heat shocks lead to a lower

propensity for hiring agricultural workers but has no significant impact on manufacturing hiring.

Figure 5: Quarterly heat shocks and manufacturing layoff: Net impact

Manufacturing Labor Market—Each point estimate reflects an individual regression coefficient, βk, following
Equation 1, where the dependent variable is the binary outcome on worker layoff. The independent variables are
the number of days in a quarter with daily mean temperature within a specific range, Tempbinkm,t. The “<17◦C”
bin is the omitted category. The coefficient βk is interpreted as the estimated impact of one additional day with
daily mean temperature in temperature bin k on the propensity for worker layoff, relative to the impact of a day
with daily mean temperature less than 17◦C. The regressions include quarter × state, quarter × industry, quarter
× year, state × year, industry × year, state × industry and municipality fixed effects, along with other weather
covariates and a rich set of firm- and worker-level controls (see text for details). All coefficients are multiplied by
100. Standard errors are clustered at the mesoregion level.
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Figure 6: Quarterly heat shocks and agricultural layoff: Net impact

Agricultural Labor Market—Each point estimate reflects an individual regression coefficient, βk, following Equa-
tion 1, where the dependent variable is the binary outcome on worker layoff. The independent variables are the
number of days in a quarter with daily mean temperature within a specific range, Tempbinkm,t. The “<17◦C” bin
is the omitted category. The coefficient βk is interpreted as the estimated impact of one additional day with daily
mean temperature in temperature bin k on the propensity for worker layoff, relative to the impact of a day with
daily mean temperature less than 17◦C. The regressions include quarter × state, quarter × industry, quarter ×
year, state × year, industry × year, state × industry and municipality fixed effects, along with other weather
covariates and a rich set of firm and worker-level controls (see text for details). All coefficients are multiplied by
100. Standard errors are clustered at the mesoregion level.
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Figure 7: Agricultural vs. manufacturing hiring: Net impact

Agricultural and Manufacturing Labor Market—Each point estimate reflects an individual regression coefficient,
βk, following Equation 1. The dependent variable is region–industry hiring share, constructed by aggregating
the total number of individual accessions in each quarter at the municipality–industry level, normalized by each
municipality’s population in 1999. The independent variables are the numbers of days in a quarter with daily
mean temperature within a specific range, Tempbinkm,t. The “<17◦C” bin is the omitted category. The coefficient
βk is interpreted as the estimated impact of one additional day with daily mean temperature in temperature bin k
on the hiring share, relative to the impact of a day with daily mean temperature less than 17◦C. The regressions
include quarter × state, quarter × industry, quarter × year, state × year, industry × year, state × industry,
municipality fixed effects, along with other weather covariates (see text for details). Standard errors are clustered
at the mesoregion level.

4 Transmission Mechanism

In Section 3, I show that quarterly heat shocks lead to immediate manufacturing and agricultural

labor-market churn. These meaningful changes in employment outcomes could be driven by a

wide range of underlying mechanisms, possibly operating in opposing directions. We need to rely

on additional research design to identify the presence of any specific mechanisms.

Motivated by recent evidence on thermal stress and labor productivity (Adhvaryu et al., 2016), I

now focus on identifying the importance of the direct labor-productivity channel in driving heat-

related manufacturing layoff and hiring. I first introduce a methodology to isolate the direct

labor-productivity channel from other transmission mechanisms, using the Brazilian agricultural

surveys and regional crop calendars. Next, I present main results on manufacturing-worker layoff
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and hiring during growing versus nongrowing seasons. In Appendix C, to verify the underlying

identifying assumption, I look at the formal agricultural labor market during growing versus

nongrowing seasons.

4.1 Identifying the Physiological Channel

Recent evidence from both the climate–economy and ergonomics literature points to a signifi-

cant labor-productivity drop as temperature increases.8 However, we know little about whether

this direct labor-productivity impact leads to changes in worker employment outcomes in an

economy-wide setting. Establishing this crucial link helps us understand how firms and workers

share the cost of climate change, and how to better design social-welfare programs in the presence

of such environmental shocks.

Numerous factors are relevant when we assess how heat-related productivity shocks matter for

market outcomes such as employment. For example, if individuals are heterogeneous in their

sensitivity to heat, firms may lay off workers who experience the most productivity drop during

heat shocks, or those who are less likely to exert effort when exposed to heat. Transitory heat

shocks may also lead to layoff in the presence of downward nominal wage rigidity. The individual

employment impact of heat shocks also depends on the degree of firm adaptation either through

installing air conditioners or adaptive managerial practices.9 Overall, the employment implica-

tions of the direct labor productivity channel is a rather complex empirical question rooted in

labor-market institutions and firm- and worker-specific factors.

Identifying the transmission mechanism through which heat affects the manufacturing labor mar-

ket also has crucial policy implications for targeting efficient climate-change adaptation strate-

gies. If the direct labor-productivity channel is important in contributing to the labor-market

impact of extreme heat shocks, we may think about installing more air conditioners in factories

to mitigate the negative labor-productivity effect. On the other hand, if manufacturing workers

are laid off due to indirect agricultural channels, the policy implications would be quite different.

8 Evidence from assembly lines, laboratories, meta-analysis, and self-reported surveys: Somananthan et al.
(2014), Adhvaryu et al. (2016), Zander et al. (2015), Graff Zivin and Neidell (2014), Niemela et al. (2002),
Seppanen et el. (2006), Kjellstrom et al. (2009), Park (2017)

9 Adhvaryu, Kala and Nyshadham (2014) show that good managers adapt to air pollution shocks through
worker task reassignment.
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For example, if heat shocks reduce crop yield and raise agricultural input prices, input tariff

liberalization may be an effective response. Similarly, establishing farmer-income stabilization

programs would be helpful if the local demand channel is present.

The strategy I adopt in this paper to investigate the importance of the direct labor-productivity

channel is by isolating heat shocks during the nongrowing seasons of each municipality. The

underlying assumption is that heat shocks during local nongrowing seasons do not influence

agricultural outcomes, allowing me to shut off various indirect agricultural channels through

which temperature shocks affect the manufacturing labor market. A similar methodology has

been recently adopted (Carleton, 2017; Burgess et al., 2018) to study the mechanism of how heat

affects mortality. In Appendix C, I verify this identifying assumption by comparing outcomes

during growing versus nongrowing seasons in the agricultural labor market.

Discerning the regional nongrowing seasons in Brazil involves two steps. Exploiting the Municipal

Agricultural Production Surveys (PAM), I first determine the main crop of each municipality

based on crop-production shares. Figure 8 shows the main crop of each municipality in Brazil

ranked by production values. Major seasonal crops in Brazil include corn, cotton, rice, soybean,

and sugarcane. The white areas represent municipalities whose main crop has year-round grow-

ing seasons. Next, I use the Brazil crop calendars from the USDA World Agricultural Outlook

Board to determine the nongrowing seasons of each crop.10 A quarter for a municipality is cate-

gorized as the nongrowing season if it is the regional nongrowing season of the main crop of that

municipality.

Figure 9 presents the resulting map showing the nongrowing seasons of each municipality. Exclud-

ing the municipalities with year-round growing seasons, quarter three, from July to September,

is the main nongrowing season for most central and southern regions in Brazil. In the northeast,

nongrowing seasons arrive later in quarter four, from October to December. This categorization

corresponds approximately to three months before the arrival of the rain season, which is the

approach adopted in Burgess et al. (2018) and Garg et al. (2017) to identify Indian nongrowing

seasons.

10These nongrowing seasons also correspond to those in the crop calendars by Sacks et al. (2010), which result
from digitizing and georeferencing existing observations of crop planting and harvesting dates.
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Figure 8: Main crop of municipality by production value

This map represents the main crop of each municipality in Brazil ranked by crop production values (see text
for details). Major seasonal crops in Brazil include corn, cotton, rice, soybean, and sugarcane. The white areas
represent municipalities whose main crop has year-round growing seasons (see text for details).

Figure 9: Main-crop nongrowing season by production value

This map shows the nongrowing seasons in Brazil. A quarter for a municipality is categorized as the nongrowing
season if it is the regional nongrowing season of the main crop of that municipality.
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4.2 Manufacturing Layoff and Hiring: Nongrowing vs. Growing Seasons

Having identified the regional nongrowing seasons, we are now ready to examine how important

the direct labor-productivity channel is for manufacturing layoff. Intuitively, heat shocks during

the nongrowing seasons do not affect agricultural outcomes, therefore allowing me to shut off

multiple indirect agricultural channels and identify the direct labor-productivity channel. We

proceed by comparing regression results during the growing versus nongrowing seasons, and then

testing sensitivity in a series of alternative specifications.

4.2.1 Nongrowing Seasons

We first estimate the effect of heat shocks on manufacturing worker layoff in the nongrowing

seasons. Under the assumption that nongrowing-season shocks have no effect on agricultural

outcomes, I isolate the impact of the direct labor-productivity channel by focusing on nongrowing

season shocks. The empirical framework follows Equation 2, which is a modification of Equation

1, where the dummy for growing seasons, DGS
m,q, is interacted with temperature bins and other

weather covariates.

