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Introduction 
 
Strategic thinking—people’s attempts to predict others’ decisions in games—
pervades human interaction. 
 
Traditional game theory has a built-in model of strategic thinking in its notion of 
Nash equilibrium, henceforth shortened to “equilibrium”. 
 
Equilibrium is defined as a combination of decisions, one for each player, such 
that each player’s decision is rational in the decision-theoretic sense of 
maximizing her/his expected utility (“payoff”), given other players’ decisions. 
 
Although this definition identifies equilibrium decisions without reference to 
players’ beliefs, equilibrium can usefully be viewed as “equilibrium in beliefs,” in 
which rational players have common beliefs about each other’s decisions that are 
self-confirming, given the (decision-theoretically) rational decisions they imply. 
 
In other words, players have “rational expectations” about each other’s decisions. 
 
This is a far stronger assumption than rationality of individual decisions. 
 



3 
 

 
 
 
Even so, equilibrium remains the method of choice in strategic applications. 
 
But I will argue that it is possible in some applications to identify nonequilibrium 
models of strategic thinking that systematically out-predict equilibrium. 
 
 
This claim raises two questions:  
 
● How could any model systematically out-predict a rational-expectations notion 
 such as equilibrium? 
 
● And if such models exist, how could anyone identify one within the enormous 
 set of logically possible nonequilibrium models? 
 
These questions are answered, to some extent, by recent experimental work that 
studies strategic thinking by eliciting subjects’ initial responses to games. 
 
 
 



4 
 

 
 
 
Equilibrium can be justified in two main ways: 
 
 
● In learning models, rational players learn to predict others’ decisions from their 
 previous responses to analogous games: 
 
 Their decisions then often converge to some equilibrium in the “stage game” 
 that is repeated; they need not think at all, beyond recognizing the analogies 
 
 
● In thinking models, rational players predict others’ decisions in their initial 
 responses to games played without close precedents epistemically: 
 

If players are rational and it is common knowledge that their thinking follows 
the logic of some equilibrium, their beliefs will yield decisions in that equilibrium 
(Brandenburger 1992, Proposition 4) 

 
  



5 
 

 
 
 
When equilibrium has a plausible learning justification, it often yields a coherent 
and empirically reliable account of behavior, with no strategic thinking required. 
 
But when it does not, equilibrium must be justified by strategic thinking. 
 
 
However, thinking justifications are much more fragile than learning justifications. 
 
In all but the simplest games, equilibrium logic requires fixed-point, contingent, or 
extensive iterated-dominance reasoning. 
 
These are all subtle enough that even people who can follow them may doubt 
that others can. 
 
 
Many applications in which equilibrium lacks a plausible learning justification do 
not support a blanket assumption that people’s decisions will be in equilibrium. 
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Despite these concerns, most researchers reflexively assume equilibrium: 
 
 
● Perhaps because they hope equilibrium predictions will still be correct on 

average, or fear that without equilibrium there will be no basis for analysis 
 
 
● Or because they overestimate the scope of learning justifications, when few 

applications have games with precedents as close as learning models assume 
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When equilibrium is not well justified, it seems more useful to address the above 
concerns by using theory and evidence to identify nonequilibrium models that are 
better justified and better predict people’s decisions. 
 
The goal is not to supplant equilibrium analysis, but to extend it in ways that 
make it more useful. 
 
 
The potential benefits are clear:  
 
● In some applications nonequilibrium models may predict that people’s strategic 

thinking will lead them to mimic their equilibrium decisions, thus establishing 
the robustness of equilibrium-based predictions 

 
● In others they may predict the forms and frequencies of deviations from 
 equilibrium, resolving empirical puzzles equilibrium analysis cannot address 
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It is not obvious that those potential benefits can be realized. 
 
But in recent experimental work that studies strategic thinking by eliciting 
people’s initial responses to games, few if any subjects use fixed-point or 
extensively iterated dominance reasoning when equilibrium requires it. 
 
 
To the extent that there are decision rules that reliably describe what such 
subjects do (which is considerable), they must be nonequilibrium rules. 
 
Well-designed experiments often precisely identify subjects’ decision rules, even 
within the enormous set of logically possible nonequilibrium rules. 
 
Identifying subjects’ decision rules often yields tractable models that can predict, 
in advance, what deviations from equilibrium will occur and their forms and 
likelihoods: out-predicting equilibrium despite its rational expectations character. 
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I next review the leading models of strategic thinking, then review some 
representative experimental evidence, and finally discuss some applications. 
 
 
Models of Strategic Thinking 
 
I now review the leading models of strategic thinking, focusing on simultaneous-
move (“normal-form”) games with symmetric information (I call players’ choices 
“decisions” rather than “strategies”), played in settings that do not allow learning. 
 
(Such models of strategic thinking yield insights that also help in modeling 
asymmetric information, learning from imperfect analogies, and equilibrium 
selection via learning, but that’s another story.) 
 
I assume the structure of each game is common knowledge, in that each player 
knows the structure, knows that other players know it, and so on ad infinitum.   
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To focus as sharply as possible on strategic thinking, I also maintain standard 
assumptions about individual preferences and judgment. 
 
 
Apology: In principle, any aspect of behavioral decision theory—such as present-
biased, reference-dependent, or social preferences, or heuristics and biases in 
probabilistic judgment—is equally relevant in behavioral game theory.  
 
But here, as in most of behavioral game theory, I follow a “divide-and-conquer” 
strategy, taking individual decisions as self-interested and decision-theoretically 
rational while considering the issue that is unique to games, strategic thinking. 
 
The implicit hope is that in behavioral game theory done this way, behavioral 
decision theory will be “plug and play”, so that combining the two will yield the full 
understanding of behavioral game theory needed for useful applications. 
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A “decision rule” describes a player’s decisions in all the games s/he plays. 
  
A “model” of strategic thinking specifies a frequency distribution over players’ 
possible decision rules and an error structure. 
 
The decision rules I consider here include: 
● Equilibrium 
 
● Rationalizability and k-rationalizability 
 
● Quantal response equilibrium (“QRE”), logit QRE (“LQRE”), regular QRE 
 (“RQRE”), and rank-dependent choice equilibrium (“RDCE”) 
 
● Dominance-k models (“Dk”) 
 
● Level-k models (“Lk”) 
 
● Cognitive hierarchy models (“CH”)  
 
These are all general decision rules, applicable to any game, which determine 
players’ beliefs as well as their decisions. They all allow decision errors, except 
for the set-valued rules rationalizability, k-rationalizability, RQRE, and RDCE. 
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Recall that I am focusing on simultaneous-move (“normal-form”) games with 
symmetric information, whose structures are common knowledge. 
 
One issue that has not been discussed enough in models of strategic thinking is 
the information that a player needs to implement her/his rule’s decisions. 
 
 
For rules that specify precise decisions, a rule’s decision can be thought of as the 
sum of its mean decision and a mean-zero error term. (This includes rules like 
QRE and LQRE, which distinguish errors from mean decisions only implicitly.) 
 
 
I take a rule’s mean decisions to represent the intentional part of its decisions. 
 
I call a decision rule “self-informed” if a player can identify its mean decisions 
using only information available to the player her/himself. 
 
 
This notion can easily be extended to rules like rationalizability, k-rationalizability, 
RQRE, and RDCE, which are set-valued and don’t have explicit error structures. 
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A decision rule that is not self-informed entails no logical inconsistency. 
 
But assuming that a player’s mean decisions depend on information about 
others’ decision rules—the only other information that might matter in symmetric-
information games—implicitly ascribes more than usual sophistication to her/him. 
 
 
Self-informedness is not a standard notion, but it is an important desideratum for 
decision rules meant to describe strategic thinking, or cognition more generally. 
 
Leading models of strategic thinking differ substantially in self-informedness. 
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Equilibrium 
 
Recall that equilibrium is defined as a combination of decisions, one for each 
player, such that each player’s decision is rational in the decision-theoretic sense 
of maximizing her/his expected utility (“payoff”), given other players’ decisions. 
 
In the “equilibrium in beliefs” view, rational players have common beliefs about 
each other’s decisions that are self-confirming, given the rational decisions they 
imply: Players have “rational expectations” about each other’s decisions.  
 
Analysts are driven to this rational-expectations assumption, which is far stronger 
than decision-theoretic rationality, because in games rationality, even if common 
knowledge, seldom restricts behavior enough to be useful. 
 
(Moreover, many games have multiple equilibria, so even equilibrium does not 
always make unambiguous predictions, and it is often further augmented by 
equilibrium-selection refinements such as risk- or payoff-dominance.) 
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The simplest way to allow for errors in an equilibrium analysis is to add errors to 
its predicted decisions, yielding a model I will call “equilibrium plus noise”.  
 
An equilibrium plus noise player’s decision densities are usually assumed to 
depend on her/his decisions’ expected payoffs, evaluated via equilibrium beliefs, 
that is assuming that all others make their equilibrium decisions with certainty.  
 
Each player’s decision densities are usually assumed to have a known form such 
as logit, independent across players with zero mean and estimated precision. 
 
 
If an equilibrium or equilibrium plus noise decision rule is augmented by a 
refinement that uniquely selects an equilibrium, then that rule is self-informed. 
 
Even though the refinement involves others’ decisions, it rests on an equilibrium 
prediction of their decisions, so it can be implemented without further information.  
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Rationalizability and k-rationalizability 
 
In two-person games (n-person games differ in ways that are unimportant here), 
rationalizability or finitely iterated strict dominance and k-rationalizability capture 
the implications of common or finitely iterated knowledge of rationality. 
 
k-rationalizability reflects the implications of k levels of mutual knowledge of 
rationality. Rationalizability is equivalent to k-rationalizability for all k. 
 
A 1-rationalizable strategy (the sets R1 on the next slide) is one for which there is 
a profile of others’ strategies that makes it a best response. 
 
A 2-rationalizable strategy (the sets R2) is one for which there exists a profile of 
others’ 1-rationalizable strategies that make it a best response. And so on…. 
 
Each notion generally yields set-valued restrictions on individual players’ strategy 
choices (unlike equilibrium, which restricts the relationship of their strategies). 
 
Decision errors are not usually allowed, because their predictions are set-valued.  
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Each game here has a unique equilibrium (M, C). In the first, M and C are the 
only rationalizable strategies; in the second, all strategies are rationalizable.  

  R1,R2 R1,R2,R3,R4  
   L C R 

R1,R2,R3 T 0   
7 

5 
0 

3 
0 

R1,R2,R3,R4 M 0 
5 

2 
2 

0 
5 

R1 B 7 
0 

5 
0 

3   
7 

  Strictly dominance-solvable 
 

  Rk for all k Rk for all k Rk for all k 
   L C R 

Rk for all k T 0   
7 

5 
0 

7 
0 

Rk for all k M 0 
5 

2 
2 

0 
5 

Rk for all k B 7 
0 

5 
0 

0   
7 

  Unique equilibrium without dominance 
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Any equilibrium decision is k-rationalizable for all k.  
 
