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Abstract: This paper revisits Myerson and Satterthwaite’s (1983) classic analysis of mechanism 

design for bilateral trading, replacing equilibrium with a level-k model of strategic thinking and 

focusing on direct mechanisms. The revelation principle fails for level-k models, so restricting 

attention to direct mechanisms and imposing incentive-compatibility are not without loss of 

generality. If, however, only direct, level-k-incentive-compatible mechanisms are feasible and 

traders’ levels are observable, Myerson and Satterthwaite’s characterization of mechanisms that 

maximize traders’ total surplus subject to incentive constraints generalizes qualitatively to level-

k models. If only direct, level-k-incentive-compatible mechanisms are feasible but traders’ levels 

are not observable, generically a particular posted-price mechanism maximizes traders’ total 

expected surplus subject to incentive constraints. If direct, non-level-k-incentive-compatible 

mechanisms are feasible and traders best respond to them, total expected surplus-maximizing 

mechanisms may take completely different forms. 
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1. Introduction 

 This paper revisits Myerson and Satterthwaite’s (1983; “MS”) classic analysis of mechanism 

design for bilateral trading with independent private values. I replace MS’s assumption that 

traders will play the desired equilibrium in any game the choice of mechanism creates, with the 

assumption that traders will follow a structural nonequilibrium model based on level-k thinking, 

which evidence suggests better predicts people’s initial responses to games. I also focus on direct 

mechanisms, those that elicit reports from traders that are conformable to estimates of their 

values. Otherwise I maintain standard assumptions about behavior and design.1 

 Equilibrium-based analyses of design have enjoyed tremendous success; and both theory and 

experiments support the assumption that players in a game who have had enough experience 

with analogous games will have learned to play an equilibrium. Why, then, study nonequilibrium 

design? A design may still need to work the first time; and design creates new games, which may 

lack the clear precedents required for learning. Further, even if learning is possible, a design may 

create games too complex for convergence to equilibrium to be behaviorally plausible. 

 Even without learning, the equilibrium assumption can be justified logically via epistemic 

arguments (Aumann and Brandenburger, 1995). However, in experiments that study initial 

responses to games, subjects’ thinking seldom follows the fixed-point or iterated-dominance 

logic that equilibrium normally requires without learning.2 Instead their thinking often favors 

level-k decision rules, which anchor subjects’ beliefs in a naive model of others’ initial responses 

called L0, usually taken to be to be uniformly random over the feasible decisions; and then adjust 

them via a small number (k) of iterated best responses: L1 best responds to L0, L2 to L1, and so 

on. The estimated frequency of L0 is usually zero or very small; and the estimated distribution of 

levels of thinking is normally concentrated on L1, L2, and perhaps L3 (Costa-Gomes and 

Crawford, 2006; Crawford, Costa-Gomes, and Iriberri, 2013, Sections 3 and 5). 

 For k > 0, Lk is decision-theoretically rational, with an accurate model of the game. It departs 

from equilibrium only in basing its beliefs on an oversimplified model of others. Lk’s decisions 

                                                 
1 As in MS’s and almost all other analyses of design, I assume that traders’ responses follow the behavioral model noiselessly. 
2 Some researchers argue that using an incentive-compatible mechanism and announcing that truth-telling is an equilibrium 

avoids the complexity of equilibrium thinking; but people are likely to check such claims using their own ways of thinking. 

Maskin (2011) argues that “the theoretical and practical drawbacks of Nash equilibrium as a solution concept are far less 

troublesome in problems of mechanism design” because the game can often be chosen to make equilibrium unique and/or 

discoverable via iterated dominance. However, experiments suggest that neither feature ensures equilibrium initial responses 

in the kinds of games used in most analyses of implementation (Katok, Sefton, and Yavas, 2002; Chen and Ledyard, 2008).  
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respect k-rationalizability (Bernheim, 1984), so it mimics equilibrium decisions in two-person 

games that are dominance-solvable in k rounds, but can deviate systematically in other games.3  

 Importantly, a structural model based on level-k thinking not only predicts that deviations 

from equilibrium will sometimes occur, but also which kinds of game evoke them and what 

forms they will take. It also replaces k-rationalizability’s set-valued predictions with specific 

predictions, which permits an analysis with precision close to that of an equilibrium analysis.4 

 A level-k analysis of design can yield several benefits. It can clarify the role of equilibrium 

assumptions in analyses like MS’s. It can identify settings where equilibrium-based conclusions 

are robust to likely deviations from equilibrium; and others where mechanisms that are optimal if 

equilibrium is assumed perform worse in practice than mechanisms that are more robust. Finally, 

a level-k analysis can reduce the sensitivity of theoretically optimal mechanisms to distributional 

and knowledge assumptions that observed institutions seldom respond to (Wilson, 1987). 

 The revelation principle fails for level-k models, due to “level-k menu effects” (Crawford, 

Kugler, Neeman, and Pauzner, 2009; “CKNP”). As a result, neither restricting attention to direct 

mechanisms nor imposing level-k-incentive-compatibility is without loss of generality, as they 

are in MS’s equilibrium-based analysis. Even so, I restrict attention to direct mechanisms, which 

brings the analysis closer to mechanisms used in practice and makes it more concrete and 

arguably more informative.5 I assume throughout that the population frequency of L0 is zero, as 

most evidence suggests. I use “equilibrium” and “level-k” as needed to distinguish concepts that 

depend on traders’ beliefs, such as incentive-compatibility and interim individual rationality. 

 The characterization of mechanisms that maximize level-k traders’ total expected surplus 

depends on two things: whether only level-k-incentive-compatible and interim individually 

rational mechanisms are truly feasible and whether traders’ levels can be observed.6  

                                                 
3 In Camerer, Ho, and Chong’s (2004) cognitive hierarchy model, Lk best responds to an estimated mixture of lower levels, 

including L0, with the level distribution constrained to be Poisson. L2 and higher levels may not respect k-rationalizability. A 

cognitive hierarchy version of my analysis would be feasible, with some loss of clarity. 
4 Until recently the alternatives to assuming equilibrium were limited to quantal response equilibrium and rationalizability or k-

rationalizability. To my knowledge, quantal response equilibrium has not been applied to design, perhaps because its 

predictions must be solved for numerically and are sensitive to its error structure. Rationalizability and k-rationalizability have 

been applied to design (Section 7); but the level-k model’s precision allows an analysis that yields additional insight.  
5 Ollár and Penta (2017, 2019) give similar arguments for restricting attention to direct mechanisms. But de Clippel, Saran, and 

Serrano (2019) and Kneeland (2018) obtain useful results in nonequilibrium analyses that allow indirect mechanisms. 
6 Experimental evidence suggests that subjects’ levels are correlated with observable variables, if not perfectly predictable (e.g. 

Agranov, Potamites, Schotter, and Tergiman, 2012; Alaoui and Penta, 2016; Alaoui, Janezic, and Penta, 2020). Even 

imperfect correlations sometimes influence applications (e.g. Pathak, 2017, Section 2.4.2). Here, however, I follow MS and 

the subsequent design literature in treating observability or predictability as an all-or-nothing distinction.  
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 My main results are for cases where only level-k-incentive-compatible and level-k-interim 

individually rational mechanisms are feasible. Then, if traders’ value densities are uniform, MS’s 

equilibrium-based result that the incentive-compatible mechanism that mimics the linear 

equilibrium in Chatterjee and Samuelson’s (1983; “CS”) symmetric double auction also 

maximizes traders’ total expected surplus subject to incentive constraints, generalizes exactly to 

level-k models with any distribution of levels, observable or not. Comparing that mechanism 

with level-k outcomes in the double auction reveals a failure of the revelation principle for level-

k models: Unlike in MS’s analysis, where the linear double-auction equilibrium is outcome-

equivalent to their mechanism’s truthful equilibrium, the total-surplus-maximizing level-k-

incentive-compatible mechanism yields different outcomes than the double auction.  

 When only level-k-incentive-compatible and -interim individually rational mechanisms are 

feasible, if traders have general well-behaved value densities and their levels are observable—

making their beliefs and best responses predictable so that the mechanism can be tailored to their 

combination of levels—then MS’s characterization of mechanisms that maximize traders’ total 

expected surplus subject to incentive constraints generalizes qualitatively to level-k models, with 

a novel feature, tacit exploitation of predictably incorrect beliefs. MS’s result that no incentive-

compatible mechanism can assure ex post efficient trade does not fully generalize in this case. 

 Still assuming that only level-k-incentive-compatible and interim individually rational 

mechanisms are feasible and that traders have general well-behaved value densities, if traders’ 

levels are not observable, so that an incentive-compatible mechanism must screen levels and 

values simultaneously, then no fully responsive direct mechanism can screen them perfectly. 

Generically, screening both levels and values to maximize traders’ total expected surplus subject 

to level-k incentive constraints requires a posted-price mechanism (Hagerty and Rogerson, 

1987), whose limited responsiveness makes truthful revelation of values a weakly dominant 

strategy and therefore a best response for all levels. The optimal posted price is sensitive to 

traders’ value densities, but it can be implemented dynamically without knowing them as in 

Čopič and Ponsatí (2008), in a way that satisfies Wilson’s (1987) desiderata. Although a posted 

price is a coarser instrument than the mechanisms that maximize traders’ total expected surplus 

when their levels are observable, the surplus cost of its robustness is modest, at least if the value 

densities are close to uniform. MS’s ex-post-inefficiency result generalizes in this case. 
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 Finally, if direct, non-level-k-incentive-compatible mechanisms are feasible and traders best 

respond to them, total expected-surplus-maximizing mechanisms may take quite different forms. 