Yijmt =
∑

βkTempbin
k
m,t +

∑
βsD

GS
m,q ∗ TempBinsm,t + β1D

GS
m,q + f(Rainm,t, Humiditym,t)

+DGS
m,q ∗ f(Rainm,t, Humiditym,t) + α1Xit + θqy + θyr + θqr + Φyj + Φqj + Φrj + τm + εijmt

(2)

Figure 10 shows how the propensity for manufacturing-worker layoff varies with temperature

during nongrowing seasons. We see a significant, highly nonlinear relationship, with extreme-

heat days having a pronounced impact, starting with daily mean temperature above 29◦C. In

particular, the point estimate indicates that replacing a day with daily mean temperature below

17◦C with one with daily mean temperature beyond 31◦C increases the probability of layoff by

0.8 percentage points, a 11% increase from the baseline layoff propensity (7.2 percentage points).

This highly nonlinear relationship is consistent with the thermal-stress literature on heat and in-

dividual labor productivity. Meta-analysis in ergonomics (Hancock et al., 2007) documents that

task performance losses start to occur at 28◦C and 80% relative humidity. Sharp performance

losses occur at 32◦C. Evidence from Indian garment factories documents 29.5◦C as the physio-
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logical threshold above which temperature strongly impedes of human functioning (Adhvaryu et

al., 2016).

Figure 10: Manufacturing worker layoff: nongrowing seasons, with interacting specification

Manufacturing Labor Market, Nongrowing Seasons, Interaction Specification - Each point estimate reflects an
individual regression coefficient, βk, where the dependent variable is the binary outcome on worker layoff. Following
Equation 2, we estimate the specification where DGS

m,q is a dummy for growing seasons. The independent variables
are the number of days in a quarter with daily mean temperature within a specific range, Tempbinkm,t. The
“<17◦C” bin is the omitted category. The coefficient βk is interpreted as the estimated impact of one additional day
with daily mean temperature in temperature bin k on the propensity of worker layoff, relative to the impact of a day
with daily mean temperature less than 17◦C, in the nongrowing seasons. The regressions include quarter*state,
quarter*industry, quarter*year, state*year, industry*year, state*industry and municipality fixed effects, other
weather covariates, and a rich set of firm and worker-level controls (see text for details). All coefficients are
multiplied by 100. Standard errors are clustered at the meso-region level.

The nongrowing season results in Figure 10 show that through the direct labor-productivity

channel, thermal stress starts to significantly affect manufacturing layoff decisions only when

daily average temperature goes beyond 29◦C. This is consistent with the existence of firing and

hiring costs in the formal sectors. Intuitively, moderate productivity losses do not justify firing

costs, but large productivity losses under extreme heat increase the probability of worker layoff.

Taking the point estimate for the extreme-heat temperature bin (daily mean >31◦C), we could

compare the difference in layoff propensity for manufacturing workers in different regions. Since

my identifying variations in the fixed-effects framework come from quarterly average tempera-
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ture deviation, I first regress the raw number of days in the extreme-heat temperature bin on

the fixed effects in Equation 1. Then I examine the distribution of the residuals. A municipality

in a quarter with a “residual heat shock” in the 99th percentile experiences, on average, three

extreme-heat days relative to the fixed-effect averages. Compared with a municipality that does

not experience any extreme-heat days relative to the averages, the difference in the propensity of

manufacturing worker layoff is 2.4 percentage points, equivalent to 33.3% of the average baseline

layoff propensity (7.2 percentage points). This number should be interpreted with caution. Since

the temperature bin setup assumes equal effect of each additional extreme heat day, my point

estimate does not take into account possible harvesting effects.

Given these point estimates, future climate predictions also imply large disparities across regional

local labor markets in Brazil. Recall from Figure 4 that during 2040–2059, under the RCP8.5

scenario, the central city of Palmas is projected to have 69.75 more days annually, or 17.4 more

days quarterly of extreme heat. In contrast, the southern city of Sao Paulo incurs only 0.2 more

extreme-heat days per quarter. These striking variations in the predicted number of extreme-

heat days indicate large labor productivity gap across regions, and likely large second-moment

differences in the frequency of productivity shocks from extreme heat. While this paper focuses

only on increases in the second moment, absent adaptive capital and perfect labor mobility, both

changes have important implications for disparity in regional employment outcomes.

These results on the direct labor-productivity channel are robust to a number of alternative

specifications. First, to rule out worker sorting according to heat shocks based on unobserved

time-invariant ability, I test sensitivity to including worker fixed effects. Second, lagged response

to heat shocks during the growing seasons could influence layoff decisions during the nongrow-

ing seasons if temperature shocks are serially correlated, so I control for lagged weather shocks.

Third, to ensure the results are not driven by a few influential outliers, I run a robustness check

implementing Cook’s distance regression diagnostics. The main results hold under all these al-

ternative specifications (Appendix A, Figures A.1, A.2).

Why might quarterly heat shocks lead to manufacturing layoff? In a simple setting, heat shocks

during the nongrowing seasons lower marginal labor productivity. Incentive providing firms could
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adjust by either lowering wages or laying off workers, particularly those with low labor force at-

tachment.11 This is especially plausible given that the Brazilian labor market during this period

is characterized by high turnover rate. Messina and Sanz-De-Galdeano (2014) show that wages in

Brazil during the 1990s were subject to substantial downward rigidity due to indexation policies,

and that wage adjustment was largely achieved through labor market turnover.

Many other relevant factors could also be at play. For example, the workers laid off could be

of lower quality. Recent papers show that workers are heterogeneous in their sensitivity to heat

or willingness to exert effort under adverse work conditions (Graff Zivin and Neidell, 2014).

Learning a worker’s type could be informative of how she/he responds to other types of shocks

to workplace conditions. This worker-specific information could be unknown to the employer

ex-ante, but revealed after extreme heat days, leading to layoff of those who experience a larger

productivity drop. Firms may also face cash flow constraints (Chodorow-Reich, 2013). Yet an-

other possibility is that workers are transitioning into the informal sector. In Section 7, I offer

further evidence with respect to some of these factors.

4.2.2 Growing Seasons

Unlike the nongrowing season impact, which is only driven by the direct labor-productivity chan-

nel, heat shocks during growing seasons could influence manufacturing hiring and layoff via a

complex array of transmission mechanisms, both directly and through interindustry linkages. As

we see in Figure 11, manufacturing layoff propensity during growing seasons also increases with

temperature, but the magnitude is much smaller at extreme temperature ranges. Replacing a

day with daily mean temperature below 17◦C with one with daily mean temperature beyond

31◦C increases the probability of layoff by 0.12 percentage point, or a 1.5% increase from the

baseline layoff propensity (7.9 percentage points).

11By law, manufacturing firms in Brazil pay a moderate penalty for firing workers without cause. The cost
amounts to about 8%–19% of the expected UI benefits paid to workers (van Doornik et al., 2017). De facto cost
of firing may be lower for firms further from enforcement offices (Almeida and Carneiro, 2012).
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Figure 11: Quarterly heat shocks and manufacturing layoff: Growing seasons

Manufacturing Labor Market, Growing Seasons, Interaction Specification - Each point estimate reflects an indi-
vidual regression coefficient, βk, where the dependent variable is the binary outcome on worker layoff. Following
Equation 2, we estimate the specification where DGS

m,q is a dummy for growing seasons. The independent variables
are the number of days in a quarter with daily mean temperature within a specific range, Tempbinkm,t. The
“<17◦C” bin is the omitted category. The linear combination of coefficient βk + βs is interpreted as the estimated
impact of one additional day with daily mean temperature in temperature bin k on the propensity of worker
layoff, relative to the impact of a day with daily mean temperature less than 17◦C, in the growing seasons. The
regressions include quarter*state, quarter*industry, quarter*year, state*year, industry*year, state*industry and
municipality fixed effects, other weather covariates, and a rich set of firm and worker-level controls (see text for
details). All coefficients are multiplied by 100. Standard errors are clustered at the meso-region level.

The point estimates in Figure 11 can be interpreted as the combined impact of the direct labor-

productivity channel and indirect agricultural channels through interindustry linkages. Given the

fixed-effects framework and controls on state- and industry-specific seasonality, I am not able to

directly compare the magnitude of estimates in Figure 10 and Figure 11 and infer the direction

of impact through agricultural channels. This is because the identified magnitude through the

direct labor-productivity channel could be different in growing versus nongrowing seasons due to

different baseline temperatures across seasons.

The existing literature suggests that the indirect agricultural channels could be working in an op-

posing direction as the direct labor-productivity channel at extreme temperature ranges. Colmer

(2017) finds that as temperature increases, the manufacturing sector absorbs displaced agricul-
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tural workers during growing seasons. If the incoming workers complement incumbent manu-

facturing workers, existing workers might benefit from this agricultural outmigration channel.

If on the other hand, incoming workers substitute, then incumbent manufacturing workers may

experience displacement. In Section 5, I offer direct evidence on intersectoral labor reallocation

by directly tracking workers across job spells and decomposing postlayoff channels.