In games that are strictly dominance-solvable in k rounds, k-rationalizability 
implies that players have the same beliefs, so that any combination of k-
rationalizable decisions is in equilibrium, as in the first game. 
 
But in general, not all combinations of rationalizable decisions are in equilibrium. 
 
k-rationalizability and rationalizability can allow deviations from equilibrium, as in 
the second game, where there is a “helix” of beliefs, consistent with common 
knowledge of rationality, to support any decision combination. 
 
But except for the equilibrium beliefs (M, C), the beliefs in the helix differ across 
players and rounds, and many are behaviorally implausible. 
 
 
Rationalizability and k-rationalizability decision rules are self-informed, because 
their sets of decisions are completely determined by iterated knowledge of 
players’ rationality and the structure of the game.  
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Quantal response equilibrium, logit QRE (“LQRE”), regular QRE (“RQRE”), 
and rank-dependent choice equilibrium (“RDCE”) 
 
In a QRE, players’ decisions are noisy, with given error distribution and precision.  
 
A player’s decision density is sensitive to her/his decisions’ expected payoffs, 
but—unlike in equilibrium plus noise—is evaluated taking the noisiness of others’ 
decisions into account. 
 
A QRE is therefore a fixed point in the space of decision distributions, in which 
each player’s distribution is a noisy best response to the others’ distributions. 
 
 
As players’ error precisions approach ∞, QRE converges to equilibrium. 
 
As players’ error precisions approach 0, QRE converges to independent uniform 
randomization over each player’s decisions. 
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Allowing players’ decisions to be noisy is often seen as enhancing QRE’s 
behavioral plausibility. After all, people’s decisions are noisy. 
 
Anyone who accepts that players’ decisions are noisy but insists on 
equilibrium/rational expectations will be led to define a notion like QRE.  
 
However, QRE loses the behavioral plausibility it gains by allowing decision 
noise, by replacing equilibrium’s fixed-point reasoning in the space of beliefs 
about decisions (deterministic or mixed with limited support), with fixed-point 
reasoning in the much larger space of full-support noisy decision distributions. 
 
If the rationale for QRE is that equilibrium reasoning is cognitively taxing, QRE 
reasoning is doubly taxing. 
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QRE with a specified error distribution shares equilibrium plus noise’s precision: 
Given an error distribution it precisely predicts a distribution of players’ decisions. 
 
In applications QRE’s error distribution is often assumed to be logit (“LQRE”). 
 
 
 
LQRE (or QRE more generally) allows players to respond to out-of-equilibrium 
payoffs (which, by definition, equilibrium plus noise cannot do). 
 
Such responses often allow QRE to track subjects’ initial responses to games 
significantly better than equilibrium plus noise does. 
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However, this strength is linked to a weakness: 
 
QRE’s ability to track subjects’ responses is highly sensitive to the form of its 
assumed error distribution—far more sensitive than in quantal response models 
of individual decisions, or in other nonequilibrium models. 
 
Haile et al. (2008) show that if there is only one observation per game-player pair 
and there are no restrictions on the error distributions, QRE, by varying the error 
distributions, can be made to fit any given dataset perfectly. 
 
In other settings, QRE varying the error distributions stops short of allowing a 
perfect fit, but QRE is still unusually sensitive to assumptions about their forms. 
 
Put another way, the source of QRE’s ability to fit the data better is an untested 
assumption about which theory offers no guidance. 
 
Remedying this may require estimating QRE decision distributions 
nonparametrically, with enough data from a sufficiently rich experimental design. 
 
Existing analyses haven’t done that, with partial exceptions discussed below. 
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QRE or LQRE decision rules are not self-informed, because a player’s mean 
decision depends on other players’ decision distributions. 
 
 
As I have said, there is no logical problem with a non-self-informed model. 
 
But a QRE or LQRE decision rule implicitly assumes that a player who, by 
hypothesis, cannot precisely identify her/his own equilibrium decision, can 
identify the precision of the distribution of others’ deviations from equilibrium. 
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Spurred by Haile et al.’s (2008) and other criticisms, Goeree et al. (2005) and 
Goeree et al. (2019) consider the possible QRE decision distributions, replacing 
conventional functional form assumptions regarding error distributions, such as 
logit, with intuitive nonparametric qualitative restrictions. 
 
Goeree et al.’s (2005) “regular QRE” or “RQRE” is a QRE with i.i.d. error 
distributions that are otherwise unrestricted except that their decision densities 
are monotonically increasing in a decision’s expected payoffs (in two 
complementary ways) and satisfy continuity and a technical condition. 
 
Goeree et al. (2005) characterize RQRE’s set-valued restrictions on players 
decision distributions in a simple perturbed matching pennies example, with one 
observation per game-player pair, and some cross-game restrictions.  
 
Thus, QRE with i.i.d. error distributions and plausible monotonicity restrictions on 
error densities does have some testable distribution-free implications. 
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Goeree et al. (2019) take this line of work a step further, introducing a notion they 
call “rank-dependent choice equilibrium” or “RDCE”.  
 
Like RQRE, RDCE replaces QRE’s functional form assumptions regarding error 
distributions with plausible monotonicity conditions, now requiring that the 
rankings of a player’s decisions’ choice probabilities be the same as the rankings 
of their expected payoffs given other players’ decision distributions. 
 
Goeree et al. characterize RDCE’s set-valued restrictions on players’ decision 
distributions, showing that RDCE’s restrictions are equivalent to the set of QRE’s 
restrictions with decision error distributions unrestricted except for monotonicity. 
 
RDCE’s sets of possible decision probabilities, while possibly large, shrink 
quickly as the number of feasible decisions increases. 
 
RDCE is cognitively less taxing than equilibrium or QRE, in that a player can find 
its sets of possible decision probabilities without fixed-point reasoning; but finding 
the QRE for particular error distributions still requires fixed-point reasoning. 
 
Unlike QRE or LQRE decision rules, RQRE and RDCE rules are self-informed, 
because the means of their set-valued decisions are completely determined by 
iterated knowledge of players’ rationality and the structure of the game. 
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Dominance-k models (“Dk”) 
 
Costa-Gomes and Crawford (2006) introduce a family of decision rules called 
“Dominance-k” or “Dk”, which makes epistemic analyses of finitely iterated 
dominance more precise and plays an important role in their analysis of Nagel’s 
(1995) and Ho et al.’s (1998) n-person guessing games discussed below. 
 
D1 does one round of deletion of both players’ strictly dominated decisions and 
best responds to a uniform prior over its partner’s remaining decisions. 
 
D2 does two rounds of iterated deletion of strictly dominated decisions and best 
responds to a uniform prior over its partner’s remaining decisions, and so on. 
 
If there are no dominated decisions, a Dk rule is equivalent to a level-k L1 rule. 
 
In general, Dk-1’s decisions survive k rounds of iterated elimination of dominated 
decisions and so in two-person games are k-rationalizable: Dk-1 yields a precise 
selection from the set of k-rationalizable decisions: a heterogeneity-tolerant 
refinement of k-rationalizability. 
 
Dk decision rules are self-informed because their mean decisions are determined 
by iterated knowledge of players’ rationality and the structure of the game.   
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Level-k models (“Lk”) 
 
Level-k decision rules anchor beliefs in a strategically naïve initial assessment of 
others’ likely responses, called L0; and then adjust them via thought-experiments 
with iterated best responses, so that L1 best responds to L0, L2 to L1, and so on. 
 
Level-k models bring in strategic considerations—while avoiding fixed-point 
reasoning—by assuming that L1 best responds to L0, L2 to L1, and so on. 
 
A player’s L0 is usually assumed to be independent and uniform random over 
other players’ feasible decisions. 
 
In n-person games it matters whether L0 is independent across other players or 
correlated. The limited available evidence suggests that most people have highly 
correlated, “representative agent”-like models of others. In the n-person games 
discussed below I take L0 still to be uniform random but to pertain to the payoff-
relevant summary of others’ decisions, which there is their average decision. 
 
Either way, L0 players need not exist in the population: They may be only the 
starting point for higher levels’ models of others.  
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Level-k models seem first to have been suggested by Keynes (1936, Chapter 12) 
at the end of his famous newspaper “beauty contest” analogy: 
 

“...professional investment may be likened to those newspaper competitions 
in which the competitors have to pick out the six prettiest faces from a 
hundred photographs, the prize being awarded to the competitor whose 
choice most nearly corresponds to the average preferences of the 
competitors as a whole; so that each competitor has to pick, not those faces 
which he himself finds prettiest, but those which he thinks likeliest to catch 
the fancy of the other competitors, all of whom are looking at the problem 
from the same point of view. It is not a case of choosing those which, to the 
best of one’s judgment, are really the prettiest, nor even those which average 
opinion genuinely thinks the prettiest. We have reached the third degree 
where we devote our intelligences to anticipating what average opinion 
expects the average opinion to be. And there are some, I believe, who 
practice the fourth, fifth and higher degrees.” 

 
Keynes’ forms of strategic thinking are heterogeneous, discrete, and based on 
finitely iterated best responses to pure lower levels—like level-k decision rules. 
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Note that this definition of Lk best responds to a pure Lk-1, rather than: 
 
● An Lk-1 with decision noise (in the spirit of QRE) 
 
● A mixture of lower levels (as in the CH models discussed next), or 
 
● A mixture of levels with a positive frequency of its own level (which—like 
 equilibrium—would require fixed-point reasoning) 
 
 
This definition does make Lk cognitively more accessible than QRE, Dk, or CH. 
 
The right Lk definition is an empirical question, and there is evidence for this one. 
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Lk decision rules (for k > 0) are rational; they depart from equilibrium only in that 
their beliefs are based on simplified, nonequilibrium models of others. 
 
Lk decision rules, like Dk-1 rules (but unlike the CH Lk rules discussed below), 
respect k-rationalizability, making decisions that in two-person games survive k 
rounds of iterated deletion of strictly dominated strategies. 
 
Dk-1 respects k-rationalizability by construction, while Lk’s respect is a by-
product of iterating best responses. 
 
Thus an Lk model, like a Dk model, can be viewed as a heterogeneity-tolerant 
refinement of k-rationalizability. 
 
By basing beliefs on iterated best responses to a common L0 anchor, an Lk 
model avoids many of the unrealistic belief helices that sometimes support 
extreme decision combinations as rationalizable or k-rationalizable. 
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In estimation, an Lk rule is usually assumed to have possibly payoff-sensitive 
decision errors, often taken to be logit as in equilibrium plus noise or LQRE.  
 
Estimates suggest that there are positive frequencies only of L1, L2, and L3. 
 
When the error structure is neutral regarding level frequencies (as in Lk models 
but not CH models; see below) the frequency of L0 is usually estimated to be 0. 
 
An estimated level-k model shares equilibrium’s generality and some of its 
simplicity and tractability.  
 