 These results can be thought of as follows. At first glance, MS’s analysis appears to depend 

on the full strength of their assumption that traders will play the desired equilibrium in any game 

that the designer’s choice of mechanism creates. MS’s use of equilibrium bundles four distinct 

behavioral assumptions: decision-theoretic rationality, homogeneity of strategic thinking, and 

predictability and coordination/correctness of beliefs. Experimental evidence suggests that 

homogeneity of strategic thinking and coordination/correctness of beliefs are behaviorally more 

questionable than the other two, especially in games of incomplete information like those CS and 

MS studied (Crawford and Iriberri, 2007; Brocas, Carrillo, Camerer, and Wang, 2014). 

 The level-k model unbundles those four behavioral assumptions, retaining decision-theoretic 

rationality while relaxing homogeneity of strategic thinking and coordination/correctness of 

beliefs in a structured way. The level-k model also links the predictability of traders’ beliefs to 

the observability of their levels, relaxing predictability when levels are not observable, again in a 

structured way.7 The relaxation traces the need for robust implementation to the unpredictability 

of strategic thinking, a plausible rationale for robustness. The analysis in that case brings total 

expected-surplus-maximizing mechanisms closer to the mechanisms used in applications, where 

the unpredictability of people’s thinking often seems to exert a major influence on design. 

 The structure of the level-k model allows an analysis of cases where only direct, level-k-

incentive-compatible mechanisms are feasible with most of the power and precision of MS’s 

equilibrium-based analysis, retaining equilibrium’s assumptions of decision-theoretic rationality 

and predictability or partial predictability of traders’ beliefs, while dispensing with its strong 

assumptions of homogeneity of strategic thinking and coordination/correctness of beliefs. 

 Further, level-k analyses of non-level-k-incentive-compatible mechanisms promise to 

identify potential roles for indirect and/or non-incentive compatible mechanisms, which are 

irrelevant in an equilibrium analysis by revelation-principle fiat. Preliminary analyses suggest 

                                                 
7 As the proofs suggest, many of my results would go through for other nonequilibrium models that respect rationality and make 

generically unique conditional predictions. Some, however, depend essentially on the level-k model’s iterated-best-response 

structure.  I conduct the analysis for level-k models because they are well supported by evidence, and for comprehensibility. 
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that nonequilibrium design will need to go well beyond implementing the best outcomes 

attainable in equilibrium under weaker behavioral assumptions.8 

 Section 2 reviews CS’s equilibrium analysis of bilateral trading via double auction, the 

starting point for MS’s analysis, while introducing the assumptions and notation regarding 

traders’ preferences and information. Section 2 goes on to review MS’s analysis of equilibrium 

design. Section 3 defines a level-k model for the incomplete-information games created by direct 

trading mechanisms. Section 4 extends CS’s equilibrium analysis of the double auction to 

Section 3’s level-k model.  Section 5 considers level-k design when level-k-incentive-

compatibility and interim individual rationality are required. Section 6 considers relaxing level-k 

incentive constraints, allowing direct mechanisms that create incentives to lie but assuming that 

traders best respond to them. Section 7 discusses related literature. Section 8 is the conclusion. 

 

2. Equilibrium bilateral trading via double auction and equilibrium mechanism design 

 Following CS and MS, I consider bilateral trading between a potential seller and buyer of an 

indivisible object. Traders’ von Neumann-Morgenstern utility functions are quasilinear in 

money, so they are risk-neutral and have well-defined money values for the object. Denote the 

buyer’s value V and the seller’s C (for “cost”; but I sometimes use “value” for both). V and C are 

independently distributed, with probability densities f(V) and g(C) that are strictly positive on 

their supports, and probability distribution functions F(V) and G(C). CS and MS allowed traders’ 

value distributions to have any bounded overlapping supports; but with no important loss of 

generality, I take their supports to be identical and normalize them to [0, 1].  

2.1. Equilibrium bilateral trading via double auction 

 CS study a double auction, in which traders make simultaneous money offers. If the buyer’s 

offer b (for “bid”) exceeds the seller’s offer a (“ask”), they exchange the object for a price that is 

a weighted average of a and b. CS allowed any weights from 0 to 1, but as in MS’s analysis I 

focus on the symmetric case with weights ½. Then, if b ≥ a, the buyer acquires the object at price 

(a + b)/2, the seller’s utility is (a + b)/2 - C, and the buyer’s is V - (a + b)/2. If b < a, the seller 

retains the object, no money changes hands, and seller’s and buyer’s utilities are both zero. 

                                                 
8 CKNP illustrate this point concretely for auction design, showing that revenue-equivalence fails for level-k bidders, and that 

even though a second-price auction yields the equilibrium-optimal revenue level for level-k as well as equilibrium bidders, 

when the population is made up mostly of L1 bidders a non-L1-incentive-compatible first-price auction yields more revenue. 
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 CS show that this game has many Bayesian equilibria. In the leading case where traders’ 

value densities f(V) and g(C) are uniform, CS derived a closed-form solution for a linear 

equilibrium, which plays an important role in MS’s analysis. Denote the buyer’s bidding strategy 

in that equilibrium 𝑏∗(𝑉) and the seller’s asking strategy in that equilibrium 𝑎∗(𝐶). Then, with 

normalization of the supports of f(V) and g(C) to [0, 1], 𝑏∗(𝑉) = 2𝑉/3 + 1/12 unless V < 1/4, 

in which case 𝑏∗(𝑉) can be anything that does not lead to trade; and 𝑎∗(𝐶) = 2𝐶/3 + 1/4 unless 

C > 3/4, when 𝑎∗(𝐶) can be anything that does not lead to trade. Thus traders’ bids are shaded, 

so trade occurs if and only if 2V/3 + 1/12 ≥ 2C/3 + 1/4, or 𝑉 ≥ 𝐶 + 1/4, at price (V + C)/3 + 

1/6. In this and CS’s other equilibria, the probability of an ex post inefficient outcome is positive. 

2.2. Equilibrium mechanism design 

 MS ask whether the ex post inefficiency of CS’s equilibria is an avoidable flaw of the double 

auction or rather a general property of any trading mechanism when traders’ values are private. 

Efficient trading requires that traders’ responses to the mechanism reveal their private values, at 

least implicitly. Conceivably, a different mechanism could accomplish that without inefficiency. 

 MS begin (pp. 267-268) with the revelation principle, the observation that any given 

equilibrium of the game created by a feasible mechanism can be viewed as the truthful 

equilibrium of some direct-revelation mechanism. Assuming equilibrium and the ability to select 

among equilibria, it follows that there is no loss of generality in restricting attention to direct 

mechanisms that are incentive-compatible in that truthful reporting of values is an equilibrium.  

 Assuming that traders have general, well-behaved value densities with overlapping supports, 

MS use the revelation principle to characterize the mechanisms that maximize traders’ total 

expected surplus in the set of incentive-compatible and interim individually rational mechanisms 

(their Theorems 1 and 2).9 They then use their characterization to show that in equilibrium, no 

feasible mechanism can avoid a positive probability of ex post inefficiency (Corollary 1). In the 

leading case of uniform value densities, they derive a closed-form solution for the mechanism 

that maximizes traders’ total expected surplus subject to incentive constraints (pp. 276-277) and 

show that it mimics the outcomes of CS’s linear double-auction equilibrium. For reference, that 

equilibrium has ex ante probability of trade 9/32 ≈ 28% and total surplus 9/64 ≈ 0.14, well below 

the maximum ex post individually rational probability of trade of 50% and surplus 1/6 ≈ 0.17.  

                                                 
9 Williams (1987) notes that MS’s maximization of traders’ total expected surplus does not identify all mechanisms associated 

with outcomes on the incentive-efficient frontier, because the incentive constraints interfere with the transferability of utility 

that usually follows from quasilinearity. He characterizes the mechanisms associated with all possible welfare weights.    
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3. A level-k model for incomplete-information games 

 I now define a level-k model for incomplete-information games. As in the analysis, I restrict 

attention to direct mechanisms, for which there is clear evidence to guide the specification. 

 Recall that a level-k player anchors its beliefs in a naive model of other players’ responses, 

L0, with which it assesses the payoff implications of its own decisions before thinking about 

others’ responses to incentives (Crawford et al., 2013, Sections 2.4 and 3). Lk then adjusts its 

beliefs via iterated best responses: L1 best responds to L0, L2 to L1, and so on.  

 In complete-information games, L0 is usually taken to be uniformly random over the range of 

feasible decisions. I extend this to games with incomplete information by taking L0’s decisions 

to be uniform over the feasible decisions and independent of its own value, following Milgrom 

and Stokey (1982); Camerer et al. (2004); Crawford and Iriberri (2007); and CKNP (see also 

Crawford et al., 2013, Section 5).10 I also assume that a player’s level is independent of its value. 