5 Labor Reallocation

In the presence of significant costs in the job reallocation process, only accounting for the im-

mediate adjustment margins would lead to underestimation of total worker welfare losses. The

unique employer-employee linkage feature of RAIS allows me to examine individual job realloca-

tion and better understand the medium-run adjustment margins for heat-related layoffs. In this

section, I present an empirical strategy and provide evidence on manufacturing worker realloca-

tion between sectors and across municipalities.

5.1 Empirical Strategy

To understand heat-related worker reallocation, I construct dummies for seven mutually exclu-

sive, collectively exhaustive categories for postlayoff transition outcomes. Conditional on layoff,

I assign the worker to be in one of the following seven categories according to reallocated sector

and region: (1) Move to the manufacturing sector in the same municipality within 36 months,

(2) Move to the manufacturing sector in a different municipality within 36 months, (3) Move

to the agricultural sector in the same municipality within 36 months, (4) Move to the agricul-

tural sector in a different municipality within 36 months, (5) Move to the service/primary sector

in the same municipality within 36 months, (6) Move to the service/primary sector in a differ-

ent municipality within 36 months, or (7) Fail to move to any formal employer within 36 months.

The data requirement for studying worker reallocation is high. Using RAIS, I am able to track

each worker across job spells over time, identifying employers by sector and municipality.12 The

12To study worker reallocation 3 years postlayoff, I do not consider layoffs that occur during the last 3 years
of my sample period.
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empirical specification follows the fixed-effect model in Equation 3:

Y p
ijmt =

∑
βkTempbin

k
m,t+f(Rainm,t, Humiditym,t)+α1Xit+θqy+θyr+θqr+Φyj+Φqj+Φrj+τm+εijmt

(3)

where Y p
ijmt is the binary variable for whether the worker i, employed in industry j, residing in

municipality m, at time t, belongs to a particular postlayoff category p.13 For example, Y 1
ijmt

takes the value of one if a worker experiences a layoff at time t, and subsequently moves to a

manufacturing employer in the same municipality within 36 months, and zero otherwise. Because

Y p
ijmts are conditional on layoff, a worker who has never experienced a layoff during the sample

period will have a value of zero for all the postlayoff transition outcomes.

The rest of this fixed-effect specification is the same as in Equation 1. Allowing for nonlinear

effects, Tempbinkm,t is the number of days in a quarter with daily mean temperature in the

specified range k.14 f(Rainm,t, Humiditym,t) controls for the cumulative rainfall and relative

humidity. Xit is a vector of worker and plant-level controls including worker education, occupa-

tion categories, tenure, potential labor force experience, plant size, and plant-skill composition.

I include Quarter*Sate, State*Year, and Quarter*Year fixed effects to control for state-specific

seasonality in employment, state growth trends, and national business cycles. Industry*Year

and Industry*Quarter fixed effects control for industry-growth trends and industry-specific sea-

sonality. State*Industry fixed effects control for regional industrial patterns of specialization.

Municipality fixed effects control for any time-invariant municipality characteristics. Standard

errors are clustered at the mesoregion-level to allow for spatial and serial correlation.

5.2 Results: Reallocation for Manufacturing Workers

I examine medium-run worker-level adjustment margins of heat shocks by looking at individual

job reallocation channels after heat-related layoff. If heat shocks cause contemporaneous layoff

13To fully decompose the reallocation channels, we run eight regressions in total.
14Tempbin1, where t < 17◦C, is omitted.
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but workers quickly transit to another formal employer in a short period of time, the associated

medium-run individual welfare loss could be small. However, as I show, a significant portion

of workers who experience layoff due to heat shocks fail to find any formal employer within 36

months, leading to prolonged individual labor-market impact. In this subsection, I focus on de-

composing manufacturing reallocation outcomes following heat shocks in all seasons. Appendix

B offers further evidence for nongrowing seasons.

As illustrated in Table 1, the impact of heat shocks on postlayoff transition outcomes in columns

1-7 sum to the impact on total layoffs, given in column 2. Swapping a day with daily mean

temperature below 17◦C for one with daily mean temperature beyond 31◦C increases the total

probability of manufacturing layoff by 0.25 percentage points. Note this point estimate is slightly

different from the magnitude in Figure 5 because I do not look at layoffs during the last 3 years

to analyze reallocation over the 3-year horizon.

Decomposing the reallocation channels associated with daily mean temperature beyond 31◦C,

column 1 shows that 54% (0.14 percentage points) of manufacturing workers laid off due to

extreme heat find a formal-sector manufacturing employer in the same municipality within 36

months. Limited intersectoral and interregional reallocation exists for manufacturing workers

laid off due to heat shocks. Reallocation to the formal agricultural sector in the same munic-

ipality is statistically significant though economically smaller (8%). Based on columns 2, 4, 5,

6, other reallocation channels are economically small and not statistically significant at the 5%

level. Figures 12, 13 and 14 present visualizations of these results, where the left panels show

transitions within the same municipalities across sectors, and the right panels show interregional

worker reallocation.

Figure 15 and column 7 in Table 1 illustrate the salience of failure to reallocate for manufacturing

workers laid off due to heat shocks. A significant 24.3% of all manufacturing workers who experi-

enced heat-related layoffs fail to find any formal sector employment within 36 months. Swapping

a day with daily mean temperatures below 17◦C for one with daily mean temperatures beyond

31◦C increases the propensity of manufacturing layoff followed by failure to reallocate within 3

years by 0.06 percentage points. This is equivalent to 0.8% of the baseline layoff propensity.
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Table 1: Quarterly heat shocks and manuf. worker reallocation, all seasons

(1) (2) (3) (4) (5) (6) (7) (8)
Manu-s Manu-d Agr-s Agr-d Serv-s Serv-d Failure Tot. layoff
b/se b/se b/se b/se b/se b/se b/se b/se

Temp(17-20) -0.00946* -0.00220** -0.00194** -0.00190** -0.00107 -0.00226* -0.00180 -0.02064**
(0.005) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.008)

Temp(20-23) -0.00526 -0.00154 -0.00089 -0.00143 0.00010 -0.00240 -0.00101 -0.01243
(0.006) (0.001) (0.001) (0.001) (0.001) (0.002) (0.002) (0.011)

Temp(20-25) 0.00799 -0.00022 -0.00052 0.00081 0.00245* -0.00245 -0.00014 0.00793
(0.007) (0.001) (0.001) (0.001) (0.001) (0.002) (0.002) (0.012)

Temp(25-27) 0.00198 -0.00118 -0.00081 0.00015 0.00146 0.00039 0.00253 0.00451
(0.007) (0.002) (0.001) (0.001) (0.002) (0.002) (0.003) (0.013)

Temp(27-29) 0.02413** 0.00166 0.00117 0.00336** 0.00320 0.00628*** 0.00380 0.04359**
(0.010) (0.002) (0.001) (0.002) (0.002) (0.002) (0.003) (0.017)

Temp(29-31) 0.03784*** 0.00106 0.00420** 0.00454* 0.00478 0.00855*** 0.01252** 0.07350***
(0.014) (0.002) (0.002) (0.002) (0.003) (0.003) (0.005) (0.024)

Temp(>31) 0.13816* 0.01057 0.02177*** 0.00536 0.00705 0.00818 0.06142* 0.25250**
(0.075) (0.009) (0.007) (0.003) (0.006) (0.008) (0.032) (0.127)

N 16322039 16322039 16322039 16322039 16322039 16322039 16322039 16322039
Municipality FE Yes Yes Yes Yes Yes Yes Yes Yes
Clustering Meso
Other FEs Quarter × State, State × Year, Quarter × Year, Prod × Quarter, Prod × Year, Prod × State

Manufacturing Reallocation, All Seasons—Following Equation 3, the dependent variable Y p
ijmt is the binary variable for whether

the worker belongs to a particular postlayoff category, p. The independent variables are the numbers of days in a quarter with
daily mean temperature within a specific range, Tempbinkm,t. The “<17◦C” bin is the omitted category. The outcomes for
Columns 1–8 are (1)failure to reallocate to any formal employer, within 36 months. (2)probability of total layoffs (3)reallocate
to the manufacturing sector, in the same municipality, within 36 months; (4) reallocate to the manufacturing sector, in a
different municipality, within 36 months; (5) reallocate to the agricultural sector, in the same municipality, within 36 months;
(6) reallocate to the agricultural sector, in a different municipality, within 36 months; (7) reallocate to the service/primary
sector, in the same municipality, within 36 months; (8) reallocate to the service/primary sector, in a different municipality,
within 36 months. All regressions include quarter × state, quarter × industry, quarter × year, state × year, industry × year,
state × industry, and municipality fixed effects, along with other weather covariates and a rich set of firm- and worker-level
controls (see text for details). All coefficients are multiplied by 100. Standard errors are clustered at the mesoregion level. ***
Significant at 1%, ** 5%, * 10%.
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Figure 12: Quarterly heat shocks and manufacturing workers layoff, with reallocation to manu-
facturing within 36 months

Manufacturing Reallocation, All Seasons—Following Equation 3, the dependent variable Y pijmt is the binary vari-
able for whether a worker belongs to a particular postlayoff category p. The independent variables are the number
of days in a quarter with daily mean temperature in a specific range, Tempbinkm,t. The “<17◦C” bin is the omitted
category. The outcomes are (Left Panel) Reallocate to the manufacturing sector in the same municipality, within
36 months and (Right Panel) Reallocate to the manufacturing sector in a different municipality within 36 months.
All regressions include quarter*state, quarter*industry, quarter*year, state*year, industry*year, state*industry,
and municipality fixed effects, other weather covariates, and a rich set of firm and worker-level controls (see text
for details). All coefficients are multiplied by 100. Standard errors are clustered at the mesoregion level.