For given population level frequencies, it generically uniquely predicts the 
distribution of outcomes even in games with multiple equilibria. 
 
Lk decision rules are self-informed because the means of their decisions are 
completely determined by iterated best responses and the structure of the game.  
  
In a model with errors assumed to be i.i.d. across players, an Lk player may need 
knowledge of other players’ decisions to estimate the distribution of her/his own 
errors, but not to estimate what is intentional, her/his own mean decisions.     
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Cognitive hierarchy models (“CH”) 
 
Camerer et al.’s (2004) CH model is a close relative of Lk models. 
 
Like a level-k Lk, a CH Lk (for k > 0) ignores the possibility of others at the same 
level; but unlike a level-k Lk it best responds not only to Lk-1 but to a mixture of 
all lower-level rules, including L0, again assumed to be uniform random.  
 
The population distribution of levels is assumed to be Poisson over all levels 
including L0, with parameter τ; a CH Lk’s beliefs about level frequencies are 
derived by conditional Bayesian updating. 
 
A CH Lk is assumed not to make decision errors. Instead the Poisson distribution 
of levels doubles as an error structure. Thus τ is the model’s only parameter. 
 
Estimates of τ, which equals the Poisson’s average k, are often close to 1.5, 
which for the Poisson over all levels requires a population frequency of L0 of 
22%, far higher than unconstrained estimates with a conventional error structure. 
 
(Some later work assumes that the Poisson’s support includes only levels L1 and 
higher, freeing up the frequency of L0, which seems more realistic.) 
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A CH L1 is the same as a level-k L1 and respects simple dominance. 
 
Higher-level CH rules may differ from Lk rules and may violate k–rationalizability.  
 
However, CH Lk beliefs (unlike level-k Lk beliefs) always become more accurate 
as k increases; but I don’t assign much significance to limiting results as k → ∞.  
 
Like an Lk model, a CH model avoids some of the unrealistic belief helices that 
can support extreme decision combinations as rationalizable or k-rationalizable. 
 
CH decision rules need not find fixed points or best respond to others’ decision 
noise, and so share most of the cognitive ease of level-k rules.  
 
However, CH rules are less accessible than level-k rules in that they best 
respond to an estimated mixture of lower-level rules. 
 
A CH Lk’s best responding to a mixture of all lower levels may seem more 
realistic than a level-k Lk’s best responding to Lk-1, but which better describes 
behavior is an empirical question, and most subjects are not econometricians.  
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Like an estimated Lk model, an estimated CH model shares equilibrium’s 
generality and some of its simplicity and tractability.  
 
And for given population level frequencies, it generically uniquely predicts the 
distribution of outcomes even in games with multiple equilibria. 
 
 
However, unlike an Lk decision rule, a CH rule is not self-informed, because its 
mean decisions for k > 1 depend on τ, the average of all players’ levels, whose 
estimates involve other players’ decisions. 
 
As with QRE, a CH rule is not logically inconsistent, but it implicitly assumes 
players are sophisticated enough to predict the mean of other players’ levels. 
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Summary of the leading rules’ desiderata  

 Precise Set-valued 

Self-Informed 
Equilibrium 
Lk 
Dk 

Rationalizability 
k-Rationalizability 
RQRE, RDCE 

Not Self-
Informed  

QRE 
LQRE 
CH 

 

On balance, theory and experimental results favor level-k models over the 
others; looking ahead to the experiments discussed next, regarding fit: 
 
● k-rationalizability > rationalizability > equilibrium (as they must, logically); k- 
 rationalizability’s fit for low k seems enough better to justify its greater flexibility 
 
● k-rationalizability > Lk (logically) >> Dk-1; Lk’s fit seems close enough to k- 
 rationalizability’s fit to justify Lk’s greater precision 
 
● Lk >> equilibrium for a large majority of subjects  
 
● Lk ≈ CH, LQRE; but Lk is self-informed while CH and LQRE are not; we have 
 very little information about how Lk’s fit compares to RQRE’s or RDCE’s 
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Experimental Evidence 
 
I now review some representative experimental evidence on strategic thinking. 
 
The most informative such experiments have subjects play series of different 
games, with varying partners and without feedback to suppress learning and 
repeated-game effects and motivate subjects to respond to each game as if 
played in isolation: eliciting their “initial responses”. 
 
The structures are publicly announced, to justify using the results to test theories 
of players’ decisions in complete-information versions of the games.  
 
Subjects’ decisions are analyzed within subjects, assuming that a single decision 
rule determines a subject’s decision in each of the games s/he plays. 
 
The games are chosen to separate the decision profiles implied by equilibrium 
and other rules as strongly as possible. This makes a subject’s profile a strategic 
“fingerprint,” which often identifies her/his rule with great precision. 
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n-person guessing games 
 
Nagel (1995), Ho, Camerer, and Weigelt (1998; “HCW”), and Bosch-Domènech 
et al. (2002) experimentally studied n-person guessing games directly inspired by 
Keynes’ beauty contest analogy in the passage quoted above. 
In Nagel’s and HCW’s games, n subjects (15-18 in Nagel, 3 or 7 in HCW) made 
simultaneous guesses between lower and upper limits (0 to 100 in Nagel, 0 to 
100 or 100 to 200 in HCW). In Bosch-Domènech et al. the same games were 
played by more than 7500 volunteers recruited from subscribers of the 
newspapers Financial Times, Spektrum der Wissenchaft, or Expansión. 
In each case the subject who guessed closest to a target (p = 1/2, 2/3, or 4/3 in 
Nagel; p = 0.7, 0.9, 1.1, or 1.3 in HCW; and p = 2/3 in Bosch-Domènech et al.) 
times the group average guess won a prize. 
There were several treatments, each with identical targets and limits for all 
players and games. The structures were publicly announced, to justify comparing 
the results with predictions based on complete information. 
(Nagel’s and HCW’s subjects each played a game repeatedly, but their first-
round guesses can be viewed as initial responses to a game if they treated their 
own influences on future guesses as negligible, which is plausible for all but 
HCW’s 3-subject groups. Bosch-Domènech et al.’s subjects played only once.) 
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In Nagel’s leading treatments: 

 
● 15-18 subjects simultaneously guessed between [0,100] 
 
● The subject whose guess was closest to a target p (= 1/2 or 2/3, say), 
 times the group average guess wins a prize, say $50 
 
Nagel’s games are dominance-solvable, with a unique equilibrium (ignoring 
discreteness) that can be found by iteratively eliminating dominated guesses.  
 
If p = 1/2: 
 
● It’s dominated to guess more than 50 (because 1/2 × 100 ≤ 50). 
 
● Unless you think that other people will make dominated guesses, it’s 
 also dominated to guess more than 25 (because 1/2 × 50 ≤ 25). 
 
● And so on, down to 12.5, 6.25, 3.125, and eventually to 0. 
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The rationality-based argument for this “all–0” equilibrium is stronger than many 
equilibrium arguments: it depends only on iterated knowledge of rationality, not 
on the assumption that players have the same beliefs. 
 
However, even people who are rational are seldom certain that others are 
rational, or at least that others believe that others are rational. 
 
Thus, they won’t (and shouldn’t) guess 0. But what do (should) they do?     
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Nagel’s subjects never made equilibrium guesses initially; HCW’s rarely did, and 
Bosch-Domènech et al.’s (who had more time and could consult) rarely did. 
 
Most subjects’ initial guesses respected 0 to 3 rounds of iterated dominance, in 
games where 3 to an infinite number are needed to reach equilibrium. 
 
Nagel’s Figure 1 (top p = 1/2, bottom p = 2/3) 
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Bosch-Domènech et al.’s Figure 1. 
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These data resemble neither equilibrium plus noise nor “equilibrium taking noise 
into account”, as in a QRE—that is, not for any reasonable error distribution, 
though by Haile et al’s (2008) result we could make the data an exact QRE for a 
carefully contrived but unreasonable distribution.  
 
The data do suggest that deviations from equilibrium have a coherent structure. 
 
The guess distributions have spikes that track 50pk for k = 1, 2, 3 across 
treatments with different ps, respecting up to 3 rounds of iterated dominance. 
 
Like spectrograph peaks that reflect chemical elements, the spikes are evidence 
of a partly deterministic, discrete, and individually heterogeneous structure. 
 
Compare Keynes’s “We have reached the third degree where we devote our 
intelligences to anticipating what average opinion expects the average opinion to 
be. And there are some, I believe, who practice the fourth, fifth and higher 
degrees.” 
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Nagel’s, HCW’s, and Bosch-Domènech et al.’s results show clearly that, even in 
such simple games, subjects’ initial responses do not reflect fixed-point 
reasoning or extensively iterated dominance or even best responses. 
 
Nagel and HCW interpreted their spikes as evidence of level-k decision rules: 
 
Lk guesses [(0+100)/2]pk ≡ 50pk. 
 
But many theorists interpret the spikes as subjects performing finitely iterated 
deletion of dominated decisions. 
 
Costa-Gomes and Crawford’s (2006) Dk rules, in which a player does k rounds of 
iterated dominance and then best responds to a uniform prior over other players’ 
remaining decisions (or here, their average), are a natural way of making finitely 
iterated dominance yield a unique decision: 
 
Dk-1 guesses ([0+100pk-1]/2)p ≡ 50pk. 
 
(By an unimportant quirk of my notation, it is Dk-1 that is Lk’s cousin, not Dk.) 
 
Which is it? Dk-1 and Lk are weakly separated in some other experiments, but 
we need to know more. 
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Two-person guessing games 
 
Nagel’s and HCW’s large strategy spaces greatly increase the informativeness of 
subjects’ decisions, but it is a weakness that each subject played only one game. 
 
Although each subject played her/his game repeatedly, later choices confound 
strategic thinking with learning, so there’s only one real observation per subject. 
 
Even so, if subjects treat their own influences on others’ future decisions as 
negligible, first-round choices can be viewed as initial stage-game responses. 
 
But Nagel’s and HCW’s between-subjects variation across treatments is much 
less informative about thinking than within-subjects variation across games. 
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Costa-Gomes and Crawford’s (2006; “CGC”) design increases power by 
combining large strategy spaces with Stahl and Wilson’s (1994, 1995) and 
Costa-Gomes, Crawford, and Broseta’s (2001) series of games. 
 
(CGC also supplemented their analysis of subjects’ decisions by monitoring and 
analyzing their searches for hidden but freely accessible payoff information; 
Crawford 2008 gives the details.) 
 
In CGC’s experiments subjects were randomly and anonymously paired to play a 
series of 16 different but related two-person guessing games, with no feedback. 
 
The design suppresses learning and repeated-game effects to elicit subjects’ 
initial responses, game by game, studying thinking “uncontaminated” by learning. 
 
(“Eureka!” learning was possible, but it was tested for and found to be rare.) 
 
A subject’s guesses in the 16 games form a strategic “fingerprint” that comes 
close to revealing a subject’s decision rule without an econometric “middleman”. 
 