 Experiments and some analyses of field data (Camerer et al., 2004; Brown, Camerer, and 

Lovallo, 2012; Brocas et al., 2014) suggest that this generalized level-k model gives a reliable, 

unified account of people’s non-equilibrium thinking and their informational naiveté, the often-

observed imperfect attention to how others’ decisions depend on their private information.11 

 

4. A level-k analysis of the double auction 

 I now extend CS’s equilibrium analysis of the double auction to Section 3’s level-k model. I 

take the population frequency of L0 and L3, L4, … to be zero and focus on L1s and L2s, which 

predominate empirically and serve to illustrate my main points. In this section, for simplicity, I 

consider mainly cases in which buyers are matched with sellers of the same level. For L1s this 

section’s analysis applies to any value densities; for L2s it assumes uniform value densities. 

 Denote a level-k buyer’s bidding strategy bk(V) and a level-k seller’s asking strategy ak(C). 

                                                 
10 Milgrom and Stokey’s (1982) notions of Naïve Behavior and First-Order Sophistication, which they suggest  might explain 

  zero-sum trading despite their equilibrium-based No Trade (“Groucho Marx”) Theorem, are equivalent to an  L1  defined this 

way and an L2 best responding to such an L1. An L0 buyer’s bid or seller’s ask might instead be assumed to be  uniformly 

distributed below (above) its value, thus eliminating weakly dominated bids (asks). However, L0 represents not a real  player 

but a  player’s initial, naïve model of others whose values it does not observe. Experiments suggest that few people perform the 

 contingent  reasoning a more sophisticated L0 would require. Another alternative would assume L0 bids or asks its true value, 

which is well-defined for games created by direct mechanisms. But a truthful L0 has less experimental support in this context 

 (Crawford and Iriberri, 2007) and would trivially reduce level-k incentive constraints to equilibrium  incentive constraints. 
11 Informational naiveté is most famously observed in the winner’s curse, which is not relevant with independent private values. 

However, the kinds of informational naiveté studied here are relevant even with independent private values.  
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4.1. L1 buyer and seller 

 An L1 buyer believes that the seller’s L0 ask is uniformly distributed on [0, 1]. Thus an L1 

buyer’s bid b1(V) must maximize, over b ϵ [0, 1] 

∫ [𝑉 – 
𝑎 + 𝑏

2
]

𝑏

0

𝑑𝑎. 

 The optimal L1 strategies are strictly increasing in the relevant range, so the event a = b can 

be ignored. Solving the first-order condition yields b1(V) = 2V/3, with range [0, 2/3]; and the 

second-order condition is satisfied. Thus, boundaries aside, an L1 buyer bids 1/12 more 

aggressively (that is, bids less) than a linear-equilibrium buyer with uniform value densities: An 

L1 buyer’s naïve model of the seller systematically underestimates the distribution of the seller’s 

upward-shaded ask, inducing the buyer to underbid relative to the linear equilibrium.12 

 Similarly, an L1 seller’s ask a1(C) must maximize, over a ϵ [0, 1] 

∫ [
𝑎 + 𝑏

2
− 𝐶] 𝑑𝑏

1

𝑎

. 

The first-order condition yields a1(C) = 2C/3 + 1/3, with range [1/3, 1]; and the second-order 

condition is again satisfied. Boundaries aside, an L1 seller asks 1/12 more aggressively (that is, 

asks more) than a linear-equilibrium seller with uniform value densities: An L1 seller’s naïve 

model of the buyer systematically underestimates the distribution of the buyer’s downward-

shaded bid, inducing the seller to over-ask relative to the linear equilibrium. 

 L1 buyers’ and sellers’ strategies have the same 2/3 slopes as in CS’s linear equilibrium with 

uniform value densities. When L1s are matched, trade takes place whenever V ≥ C + 1/2, so the 

required value gap is 1/4 larger than in CS’s linear equilibrium. The ex ante probability of trade 

is 1/8 = 12.5% and the total expected surplus is 1/24 ≈ 0.04, far less than the linear equilibrium 

probability of trade 9/32 ≈ 28% and surplus 9/64 ≈ 0.14, and even further below the maximum 

individually rational probability of trade 50% and surplus 1/6 ≈ 0.17. 

4.2. L2 buyer and seller 

 An L2 buyer’s bid b2(V) must maximize, over b ϵ [0, 1] 

∫ [𝑉 – 
𝑎 + 𝑏

2
] 𝑔(𝑎1

−1(𝑎))
𝑏

0

𝑑𝑎, 

                                                 
12 Compare Crawford and Iriberri’s (2007) analysis of L1 and L2 bidding in first-price auctions. Despite the double auction’s 

multiplicity of equilibria, the level-k model makes predictions that are generically unique, given traders’ levels.  
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where 𝑔(𝑎1
−1(𝑎)) is the density of an L1 seller’s ask a1(C) induced by the value density g(C). 

 If, for instance, g(C) is uniform, an L2 buyer believes that the seller’s ask a1(C) = 2C/3 + 1/3 

is uniformly distributed on [1/3, 1], with density 3/2 there and zero elsewhere. It thus believes 

that trade requires b > 1/3. For V ≤ 1/3 it is therefore optimal to bid anything that it believes 

yields zero probability of trade. In the absence of dominance among such strategies, I set b2(V) = 

V for V ϵ [0, 1/3]. For V > 1/3, if g(C) is uniform, an L2 buyer’s bid b2(V) must maximize over b 

ϵ [1/3, 1] 

∫ [𝑉 – 
𝑎 + 𝑏

2
]

b

1/3

(3/2)d𝑎. 

The optimal L2 strategies are strictly increasing in the relevant range, so the event a = b can 

again be ignored. Solving the first-order condition (3/2)(V - b) - (3/4)(V - 1/3) = 0 yields b2(V) = 

2V/3 + 1/9 for V ϵ [1/3, 1], with range [1/3, 7/9]; and the second-order condition is satisfied. 

Boundaries aside, with uniform value densities an L2 buyer bids 1/36 less aggressively (more) 

than a linear-equilibrium buyer, and 1/9 less aggressively than an L1 buyer: An L2 buyer’s model 

of the seller, though less naïve than an L1 buyer’s, overestimates the distribution of the seller’s 

upward-shaded ask, inducing the buyer to overbid relative to the linear equilibrium. 

 An L2 seller’s ask a2(C) must maximize over a ϵ [0, 1] 

∫ [
𝑎 + 𝑏

2
− 𝐶] 𝑓(𝑏1

−1(𝑏))𝑑𝑏
1

𝑎

, 

where 𝑓(𝑏1
−1(𝑏)) is the density of an L1 buyer’s bid b1(V) induced by the value density f(V). 

 If f(V) is uniform, an L2 seller believes that the buyer’s bid b1(V) = 2V/3 is uniform on [0, 

2/3], with density 3/2 there and 0 elsewhere. It thus believes trade requires a < 2/3. For C ≥ 2/3 it 

is therefore optimal for an L2 seller to bid anything that it believes yields 0 probability of trade. 

In the absence of dominance among such strategies, I set a2(C) = C for C ϵ [2/3, 1]. For C < 2/3, 

an L2 seller’s ask a2(C) must maximize over a ϵ [0, 2/3]   

∫ [
𝑎 + 𝑏

2
− 𝐶]

2
3

𝑎

(3/2)𝑑𝑏. 

The second-order condition is satisfied, and the first-order condition (3/2)(a-C) + (3/2)(2/3 - C)/2 

= 0 yields a2(C) = 2C/3 + 2/9 for C ϵ [0, 2/3], with range [2/9, 2/3]. Boundaries aside, with 

uniform value densities an L2 seller asks 1/36 less aggressively (less) than a linear equilibrium 
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seller, and 1/9 less aggressively than an L1 seller: An L2 seller overestimates the distribution of 

the buyer’s downward-shaded bid, inducing it to under-ask relative to the linear equilibrium. 

 With uniform value densities, L2 buyers’ and sellers’ strategies again have the same 2/3 

slopes as in CS’s linear equilibrium with uniform densities. When L2s are matched, trade takes 

place whenever V ≥ C + 1/6, so the required value gap is 1/12 smaller than in CS’s linear 

equilibrium. The ex ante probability of trade is 25/72 ≈ 35% and the total expected surplus is 

11/72 ≈ 0.15: somewhat more than the linear equilibrium probability 9/32 ≈ 28% and surplus 

9/64 ≈ 0.14 and much more than the L1s’ probability 1/8 = 12.5% and surplus 1/24 ≈ 0.04, but 

still well below the maximum individually rational probability 50% and surplus 1/6 ≈ 0.17. 

4.3. Buyer and seller with mixed levels 

 When an L1 buyer and an L2 seller are matched, or vice versa, trade occurs when V ≥ C + 

1/3, so the needed value gap is 1/12 more than for linear equilibrium traders and 1/6 more than 

for matched L2s, but 1/6 less than for matched L1s. With uniform value densities levels affect the 

gap additively, so with random matching outcomes are determined by population average levels. 

 

5. Level-k design when level-k-incentive-compatibility is required 

 This section considers level-k design when level-k-incentive-compatibility and interim 

individual rationality are required, continuing to focus on direct mechanisms. Like MS, I take the 

goal to be maximizing traders’ true total expected surplus, but now subject to incentive 

constraints defined for traders’ possibly heterogeneous level-k beliefs.  

 Although in this case level-k traders are incentivized to report their own values truthfully, 

they generally do not expect their partners to report truthfully. Importantly, I assume that even 

so, traders question neither the mechanism’s feasibility nor that the stated mechanism will 

determine outcomes.13 I also treat differences in traders’ levels as pure differences of opinion 

(Eliaz and Spiegler, 2008). In particular, traders draw no inferences about each other’s levels 

from the designer’s choice of mechanism or, conditionally, from each other’s decisions.  