Figure 13: Quarterly heat shocks and manufacturing workers layoff, with reallocation to agricul-
ture within 36 months

Manufacturing Reallocation, All Seasons—Following Equation 3, the dependent variable Y pijmt is the binary vari-
able for whether the worker belongs to a particular postlayoff category p. The independent variables are the number
of days in a quarter with daily mean temperatures in a specific range, Tempbinkm,t. The “<17◦C” bin is the omit-
ted category. The outcomes are (Left Panel) Reallocate to the agricultural sector in the same municipality within
36 months and (Right Panel) Reallocate to the agricultural sector in a different municipality within 36 months.
All regressions include quarter*state, quarter*industry, quarter*year, state*year, industry*year, state*industry,
and municipality fixed effects, other weather covariates, and a rich set of firm and worker-level controls (see text
for details). All coefficients are multiplied by 100. Standard errors are clustered at the mesoregion level.
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Figure 14: Quarterly heat shocks and manufacturing workers layoff, with reallocation to Ser-
vices/Primary within 36 months

Manufacturing Reallocation, All Seasons—Following Equation 3, the dependent variable Y pijmt is the binary vari-
able for whether a worker belongs to a particular postlayoff category p. The independent variables are the number
of days in a quarter with daily mean temperatures in a specific range, Tempbinkm,t. The “<17◦C” bin is the
omitted category. The outcomes are (Left Panel) Reallocate to the services sector in the same municipality within
36 months and (Right Panel) Reallocate to the services sector in a different municipality within 36 months. All
regressions include quarter*state, quarter*industry, quarter*year, state*year, industry*year, state*industry, and
municipality fixed effects, other weather covariates, and a rich set of firm and worker-level controls (see text for
details). All coefficients are multiplied by 100. Standard errors are clustered at the mesoregion level.

Figure 15: Quarterly heat shocks and manufacturing workers layoff: failure to reallocate within
36 months

Manufacturing Reallocation Failure, All Seasons—Each point estimate reflects an individual regression coefficient,
βk, following Equation 3, where the dependent variable is the binary outcome on whether the worker experiences
a layoff followed by failure to reallocate within 36 months. The independent variables are the number of days in a
quarter with daily mean temperature in a specific range, Tempbinkm,t. The “<17◦C” bin is the omitted category.
The regressions include quarter*state, quarter*industry, quarter*year, state*year, industry*year, state*industry,
and municipality fixed effects, other weather covariates, and a rich set of firm and worker-level controls (see text
for details). All coefficients are multiplied by 100. Standard errors are clustered at the mesoregion level.
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A number of reasons could explain this high rate of failure to reallocate due to heat shocks.

First, after layoffs, other employers may take it as a signal that the worker is a low type and are

therefore reluctant to hire. However, this alone does not seem sufficient to explain the high rate

of prolonged failure to reallocate even in another sector or municipality within 3 years. Papers

examining labor reallocation after trade liberalization15 suggest that intersectoral reallocation

frictions are much more pronounced in developing countries such as Brazil relative to developed

countries such as the U.S. Compared with more permanent trade liberalization, here I show that

even transitory temperature shocks lead to significant failure to reallocate, possibly due to fric-

tions in the job rematching process.

Third, transitioning to informality could be an important aspect. Workers not reallocating to

another formal-sector job after heat-related layoff could be either unemployed or informally em-

ployed. Dix-Carneiro and Kovak (2017b) find that the informal sector is an important absorber

of formal workers laid off during trade liberalization. Formal jobs are generally considered to

be of higher quality, offering more benefits and greater labor production than informal jobs (La

Porta and Sheleifer, 2014). Transitioning to the informal sector under extreme heat shocks could

have important worker-welfare implications; an area for future research.

Understanding worker reallocation better quantifies the full cost of climate change for the labor

market. Especially in developing countries, the long-term formal labor-market “scarring” associ-

ated with heat shocks likely implies more pronounced individual welfare losses. Finally, failure

to reallocate happens for both growing and nongrowing season heat shocks. Details appear in

Appendix B.

15Dix-Carneiro (2014), Goldberg and Pavcnik (2007), Autor et al. (2014).
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6 Heterogeneity

Having examined mechanisms and labor reallocation, I now turn to the distributional impact of

temperature shocks, identifying the most vulnerable groups in the manufacturing workforce. In

addition to the worker-level characteristics in RAIS, I further link variables from the Dictionary

of Occupation Titles (DOT) to study heterogeneity by occupation-task intensity.

Meta-analysis (Hancock et al., 2007) in the ergonomics literature suggests that thermal stress

has the highest impact on psychomotor and motor tasks, and the lowest impact on cognitive

skills. In more routine-manual task-intensive occupations, workers’ heterogeneous sensitivity to

heat may also be better revealed. So the hypothesis is that through the direct labor-productivity

channel, individual employment effects are significantly higher for workers in routine-manual-

intensive occupations.

6.1 Empirical Strategy

I follow Autor, Levy, and Murnane (2003) in using data from the DOT to construct occupational

task-intensity measures for the U.S. Census Occupational Codes. To match the U.S. Census

Occupational Codes to the Brazilian Occupational codes, I first concord across time using data

provided by Autor and Dorn (2013), and then map the 2000 U.S. Census Occupational Codes to

the International Standard Classification of Occupations (ISCO-88), provided by the Center for

Longitudinal Studies in UCL. Finally, the concordance from ISCO-88 to the Brazilian occupa-

tional codes CBO is by Muendler et al. (2004). Assuming that Brazil and the U.S. share similar

relative task intensity across occupations, I obtain an index for routine-manual task intensity

(RMTI) based on the DOT measure of Finger Dexterity (Autor, Levy and Murnane, 2003).

Table 2 gives some common examples of occupations (CBO, 3-digit) in RAIS with the highest

and lowest measures of routine-manual-task intensity. Highly routine manual task-intensive oc-

cupations such as fabric treating and weavers require more motor or psychomotor skills, whereas

low routine-manual-task occupations require more cognitive skills.
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Table 2: Examples of occupations by RMTI

Occupations: Routine-manual task intensity

High Low

Fabric treating, printing workers Mathematicians and actuaries
Spinners, twisters, and related workers Production and research managers

Lace makers, weavers, dyers, Machine maintenance mechanics
Dressmakers Cabinet makers

Telephone, telegraph operators, Plastic product workers

Based on Brazilian CBO three-digit occupational codes in RAIS.

The estimation framework follows Equation 4 and allows for heterogeneous impact along a variety

of worker and plant attributes:

Yijmt =
∑

β1kRMTIit ∗ Tempbinkm,t +
∑

β2kZit ∗ Tempbinkm,t +
∑

β3k ∗ Tempbinkm,t

+β40RMTIit ∗Humm,t + β41Zit ∗Humm,t + β50RMTIit ∗Rainm,t + β51Zit ∗Rainm,t

+f(Rainm,t, Humm,t) + α1Zit + θqy + θyr + θqr + Φyj + Φqj + Φrj + τm + εijmt

(4)

Yijmt is the binary outcome for worker layoff. Weather variables on temperature, rainfall, and

humidity are defined as before. RMTIit measures worker i’s occupational routine-manual-task

intensity. Zit is a vector of worker-level covariates including wage, gender, tenure, and size of

the plant. Both RMTIit and Zit are standardized. Xit are other worker or plant-level controls.

Fixed effects are included at the Quarter*Year, Year*State, Quarter*State, Industry*Year, In-

dustry*Quarter, State*Industry, and Municipality level. Standard errors are clustered at the

mesoregion-level.

6.2 Results

The key coefficients of interest are β1k and β2k, capturing the differential impact of heat shocks

interacting with worker attributes on initial occupational-task intensity, wage, gender, plant size,

and tenure. Table 3 presents the key coefficients focusing on the interaction with the highest

temperature bin (> 31◦C). I separately examine heterogeneous effects in the nongrowing seasons

and in the full sample.
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Column 1 shows the estimates for manufacturing worker layoff during the nongrowing seasons,

where only the direct labor productivity channel is at work. Here the hypothesis is that as tem-

peratures increase, labor productivity in more routine-manual-intensive tasks will see a larger

decrease. Consistent with the ergonomics literature on thermal stress, workers in routine-manual-

task-intensive occupations are more likely to experience heat-related layoff. Having a routine-

manual-task-intensity measure of one standard deviation beyond the mean increases the effect of

an additional extreme heat day by 0.27 percentage points. We also see that the impact of heat

shocks are more pronounced for those with less tenure at the plant, which could indicate that

workers laid off are more temporary or have lower labor force attachment.