Another advantage is that in two-person guessing games, subjects know that 
other subjects don’t view them as a negligible part of the interaction; thus these 
games more fully engage and identify subjects’ strategic thinking. 
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In CGC’s games, each player has his own lower and upper limit, both strictly 
positive (which makes the games finitely dominance-solvable). 
 
(Guesses outside a subject’s limits are automatically adjusted up to the lower or 
down to the upper limit as necessary: This is a trick to enhance the separation of 
information search implications, which is not important for this discussion.)   
 
Each player also has his own target, and his payoff increases with the closeness 
of his guess to his target times the other’s guess. 
 
The targets and limits vary independently across players and games, with targets 
both less than one, both greater than one, or “mixed”. 
 
(In previous guessing experiments the targets and limits were always the same 
for both players and varied at most between subjects across treatments.) 
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CGC’s games have essentially unique equilibria (“essentially” due solely to the 
automatic adjustment), determined by players’ lower (upper) limits when the 
product of targets is less (greater) than one. 
 
The discontinuity of the equilibrium correspondence when the product of targets 
is one enhances the separation of equilibrium from other decision rules. 
 
 
This also stress-tests equilibrium in that CGC’s design includes games that differ 
in whether the product of targets is slightly greater or slightly less than one. 
 
Equilibrium responds to such differences much more strongly than behaviorally 
plausible nonequilibrium decision rules do. 
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Consider a game in which players’ targets are 0.7 and 1.5, the first player’s limits 
are [300, 500], and the second’s are [100, 900]. (What would you guess?)  
 
The product of targets 1.05 > 1 so equilibrium is determined by the upper limits.  
 
In equilibrium the first player guesses her/his upper limit 500, but the second 
player guesses 750 (= 500 × his target 1.5), below her/his upper limit 900. 
 
No guess is dominated for the first player, but any guess outside [450, 750] is 
dominated for the second player.  
 
Any guess outside [315, 500] is then iteratively dominated for the first player. 
 
Any guess outside [472.5, 750] is then iteratively dominated for the second. 
 
And so on until the equilibrium at (500, 750) is reached after 22 iterations. 
 
(Cognitively and behaviorally, 22 ≈ ∞.) 
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CGC’s data analysis assumed (with testing) that each subject’s guesses were 
determined, up to logit errors, by a single decision rule in all 16 games. 
 
 
The main analysis restricted attention to an a priori list of plausible rules:  
 
● L0, L1, L2, and L3 as defined above, with L0 uniform random  
 
● D1 and D2 as defined above  
 
● Equilibrium, which makes its equilibrium decisions 
 
● Sophisticated, which best responds to the probability distributions of others’ 
 decisions, estimated in CGC’s data analysis from the observed frequencies  
 
CGC tested the restriction to this list of decision rules and found it to be a 
reasonable approximation to the population support of subjects’ rules. 
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CGC’s large strategy spaces and independent variation of targets and limits 
across games very strongly separate decision rules’ implications. 
 

Rules’ guesses in the 16 games, in (randomized) order played 
 L1 L2 L3 D1 D2 Eq. Soph. 
1 600 525 630 600 611.25 750 630 
2 520 650 650 617.5 650 650 650 
3 780 900 900 838.5 900 900 900 
4 350 546 318.5 451.5 423.15 300 420 
5 450 315 472.5 337.5 341.25 500 375 
6 350 105 122.5 122.5 122.5 100 122 
7 210 315 220.5 227.5 227.5 350 262 
8 350 420 367.5 420 420 500 420 
9 500 500 500 500 500 500 500 

10 350 300 300 300 300 300 300 
11 500 225 375 262.5 262.5 150 300 
12 780 900 900 838.5 900 900 900 
13 780 455 709.8 604.5 604.5 390 695 
14 200 175 150 200 150 150 162 
15 150 175 100 150 100 100 132 
16 150 250 112.5 162.5 131.25 100 187 
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Of the 88 subjects in CGC’s main treatments, 43 made guesses that complied 
exactly (within 0.5) with one type’s guesses in from 7 to 16 of the games: 20 L1, 
12 L2, 3 L3, and 8 Equilibrium; with 200 to 800 possible exact guesses in 16 
different games, exact compliance is very powerful evidence for a decision rule. 
 
(Crawford 2008 questions the subjects with high Equilibrium compliance.) 
  
CGC’s results clearly identify subjects’ rules, and strongly favor Lk over Dk-1: 
Subjects respect k-rationalizability for small k not because they explicitly perform 
iterated dominance, but because they follow rules that implicitly respect it. 
 
By contrast, in a small matrix game there can be many possible reasons for 
choosing a strategy; and even in Nagel’s and HCW’s large-strategy-space 
games rules as cognitively disparate as Lk and Dk-1 yield identical decisions.       
 
Further, because CGC’s rules build in risk-neutral, self-interested rationality, L1, 
L2, and L3 subjects’ deviations from equilibrium can be traced to their simplified 
models of others, not to irrationality, risk aversion, altruism, spite, or confusion. 
 
The analysis supports a uniform random L0, which may reflect sampling payoffs 
initially without considering others’ incentives or principle of insufficient reason. 



52 
 

 
CGC’s other 45 subjects made guesses that conformed less closely to a rule. 
But for all but 14 of them, violations of simple dominance were comparatively 
rare (less than 20%, versus 38% for random guesses), suggesting that their 
behavior was coherent, even though less well described by a decision rule. 
And econometric estimates of their rules are concentrated on L1, L2, L3, and 
Equilibrium in roughly the same proportions. (Analysis of subjects’ searches for 
hidden but freely accessible payoff information confirms and sharpens this.)  

 
CGC’s Figure 1. 

  



53 
 

 

 

 

Lessons for modeling strategic thinking  

 
● Strategic thinking is heterogeneous: There are significant numbers of L1, L2, 
 L3, and possibly (as explained in Crawford 2008) Equilibrium subjects 
 
● There are few if any Dk or Sophisticated subjects and few if any L4 or higher 
 level Lk subjects; thinking seldom directly relies on extensively iterated 
 dominance or even best responses, or relies on fixed-point reasoning  
 
● In non-dominance solvable games or k-dominance-solvable games for high 

values of k, people’s decisions deviate systematically from equilibrium; a 
simple class of models with an estimated or calibrated distribution of L1, L2, 
L3, and Equilibrium players, then shares the generality and much of the 

 tractability of equilibrium analysis and can systematically out-predict equilibrium  
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Outguessing in games with symmetric information: Far Pavilions Escape  
 
The following example illustrates how a level-k model works in the simplest 
possible outguessing game, and the interpretation of L0. 
 
(It’s interesting to compare this example with the outguessing game between 
Holmes and Moriarty in Conan Doyle’s story “The Final Problem”, which von 
Neumann and Morgenstern (1944) used to illustrate mixed-strategy equilibrium.)    
 
 
Early in M.M. Kaye’s historical novel The Far Pavilions, the main male character, 
Ash/Ashok, is trying to escape from his Pursuers along a north-south road. 
 
Ash and his pursuers must choose between North and South. Although Ash 
moves first in time, his Pursuers must make their choice before they learn Ash’s 
choice, so the two players’ choices are strategically simultaneous. 
 
South is warm, while North are the Himalayas, with winter coming. 
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If the Pursuers catch Ash, they gain two units of payoff and Ash loses two. 
 
In addition, both the Pursuers and Ash gain one extra unit for choosing South. 
 
This yields the payoff matrix: 

 
  Pursuers 
  South (q) North 

Ash 
South (p) 3 

-1 
0 

1 

North 1 
0 

2 
-2 

  Far Pavilions Escape 
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Examples like this are as common in experimental game theory as they are in 
fiction, but fiction sometimes more clearly reveals the thinking behind a decision. 
 
 
 
Ash’s mentor Koda Dad (played by Omar Sharif in the HBO miniseries, but 
unfortunately this scene is only in the book, p. 97) advises Ash to ride north: 
 
 “…ride hard for the north, since they will be sure you will go southward where 
the climate is kinder….” 

 
 
Ash follows his mentor’s advice, the Pursuers unimaginatively go south, and Ash 
escapes—to live for another 900 pages. 
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Koda Dad was advising Ash to choose the L3 response to a uniform random L0. 
 
(L3 ties my personal best k for a clearly explained level-k rule in fiction. I suspect 
that no higher level would be credible to a general audience. 
 
And I dare you to try to explain the fixed-point reasoning that underlies this 
game’s mixed-strategy Nash equilibrium to a general audience.)  
 
 
Pursuers who expect Ash to go south simply because it’s “kinder” must be 
modeling Ash as an L1 responding to a uniform random L0. 
 
(The payoff asymmetry on which this inference rests is decisive only if north and 
south do not differ in the—more important—probability of being caught.) 
 
Thus, Koda Dad must have been modeling the Pursuers as L2 and advising Ash 
to choose the L3 response to a uniform random L0. 
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We can take the inference that Ash will go south because it’s “kinder” literally as 
a best response to a uniform random L0. 
 
 
But there is a behaviorally more plausible interpretation in which the inference is 
Ash’s model of the Pursuers’ model of Ash’s instinctive reaction ignoring strategic 
considerations, and thus plausibly based on the principle of insufficient reason. 
 
 
In a more complex game, a uniform random L0 could approximate random 
sampling of an L1 player’s decisions’ payoffs, unstratified by the other player’s 
incentives to make the decisions. 
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Level-k versus equilibrium analysis in Escape   
 
How does the level-k model compare in predictive success with equilibrium? 
 
 
Escape has a unique equilibrium, in mixed strategies, in which 
 

3p + 1(1 – p) = 0p + 2(1 – p) or p = 1/4, and 
–1q +1(1 – q) = 0q –2(1 – q) or q = 3/4. 

 
Thus Ash’s Pr{South}, p* = 1/4, and the Pursuers’ Pr{South}, q* = 3/4. 
 
 
This equilibrium responds to the payoff asymmetry between South and North in a 
decision-theoretically intuitive way for Pursuers (q = 3/4 > the 1/2 of equilibrium 
without the payoff asymmetry), but counterintuitively for Ash (p = 1/4 < 1/2). 
 
 
In equilibrium the novel’s observed outcome {Ash North, Pursuers South} has 
probability (1 – p*)q* = 9/16: much better than a random 25%.  
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By contrast, the level-k model mechanically implies decisions as follows: 
 

 Rule Ash Pursuers 
L0 Uniform random Uniform random 
L1 South South 
L2 North South 
L3 North North 
L4 South North 
L5 South South 
Lk levels’ decisions in Far Pavilions Escape 

 
The level-k model correctly predicts the outcome provided that Ash was either L2 
or (as we know) L3 and Pursuers were either L1 or (as Koda Dad believed) L2.  
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If we don’t have an omniscient narrator telling us how players think, but the game 
is well-defined and we have data, we can specify a level-k model, derive its 
implications, and estimate the rule frequency distribution. 
 