 I consider three cases: uniform value densities with traders’ levels observable or not; general 

densities with traders’ levels observable; and general densities with levels not observable. 

                                                 
13 If, instead, traders used their beliefs to assess the mechanism’s feasibility or credibility, the effect would be to add constraints 

that for fully responsive mechanisms are generically in conflict with level-k-incentive-compatibility. The analysis would then 

likely resemble Section 5.4’s (Lemma 1, Theorem 4) analysis of the case where traders’ levels are not observable, in which 

level-k incentive constraints lead to total-surplus-maximizing mechanisms with posted prices and thus limited responsiveness. 
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5.1 Uniform value densities with traders’ levels observable or not  

 First consider the case of uniform value densities, where MS obtained a closed-form solution 

for the mechanism that maximizes traders’ total expected surplus in the set of equilibrium-

incentive-compatible mechanisms, which mimics CS’s linear double-auction equilibrium.  

 Theorem 1 shows that this part of MS’s analysis extends exactly to level-k models (see also 

the related results of Gorelkina, 2018, Proposition 1; and de Clippel et al., 2019, Observation 1). 

 

Theorem 1. With uniform value densities, for any population of level-k traders, with levels 

observable or not, level-k-incentive-compatibility and interim individually rationality constraints 

coincide with equilibrium-incentive-compatibility and interim individually rationality 

constraints. Thus, MS’s mechanism that maximizes traders’ total expected surplus in the set of 

equilibrium-incentive-compatible and interim individually rational mechanisms, also maximizes 

their total expected surplus in the set of level-k-incentive-compatible and interim individually 

rational mechanisms. 

 

Proof. The proof is inductive. L1 traders believe that they face uniform distributions of each 

other’s value reports. When the mechanism is level-k-incentive-compatible, with uniform value 

densities their beliefs are correct. L1-incentive-compatibility and interim individual rationality 

therefore coincide with equilibrium-incentive-compatibility and interim individual rationality. If 

L1 traders report truthfully, L2 traders’ beliefs are correct and L2-incentive-compatibility and 

interim individual rationality also coincide with equilibrium-incentive-compatibility and interim 

individual rationality. And so on, ad infinitum. Like MS’s analysis, the level-k analysis seeks to 

maximize traders’ true total expected surplus. Thus for any population of level-k traders, with 

levels observable or not, MS’s mechanism that maximizes total expected surplus subject to 

equilibrium incentive constraints also maximizes it subject to level-k incentive constraints. ■ 

 

5.2. Level-k menu effects and failure of the revelation principle 

Recall that with uniform value densities, the truthful equilibrium of MS’s (p. 277) mechanism 

that maximizes traders’ total expected surplus in the set of equilibrium-incentive-compatible and 

interim individually rational mechanisms is outcome-equivalent to CS’s linear double-auction 

equilibrium. Section 4’s analysis shows that no such outcome-equivalence holds for level-k 
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models: L1s have lower surplus in the double auction than in the truthful equilibrium of MS’s 

mechanism, while L2s have higher surplus. Accordingly, Theorem 1 shows only that MS’s 

mechanism maximizes level-k traders’ total expected surplus subject to level-k incentive 

constraints if it is implemented in its level-k- (and equilibrium-) incentive-compatible form. 

Outcome-equivalence fails because the two mechanisms have different relationships to L0, 

which influences the correctness of level-k beliefs via level-k menu effects (CKNP). Using MS’s 

mechanism rectifies L1s’ beliefs, neutralizing L1s’ aggressiveness in the double auction and 

yielding them the same total expected surplus they would have obtained in CS’s linear double-

auction equilibrium. Using MS’s mechanism would also rectify L2s’ beliefs, but that would 

neutralize L2s’ unaggressiveness in the double auction, foregoing its benefits. Put another way, if 

level-k-incentive-compatibility were not required, as it is in Theorem 1, then L2s would obtain 

higher total surplus in the non-L2-incentive-compatible double auction than in MS’s mechanism. 

Because the revelation principle fails for level-k models, it matters whether level-k-incentive-

compatibility is required. Some analysts argue that incentive-compatibility is essential in 

applications, albeit mostly in equilibrium analyses where in theory there is no gain from relaxing 

it (Milgrom, Ausubel, Levin, and Segal, 2012, for auctions; Abdulkadiroglu and Sönmez, 2003, 

for school choice). Others are willing to consider mechanisms that are not equilibrium-incentive-

compatible (Myerson, 1981, for the first-price sealed-bid auction; Erdil and Ergin, 2008, or 

Abdulkadiroglu, Che, and Yasuda, 2011, for the Boston school-choice mechanism). Here I don’t 

attempt to resolve this issue, which is mainly empirical. Instead I consider both cases in turn.  

5.3. General value densities with traders’ levels observable  

 Now consider the case of general well-behaved value densities, with traders’ levels 

observable so that the mechanism can be tailored to their combination of levels.  

 Assuming ex post expected budget balance as in MS’s analysis, the payoff-relevant aspects 

of a direct mechanism are p(v, c), the probability the object is traded, and the expected money 

transfer x(v, c), where v and c are buyer’s and seller’s reported values. For any mechanism (p, x), 

let 𝑓𝑘(𝑣; 𝑝, 𝑥) and 𝐹𝑘(𝑣; 𝑝, 𝑥) be the density and distribution function of an Lk seller’s beliefs, 

and let 𝑔𝑘(𝑐; 𝑝, 𝑥) and 𝐺𝑘(𝑐; 𝑝, 𝑥) be the density and distribution function of an Lk buyer’s. With 

L0 uniform random on [0, 1], 𝑓1(𝑣; 𝑝, 𝑥) ≡ 1 and 𝑔1(𝑐; 𝑝, 𝑥) ≡ 1. If 𝛽1(𝑉; 𝑝, 𝑥) is an L1 buyer’s 

response to (p, x) with value V and 𝛼1(𝐶; 𝑝, 𝑥) is an L1 seller’s response to (p, x) with cost C, 
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𝑓2(𝑣; 𝑝, 𝑥) ≡ 𝑓(𝛽1
−1(𝑣; 𝑝, 𝑥)) and 𝑔2(𝑐; 𝑝, 𝑥) ≡ 𝑔(𝛼1

−1(𝑐; 𝑝, 𝑥)). Even higher-level beliefs are 

defined analogously. I sometimes suppress the dependence of higher-level beliefs on (p, x).  

 Write the buyer’s and seller’s expected monetary payments, probabilities of trade, and 

expected utilities as functions of their value reports v and c and their true values V and C: 

                                                                                             𝑋𝐵
𝑘(𝑣) = ∫ 𝑥(𝑣, 𝑐̂)𝑔𝑘(𝑐̂)𝑑𝑐̂,

1

0
         𝑋𝑆

𝑘(𝑐) = ∫ 𝑥(𝑣, 𝑐)𝑓𝑘(𝑣)𝑑𝑣,
1

0
  

(1)                                                              𝑃𝐵
𝑘(𝑣) = ∫ 𝑝(𝑣, 𝑐̂)𝑔𝑘(𝑐̂)𝑑𝑐̂,

1

0
         𝑃𝑆

𝑘(𝑐) = ∫ 𝑝(𝑣̂, 𝑐)𝑓𝑘(𝑣̂)𝑑𝑣,
1

0
 

𝑈𝐵
𝑘(𝑉, 𝑣) = 𝑉𝑃𝐵

𝑘(𝑣) − 𝑋𝐵
𝑘(𝑣),        𝑈𝑆

𝑘(𝐶, 𝑐) = 𝑋𝑆
𝑘(𝑐) − 𝐶𝑃𝑆

𝑘(𝑐). 

 For a given k, the mechanism p(∙, ∙), x(∙, ∙) is level-k-incentive-compatible if and only if 

truthful reporting is optimal given level-k beliefs; that is, if for every V, v, C, and c in [0, 1], 

(2) 𝑈𝐵
𝑘(𝑉, 𝑉) ≥ 𝑈𝐵

𝑘(𝑉, 𝑣) = 𝑉𝑃𝐵
𝑘(𝑣) − 𝑋𝐵

𝑘(𝑣)   and  𝑈𝑆
𝑘(𝐶, 𝐶) ≥ 𝑈𝑆

𝑘(𝐶, 𝑐) = 𝑋𝑆
𝑘(𝑐) − 𝐶𝑃𝑆

𝑘(𝑐).  

Given level-k-incentive-compatibility, the mechanism p(∙, ∙), x(∙, ∙) is level-k-interim individually 

rational if and only if, for every V and C in [0, 1], 

(3)                                                                                                                                               𝑈𝐵
𝑘(𝑉, 𝑉) ≥ 0  and 𝑈𝑆

𝑘(𝐶, 𝐶) ≥ 0. 