Table 3: Manufacturing layoffs: Worker-level heterogeneity

(1) (2)
layoff layoff
b/se b/se

Temp(>31) 0.0271 0.1037
(0.092) (0.072)

RMTI*Temp(>31) 0.2685** 0.0625
(0.103) (0.077)

Tenure*Temp(>31) -0.1443* -0.1162*
(0.083) (0.062)

Observations 1061664 14437797
Subsample NGSeasons Full
Clustering meso
Other FEs Quarter*State, State*Year, Quarter*Year, Prod*Quarter, Prod*Year, Prod*State
Y(mean) 6.304 6.422

Manufacturing Labor Market, Heterogeneity—Following Equation 3, the dependent variable Y p
ijmt is the binary variable

for worker layoff. The independent variables, “RMTI ×Tempbink,” are the worker’s occupational routine-manual task
intensity (normalized), interacted with the numbers of days in a quarter with daily mean temperature within a specific
range k. The "< 17◦C" bin is the omitted category. All regressions include quarter × state, quarter × industry, quarter
× year, state × year, industry × year, state × industry, and municipality fixed effects, along with weather covariates
and a rich set of firm- and worker-level controls (see text for details). All coefficients are multiplied by 100. Standard
errors are clustered at the mesoregion level. *** Significant at 1%, ** 5%, * 10%.

In the full sample presented in column 2, a differential effect no longer emerges according to

occupational routine-manual-task intensity. Because in the full sample manufacturing workers

are laid off from a combination of direct labor productivity and indirect agricultural channels,

a pronounced differential impact is unlikely to occur by occupation. Finally, it is important to

note that the source of heterogeneity is consistent with, but not limited to, the direct labor

productivity channel. Differential coverage of climate controls in the same establishment, ob-

served in Indian diamond-processing factories by Somanathan et al. (2014), for example, could
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also explain this heterogeneity. Alternatively, if occupations differ in the ease with which work-

ers can switch to the informal sector, one could also observe a similar differential impact by

occupational-task intensity. Overall, heterogeneity analysis in this section informs identification

of vulnerable groups in the manufacturing workforce most affected by heat shocks, and reveals

potential distributional impact.

7 Additional Evidence

In Section 4, I briefly reviewed some possible scenarios in which transitory shocks could lead to

significant increases in manufacturing layoff. The simplest explanation is if firing and hiring costs

are not prohibitively high, which I test here using Bartik-type shocks in output. Other relevant

factors include asymmetrical adjustment costs leading to concave hiring rules (Ilut et al., 2018),

worker heterogeneity in heat sensitivity, or willingness to exert effort under heat exposure (Graff

Zivin and Neidell, 2014), and downward nominal wage rigidity. In this section, I also explore the

role of nominal wage rigidity using historic inflation spikes in Brazil.

7.1 The Role of Nominal Wage Rigidity

Brazil experienced high and volatile episodes of inflation after the 1960s. I exploit the inflation

spike in the 1990s to check if downward nominal wage rigidity could cause the employment effect

of heat shocks. Intuitively, firms may choose to lay off workers when wages are rigid downwards.

During periods of high inflation, however, real wages are effectively lower, leading to smaller

employment effects of extreme heat shocks. The effect of inflation would not be present if wages

are always indexed. Throughout 1985–1999, however, the Brazilian government periodically froze

wages and stopped indexation to lower inflation expectations (Duryea and Arends-Kuenning,

2003).

Yijmt =
∑

β1kInflationt ∗ Tempbinkm,t +
∑

β2k ∗ Tempbinkm,t + β3Inflationt ∗Humm,t

+β4Inflationt ∗Rainm,t + f(Rainm,t, Humm,t) + θqy + θyr + θqr + Φyj + Φqj + τm + εijmt

(5)

Yijmt is the binary outcome for worker layoff. Weather variables of temperature, rainfall, and hu-
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Figure 16: Quarterly Brazilian inflation index

This chart shows quarterly inflation measured by the Brazilian national price index, INPC, from
1985 to 2002. Raw data are made public by Marc Muendler, http://econweb.ucsd.edu/muendler/.

midity are defined as before. Inflationt is quarterly inflation measured by the Brazilian national

price index, INPC.16 Fixed effects are included at the Quarter*Year, Year*State, Quarter*State,

Industry*Year, Industry*Quarter, State*Quarter, and Municipality level. Standard errors are

clustered at the mesoregion level.

Figure 16 plots the “hyperinflation” period in Brazil using the quarterly inflation index from 1986

to 2002. I match the data from 1990 to 2000 with RAIS and exploit the inflation spike from 1990

to 1995. I interpose the inflation index with heat shocks to see whether the employment impact of

extreme heat is smaller during high inflation. My intuition indicates that the employment effect

of a labor productivity drop is larger when nominal wages are rigid downward. By effectively

lowering real wages, higher inflation dampens the effect on worker layoff. Kaur (2018) pioneered

this test and found a similar mechanism in Indian village labor markets.

Table 4 shows the results of nongrowing versus growing seasons. Here I focus on the effect of an

16These data are made public by Marc Muendler, http://econweb.ucsd.edu/muendler/.
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Table 4: Heat shocks and nominal wage rigidity: Growing vs. nongrowing seasons

(1) (2)
Layoff Layoff
b/se b/se

Temp(>31) 1.3946*** 0.1245**
(0.358) (0.049)

Temp(>31) × Inflation 0.2678 -0.0956**
(0.278) (0.037)

Humidity -0.0113 -0.0047
(0.056) (0.011)

Humidity × Inflation -0.0775 -0.0100
(0.068) (0.016)

Observations 1,377,060 16,182,508
Municipality FE Yes Yes
Subsample NGSeasons GSeasons
Clustering meso meso
Y (mean) 7.17 7.75

Manufacturing Labor Market, Nominal Wage Rigidity—
Following Equation 4, the dependent variable, Y pijmt, is the
binary variable for worker layoff. The key independent vari-
ables, Tempbink× inflation, are the number of days in a quar-
ter with daily mean temperature within a specific range k,
interacted with the quarterly inflation index. The “< 17◦C”
bin is the omitted category. All regressions include quarter
× state, quarter × industry, quarter × year, state × year,
industry × year, state × industry, and municipality fixed ef-
fects, along with weather covariates and a rich set of firm-
and worker-level controls (see text for details). All coefficients
are multiplied by 100. Standard errors are clustered at the
mesoregion level. *** Significant at 1%, ** 5%, * 10%.
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additional extreme heat day, with daily mean temperatures beyond 31 degrees Celsius. Column

1 shows that during nongrowing seasons, swapping a day with daily mean temperatures below

17◦C for one with daily mean temperatures beyond 31◦C increases the probability of layoff by

1.4 percentage points, or a 19.45% increase of the baseline layoff propensity (7.17 percentage

points). The effect does not vary with inflation, suggesting downward nominal wage rigidity is

not a dominant cause of the manufacturing layoffs observed in Section 4.2.1. That is, even when

the wage floor is flexible, firms still choose to lay off workers under extreme heat during non-

growing seasons. One possibility consistent with this evidence is if workers who are more heat

sensitive or who exert less effort when exposed to heat are revealed after heat shocks, they may

be laid off regardless of wage rigidity. In contrast, Column 2 shows that layoffs during growing

seasons are dampened during high inflation. Intuitively, growing-season layoffs could be caused

by lower local demand or higher input price from indirect agricultural channels. Firms are less

likely to lay off workers when inflation enables downward real-wage adjustment.

7.2 Bartik Shocks in Output

Whether a significant labor productivity shock caused by heat stress would lead to worker layoff

depends on specific labor-market institutions in Brazil. In this subsection, I provide relevant in-

stitutional details on hiring and firing costs, and check the ease with which firms lay off workers

in the presence of temporary output contraction.

Firms in Brazil in general face moderate firing and hiring costs. In the case of layoffs without

a special cause, the firm pays 40% of the accumulated job security fund (FGTS) upon layoff

(Menezes-Filho and Muendler, 2011), which is about 0.5 month’s salary for the average person

being laid off in my sample.17 The firm’s penalty for laying off a worker is around 8–19% of the

UI benefit paid to the worker (Van Doornik et al., 2017). However, Almeida and Carneiro (2012)

also suggest that due to imperfect enforcement, the de facto cost of firing a worker may be less

than it appears on paper.

To check the ease with which firms lay off workers in Brazil, I estimate the impact of Bartik

17The median tenure of workers at the time of layoff in my sample is around 15 months.
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output shocks on firm employment following an approach similar to Hershbein and Kahn (2018).