Or we can calibrate the model using estimates from analogous settings. 
 
 
Suppose, for example, we assume that each player role in Escape is filled from 
an (empirically plausible) 50-30-20 mixture of L1s, L2s, and L3s, with no errors. 
 
Then the level-k model predicts that Ash goes North with probability 1/2 (= 0.30 + 
0.20) and Pursuers go South with probability 4/5 (= 0.50 + 0.30) 
 
Assuming independence, the observed outcome {Ash North, Pursuers South} 
then has probability 2/5: less than the equilibrium probability of 9/16, but still 
better than a random 25%. 
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More importantly, the level-k model gracefully explains a puzzling divergence 
between observed aggregate behavior patterns and equilibrium predictions. 
 
In games like Escape and other perturbed Matching Pennies games, the unique 
mixed-strategy equilibrium responds to the payoff asymmetry between South and 
North in a decision-theoretically intuitive way for Pursuers (q* = 3/4 > 1/2, the 
probability with which Pursuers go South in the analogous game with no North-
South payoff asymmetry); but in a counterintuitive way for Ash (p* = 1/4 < 1/2). 
 
Yet experimental subjects’ aggregate choices in initial responses to such games 
follow decision-theoretic intuition in both roles.  
(Even Ash’s counterintuitive choice would not contradict this pattern if he were a 
subject, because his revealed level is in the minority.) 
 
In such games the level-k model’s predictions “quasi-purify” something roughly 
like a mixed-strategy equilibrium, via the predictable heterogeneity of players’ 
thinking, while avoiding some implausible implications of equilibrium. 
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 Market-entry games with symmetric information 
 
As suggested by Camerer et al.’s (2004, Section III.C) CH analysis of market-
entry games, a level-k analysis suggests a view of tacit coordination in games 
like Battle of the Sexes that is radically different than an equilibrium view. 
 
Subjects in market-entry experiments come close, on average, to exactly filling 
market capacity, which led Kahneman (1988) to remark, “…to a psychologist, it 
looks like magic”. 
 
But as Camerer et al. note, there is also something that would look like magic 
even to a game theorist: Ssubjects regularly achieve better ex post 
coordination (number of entrants stochastically closer to market capacity) than 
in the natural equilibrium benchmark, the symmetric mixed-strategy equilibrium.   
  
Camerer et al. give a unified CH explanation of both kinds of magic: The 
predictable heterogeneity of players’ strategic thinking allows some of them to 
mentally simulate others’ entry decisions and accommodate them, breaking the 
symmetry as required for coordination. 
 
Higher-level players in effect become like Stackelberg followers, with 
coordination benefits for all. 
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I adapt Camerer et al.’s CH analysis to a level-k analysis of two-person Battle of 
the Sexes, which illustrates the key points. Assume that a > 1. 

 
  Column 
  H D 

Row H 0 
0 

1 
a 

 D a 
1 

0 
0 

     Battle of the Sexes 
 

When players cannot distinguish each other or communicate, it can be shown 
that the asymmetric equilibria are effectively unplayable.  
 
The unique symmetric equilibrium is in mixed strategies, with p ≡ Pr{H} = 
a/(1+a) > ½ (when a > 1) for both players. 
 
The expected coordination rate is 2p(1–p) = 2a/(1+a)2; and players’ payoffs are 
a/(1+a) < 1, worse for each than his worst pure-strategy equilibrium. 
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In the level-k model, each player follows one of four levels, L1, L2, L3, or L4, 
with each player role filled by a draw from the same distribution, which restricts 
attention to symmetric outcome distributions. 
 
As in most previous analyses, I assume that L0 chooses its decision randomly, 
with Pr{H} = Pr{D} = ½. 
 
Higher levels’ best responses are easily calculated: 
 
L1s mentally simulate L0s’ random decisions and best respond to them, 
choosing H; similarly, L2s choose D, L3s choose H, and L4s choose D.  
 
Although L3 behaves like L1 here, and L4 like L2, I retain all four for 
comparability with the analysis below; but I set the frequency of L0 to 0. 
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The model’s predicted outcome distribution is determined by the outcomes of 
the possible type pairings in Table 1 and the level frequencies: 
 
 

Rules L1 L2 L3 L4 
L1 H, H H, D H, H H, D 
L2 D, H D, D D, H D, D 
L3 H, H H, D H, H H, D 
L4 D, H D, D D, H D, D 

Table 1. Level-k Outcomes 
 
 
The rule frequencies are assumed independent of payoffs, in keeping with the 
fact that they are intended as general models of strategic behavior; as a result, 
the model’s predicted outcome distribution (without errors) is independent of a. 
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With symmetry across roles, players have equal ex ante payoffs, which are 
proportional to the expected coordination rate. 
 
Lumping L1 and L3 together and letting v denote their total probability, and 
lumping L2 and L4 together and letting (1-v) denote their probability, the 
coordination rate is 2v(1–v), maximized at v = ½ where it takes the value ½. 
 
 
Thus for v near ½ (which is empirically plausible), the coordination rate is close 
to ½ (for more extreme values of v the rate is worse, falling to 0 as v → 0 or 1). 
 
The mixed-strategy equilibrium coordination rate, 2a/(1+a)2, is maximized when 
a = 1 where it takes the value ½, but it converges to 0 like 1/a as a → ∞. 
 
Even for moderate values of a, the level-k coordination rate is quite likely to be 
higher than the symmetric equilibrium rate. 
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The level-k model improves upon the symmetric equilibrium by “relaxing” the 
incentive constraints requiring players’ responses to be in equilibrium. 
 
Because level-k levels best respond to nonequilibrium beliefs, it is natural to 
compare the level-k outcome to the best symmetric rationalizable outcome, in 
which each player plays a nonequilibrium mixed strategy with v ≡ Pr{H} = ½. 

 
When v = ½, the level-k model can be viewed as using the heterogeneity of 
strategic thinking to purify this best symmetric rationalizable outcome. With 
levels exogenous, level-k thinking may not make this outcome attainable. 
 

  



69 
 

 
 
 
 
 
 
The level-k analysis suggests a view of coordination that is profoundly different 
than the equilibrium view: 
 
Although players’ decisions are simultaneous and there is no communication, 
the predictable heterogeneity of strategic thinking allows some players to 
mentally simulate others’ entry decisions and accommodate them, just as 
(noisy) Stackelberg followers would, with coordination benefits for all players. 

 
Equilibrium and selection principles like risk- or payoff-dominance play no role 
in level-k players’ thinking; and coordination, when it occurs, is an accidental 
(but statistically predictable) by-product of their non-equilibrium decision rules. 
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Outguessing with symmetric information and communicating intentions  
(Crawford 2003 and Crawford, Costa-Gomes, and Iriberri 2013, Section 9.1; I 
focus here on deceptive communication with opposing interests; on coordination 
see Ellingsen and Östling 2010 and Crawford 2017).  
 
D-Day 
 
The Allies chose where to invade Europe on D-Day: Calais or Normandy. 

● Invading an undefended Calais is better for the Allies than invading an 
 undefended Normandy (but the Germans know that too) 
 
● Similarly, defending an uninvaded Normandy is worse for the Germans than 
 defending an uninvaded Calais 
 
Before the attack, the Allies placed a fake invasion army in the Thames Estuary: 
an approximately cheap talk message regarding their intentions, with an obvious 
literal meaning, Calais (http://en.wikipedia.org/wiki/Operation_Fortitude). 
 
The Allies invaded at Normandy, while the Germans believed the message (or 
perhaps inverted it one too many times) and persistently overdefended Calais. 

http://en.wikipedia.org/wiki/Operation_Fortitude
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A “Tank” from Operation Fortitude South in the Thames Estuary, 1944  
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Huarongdao (from Luo Guanzhong’s historical novel Three Kingdoms) 

 
Defeated, fleeing General Cao Cao chose between two escape routes, the easy 
Main Road and the awful Huarong Road, trying to evade pursuing General 
Kongming (http://chinesepuzzles.org/huarong-pass-sliding-block-puzzle/). 
 
Other things equal, both generals preferred the Main Road.  
 
 
Kongming waited in ambush along Huarong Road and set campfires there, 
sending an approximately cheap talk message with an obvious literal meaning.  
 
Cao Cao expected a lie, inverted the message, and was caught on Huarong 
Road. 
 
 

http://chinesepuzzles.org/huarong-pass-sliding-block-puzzle/
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Puzzles 
 
In both D-Day and Huarongdao, the message-sender deceived the message-
receiver and won, but in the less beneficial of the two possible ways. 
 
● Why did the receiver allow himself to be fooled by an easily faked, 
 approximately cheap talk message from an enemy? 
 
● And if the sender expected his deception to succeed, why didn't he reverse 
 the message and win in the more beneficial way? 

 
(Why didn't the Allies feint at Normandy and attack at Calais? 
 
Why didn't Kongming light fires and ambush Cao Cao on the Main Road?) 
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An analysis should also reconcile the answers to these puzzles with the surface 
differences in the senders’ messaging strategies and the receivers’ responses: 
 
● The Allies’ messages was literally a lie, but it was sent with the belief that the 

Germans would believe it or—perhaps expecting a double bluff—invert it one 
too many times 

 
● Kongming's message was literally true, but Cao Cao, expecting a lie, was 
 fooled by Kongming’s double bluff into inverting the message 
 
In this case Luo Guanzhong tells us what his fictional generals were thinking:  
 
● Kongming: “Have you forgotten the tactic of ‘letting weak points look weak and 
 strong points look strong’?” 
 
● Cao Cao: “Don’t you know what the military texts say? ‘A show of force is best 
 where you are weak. Where strong, feign weakness.’” 
 
Cao Cao must have bought a used, out-of-date edition. 
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Equilibrium in D-Day and Huarongdao 

● In each example, one player, the Sender, sends a nonbinding, cheap talk 
 message to the receiver regarding his planned action; lying has no direct cost 
 
● The other player, the Receiver, observes the message 
 
● The Sender and Receiver make decisions that jointly determine their payoffs 
 
● The Sender’s and Receiver’s payoffs are (at least approximately) opposed 
 
In games like these, in any equilibrium the Sender’s cheap talk message must be 
uninformative, and the Receiver must ignore it. 
 
If the Sender made his message informative, the Receiver’s optimal response to 
it would increase the Receiver’s own payoff and thus reduce the Sender’s, who 
would therefore do better by making his message uninformative.  
 
Equilibrium behavior therefore makes the communication phase irrelevant. 
 
Yet in the world, deception is common and succeeds, even in zero-sum games.  
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Level-k thinking in D-Day and Huarongdao 

Although the experimental evidence from games without communication is 
broadly consistent with a uniform random L0, intuition and the limited evidence 
suggest that in games with communication, the first thing we do when hearing a 
message, even from an enemy, is to try to understand its literal meaning. 
 