 Theorems 2 and 3 extend MS’s (Theorems 1-2) characterization of mechanisms that 

maximize traders’ total expected surplus in the set of equilibrium-incentive-compatible and 

interim individually rational mechanisms, to level-k models with traders’ levels observable, 

showing that in this case MS’s characterization is qualitatively robust to level-k thinking.14 

 

Theorem 2. Assume that traders’ levels are observable, say i for the buyer and j (possibly ≠ i) 

for the seller. Then for any mechanism (p, x) that is level-k-incentive-compatible for those 

traders, 

(4)                                                                            𝑈𝐵
𝑖 (0,0) +  𝑈𝑆

𝑗(1,1) = minV∊[0,1] 𝑈𝐵
𝑖 (𝑉, 𝑉) + minC∊[0,1]  𝑈𝑆

𝑗(𝐶, 𝐶) 

= ∫ ∫ ([𝑉 −
1 − 𝐹(𝑉)

𝑓(𝑉)
] [

𝑔𝑖(𝐶; 𝑝, 𝑥)

𝑔(𝐶)
] − [𝐶 +

𝐺(𝐶)

𝑔(𝐶)
] [

𝑓𝑗(𝑉; 𝑝, 𝑥)

𝑓(𝑉)
])

1

0

𝑝(𝑉, 𝐶)𝑓(𝑉)𝑔(𝐶)𝑑𝐶𝑑𝑉.
1

0

 

Further, if p(∙,∙) is any function mapping [0, 1]×[0, 1] into [0, 1], then there exists a function x(∙,∙) 

such that (p, x) is incentive-compatible and interim individually rational for traders’ levels if and 

only if for that (p, x), 𝑃𝐵
𝑖 (∙) is weakly increasing, 𝑃𝑆

𝑗
(∙) is weakly decreasing, and 

                                                 
14 Tilman Börgers and referees noted important errors in my previous versions of Theorem 2 and helped me to correct them.         
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(5)  0 ≤ ∫ ∫ {[𝑉 −
1−𝐹(𝑉)

𝑓(𝑉)
] [

𝑔𝑖(𝐶;𝑝,𝑥)

𝑔(𝐶)
] − [𝐶 +

𝐺(𝐶)

𝑔(𝐶)
] [

𝑓𝑗(𝑉;𝑝,𝑥)

𝑓(𝑉)
]}

1

0
𝑝(𝑉, 𝐶)𝑓(𝑉)𝑔(𝐶)𝑑𝐶𝑑𝑉

1

0
.15 

 
Proof. The proof adapts MS’s (pp. 269-271) proof, with adjustments for traders’ level-k beliefs. 

By (2), 𝑃𝐵
𝑖 (∙) is weakly increasing and 𝑃𝑆

𝑗
(∙) is weakly decreasing for any given (p, x). When 

traders’ levels are observable, the mechanism designer has all the information required to 

incentivize them to reveal their true values. As in MS’s proof, (1) and (2) yield necessary and 

sufficient conditions for traders’ level-k incentive-compatibility, namely that for all V and C: 

(6)                                                    𝑈𝐵
𝑖 (𝑉, 𝑉) = 𝑈𝐵

𝑖 (0,0) + ∫ 𝑃𝐵
𝑖 (𝑣̂)𝑑𝑣̂

𝑉

0
 = 𝑈𝐵

𝑖 (0,0) + ∫ ∫ 𝑃𝐵
𝑖 (𝑣̂)𝑑𝑣̂𝑓(𝑉)𝑑𝑉

𝑉

0

1

0
  

      = 𝑈𝐵
𝑖 (0,0) + ∫ [1 −

1

0
𝐹(𝑉)] 𝑃𝐵

𝑖 (𝑉)𝑑𝑉 = 𝑈𝐵
𝑖 (0,0) + ∫ ∫ {1 − 𝐹(𝑉)}𝑔𝑖(𝐶)𝑝(𝑉, 𝐶)𝑑𝐶𝑑𝑉

1

0

1

0
. 

and 

(7)                                                       𝑈𝑆
𝑗

(𝐶, 𝐶) = 𝑈𝑆
𝑗

(1,1) + ∫ 𝑃𝑆
𝑗

(𝑐̂)𝑑𝑐̂
1

𝐶
= 𝑈𝑆

𝑗
(1,1) + ∫ ∫ 𝑃𝑆

𝑗
(𝑐̂)𝑑𝑐̂𝑔(𝐶)𝑑𝐶 

1

𝐶

1

0
  

                             = 𝑈𝑆
𝑗(1,1) + ∫ 𝐺(𝐶)

1

0
𝑃𝑆

𝑗(𝐶)𝑑𝐶 =  𝑈𝑆
𝑗(1,1) + ∫ ∫ 𝐺(𝐶)𝑓𝑗(𝑉)𝑝(𝑉, 𝐶)𝑑𝐶𝑑𝑉

1

0

1

0
. 

(6) and (7) imply that 𝑈𝐵
𝑖 (𝑉, 𝑉) is increasing and 𝑈𝑆

𝑗
(𝐶, 𝐶) is decreasing, and show that 

𝑈𝐵
𝑖 (0,0) ≥ 0 and 𝑈𝑆

𝑗
(1,1) ≥ 0 suffice for interim individual rationality for all V and C as in (3). 

 To derive the incentive budget constraint (5) (my term, not MS’s), which is analogous to 

MS’s (p. 269) equilibrium-based constraint (2), note that both the mechanism designer and 

traders know the mechanism and the true value densities. When traders’ levels are observable the 

designer can use the predictability of level-k beliefs to calculate, for any given mechanism, the 

true expected surpluses required to incentivize them to report truthfully, just as in MS’s analysis. 

With truthful reporting, the required total expected surplus is obtained by taking the expectations 

of the right-hand sides of (6) and (7) over the true value densities and summing as follows: 

                                                                                          ∫ 𝑈𝐵
𝑖 (𝑉, 𝑉)𝑓(𝑉)𝑑𝑉 + ∫ 𝑈𝑆

𝑗(𝐶, 𝐶)𝑔(𝐶)𝑑𝐶
1

0

1

0
= 

(8)                                              𝑈𝐵
𝑖 (0,0) + ∫ ∫ 𝑃𝐵

𝑖 (𝑣)𝑑𝑣𝑓(𝑉)𝑑𝑉 +  𝑈𝑆
𝑗(1,1) + ∫ ∫ 𝑃𝐶

𝑗(𝑐)𝑑𝑐𝑔(𝐶)𝑑𝐶 =  
1

𝐶

1

0

𝑉

0

1

0
 

                                                           𝑈𝐵
𝑖 (0,0) +  𝑈𝑆

𝑗(1,1) + ∫ [1 − 𝐹(𝑣)]𝑃𝐵
𝑖 (𝑣)𝑑𝑣

1

0
+ ∫ 𝐺(𝑐)𝑃𝑆

𝑗(𝑐)𝑑𝑐
1

0
=  

 𝑈𝐵
𝑖 (0,0) +  𝑈𝑆

𝑗(1,1) +  ∫ [1 − 𝐹(𝑣)]𝑝(𝑣, 𝑐̂)𝑔𝑗(𝑐̂)𝑑𝑐̂𝑑𝑣
1

0
+ ∫ 𝐺(𝑐)𝑝(𝑣, 𝑐)𝑓𝑖(𝑣)𝑑𝑣𝑑𝑐.

1

0
     

                                                 
15 With correct, equilibrium beliefs, 𝑔𝑖(𝐶; 𝑝, 𝑥) ≡ 𝑔(𝐶) and 𝑓𝑗(𝑉; 𝑝, 𝑥) ≡ 𝑓(𝑉), and (4) and (5) reduce to MS’s equilibrium- 

 based expressions. Because level-k beliefs are correct for uniform value densities, that is an alternative proof of Theorem 1. 
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This required total surplus must not exceed the true total surplus the mechanism yields, which is 

(9)                                                                                                                                         ∫ ∫ (𝑉 − 𝐶)
1

0
𝑝(𝑉, 𝐶)𝑔(𝐶)𝑓(𝑉)𝑑𝐶𝑑𝑉

1

0
.  

Equating (9) to the expression on the far right-hand side of (8) and simplifying yields (4). Given 

that 𝑈𝐵
𝑖 (0,0) ≥ 0 and 𝑈𝑆

𝑗
(1,1) ≥ 0 suffice for interim individual rationality for all V and C, (3) 

and (4) imply (5). (4) and (5)  may appear to “compare apples and oranges” because in general 

traders’ level-k beliefs differ from the true value densities. But as the  proof shows, those 

comparisons are valid under my assumptions because traders are incentivized to reveal their true 

values  and they do not use their beliefs to question the mechanism’s feasibility or credibility. 

 Finally, given p(∙,∙) mapping [0, 1]×[0, 1] into [0, 1], the monotonicity of 𝑃𝐵
𝑗

(∙)  and 𝑃𝑆
𝑘(∙) 

implies that a level-k adaptation of MS’s (pp. 270-271) transfer function: 

(10)                                 𝑥(𝑣, 𝑐) =  ∫ 𝑣
𝑉

0
𝑑[𝑃𝐵

𝑖 (𝑣)] − ∫ 𝑐
𝐶

0
𝑑[−𝑃𝑆

𝑗(𝑐)] +∫ 𝑐[1 − 𝐺𝑖(𝐶)]
1

0
𝑑[−𝑃𝑆

𝑗(𝑐)], 

ensures that (p, x) is incentive-compatible and interim individually rational for each trader. ■ 

 

 In MS’s analysis the incentive-compatibility constraints can be characterized trader by trader 

even though they are based on an  equilibrium that is a fixed point in which traders interact, 

because the  revelation principle (including the   assumed ability to choose among equilibria) 

decouples traders’ problems  that determine whether truth-telling is an equilibrium. The level-k 

analysis can rely on analogous   methods because level-k traders avoid fixed-point reasoning—as 

experimental subjects normally do (Crawford et al., 2013, Sections 3 and 5)—and the problems 

that describe their strategic thinking decouple even though the revelation principle fails. 