If layoff decisions respond to the regional share of national changes in output, the firing costs are

unlikely to be prohibitively high. I use the full sample data in RAIS to construct regional industry

employment weights and the Industrial Physical Production Index from the PIM (IBGE) for

industry-specific changes in national output during the years 1992–2000.18 φm,k,τ stands for the

regional industry employment share of industry k in municipality m in a prior year (1989). lnBkt

is the log of national output in industry k in year t. The Bartik shock in output for municipality

m in year t, ∆Bmt, is calculated following Equation 6. I estimate how the probability of worker

layoff responds to Bartik shocks in output following the fixed-effect framework in Equation 7.

∆Bmt =

k∑
φm,k,τ (lnBkt − lnBk,t−1) (6)

Yikmt = β1∆Bmt + α1Xit + θkt + Φks + τm + τi + εikmt (7)

Yijmt is the binary outcome for worker layoff at the yearly frequency. Xit is a vector of worker

and plant-level controls. I also include controls for industry growth trends, industry specializa-

tions, and municipality and worker fixed effects. Standard errors are clustered at the worker and

municipality levels. To examine layoff response to output contraction versus expansion, I look

at the subsample where the Bartik shock is negative rather than positive. Table 5 shows that

the probability of layoffs responds strongly to annual output contraction and less so to output

expansion, consistent with firms having concave hiring rules (Ilut et al., 2018). In particular, a

one-percentage-point (relative) regional output reduction leads to a 0.57 percentage point in-

crease in the probability of worker layoff, whereas an output expansion of the same magnitude

only leads to a 0.16 percentage point decrease in the propensity of layoff.

18The index is not available for 1991.
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Table 5: Manufacturing layoff and yearly Bartik shock in output

(1) (2)
Layoff Layoff
b/se b/se

∆Boutput
mt -0.5659*** -0.1565**

(0.153) (0.075)

Observations 1,488,964 2,537,323
Worker FE Yes Yes
Municipality FE Yes Yes
Subsample ∆Bmt < 0 ∆Bmt > 0
Clustering Worker, Municipality

Manufacturing Labor Market—Following Equation
6, the dependent variable, Yijmt, is the binary out-
come for worker layoff at the yearly frequency. The
independent variable, ∆Bmt, is the municipality-
level Bartik shock in output (see text for details).
All regressions include industry × year, state × in-
dustry, worker, and municipality fixed effects, along
with a rich set of firm- and worker-level controls.
*** Significant at 1%, ** 5%, * 10%.

8 Conclusion

Climate change poses significant challenges to manufacturing labor markets in developing coun-

tries, especially given future climate predictions. In this paper, I examine the short- and medium-

run employment adjustment margins of heat shocks through individual worker layoff, hiring, and

job reallocation. By focusing on heat shocks during the nongrowing seasons of each local labor

market in Brazil, I show that the direct labor-productivity channel associated with extreme heat

days leads to significant worker layoff. These effects are more pronounced for workers in more

routine manual task-intensive occupations. Over time, a significant 24.3% of all manufacturing

workers who were laid off due to quarterly heat shocks failed to find another formal job within

36 months, suggesting large worker-level costs over the medium run.

I address several natural extensions in ongoing work. The first is to further understand how

climate change affects worker transition into informality and associated implications for worker

welfare. Second, I expand work on various adjustment margins that include the firm, industry,

and regional perspectives, which helps better explain the adjustment process in general equilib-

rium. Finally, given more pronounced impact on workers in lower skilled occupations and the
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large fraction of workers near minimum wage in Brazil, the next step is to quantify how exist-

ing social welfare programs interact with climate change and how to better design such programs.

Findings from this research inform a more comprehensive cost assessment of climate-change

damages. Worker-level evidence is one step closer to identifying certain groups in the workforce

who are more vulnerable to these dramatic environmental changes, and to targeting mechanism-

specific interventions. This paper also shows that existing labor-market transitional costs in

developing countries could further interact with heat shocks and exacerbate worker welfare loss.

Together, this micro-level evidence suggests the importance of incorporating sector, region, and

worker-specific estimates of climate-change damages, building on existing tools such as the Inte-

grated Assessment Models (Nordhaus, 2017).
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A Additional Figures

Figure A.1: Manufacturing worker layoff: nongrowing seasons, with worker fixed effects and lagged
weather shocks

Manufacturing Labor Market, Nongrowing Seasons, Worker FE, Lags - Each point estimate reflects an individual
regression coefficient, βk, following Equation 1, where the dependent variable is the binary outcome on worker
layoff. The independent variables are the number of days in a quarter with daily mean temperature within a specific
range, Tempbinkm,t. The “<17◦C” bin is the omitted category. The coefficient βk is interpreted as the estimated
impact of one additional day with daily mean temperature in temperature bin k on the propensity of worker
layoff, relative to the impact of a day with daily mean temperature less than 17◦C, in the nongrowing seasons. The
regressions include quarter*state, quarter*industry, quarter*year, state*year, industry*year, state*industry and
municipality fixed effects, other weather covariates, and a rich set of firm and worker-level controls. In addition,
this specification controls for worker fixed effects and average weather shocks for the past three quarters. All
coefficients are multiplied by 100. Standard errors are clustered at the meso-region level.
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Figure A.2: Manufacturing worker layoff: nongrowing seasons, excluding outliers (cooksd)

Manufacturing Labor Market, Nongrowing Seasons, Cook’s Distance - Each point estimate reflects an individual
regression coefficient, βk, following Equation 1, where the dependent variable is the binary outcome on worker
layoff. The independent variables are the number of days in a quarter with daily mean temperature within a specific
range, Tempbinkm,t. The “<17◦C” bin is the omitted category. We drop influential outliers with Cook’s distance
larger than 4/n, where n is the total number of observations. The coefficient βk is interpreted as the estimated
impact of one additional day with daily mean temperature in temperature bin k on the propensity of worker
layoff, relative to the impact of a day with daily mean temperature less than 17◦C, in the nongrowing seasons. The
regressions include quarter*state, quarter*industry, quarter*year, state*year, industry*year, state*industry and
municipality fixed effects, other weather covariates, and a rich set of firm and worker-level controls. In addition,
this specification controls for worker fixed effects and average weather shocks for the past three quarters. All
coefficients are multiplied by 100. Standard errors are clustered at the meso-region level.
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B Additional Tables

Table B.1: Quarterly heat shocks and manuf. worker reallocation, nongrowing seasons

(1) (2) (3) (4) (5) (6) (7) (8)
Manu-s Manu-d Agr-s Agr-d Serv-s Serv-d Failure Tot. layoff
b/se b/se b/se b/se b/se b/se b/se b/se

Temp(>31) 0.530*** 0.053** 0.019*** 0.006 0.027** 0.033 0.283*** 0.952***
(0.133) (0.024) (0.007) (0.006) (0.012) (0.021) (0.069) (0.251)

Decomposition 55.7% 5.6% 2.1% 0.6% 2.9% 3.45% 29.7% 100%

N 16322039 16322039 16322039 16322039 16322039 16322039 16322039 16322039
Municipality FE Yes Yes Yes Yes Yes Yes Yes Yes
Clustering Meso
Other FEs Quarter × State, State × Year, Quarter × Year, Prod × Quarter, Prod × Year, Prod × State

Manufacturing Reallocation, Nongrowing Seasons—Following Equation 2, the dependent variable Y p
ijmt is the binary variable

for whether the worker belongs to a particular postlayoff category, p. The independent variables are the numbers of days in
a quarter with daily mean temperature within a specific range, Tempbinkm,t. The “<17◦C” bin is the omitted category. The
outcomes for Columns 1–7 are (1) reallocate to the manufacturing sector, in the same municipality, within 36 months; (2)
reallocate to the manufacturing sector, in a different municipality, within 36 months; (3) reallocate to the agricultural sector, in
the same municipality, within 36 months; (4) reallocate to the agricultural sector, in a different municipality, within 36 months;
(5) reallocate to the service/primary sector, in the same municipality, within 36 months; (6) reallocate to the service/primary
sector, in a different municipality, within 36 months; and (7) failure to reallocate to any formal employer, within 36 months.
All regressions include quarter × state, quarter × industry, quarter × year, state × year, industry × year, state × industry,
and municipality fixed effects, along with other weather covariates and a rich set of firm- and worker-level controls (see text for
details). All coefficients are multiplied by 100. Standard errors are clustered at the mesoregion level. *** Significant at 1%, **
5%, * 10%.
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C Agricultural Layoff and Hiring: Nongrowing seasons vs. Grow-

ing seasons

I briefly examine the formal agricultural labor-market impact to verify the underlying assumption

for isolating the direct labor productivity channel. Recall that we identify the direct labor pro-

ductivity channel by focusing on heat shocks during the nongrowing seasons. A key assumption

here is that heat shocks during the nongrowing seasons have no significant impact on agricultural

outcomes.

We verify this by looking at agricultural layoff and hiring during growing versus nongrowing

seasons. As shown in the left panels of Figure C.1 and Figure C.2, heat shocks during grow-

ing seasons increase the propensity of agricultural layoff and reduce the propensity of hiring,

consistent with the literature on temperature and crop yield.19 Since crop yield decreases with

temperature, there would be less demand for agricultural workers.