This suggests anchoring L0 in truthfulness for Senders or credulity for Receivers.  
 
Higher levels can be defined by iterated best responses as before. 
 
(The level-k analysis assumes no direct ad hoc lying costs.) 
 

The Luo Guanzhong quotations suggest that Kongming was L3 and Cao Cao L2 
with a truthful or respectively credulous L0. 

 
● Kongming: “Have you forgotten the tactic of ‘letting weak points look weak and 
 strong points look strong’?” 
 
● Cao Cao: “Don’t you know what the military texts say? ‘A show of force is best 
 where you are weak. Where strong, feign weakness.’” 
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“Behavioral equilibrium” in D-Day and Huarongdao 
 
Assume the Sender and Receiver are each drawn from a population including 
both level-k (called “mortal” in Crawford 2003) and Sophisticated players. 
 
● Level-k players avoid fixed-point reasoning, anchor beliefs on truthfulness or 
 credulity, and determine beliefs and decisions by iterated best responses 
 
● Sophisticated players choose equilibrium decisions in a reduced game that 
 reflects the possibility and frequencies of level-k and Sophisticated players 
 
 
Analyze the reduced game between Sophisticated Senders and Receivers, with 
level-k players’ mechanical and uninteractively predictable responses plugged in. 
 
The main goal is to learn whether and when the possibility of level-k players in 
each role allows Sophisticated Senders to “deceive” Sophisticated Receivers.  
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The underlying game is approximately zero-sum, with symmetric information and 
cheap talk messages. 
 
The fact that some players might be level-k makes the character of the reduced 
game between Sophisticated Senders and Receivers completely different: 
 
 
● As Sophisticated players’ payoffs are influenced by level-k players’ decisions, 
 the reduced game is not zero-sum and its messages are not cheap talk 
 
● The reduced game has asymmetric information about the Sender’s decision 
 rule, and a Sophisticated Receiver reads the Sender’s message about his 
 intentions as an informative signal about his rule, not (directly) his intentions  
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If Sophisticated Senders and Receivers have high frequencies, even well below 
1, the reduced game has a unique mixed-strategy equilibrium, which is outcome-
equivalent to the equilibrium of the underlying game without communication. 
Sophisticated players then protect their level-k counterparts from exploitation.  
 
If Sophisticated Senders and Receivers have low frequencies, the reduced game 
has an essentially unique pure-strategy equilibrium, in which Sophisticated 
Senders send the message that deceives the most frequent kind of level-k 
Receiver and then try for the less beneficial way to win: D-Day and Huarangdao! 
 
There is never a sensible equilibrium in which Sophisticated Senders try for the 
more beneficial way to win. 
 
For, in such an equilibrium any deviation from the Sophisticated Sender’s 
equilibrium message would “prove” to a Sophisticated Receiver that the Sender 
is level-k, leading a Sophisticated Receiver to try for the less beneficial way to 
win, and thus leading a Sophisticated Sender to try for the less beneficial way. 
 
Thus, with no unexplained difference in the sophistication of Senders and 
Receivers, and for plausible parameter values, the level-k model explains why 
Sophisticated Receivers might allow themselves to be “deceived”, and why 
Sophisticated Senders don’t try for the more beneficial way to win. 
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Communicating private information 

(Wang, Spezio, and Camerer 2010 (“WSC”); based on Crawford and Sobel 1982 
and Crawford 2003.) WSC’s “Blodget” frame: 

During the tech-stock bubble, Wall Street security analysts were alleged to 
inflate recommendations about the future earnings prospects of firms in order to 
win investment banking relationships with those firms. Specifically, analysts of 
Merrill Lynch used a five-point rating system (1 = Buy to 5 = Sell) to predict how 
the stock would perform. They usually gave two 1–5 ratings for short run (0–12 
months) and long run (more than 12 months) performance separately. 
Henry Blodget, Merrill Lynch’s famously optimistic analyst, “did not rate any 
Internet stock a 4 or 5” during the bubble period (1999 to 2001). In one case, 
the online direct marketing firm LifeMinders, Inc. (LFMN), Blodget first reported 
a rating of 2-1 (short run “accumulate”—long run “buy”) when Merrill Lynch was 
pursuing an investment banking relationship with LFMN. Then, the stock price 
gradually fell from $22.69 to the $3–$5 range. While publicly maintaining his 
initial 2-1 rating, Blodget privately e-mailed fellow analysts that “LFMN is at $4. I 
can’t believe what a POS [piece of shit] that thing is.” He was later banned from 
the security industry for life and fined millions of dollars. 
(Source: Complaint, Order, and Final Judgement in Securities and Exchange 
Commission v. Henry M. Blodget, (2003) Civ. 2947 (WHP) (S.D.N.Y.).)  

https://www.sec.gov/litigation/litreleases/lr18115.htm
https://www.sec.gov/litigation/litreleases/lr18115.htm
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Equilibrium (without lying costs) in Blodget  
● In each case one player, the Sender, observes a signal relevant to both their  
 payoffs and sends a cheap talk message about it; lying has no direct cost 

● The Receiver observes the message and makes a decision that, with the 
 Sender’s true signal, determines both Sender’s and Receiver’s payoffs 

● The Sender’s and Receiver’s preferences about how the Receiver’s decision 
 relates to the Sender’s signal are qualitatively similar, but differ systematically  
 
Crawford and Sobel showed that in all equilibria, the Sender divides the possible 
signals into intervals and tells the Receiver only which interval the signal fell in. 
 
There is always a “babbling” equilibrium; and when the Sender’s and Receiver’s 
preferences are sufficiently far apart it is unique, except for messaging variations. 
 
When the Sender’s and Receiver’s preferences are closer together there are also 
more informative equilibria, but all have some intentional vagueness. 
 
The closer the Sender’s and Receiver’s preferences, the more information is 
transmitted in the most informative equilibrium.  
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Puzzles  

● Why would anyone be systematically fooled by a cheap talk message from 
 someone whose interests are different?   
 
● Why do Senders tend to lie in the direction that would push credulous 
 Receivers in their favored direction? 
 
● Why are Senders more truthful and Receivers more credulous than in any 
 equilibrium? 
 
None of these puzzles are resolved by the equilibrium analysis. 
 
  



83 
 

 
 
 
WSC’s experimental design 
 
WSC’s experimental design closely follows their Blodget example. 
 
● A Sender observes the state, S = 1, 2, 3, 4, or 5, and sends a message, M = 

1, 2, 3, 4, or 5 (the clear correspondence between state and message labelings 
ensures that messages are understood and makes lying a meaningful concept) 

 
● A Receiver observes the message M, and chooses an action A = 1, 2, 3, 
 4, or 5, which together with S determines his and the Sender’s welfare 
 
● Senders and Receivers have single-peaked preferences, assuming no lying 
 costs, with the Receiver’s  ideal outcome A = S and the sender’s A = S + b 

(ignoring boundaries) 
 
● The design varies the difference between Sender’s and Receiver’s  preferences 
 across three treatments: b = 0, 1, or 2 
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Equilibrium versus level-k thinking (without lying costs) in Blodget 
 
WSC’s equilibrium and level-k analyses assume no direct ad hoc lying costs. 
 
WSC’s equilibrium analysis focused on the most informative equilibria in the 
games created by their three treatments, as benchmarks. 
 
In WSC’s level-k analysis, subjects’ excessive (relative to equilibrium) 
truthfulness and credulity are explained as a residue of level-k anchoring. 
 
(In an equilibrium analysis without lying costs, the effects of such anchoring 
would be completely massaged away, but Lk’s finitely iterated best responses do 
not completely massage them away.)      
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In WSC’s Figures 1-3, a circle’s size shows Senders’ message frequencies 
(columns) in the various states (rows) and a circle’s darkness and the numbers 
inside it show Receivers’ action frequencies. 
 
● In Figure 1 the Sender’s and Receiver’s preferences are identical (b = 0); the 

most informative equilibrium has truth-telling and credulity: M = S and A = S 
 
There are no significant deviations from the most informative b = 0 equilibrium. 

 
● In Figure 2 the Sender’s and Receiver’s preferences differ somewhat (b = 1); 

the most informative equilibrium has the Sender sending M = 1 when S = 1 
and the Receiver responding with A = 1; and otherwise the Sender’s message 
distribution is the same for S = 2, 3, 4, 5, and the Receiver responds A = 3 or 4 
 
Both Senders and Receivers deviate systematically from the most informative 
b = 1 equilibrium. 
 
Senders lie in the direction (above the diagonal) that would make credulous 
Receivers choose actions Senders would prefer, while making messages more 
truthful than in the equilibrium (M distributions shift right as S goes from 2 to 5). 
 
And Receivers are more credulous (A > S, A > best response to Senders). 
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● In Figure 3 the Sender’s and Receiver’s preferences differ a great deal (b = 2); 

the only equilibria are babbling equilibria, in which the Sender’s message 
distribution is the same for all S, and the Receiver ignores the Sender’s 
messages and chooses A = 3, the optimal action given the Receiver’s prior  
 
Both Senders and Receivers deviate systematically from the most informative 
b = 2 equilibrium. 
 
Senders again lie in the direction (above diagonal) that would make credulous 
Receivers choose actions sender would prefer, while making messages more 
truthful than in equilibrium (M distributions shift right as S goes from 1 to 5). 
 
Receivers are again more credulous (A > S: > the best response to Senders). 

 
 
● Despite the systematic deviations from equilibrium when b = 1 or 2, the amount 

of information transmitted, measured by the correlation between S and A, 
declines with the distance between Sender’s and Receiver’s preferences, as 
suggested by Crawford-Sobel’s equilibrium-based comparative statics result 
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Following Crawford’s 2003 model of level-k communication of intentions, WSC 
analyzed their results using a level-k model of communication of private 
information, again assuming no direct lying costs. A Receiver’s best outcome is 
then A = S, ignoring boundaries, here and below; and a Sender’s is A = S + b. 
 
● In the level-k model, players anchor beliefs in a truthful Sender L0, which sets 

M = S; and a credulous Receiver L0, which sets A = M 
 
● L1 Senders best respond to L0 Receivers, “puffing” their messages by b: M = 

S + b, so L0 Receivers choose S + b, which would yield an L1 Sender’s best 
action, given a credulous Receiver  

 
● L1 Receivers best respond to L1 Senders, de-puffing messages by b: A = M – 

b, which would yield an L1 Receiver’s ideal action, given her/his belief that L1 
Senders best respond to L0 Receivers, setting M = S + b 
 

● L2 Senders best respond to L1 Receivers, puffing by 2d: M = S + 2b; L2 
 Receivers best respond to L2 Senders, de-puffing by 2b: A = M – 2b; etc.   
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The labels in Figures 1-3 show a close association between Senders’ and 
Receivers’ decisions and L1, L2, or L3 behavior. (These are explicitly labeled in 
Figures 2 and 3; L1, L2, or L3 behave the same as equilibrium in Figure 1.) 
 