 Adapting MS’s Theorem 2’s statement and proof (pp. 274-276) to traders’ level-k beliefs, 

Theorem 3 completes the characterization of mechanisms that maximize traders’ total expected 

surplus in the set of level-k-incentive-compatible and interim individually rational mechanisms.  

 

Theorem 3. Assume that traders’ levels are observable, say i for the buyer and j (possibly ≠ i) 

for the seller. If there exists a mechanism (p, x) such that 𝑈𝐵
𝑖 (0,0) = 𝑈𝑆

𝑗(1,1) = 0, the level-k 

incentive budget constraint (5) is satisfied, and the Kuhn-Tucker conditions 
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(11)                                     (𝑉 − 𝐶) + 𝜆 {[𝑉 −
1−𝐹(𝑉)

𝑓(𝑉)
] [

𝑔𝑖(𝐶;𝑝,𝑥)

𝑔(𝐶)
] − [𝐶 +

𝐺(𝐶)

𝑔(𝐶)
] [

𝑓𝑗(𝑉;𝑝,𝑥)

𝑓(𝑉)
]} ≤ 0 or, equivalently, 

𝑉 [(1 + 𝜆)
𝑔𝑖(𝐶;𝑝,𝑥)

𝑔(𝐶)
] − 𝐶 [(1 + 𝜆)

𝑓𝑗(𝑉;𝑝,𝑥)

𝑓(𝑉)
] ≤ 𝜆 [

1−𝐹(𝑉)

𝑓(𝑉)

𝑔𝑖(𝐶;𝑝,𝑥)

𝑔(𝐶)
+

𝐺(𝐶)

𝑔(𝐶)

𝑓𝑗(𝑉;𝑝,𝑥)

𝑓(𝑉)
] when 𝑝(𝑉, 𝐶) = 0 

and 

(12)                    (𝑉 − 𝐶) + 𝜆 {[𝑉 −
1−𝐹(𝑉)

𝑓(𝑉)
] [

𝑔𝑖(𝐶;𝑝,𝑥)

𝑔(𝐶)
] − [𝐶 +

𝐺(𝐶)

𝑔(𝐶)
] [

𝑓𝑗(𝑉;𝑝,𝑥)

𝑓(𝑉)
]} ≥ 0 or, equivalently, 

𝑉 [(1 + 𝜆)
𝑔𝑖(𝐶;𝑝,𝑥)

𝑔(𝐶)
] − 𝐶 [(1 + 𝜆)

𝑓𝑗(𝑉;𝑝,𝑥)

𝑓(𝑉)
] ≥ 𝜆 [

1−𝐹(𝑉)

𝑓(𝑉)

𝑔𝑖(𝐶;𝑝,𝑥)

𝑔(𝐶)
+

𝐺(𝐶)

𝑔(𝐶)

𝑓𝑗(𝑉;𝑝,𝑥)

𝑓(𝑉)
] when 𝑝(𝑉, 𝐶) = 1 

are satisfied for some 𝜆 ≥ 0, then that mechanism maximizes traders’ total expected surplus 

among all mechanisms that are level-k-incentive-compatible and interim individually rational 

for trader’s levels. Furthermore, if for that (p, x) the function [𝑉 −
1−𝐹(𝑉)

𝑓(𝑉)
] [

𝑔𝑖(𝐶;𝑝,𝑥)

𝑔(𝐶)
] −

[𝐶 +
𝐺(𝐶)

𝑔(𝐶)
] [

𝑓𝑗(𝑉;𝑝,𝑥)

𝑓(𝑉)
] is weakly increasing in V and weakly decreasing in C on [0,1]×[0,1], then 

such a mechanism must exist. 

 

Proof. Consider the problem of choosing p(∙, ∙) to maximize traders’ total expected surplus 

subject to 0 ≤ p(∙, ∙) ≤ 1 and (5). The problem is analogous to a consumer’s budget problem with 

the trade probabilities 𝑝(𝑉, 𝐶) analogous to a continuum of linearly priced goods. Form the 

Lagrangean (for ease of notation, without pricing out the 𝑝(𝑉, 𝐶) ≤ 1 constraints): 

                                                    ∫ ∫ (𝑉 − 𝐶)
1

0
𝑝(𝑉, 𝐶)𝑓(𝑉)𝑔(𝐶)𝑑𝐶𝑑𝑉

1

0
 

(13)                                               +𝜆 ∫ ∫ {[𝑉 −
1−𝐹(𝑉)

𝑓(𝑉)
] [

𝑔𝑖(𝐶;𝑝,𝑥)

𝑔(𝐶)
] − [𝐶 +

𝐺(𝐶)

𝑔(𝐶)
] [

𝑓𝑗(𝑉;𝑝,𝑥)

𝑓(𝑉)
]}

1

0
𝑝(𝑉, 𝐶)𝑓(𝑉)𝑔(𝐶)𝑑𝐶𝑑𝑉

1

0
 

                                                   = ∫ ∫ ((𝑉 − 𝐶) + 𝜆 {[𝑉 −
1−𝐹(𝑉)

𝑓(𝑉)
] [

𝑔𝑘(𝐶;𝑝,𝑥)

𝑔(𝐶)
] − [𝐶 +

𝐺(𝐶)

𝑔(𝐶)
] [

𝑓𝑘(𝑉;𝑝,𝑥)

𝑓(𝑉)
]})

1

0
𝑝(𝑉, 𝐶)𝑓(𝑉)𝑔(𝐶)𝑑𝐶𝑑𝑉

1

0
 

The objective function and the constraint are linear in the 𝑝(𝑉, 𝐶), so the solution will be “bang-

bang”, with 𝑝(𝑉, 𝐶) = 0 or 1 almost everywhere. The Kuhn-Tucker conditions require 𝜆 ≥ 0, (5), 

(11), and (12). (11) and (12) are analogous to marginal-utility-to-price-ratio first-order conditions 

determining which of the 𝑝(𝑉, 𝐶) should be set equal to one.  

 For level-k traders with observable levels, I show below that it is theoretically possible for (5) 

to be slack at the solution, with the optimal λ = 0 then, in which case an optimal 𝑝(𝑉, 𝐶) = 1 if 

and only if V ≥ C. Normally, however, (5) is binding and the optimal λ > 0, in which case some 

of the 𝑝(𝑉, 𝐶) = 0 even if V > C. Setting λ so that when (11)-(12) are satisfied and 𝑈𝐵
𝑖 (0,0) =
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𝑈𝑆
𝑗(1,1) = 0, (5) holds with equality then yields a mechanism that maximizes traders’ total 

expected surplus among all level-k-incentive-compatible and individually rational mechanisms. 

 Finally, if for that mechanism (p, x), [𝑉 −
1−𝐹(𝑉)

𝑓(𝑉)
] [

𝑔𝑖(𝐶;𝑝,𝑥)

𝑔(𝐶)
] − [𝐶 +

𝐺(𝐶)

𝑔(𝐶)
] [

𝑓𝑗(𝑉;𝑝,𝑥)

𝑓(𝑉)
] is weakly 

increasing in V and weakly decreasing in C on [0,1]×[0,1], (11)-(12) imply that 𝑃𝐵
𝑖 (∙) is weakly 

increasing and 𝑃𝑆
𝑗
(∙) is weakly decreasing as required in Theorem 2. Continuity and 

monotonicity arguments like MS’s (p. 276) then show that there exists a unique λ > 0 such that 

(11)-(12) are satisfied and that with 𝑈𝐵
𝑖 (0,0) = 𝑈𝑆

𝑗(1,1) = 0, (5) holds with equality. ■  

 

 Theorem 3’s terms [𝑉 −
1−𝐹(𝑉)

𝑓(𝑉)
] [

𝑔𝑖(𝐶;𝑝,𝑥)

𝑔(𝐶)
] − [𝐶 +

𝐺(𝐶)

𝑔(𝐶)
] [

𝑓𝑗(𝑉;𝑝,𝑥)

𝑓(𝑉)
] differ from the virtual values 

in MS’s Theorems 1-2 in that they are adjusted by traders’ level-k beliefs, so that each term in 

the difference depends on both traders’ values. As a result, Theorems 2 and 3’s level-k 

monotonicity conditions may not be satisfied in Myerson’s (1981) “regular case” (which rules 

out true value densities with strong hazard rate variations in the “wrong” direction). Whatever 

traders’ levels, Theorem 2’s and 3’s monotonicity conditions are not systematically more (or 

less) stringent than MS’s monotonicity conditions. By Theorem 1 they are approximately the 

same as MS’s conditions when the true value densities are close to uniform, for all levels, and 

this suggests that they will be satisfied whenever traders’ level-k beliefs are not too extreme. 

 When traders’ levels exceed one, the designer’s optimization problem involves a fixed-point 

recursion for the designer (though not for the traders) because 𝑝(𝑉, 𝐶) influences the constraints 

via traders’ beliefs, which beliefs in turn influence the optimal 𝑝(𝑉, 𝐶). Because the continuity of 

the value densities ensures continuity of the objective and constraint functions and the feasible 

region is compact, this two-way influence does not interfere with the existence of a solution. Nor 

is it a conceptual difficulty. However, it does make the problem computationally much more 

difficult for higher levels, though possibly still tractable via iterative methods. 