Crucial for our identification assumption, the right panels of Figure C.1 and Figure C.2 show

that heat shocks during nongrowing seasons have no significant impact on the agricultural labor

market. This is expected if there is little agricultural crop growing activity which is temperature

sensitive occurring outside the growing seasons.20 Together, these results are consistent with

the identifying assumption that heat shocks during nongrowing seasons do not operate through

agricultural channels. Finally, I do additional robustness check focusing on sugarcane workers

only. In Brazil, the sugarcane sector is unionized, 70% formal, and therefore has better coverage

in RAIS. The findings are similar (Figure C.3).

19(Schlenker and Roberts, 2009; Lobell et al., 2011)
20There may still be agricultural workers employed during the nongrowing seasons, engaging in marketing, and

looking for opportunities to sale of their crops.
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Figure C.1: Quarterly heat shocks and agricultural layoff

Agricultural Labor Market, Growing seasons versus Nongrowing seasons - Each point estimate reflects an indi-
vidual regression coefficient, βk, following Equation 1, where the dependent variable is the binary outcome on
worker layoff. The independent variables are the number of days in a quarter with daily mean temperature within
a specific range, Tempbinkm,t. The “<17◦C” bin is the omitted category. The coefficient βk is interpreted as the
estimated impact of one additional day with daily mean temperature in temperature bin k on the propensity of
worker layoff, relative to the impact of a day with daily mean temperature less than 17◦C. The regressions include
quarter*state, quarter*industry, quarter*year, state*year, industry*year, state*industry and municipality fixed
effects, other weather covariates, and a rich set of firm and worker-level controls. All coefficients are multiplied by
100. Standard errors are clustered at the meso-region level.

Figure C.2: Quarterly heat shocks and agricultural hiring

Agricultural Labor Market, Growing seasons versus Nongrowing seasons - Each point estimate reflects an indi-
vidual regression coefficient, βk, following Equation 1. The dependent variable is region-industry hiring share,
constructed by aggregating the total number of individual accession in each quarter at the municipality-industry
level, normalized by each municipality’s population in 1999. The independent variables are the number of days
in a quarter with daily mean temperature within a specific range, Tempbinkm,t. The “<17◦C” bin is the omitted
category. The coefficient βk is interpreted as the estimated impact of one additional day with daily mean tem-
perature in temperature bin k on the hiring share, relative to the impact of a day with daily mean temperature
less than 17◦C. The regressions include quarter*state, quarter*industry, quarter*year, state*year, industry*year,
state*industry and municipality fixed effects, and other weather covariates (see text for details). Standard errors
are clustered at the meso-region level.
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Figure C.3: Sugarcane worker layoff: growing versus nongrowing seasons

Sugarcane Labor Market, Growing seasons versus Nongrowing seasons - Each point estimate reflects an individual
regression coefficient, βk, following Equation 1, where the dependent variable is the binary outcome on worker
layoff. The independent variables are the number of days in a quarter with daily mean temperature within a
specific range, Tempbinkm,t. The “<17◦C” bin is the omitted category. The coefficient βk is interpreted as the
estimated impact of one additional day with daily mean temperature in temperature bin k on the propensity of
worker layoff, relative to the impact of a day with daily mean temperature less than 17◦C. The regressions include
quarter*state, quarter*industry, quarter*year, state*year, industry*year, state*industry and municipality fixed
effects, other weather covariates, and a rich set of firm and worker-level controls. All coefficients are multiplied by
100. Standard errors are clustered at the meso-region level.
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D Reallocation for Agricultural Workers

Table D.1 shows agricultural worker reallocation post layoff, due to heat shocks during the grow-

ing seasons. More intersectoral reallocation happens for agricultural workers, possibly because

manufacturing is better represented in the formal sectors. As shown in column 3 and 4 in Table

D.1, 54.1% of all heat-related layoffs find another agricultural employment within the same mu-

nicipality, while 19.7% workers find another agricultural employment in a different municipality,

both within three years. Based on column 1 and 2, roughly 16.8% of heat-related agricultural

layoffs find the next job in manufacturing, either in the same or a different municipality.

Table D.1: Quarterly Heat Shocks and Agr. Worker Reallocation, GS

(1) (2) (3) (4) (5) (6) (7) (8)
Manu-s Manu-d Agr-s Agr-d Serv-s Serv-d Failure Tot. layoff
b/se b/se b/se b/se b/se b/se b/se b/se

Temp(17-20) 0.00098 -0.00006 -0.01737 -0.01957*** -0.00507*** -0.01247*** -0.01427** -0.06783**
(0.002) (0.003) (0.016) (0.007) (0.002) (0.003) (0.007) (0.032)

Temp(20-23) -0.00102 0.00091 0.00112 -0.00768 -0.00499*** -0.00449 -0.01079 -0.02694
(0.003) (0.004) (0.017) (0.010) (0.002) (0.005) (0.009) (0.040)

Temp(23-25) 0.00404 0.00641 0.02841 -0.00115 -0.00619** -0.00371 -0.01274 0.01506
(0.003) (0.004) (0.019) (0.010) (0.002) (0.005) (0.009) (0.043)

Temp(25-27) 0.00785** 0.01090** 0.05281** 0.01085 -0.00350 0.00061 -0.00215 0.07736
(0.004) (0.005) (0.026) (0.011) (0.003) (0.006) (0.011) (0.057)

Temp(27-29) 0.01351** 0.02196*** 0.11323*** 0.03619** 0.00072 0.00732 0.01289 0.20582***
(0.005) (0.006) (0.038) (0.015) (0.003) (0.008) (0.014) (0.077)

Temp(29-31) 0.02148** 0.02493*** 0.13927*** 0.03694** -0.01006 0.00413 0.01723 0.23393**
(0.010) (0.007) (0.052) (0.018) (0.007) (0.009) (0.017) (0.098)

Temp(>31) 0.02149* 0.04504*** 0.21399*** 0.07791*** 0.00006 0.01003 0.02727 0.39579***
(0.012) (0.011) (0.076) (0.023) (0.007) (0.012) (0.027) (0.136)

N 1677744 1677744 1677744 1677744 1677744 1677744 1677744 1677744
Municipality FE Yes Yes Yes Yes Yes Yes Yes Yes
Clustering Meso
Other FEs Quarter*State, State*Year, Quarter*Year, Prod*Quarter, Prod*Year, Prod*State

Agricultural Reallocation, Growing Seasons - Following equation 2, the dependent variable Y p
ijmt is the binary variable for whether

the worker belongs to a particular post-layoff category p. The independent variables are the number of days in a quarter with daily
mean temperature within a specific range, Tempbinkm,t. The "<17◦C" bin is the omitted category. The outcome for column 1-7 are:
(1) Reallocate to the manufacturing sector, in the same municipality, within 36 months (2) Reallocate to the manufacturing sector,
in a different municipality, within 36 months (3) Reallocate to the agricultural sector, in the same municipality, within 36 months
(4) Reallocate to the agricultural sector, in a different municipality, within 36 months (5) Reallocate to the service/primary sector,
in the same municipality, within 36 months (6) Reallocate to the service/primary sector, in a different municipality, within 36
months (7) Failure to reallocate to any formal employer, within 36 months. All regressions include quarter*state, quarter*industry,
quarter*year, state*year, industry*year, state*industry and municipality fixed effects, other weather covariates, and a rich set of
firm and worker-level controls (see text for details). All coefficients are multiplied by 100. Standard errors are clustered at the
meso-region level. *** Significant at the 1 percent, ** 5 percent, * 10 percent.
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The majority of the Brazilian agricultural workers are informal and therefore not covered in

RAIS. Alternatively, I focus only on sugarcane workers who are highly unionized and better

represented in the formal sector (Table D.2). We see around 72% sugarcane workers reallocate

within the agricultural sector in the same or a different municipality. 7.2% and 7.3% reallocate

to manufacturing or services in a different municipality. Although failure to reallocate is not

significant for the full agricultural sample, a significant 11.2% sugarcane workers fail to find any

formal sector employment within the next three years. This failure rate is much lower compared

to manufacturing. Out of the many possible explanations, we might expect agricultural workers

to be more willing to switch to manufacturing and services due to a higher wage premium, while

manufacturing workers may be less willing to switch to agriculture.