Overall, the level-k model gives a unified explanation of the main fact patterns: 
 
● Senders lie in the direction that would make credulous Receivers choose 
 actions the Sender would prefer, trying to outguess Receivers’ discounting 
 
● Senders’ messages are nonetheless more truthful than in any equilibrium 
 
● Receivers’ responses are more credulous than in any equilibrium 

 
 
Even though the model assumes lying has no direct costs, Lk behavior is 
anchored in a truthful or credulous L0; this gives Lk a residue of truthfulness or 
credulity that only equilibrium reasoning would completely massage away. 
 
The sensitivity of Lk’s behavior to the distance between Sender’s and Receiver’s 
preferences also explains why Crawford-Sobel’s equilibrium comparative statics 
result is qualitatively robust even to large, systematic deviations from equilibrium. 
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Asymmetric information and informational naïveté 
 
A large literature documents and analyzes the phenomenon of the winner’s 
curse, whereby bidders who win common-value auctions tend to find that they 
have bid more than the object is worth. 
 
A related literature studies the phenomenon of zero-sum betting and its 
analogues in asset markets, whereby people bet or trade more than is consistent 
with any equilibrium.  
 
Both phenomena have their roots in informational naïveté, whereby people do 
not fully take into account the dependence of others’ decisions on their own 
private information, which would allow inferences that improve their decisions.  
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The classic equilibrium-based analyses of informational naïveté are Milgrom and 
Weber (1982) on auctions and Milgrom and Stokey (1982) on speculative 
trading.  
 
Milgrom and Weber show (among many other things) how to correct one’s bid in 
common-value auctions for the information about the object that will be 
contingently revealed (through other bidders’ lower value estimates) by winning.   
 
Milgrom and Stokey show that if traders in an asset market start out in a market 
equilibrium—Pareto-efficient given their information—giving them new private 
information cannot make new trades mutually beneficial.  
 
For, any such new trades would make it common knowledge that both traders 
had benefited from it, contradicting the efficiency of the initial equilibrium. 
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Milgrom and Stokey’s no-trade result was dubbed by Milt Harris the “Groucho 
Marx Theorem”: 
  
“I sent the club a wire stating, ‘Please accept my resignation. I don’t want to 
belong to any club that will accept people like me as a member’.” 
—Groucho Marx (1959, p. 321), Telegram to the Beverly Hills Friar’s Club 
 
 
Milgrom and Stokey’s result might also be called the “Sky Masterson Theorem”: 
 
“Son…One of these days in your travels, a guy is going to show you a brand-new 
deck of cards on which the seal is not yet broken. Then this guy is going to offer 
to bet you that he can make the jack of spades jump out of this brand-new deck 
of cards and squirt cider in your ear. But, son, do not accept this bet, because as 
sure as you stand there, you're going to wind up with an ear full of cider.”  
  
 —Obadiah (“The Sky”) Masterson, quoting his father in “The Idyll of Miss Sarah 
 Brown” (Guys and Dolls: The Stories of Damon Runyon, 1932) 
 
(Unlike Groucho’s quip, the Runyon story implicitly questions Savage’s “small 
worlds” assumption, which seems an important part of real zero-sum betting.) 
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By contrast with Milgrom and Stokey’s no-trade theorem, speculative zero-sum 
trades are common in real financial markets and real life.  
 
Here’s an example from the All Souls College betting book (many others are 
possible). [My scholia are in square brackets.] 
  

[Warden] Davis bets [Fellow whose study overlooked the Gt Quad] Ryan 1 doz 
oysters that the lawn in the Gt Quad is more circular than it is gibbous or oval. 

 
Adjudicant[s]: [Fellow] Perkins, [Fellow] Häcker 

 
[Signed]: J Davis MJ Ryan 

1.X.05 [a Saturday] 
 

[To paraphrase former U.S. Supreme Court Justice Potter Stewart, bettors and 
adjudicants seem to have thought they would know eccentricity when they saw it. 
 
And so they did.] 

 
Ryan wins 

BH 
J Perkins    
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The bettors’ information about the shape of All Souls’s Great Quad: 
 
 

   

Warden Davis’s View Fellow Ryan’s View The Lord’s View 
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Informational naïveté is an empirically important strategic issue, but (Bayesian 
Nash) equilibrium rules it out by assuming people form rational expectations 
about others’ decisions, including how they depend on their private information. 
 
 
A generalized level-k analysis, as in Camerer et al. (2004), Crawford and Iriberri 
(2007a), and Brocas, Carrillo, Camerer, and Wang (2014), suggests an 
explanation (see also Brown et al. 2012): 
 
● Take L0’s decisions to be uniform random over the other player’s (or players’) 
 feasible decisions, and independent of its own private value 

 
● Define higher levels by iterated best responses as before 
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In this “random level-k” model, L0 may seem odd at first. But L0 is not an actual 
player, it is a player’s naïve model of others whose values he does not observe. 
 
Reasoning contingent on others’ possible values is logically possible, but 
behaviorally far-fetched, often requiring high-dimensional fixed-point reasoning. 
 
This yields a model of informational naivete akin to Eyster and Rabin’s (2005) 
notion of cursed equilibrium, while unbundling naïveté from equilibrium. 
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A random L1 believes that others’ decisions are independent of their own private 
information. It is therefore vulnerable to the winner’s curse and zero-sum bets:  
 
● Sky Masterson’s father was worried that his son would be an L1: decision- 
 theoretically rational but insufficiently skeptical of offers “too good to be true” 

 
● Milgrom and Stokey (1982), speculating on why zero-sum trades occur 

despite their no-trade theorem, conjecture rules Naïve Behavior, which sticks 
with its prior but otherwise behaves rationally, like a random L1; and First-
Order Sophistication, which best responds to Naïve Behavior like a random L2 

 
● A random L1 is “fully cursed” as in Eyster and Rabin’s (2005) cursed- 

equilibrium analysis, but it need not be correct on average about others’ 
decisions (as assumed in a cursed equilibrium) 
 

● Unlike cursed equilibrium, which bundles equilibrium and informational naïveté, 
a random level-k model derives naïveté from aversion to contingent reasoning 
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But the model’s usefulness is an empirical question, on which the jury is still out. 

 
With regard to auctions, Crawford and Iriberri (2007a) re-did Milgrom and 
Weber’s (1982) equilibrium analysis of first- and second-price, independent-
private-value and common-value auctions with a level-k model and used the 
results to re-analyze data from the classic auction experiments, finding that a 
random level-k model mostly outperforms equilibrium or cursed equilibrium.              
 
 
With regard to zero-sum betting, Brocas et al. (2014) (see also Camerer et al. 
2004, Section VI.A) report experiments that have the power to distinguish 
between a random level-k model and explanations based on joy of gambling, etc.  
 
Unlike Milgrom and Stokey (1982), whose theory implicitly assumes a magical 
Walrasian auctioneer, Brocas et al. study simple, completely-specified betting 
games—as needed for a laboratory implementation.  
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Brocas et al.’s experiments were on three-state betting games (close to zero-sum 
game-theoretic analogues of Milgrom and Stokey’s market trading model). 

There are three ex ante equally likely states, A, B, C. 

Player 1 learns privately either that the state is {A or B} or that it is C. 

Player 2 learns privately either that the state is A or that it is {B or C}. 

 
Player/state A B C 

1 25 5 20 
2 0 30 5 

 
Players then choose simultaneously whether to Bet or Pass. 

A player who chooses Pass, or who chooses Bet while the other player chooses 
Pass, earns 10, whatever the state. 

If both choose Bet, they get their payoffs in the table for whichever state occurs. 

All this is publicly announced (to induce common knowledge). 
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This game has a unique sensible equilibrium, identifiable via 3 rounds of “iterated 
weak dominance” (there’s a nonsensical equilibrium in which both always Pass). 

Round 1 of iterated weak dominance (Bet, Pass) 
 

player/state A B C 
1 25 5 20 
2 0 30 5 

 
Round 2 

player/state A B C 
1 25 5 20 
2 0 30 5 

 
Round 3 

player/state A B C 
1 25 5 20 
2 0 30 5 

 
In equilibrium, there is no betting in any state (player 1 is willing to bet in state C). 
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Despite this clear equilibrium prediction, in Brocas et al.’s experiments (and in 
several previous ones), half the subjects expressed a willingness to bet, in 
patterns that varied systematically with their player role and the state. 
 
In a careful clustering analysis that let the data speak directly, Brocas et al. use a 
random level-k model, again taking L0’s decisions to be uniformly distributed and 
independent of its own value, to interpret their results. 
 
L1 respects only simple dominance: 
 

player/state A B C 
1 25 5 20 
2 0 30 5 

 
L2 respects two rounds of iterated weak dominance: 
 

player/state A B C 
1 25 5 20 
2 0 30 5 
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And L3 respects three rounds (enough for equilibrium in this game): 
 

player/state A B C 
1 25 5 20 
2 0 30 5 

 
If all subjects were L1s, 100% of player 1s and 67% of player 2s would be willing 
to bet, with 100% betting in states B and C: each many more than in the data. 
 
 

player/state A B C 
1 25 5 20 
2 0 30 5 

 
 
But Brocas et al. find clusters of subjects whose behavior corresponds to each of 
L1, (arguably) L2, and L3; and also a cluster of “irrational” players. 
 
L2s and L3s are less gullible than L1s, and the level-k model with estimated level 
frequencies fits better than equilibrium or any model of homogeneous thinking. 
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Level-k mechanism design 
 
Crawford, Kugler, Neeman, and Pauzner (2009) discuss the design of 
revenue-maximizing independent-private-value auctions for level-k 
bidders, as in Myerson’s (1981) equilibrium-based analysis. 
 
Robust mechanism design is often thought of as getting the equilibrium-
based optimum under weaker behavioral assumptions, but with a level-k 
or other model that predicts deviations it may be possible to do better. 
 
For level-k bidders, revenue-equivalence fails.  
 
All levels respect simple dominance, so with independent private values a 
second-price auction makes level-k bidders bid like equilibrium bidders. 
 
In a first-price auction, L1 bidders tend to overbid relative to equilibrium, 
L2s tend to underbid, etc. (Crawford and Iriberri 2007a).  
 
Thus if L1s are known to predominate in the population, a first-price 
auction will yield more expected revenue than a second-price auction. 
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What famous model does this statue (in Singapore) represent? 
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Crawford (2021) revisits Myerson and Satterthwaite’s (1983; “MS”) classic 
equilibrium-based analysis of design of incentive-efficient mechanisms for 
bilateral trading with independent private values, replacing MS’s 
equilibrium assumption with a level-k model. 
 
MS’s analysis seems at first to require the full power of their equilibrium 
assumption, which bundles four distinct behavioral assumptions: (i) 
decision-theoretic rationality, (ii) homogeneity of strategic thinking, and 
(iii) predictability and (iv) coordination/correctness of beliefs. 
 