 Comparing the level-k incentive budget constraint (5) with MS’s constraint (2) (p. 269) and 

comparing the level-k Kuhn-Tucker conditions (11)-(12) with MS’s (p. 274) equilibrium-based 

conditions shows that design features that contribute to maximizing equilibrium traders’ total 

expected surplus subject to incentive constraints, also do so for level-k traders, though with 

different weights. As a result, unless a total-surplus-maximizing mechanism happens to induce 
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traders’ level-k beliefs that are correct (as with Theorem 1’s uniform value densities), the 

mechanism must involve tacit exploitation of predictably incorrect beliefs (“TEPIB”). TEPIB 

favors trade at (V, C) combinations for which level-k beliefs make the “prices” (in curly brackets 

in (11)-(12)) more favorable than they are for equilibrium beliefs: in particular at combinations 

for which 
𝑓𝑗(𝑉;𝑝,𝑥)

𝑓(𝑉)
> 1 and/or  

𝑔𝑖(𝐶;𝑝,𝑥)

𝑔(𝐶)
< 1, in which level-k traders underestimate the likelihood 

of trade given their values. Moreover, for levels higher than L1 TEPIB also favors mechanisms 

that increase the total expected surplus from such trades. 

By contrast with MS’s result that no equilibrium-incentive-compatible mechanism can assure 

ex post efficient trade with probability one, for level-k traders with observable levels it is 

theoretically possible that the mechanism that maximizes their total expected surplus subject to 

the level-k incentive constraints does assure ex post efficient trade with probability one. To see 

this, adapt MS’s proof of their Corollary 1 (pp. 271-273) for a level-i buyer and a level-j seller. 

With value densities supported on [0, 1] and 𝑝(𝑉, 𝐶) ≡ 1 if and only if V ≥ C, (5) reduces to:  

0 ≤ ∫ ∫ {[𝑉 −
1 − 𝐹(𝑉)

𝑓(𝑉)
] [

𝑔𝑖(𝐶; 𝑝, 𝑥)

𝑔(𝐶)
] − [𝐶 +

𝐺(𝐶)

𝑔(𝐶)
] [

𝑓𝑗(𝑉; 𝑝, 𝑥)

𝑓(𝑉)
]}

1

0

𝑝(𝑉, 𝐶)𝑓(𝑉)𝑔(𝐶)𝑑𝐶𝑑𝑉
1

0

 

  = ∫ ∫ [𝑉𝑓(𝑉) + 𝐹(𝑉) − 1]𝑔𝑖(𝐶; 𝑝, 𝑥)𝑑𝐶𝑑𝑉 − ∫ ∫ [𝐶𝑔(𝐶) + 𝐺(𝐶)]𝑑𝐶𝑓𝑗(𝑉; 𝑝, 𝑥)𝑑𝑉
𝑉

0

1

0

𝑉

0

1

0
 

(14)  = ∫ [𝑉𝑓(𝑉) + 𝐹(𝑉) − 1][𝐺𝑖(𝑉; 𝑝, 𝑥) − 𝐺𝑖(0; 𝑝, 𝑥)]𝑑𝑉
1

0
− ∫ 𝑉𝐺(𝑉)𝑓𝑗(𝑉; 𝑝, 𝑥)]𝑑𝑉

1

0
 

   = − ∫ [1 − 𝐹(𝑉)]𝐺𝑖(𝑉; 𝑝, 𝑥)𝑑𝑉
1

0
+ ∫ 𝑉𝑓(𝑉)𝐺𝑖(𝑉; 𝑝, 𝑥)𝑑𝑉 − ∫ 𝑉𝐺(𝑉)𝑓𝑗(𝑉; 𝑝, 𝑥)𝑑𝑉.

1

0

1

0
 

With equilibrium beliefs, the last two terms on the last line of (14) exactly offset each other, 

leaving only the first term as in MS’s proof, which proves their Corollary 1. With level-k beliefs, 

however, the middle term can outweigh the others in some cases. If, for instance, 𝐺𝑖(𝑉; 𝑝, 𝑥)  

increases sharply from 0 to 1 near V = 1, a calculation shows that the right-hand side of (14) is 

strictly positive. But the computations for L1s reported below suggest that such cases are rare. 

 MS’s Corollary 1 shows that with equilibrium beliefs, the optimal λ > 0 and 𝑝(𝑉, 𝐶) = 1 

only if 

(15)                                                                                                                                                                           𝑉 − 𝐶 ≥
𝜆

1+𝜆
[

1−𝐹(𝑉)

𝑓(𝑉)
+

𝐺(𝐶)

𝑔(𝐶)
]. 

Thus, optimal mechanisms for equilibrium traders involve ex post inefficiency for some value 

combinations, but only in the form of lost opportunities to trade when V > C. By contrast, (11)-

(12) show that for level-k traders, when the optimal λ > 0, there is a wedge between V − C and 
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the criterion for 𝑝(𝑉, 𝐶) = 1. The criterion still responds positively to V and negatively to C, but 

now with weights that do not exclusively favor high values of V − C. As a result, for some true 

value densities it is possible for the total-surplus-maximizing mechanism to have 𝑝(𝑉, 𝐶) = 1 for 

some value combinations with V < C, allowing a form of ex post-inefficient trade that does not 

arise in an equilibrium-based analysis. Recall that the rationale for MS’s requirement of interim 

but not necessarily ex post individual rationality is that traders must commit to participate in the 

mechanism at the interim stage, so that the mechanism can enforce such trades. (11)-(12) show 

that commitments to such trades can repay their immediate cost, by easing the level-k incentive 

constraints enough to enable trade for more value combinations with V > C. Figure 1’s examples 

(cases “0.25, 1.5” and “0.25, 1.75”) show that such commitments are a real theoretical possibility 

even for L1s, but that they may be limited to value combinations where V and C are extreme. 

 As in MS’s analysis, closed-form solutions are available only for the case of uniform value 

densities, but that case is somewhat unrepresentative because it induces level-k beliefs that are 

correct, so TEPIB can have no influence.  Figure 1 illustrates the relationship between 

equilibrium and level-k design for a population of L1 traders with observable levels for a 

representative subset of combinations of linear value densities.16 Specifically, Figure 1 depicts 

computed trading regions for total-expected-surplus-maximizing mechanisms in the sets of 

equilibrium- and L1-incentive-compatible and interim individually rational mechanisms.17 

[insert Figure 1 about here] 

 In Figure 1’s cases, total-expected-surplus-maximizing mechanisms for L1 traders are 

qualitatively similar to those for equilibrium traders. For density combinations in which L1 

sellers’ uniform beliefs underestimate buyers’ true densities (solid density curve upward-

sloping), the optimal mechanisms for L1 traders exploit TEPIB to implement trading regions that 

are supersets of—thus with higher total expected surplus than—those for equilibrium traders 

(with one exception, case “0.75, 1.75”, in which the trading regions overlap slightly). As already 

noted, in two such combinations with extreme densities, cases “0.25, 1.5” and “0.25, 1.75”, the 

                                                 
16The computations are feasible for L1s, but for L2s, with 𝑓2(𝑣) ≡ 𝑓(𝛽1

−1(𝑣; 𝑝, 𝑥)) and 𝑔2(𝑐) ≡ 𝑔(𝛼1
−1(𝑐; 𝑝, 𝑥)), (5) and (12)-

(13) depend on the transfer function x(∙, ∙) as well as on p(∙, ∙), making the dimensionality of search too high at present. Figure 

1* in the online appendix depicts the analogous trading regions for a comprehensive coarse subset of all possible combinations 

of linear value densities, excluding only extreme combinations that violate the monotonicity conditions for optimality 

(Theorems 2-3), and including those in Figure 1. The appendix also includes MATLAB code for the computations, developed 

by Rustu Duran, International School of Economics, Kazakh-British Technical University, Almaty, Kazakhstan. 
17 Note that buyers and sellers are not symmetric: The seller’s initial ownership of the object breaks the symmetry between them. 

Even optimal trading regions for equilibrium traders are asymmetric when interchanging the buyer’s and the seller’s densities.          
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optimal mechanisms for L1 traders allow ex post-inefficient trade (V < C, trading to the right of 

the main diagonal) for very high values of V and C.  By contrast, for density combinations in 

which L1 sellers’ uniform beliefs overestimate buyers’ (solid density curve downward-sloping) 

true densities, the optimal trading regions for equilibrium traders are supersets of—with higher 

total expected surplus than—the optimal trading regions for L1 traders.   

5.4. General value densities with traders’ levels not observable  

 Now consider the case of general well-behaved value densities, assuming that traders’ levels 

are not observable and that the population level distributions for buyers and sellers both include 

all levels from L1 up to at least some K > 1.  The proof of Theorem 1 yields a result that is also 

useful for the case of general value densities (see also de Clippel et al., 2019, Observation 2). 

 

Lemma 1. A direct mechanism is level-k-incentive-compatible and interim individually rational 

for all levels from L1 up to at least some K > 1 if and only if it is both L1- and equilibrium-

incentive-compatible and interim individually rational.   