Table D.2: Quarterly Heat Shocks and Sugarcane Worker Reallocation, GS

(1) (2) (3) (4) (5) (6) (7) (8)
Manu-s Manu-d Agr-s Agr-d Serv-s Serv-d Failure Tot. layoff
b/se b/se b/se b/se b/se b/se b/se b/se

Temp(17-20) 0.03543** 0.01736 0.05293 -0.01565 -0.00238 0.00486 -0.00772 0.08482
(0.015) (0.017) (0.067) (0.030) (0.006) (0.009) (0.011) (0.108)

Temp(20-23) -0.01328 0.01325 0.10262 0.03931 -0.00665 0.01228 0.00648 0.15401
(0.021) (0.020) (0.075) (0.046) (0.007) (0.013) (0.019) (0.157)

Temp(23-25) 0.01509 0.04480** 0.19791* 0.05176 -0.02086 0.02409 0.01424 0.32702*
(0.022) (0.021) (0.104) (0.051) (0.013) (0.018) (0.024) (0.185)

Temp(25-27) 0.00988 0.04089 0.22959* 0.08187 -0.01048 0.02403 0.02206 0.39783*
(0.023) (0.031) (0.119) (0.053) (0.009) (0.019) (0.030) (0.227)

Temp(27-29) 0.01994 0.09371** 0.41827** 0.16739** 0.00105 0.04552* 0.05445 0.80034**
(0.033) (0.042) (0.161) (0.075) (0.011) (0.026) (0.042) (0.320)

Temp(29-31) 0.04807 0.13761** 0.65303*** 0.19977** 0.01136 0.04100 0.06194 1.15278***
(0.047) (0.057) (0.216) (0.099) (0.024) (0.031) (0.067) (0.421)

Temp(>31) 0.27051 0.39336*** 3.01420* 0.91793*** -0.15311 0.39783*** 0.61068*** 5.45141***
(0.172) (0.144) (1.803) (0.185) (0.102) (0.111) (0.226) (1.985)

N 1677744 1677744 1677744 1677744 1677744 1677744 1677744 1677744
Municipality FE Yes Yes Yes Yes Yes Yes Yes Yes
Clustering Meso
Other FEs Quarter*State, State*Year, Quarter*Year, Prod*Quarter, Prod*Year, Prod*State

Sugarcane Worker Reallocation, Growing Seasons - Following equation 2, the dependent variable Y p
ijmt is the binary

variable for whether the worker belongs to a particular post-layoff category p. The independent variables are the number
of days in a quarter with daily mean temperature within a specific range, Tempbinkm,t. The "<17◦C" bin is the omitted
category. The outcome for column 1-7 are: (1) Reallocate to the manufacturing sector, in the same municipality, within
36 months (2) Reallocate to the manufacturing sector, in a different municipality, within 36 months (3) Reallocate to the
agricultural sector, in the same municipality, within 36 months (4) Reallocate to the agricultural sector, in a different
municipality, within 36 months (5) Reallocate to the service/primary sector, in the same municipality, within 36 months
(6) Reallocate to the service/primary sector, in a different municipality, within 36 months (7) Failure to reallocate to
any formal employer, within 36 months. All regressions include quarter*state, quarter*industry, quarter*year, state*year,
industry*year, state*industry and municipality fixed effects, other weather covariates, and a rich set of firm and worker-
level controls (see text for details). All coefficients are multiplied by 100. Standard errors are clustered at the meso-region
level. *** Significant at the 1 percent, ** 5 percent, * 10 percent.
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E Theory Appendix

I begin with a model where firms are monopolistically competitive and derive how firms with

different productivity draws optimally choose their factor input under temperature shocks. To

echo the empirical facts on within-industry firm productivity and factor intensity, I adopt a pro-

duction function developed by Burstein and Vogel (2016) where more productive firms are also

less labor intensive.

To the original production function, I add an element of temperature shocks faced by the firm

modeled as a change in labor productivity. This modeling choice is motivated by the empirical

literature on thermal stress and labor productivity impact discussed in the main paper.

E.1 Temperature Shocks

Temperature shocks influence manufacturing production through changes in labor productivity.

In this section, I assume that heat exposure negatively impact production (or unskilled) workers

more than skilled workers, and labor productivity more than capital productivity.

Specifically, temperature enters the firm’s production function through labor productivity F (T ),

which is modeled flexibly to allow for possible nonlinear relationship between temperature and

labor productivity. Numerous empirical studies suggest that F (T ) is single-peaked, with a global

maximum at the ideal body temperature point t0, although the value of t0 could differ by pop-

ulation and geographic characteristics.

E.2 Demand

As in Melitz (2003), the representative consumer has CES utility over a continuum of goods,

each produce by a single firm, indexed by ω.

U = [

∫
ω∈Ω

q(ω)σdω]1/σ (8)

Consumption varieties has the elasticity of substitution σ. Here I assume that consumption goods

are substitutes, i.e. σ > 1. Solving the consumer’s utility maximization problem, we can derive

the demand function for an individual variety ω, given by q(ω) = p(ω)−σRP σ−1 = Γp(ω)−σ.
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R is the national income, and P is the national price index. For now in the partial equilibrium

analysis, both are assumed to be fixed and taken as exogenous under regional temperature shocks.

In addition, I assume that there’s a numeraire good in an outside agricultural sector which fixes

wage.

E.3 Production

Firms face monopolistic competition and each produces variety (ω, j) where j is the industry

index. There are two factors of production, capital k, and labor l. Let ρ denote the elasticity

of substitution between factors. I assume for now that factors are substitutes with the elasticity

ρ > 1. Each industry j faces a sector total factor productivity A(j).

In order to produce, firms have to incur a fixed cost f . Upon entry, each firm has a productivity

draw, from an i.i.d. distribution of random variables z(ω, j) = u−θ, where u is exponentially

distributed with mean and variance 1.

To capture the empirical fact that more productive firms are also less labor intensive, I employ a

production function with “capital-biased productivity” proposed by Burnstein and Vogel (2016).

y = A(j)z(ω, j) ∗ [α
1
ρ

j (z(ω, j)
φ
2 k)

ρ−1
ρ + (1− αj)

1
ρ (z(ω, j)

−φ
2 F (T )l)

ρ−1
ρ ]

ρ
ρ−1 (9)

αj is the industry input elasticity. z(ω, j) represents within industry productivity. Both αj ∈ (0, 1)

and φ ∈ [−2, 2] shape the labor-intensity of production.

In addition to the firm’s initial productivity draw z(ω, j), temperature shapes labor productivity

through F (T ). Beyond the ideal body temperature point, increases in temperature reduces effec-

tive labor. The production function given in equation 9 deviates from the classic CES production

function by incorporating the “capital-biased productivity” mechanism, assuming φ(ρ − 1) > 0.

This is reflected in the equilibrium condition that firms with a higher productivity draw z(ω, j)

also has a higher capital to labor ratio.
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E.4 Price-Setting

The production function given in equation 9 has constant returns to scale and a constant

variable cost c(r, w, z). The firm therefore sets its price p, maximizing profit according to:

pq(ω) − cq(ω) − f = Γp1−σ − c(r, w, z)p−σ − f . From the profit function, we can derive the

optimal price: p(ω)∗ = σ
σ−1c. As in the Melitz model, we also have that optimal price is a con-

stant mark-up of the constant variable cost.

It is worth noting that in the monopolistic competition setting with CES preferences the price

of a variety (ω, j) does not depend on the number of competing firms in the market. The price

elasticity of demand for any variety also does not respond to changes in the number or prices of

competing varieties.

For now, I continue the baseline model with the settings in Melitz (2003), the optimal quantity

produced is:

q(ω) = Γ(
σ

σ − 1
c)−σ = Gc−σ (10)

where G = Γ( σ
σ−1)−σ = RP σ−1( σ

σ−1)−σ and the firm’s profit is π(ω)∗ = 1
σ−1Gc

1−σ − f .

E.5 Expenditure Minimization

To derive the firm’s optimal factor choices, I solve the following expenditure minimization prob-

lem. A firm in industry j, producing variety ω, faces the following cost minimization problem

upon entry:

min
k,l

e = wl + rk + f, s.t : y = x (11)

From the equilibrium condition of the cost minimization problem, I derive the capital-to-labor

ratio equation which illustrates the “capital-biased productivity” mechanism in the production

function.

k(ω, j)

l(ω, j)
= (

r

w
)−ρ

αj
1− αj

z(ω, j)φ(ρ−1)F (T )1−ρ (12)

Here we see that when φ(ρ − 1) > 0 as assumed before, firms with a higher productivity draw
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z(ω, j) will have a higher capital to labor ratio in equilibrium, thus productivity is capital-biased.

Assuming factors are substitutes, or ρ > 1, we see that the firm’s capital to labor ratio increases

as temperature shocks decrease labor productivity. The equilibrium-level of capital to labor ratio

is shaped by both industry parameters, φ and ρ, as well as the within industry firm-specific

productivity, z(ω, j), which is the key parameter for comparative statics and empirical analysis.

E.6 The Zero Profit Cutoff Condition

Next, I look at how temperature shocks impact firm exit and regional productivity cutoffs. From

optimal price-setting, we know that each firm has the maximized profit π(z) = 1
σ−1Gc(z, T )1−σ−

f . We can show that c(z, T ) is monotonically decreasing in z, and monotonically increasing in

T .

For any fixed temperature T , there exist a unique productivity cutoff z∗ such that π(z∗) = 0,

so that any firm with a productivity draw z < z∗ will immediately exit and never produce. The

zero cutoff productivity z∗ is given by the condition:

c(z∗) = [
f(σ − 1)

RP σ−1( σ
σ−1)−σ

]
1

1−σ = [
f(σ − 1)

G
]

1
1−σ (13)

E.7 Comparative Statics

Prediction 1: Assuming fixed factor prices and no firing cost, heat shocks reduce labor demand

for all firms.
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