Crawford’s level-k analysis unbundles those assumptions, retaining (i) 
decision-theoretic rationality and relaxing the behaviorally more 
questionable (ii) homogeneity of strategic thinking and, in a structured 
way, (iii)-(iv) predictability and coordination/correctness of beliefs. 
  
(See also de Clippel, Saran, and Serrano’s (2018) analysis of 
implementation with bounded depths of reasoning and Kneeland’s (2022) 
analysis of level-k implementation, including bilateral trading.) 
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MS’s analysis was inspired by Chatterjee and Samuelson’s (1983; “CS”) 
positive analysis of bilateral trading with independent private values via 
double auction.  
 
CS and MS both study trading between a potential seller and buyer of an 
indivisible object, in exchange for money. 
 
Seller’s and buyer’s von Neumann-Morgenstern utility functions are 
quasilinear in money: risk-neutral, with money values for the object. 
 
Denote the buyer’s value V and the seller’s value C (for “cost”). 
V and C are independent, with positive densities f(V) and g(C) on their 
supports and distribution functions F(V) and G(C).  
 
CS and MS allowed the densities to have any bounded overlapping 
supports, but without important loss of generality I take the supports to be 
identical and normalize them to [0, 1]. 
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Equilibrium in the double auction 
 
In the double auction: 
 
● If the buyer’s bid b ≥ the seller’s ask a, the seller exchanges the 
 object for a given weighted average of b and a 
 
● CS allowed any weights between 0 and 1, but I take the weights 

to be equal, so the buyer acquires the object at price (a + b)/2, the 
seller’s utility is (a + b)/2, and the buyer’s is V - (a + b)/2 

 
● If b < a, the seller retains the object, and no money changes hands 
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The double auction has many Bayesian equilibria. When f(V) and g(C) 
are uniformly distributed, CS identify a linear equilibrium, which also plays 
a central role in MS’s analysis. 
 
Denote the buyer’s bidding strategy b(V) and the seller’s asking strategy 
a(C), with * subscripts for the equilibrium strategies. In the linear 
equilibrium, with value densities supported on [0, 1],  

𝑏𝑏∗(𝑉𝑉) =  2𝑉𝑉/3 +  1/12  
unless V < ¼, when 𝑏𝑏∗(𝑉𝑉) can be anything that precludes trade; and 

𝑎𝑎∗(𝐶𝐶) = 2𝐶𝐶/3 +  ¼  
unless C > ¾, when 𝑎𝑎∗(𝐶𝐶) can be anything that precludes trade. 
 
Trade occurs if and only if 2V/3 + 1/12 ≥ 2C/3 + ¼, or V ≥ C + ¼; thus with 
positive probability the outcome is ex post inefficient (true in all equilibria).  
 
The ex ante probability of trade is 9/32 ≈ 28% and the expected total 
surplus is 9/64 ≈ 0.14, less than the maximum individually rational 
probability of trade 50% and expected surplus 1/6 ≈ 0.17. 
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Ex ante-incentive-efficient mechanisms, assuming equilibrium 
 
MS noted the inefficiency of double-auction equilibria and asked whether 
another choice of trading rules (“mechanism”) could assure efficiency. 
 
MS characterized ex-ante-incentive-efficient mechanisms in CS’s trading 
environment, also requiring interim individual rationality.  
 
Like CS, MS allowed general, independent private value distributions with 
strictly positive densities on ranges that overlap for the buyer and seller; 
but I will continue to take both value supports to be [0, 1]. 
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MS assumed the designer can commit to any trading rules and traders 
will play any desired equilibrium in the game created by those rules. 
 
The revelation principle shows that there is then no loss of generality in 
restricting attention to incentive-compatible direct mechanisms.  
 
(A direct mechanism is one in which a player’s decisions are conformable 
to value reports, with the outcome a function of the reports.  
 
An incentive-compatible mechanism is one in which truthful reporting is 
an equilibrium. 
 
An (interim) individually rational mechanism is one that yields buyer and 
seller expected utility ≥ 0 for every possible realization of their values.) 
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When traders have quasilinear utility functions, denoting their value 
reports v and c (distinct from their true values V and C), the payoff-
relevant aspects of an outcome are determined by two functions: 
 
● p(v, c), the probability that the object is transferred, and  
 
● x(v, c), the expected monetary payment from buyer to seller 
   
Although these outcome functions depend only on reported values, 
traders’ utilities are determined by their true values. 
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MS’s Theorem 1 uses the conditions for incentive-compatibility and 
individual rationality to derive an “incentive budget constraint” (my term, 
not theirs), which summarizes a given mechanism’s expected surplus 
cost of creating incentives for traders to reveal their true values. 
 
Corollary 1 uses that constraint to show that no incentive-compatible, 
individually rational mechanism can assure ex post Pareto-efficiency. 
 
MS’s Theorem 2 studies the problem of choosing the outcome functions 
p(∙, ∙) and x(∙, ∙) to maximize the sum of traders’ ex ante expected utilities 
subject to the incentive budget constraint, whose conditions characterize 
the outcome functions of ex-ante-incentive-efficient mechanisms. 
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In CS’s example with uniform value densities, MS’s Theorem 2 yields a 
closed-form solution for an incentive-compatible, ex-ante-incentive-
efficient mechanism, which transfers the object if and only if the reported 
values satisfy v ≥ c + ¼, at price (v + c + ½)/3—just as happens in the 
linear equilibrium of the double auction with uniform densities. 
 
Thus, even though the double auction is not incentive-compatible, traders’ 
linear equilibrium bidding strategies in it shade to mimic the outcome of 
truthful reporting in MS’s ex-ante-incentive-efficient mechanism. 
 
Put another way, with uniform value densities the double auction is 
outcome-equivalent to an ex-ante-incentive-efficient mechanism. (This 
does not generalize beyond uniform value densities.) 
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Level-k analysis of the double auction 
 
Following Crawford and Iriberri (2007a), Crawford (2021) applied the 
level-k model to CS’s double auctions with uniform value densities, 
denoting the buyer’s bidding strategy bi(V) and the seller’s asking strategy 
ai(C), where subscripts denote levels i = 1,2. 
 
L1 and L2 buyers and sellers have the same value-shading slope, 2/3, as 
equilibrium bidders, but L1s (L2s) are more (less) aggressive. 
 
For L1s double auction outcomes are less efficient than for equilibrium 
bidders, while for L2s double auction outcomes are more efficient. 
 
● Is there a mechanism that could counteract L1s’ aggression to reduce 
 the inefficiency of the double auction for L1s? 
 
● And is there a mechanism that could take advantage of L2s’ lack of 

aggression to preserve or improve upon the efficiency of the double 
auction for L2s?  
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Mechanism design for level-k traders 
Throughout the analysis of level-k design, I restrict attention to direct 
mechanisms, I define incentive-efficiency notions for a designer’s correct 
beliefs, but I derive incentive constraints from traders’ level-k beliefs. 
 
To begin to answer the above questions, consider MS’s ex-ante-
incentive-efficient mechanism with uniform value densities. 
 
For it, L1 buyers’ and sellers’ incentive constraints happen to coincide 
with equilibrium buyers’ and sellers’ incentive constraints, because L1s 
anticipate uniform random responses and the value densities are uniform. 
By induction, this coincidence also holds for Lk incentive constraints. 
 
Thus MS’s closed-form solution for an incentive-compatible, ex-ante-
incentive-efficient mechanism with uniform value densities remains valid 
for any populations of level-k buyers and sellers, whose levels are known 
or not: MS’s result for this case is completely robust to level-k thinking. 
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But for level-k traders the mechanism must be implemented in incentive-
compatible form: The “raw” double auction, though outcome-equivalent to 
MS’s mechanism for equilibrium traders, is not equivalent for L1 traders.  
 
The revelation principle fails for level-k traders because the choice of 
mechanism influences the correctness of level-k beliefs. 
 
This influence allows MS’s mechanism to improve outcomes for L1s via 
what I call tacit exploitation of predictably incorrect beliefs:  
 
“Tacit” because the designer need not lie, only to present the mechanism. 
 
“Exploitation” in a benign sense of extracting more surplus and using it to 
benefit traders by increasing the efficiency of trade (unlike in auctions). 
 
“Predictably incorrect” to the extent that the level-k model is correct and 
the designer knows traders’ levels.  
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More generally, the failure of the revelation principle implies a substantive 
choice regarding whether or not to require level-k-incentive compatibility.    
 
Some analysts have argued that incentive compatibility is essential for 
applications, e.g. for school choice or combinatorial auctions. 
 
Others are willing in some contexts to consider non-incentive-compatible 
mechanisms like the Boston Mechanism or first-price auctions. 
 
I consider both cases, but I focus on when incentive compatibility is 
required, distinguishing whether traders’ levels are observable or not.  
(The paper also contains some discussion of design relaxing level-k-
incentive-compatibility, still assuming that traders best respond.) 
 
Returning to the second question about auctions above, if incentive 
compatibility is required it’s not possible to exploit L2s’ lack of aggression 
in the double auction: For, the double auction is not incentive compatible, 
and we have seen that with uniform value densities the best level-k-
incentive-compatible mechanism is MS’s equilibrium-incentive-
compatible, ex-ante-incentive-efficient mechanism.  
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Design requiring level-k-incentive-compatibility when traders’ levels 
are observable 
 
With non-uniform value densities, when level-k-incentive-compatibility is 
required and traders’ levels are observable, I assume that the designer 
can custom-tailor the mechanism to traders’ levels. 
 
An analysis like MS’s then goes through, with qualitatively similar results 
but differences in detail (except for uniform value densities). 
 
But MS’s result that no incentive-compatible mechanism can ensure ex 
post efficient trade with probability one does not quite go through: For 
some value densities it may be possible to ensure ex post efficient trade. 
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Design requiring level-k-incentive-compatibility when traders’ levels 
are unobservable 
 
When level-k-incentive-compatibility is required and traders’ levels are 
unobservable, a direct mechanism is not rich enough to screen both 
traders’ levels and their private values. 
 
Then, posted-price mechanisms eliminate conflict between different 
levels’ incentive constraints, and only they are incentive-compatible. 
 
It is easy to characterize the optimal posted price, which can be 
implemented is a distribution-free way, satisfying Wilson’s (1987) critique.  
 
Posted-price mechanisms rule out the sensitivity to reported values of 
mechanisms that are efficient in the set of level-k-incentive-compatible 
mechanisms when traders’ levels are observable. 
 
But at least with near-uniform value densities the cost in expected total 
surplus cost is modest, a fall from 0.14 to 0.125. 
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The analyses with and without observable levels requiring level-k-
incentive-compatibility trace the need for robust implementation to the 
unpredictability of strategic thinking, a plausible rationale for robustness. 
 

 
 
The analysis also brings expected surplus-maximizing mechanisms 
closer to mechanisms used in applications, where the unpredictability of 
people’s thinking often seems to exert a major influence on design. 
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