   

Proof. The proof is inductive. For general well-behaved value densities, if the mechanism is L1-

incentive-compatible and interim individually rational, then L2s’ beliefs are correct and L2-

incentive-compatibility and interim individual rationality coincide with equilibrium-incentive-

compatibility and interim individual rationality. Conversely, if the mechanism is both L1- and 

equilibrium-incentive-compatible and interim individually rational, then it must also be L2-

incentive-compatible and interim individually rational; and so on ad infinitum. ■ 

 

 A random posted-price mechanism (Hagerty and Rogerson, 1987; Čopič and Ponsati, 2008, 

2016) is a distribution over posted prices π and a probability density μ(∙) such that traders make 

their value reports after the posted price is drawn and trade occurs at price π with probability μ(π) 

if 𝑐 ≤ π ≤ 𝑣, with no trade or transfer otherwise. A deterministic posted-price mechanism is one 

for which the density μ(∙) is concentrated on a single price.  A random or deterministic posted-

price mechanism makes it a weakly dominant strategy for buyers and sellers of all levels to 

report their true values by making 𝑈𝐵
1(𝑉, 𝑣) and 𝑈𝐵

∗ (𝑉, 𝑣) locally independent of v unless 𝑉 = 𝜋, 

with discontinuities there that are consistent with the global optimality of 𝑣 = 𝑉; and by making 
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𝑈𝑆
1(𝐶, 𝑐) and 𝑈𝑆

∗(𝐶, 𝑐) locally independent of c unless 𝐶 = 𝜋, with discontinuities there that are 

consistent with the global optimality of 𝑐 = 𝐶. 

 Theorem 4 shows that when traders’ levels are not observable and the population level 

distributions for buyers and sellers include all levels from L1 up to at least some K > 1, then with 

the exception of certain nongeneric traders’ value densities, a mechanism that maximizes traders’ 

total expected surplus among all level-k-incentive-compatible and interim individually rational 

mechanisms must be a posted-price mechanism with a particular price.18 

 Recall that Theorem 1 shows that with uniform value densities (even with multiple, 

unobserved levels) MS’s mechanism that maximizes traders’ total expected surplus subject to 

equilibrium incentive constraints also maximizes traders’ total expected surplus subject to level-k 

incentive constraints. Because MS’s mechanism is not a posted-price mechanism, that would 

contradict Theorem 4’s conclusion. The theorem therefore requires that 𝑓(∙), g(∙) ≠ 1 almost 

everywhere. Even with nonuniform value densities, there may be step-function equilibria of the 

double auction whose bid and ask distributions have discrete supports that happen to coincide 

with values where the distribution functions mimic uniform distributions, which is all that 

matters for traders’ best responses in such equilibria (Leininger, Linhart, and Radner, 1989, 

Section 3.4). Because mechanisms based on such equilibria would also be incentive-compatible 

for level-k traders but are not posted-price mechanisms, they too would contradict Theorem 4. 

The theorem therefore requires that there is no x for which both 𝐹(𝑥) = 𝑥 and 𝐺(𝑥) = 𝑥. The 

proof suggests that there may be other exceptional cases, which are also nongeneric.  

 

Theorem 4. Assume that traders’ levels are not observable and that the population level 

distributions for buyers and sellers include all levels from L1 up to at least some K > 1. Assume 

further that 𝑓(∙), g(∙) ≠ 1 almost everywhere and that there is no x for which both 𝐹(𝑥) = 𝑥 and 

𝐺(𝑥) = 𝑥. Then, with the possible exception of certain other nongeneric value densities, a 

mechanism that maximizes traders’ total expected surplus among all level-k-incentive-

compatible and interim individually rational mechanisms is equivalent to a deterministic posted-

price mechanism with 𝑈𝐵
𝑖 (0,0) = 𝑈𝑆

𝑗(1,1) = 0 for all levels i and j in the populations and an 

optimal posted price π that satisfies the first-order condition: 

                                                 
18 Larry Samuelson and Rene Saran noted errors in previous versions of Theorem 4 and made suggestions that led to this proof.      
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(16)                                                                                                                                                                
𝑓(𝜋)

𝑔(𝜋)
=

∫ (𝑉−𝜋)
1

𝜋
𝑓(𝑉)𝑑𝑉

∫ (𝜋−𝐶)
𝜋

0
𝑔(𝐶)𝑑𝑐

=
𝐸(𝑉−𝜋|𝑉≥𝜋)

𝐸(𝜋−𝐶|𝐶≤𝜋)
. 

 

Proof. Recall (1) and (2) for L1 traders and their analogues (with * superscripts below) for 

equilibrium traders. By Lemma 1, level-k-incentive-compatibility for all levels holds if and only 

if, for all V and C:  

(17)                                   𝑈𝐵
1(𝑉, 𝑉) ≥ 𝑈𝐵

1(𝑉, 𝑣) = 𝑉𝑃𝐵
1(𝑣) − 𝑋𝐵

1(𝑣) = 𝑉 ∫ 𝑝(𝑣, 𝑐̂)𝑑𝑐̂ −
1

0
∫ 𝑥(𝑣, 𝑐̂)𝑑𝑐̂

1

0
, 

(18)                                 𝑈𝐵
∗ (𝑉, 𝑉) ≥ 𝑈𝐵

∗ (𝑉, 𝑣) = 𝑉𝑃𝐵
∗(𝑣) − 𝑋𝐵

∗ (𝑣) = 𝑉 ∫ 𝑝(𝑣, 𝑐̂)𝑔(𝑐̂)𝑑𝑐̂ −
1

0
∫ 𝑥(𝑣, 𝑐̂)𝑔(𝑐̂)𝑑𝑐̂

1

0
, 

(19)                            𝑈𝑆
1(𝐶, 𝐶) ≥ 𝑈𝑆

1(𝐶, 𝑐) = 𝑋𝑆
1(𝑐) − 𝐶𝑃𝑆

1(𝑐) = ∫ 𝑥(𝑣, 𝑐)𝑑𝑣
1

0
− 𝐶 ∫ 𝑝(𝑣, 𝑐)𝑑𝑣,̂

1

0
 and 

(20)                          𝑈𝑆
∗(𝐶, 𝐶) ≥ 𝑈𝑆

∗(𝐶, 𝑐) = 𝑋𝑆
∗(𝑐) − 𝐶𝑃𝑆

∗(𝑐) = ∫ 𝑥(𝑣, 𝑐)𝑓(𝑣)𝑑𝑣
1

0
− 𝐶 ∫ 𝑝(𝑣, 𝑐)𝑓(𝑣)𝑑𝑣.

1

0
 

 Standard arguments based on (6) and (7) and the analogous expressions for equilibrium 

traders show that 𝑈𝐵
1(𝑉, 𝑉), 𝑈𝐵

∗ (𝑉, 𝑉), 𝑈𝑆
1(𝐶, 𝐶), and 𝑈𝑆

∗(𝐶, 𝐶) are almost everywhere 

differentiable in V or C. Because 𝑓(∙) and g(∙) are continuous and the theorem’s conditions on 

F(·) and G(·) rule out mechanisms based on Leininger et al.’s step-function equilibria (in which 

truthful reporting would make F(·) and G(·) effectively discontinuous at the supports of the 

equilibrium mixed strategies —abusing notation to avoid introducing new notation for the 

“mechanisms based on”), differentiability of 𝑈𝐵
1(𝑉, 𝑉),  𝑈𝐵

∗ (𝑉, 𝑉), 𝑈𝑆
1(𝐶, 𝐶), and 𝑈𝑆

∗(𝐶, 𝐶) can 

fail only where 𝑝(𝑣, 𝑐) is discontinuous. Therefore, 𝑝(𝑣, 𝑐) is almost everywhere continuous. 

 If, away from its points of discontinuity, 𝑝(𝑣, 𝑐) is not locally constant in v and c, it creates 

locally smooth tradeoffs between v and c along its level curves. Differentiating (17)-(20) shows 

that such tradeoffs generically make (17) and (18) inconsistent and (19) and (20) inconsistent. 

  Absent such local tradeoffs, 𝑝(𝑣, 𝑐) is locally constant in v and c away from its points of 

discontinuity. Given its weak monotonicity, the locations of the discontinuities are described by 

a step function relating v to c (or vice versa), with at most a countable number of steps. If there is 

more than one step for any given c, traders on the boundaries between them must be indifferent. 

But their indifference conditions are those that would hold in a Leininger et al. step-function 

equilibrium, and are thus ruled out by the theorem’s conditions on F(·) and G(·). Thus, in any 

level-k-incentive-compatible mechanism, the step function has exactly one step for any given c.   

 Because the 𝑝(𝑣, 𝑐) enter both the design problem’s objective function and constraints 

linearly, we can take 𝑝(𝑣, 𝑐) = 0 or 1 almost everywhere without loss of generality.  The 
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incentive-compatibility constraints (17)-(20) imply that 𝑥(𝑣, 𝑐) is constant when 𝑝(𝑣, 𝑐) = 0, 

and is also constant when 𝑝(𝑣, 𝑐) = 1. By an argument like Theorem 3’s, it is optimal to set  

(21)                                                                                                         𝑈𝐵
1(0,0) = 𝑈𝐵

∗ (0,0) = 𝑈𝑆
1(1,1) = 𝑈𝑆

∗(1,1) = 0,  

which, given Lemma 1, holds for all levels i and j. Thus, 𝑥(𝑣, 𝑐) = 0 whenever 𝑝(𝑣, 𝑐) = 0. 

 Finally, a total expected surplus-maximizing deterministic posted-price mechanism would 

choose the posted price π to solve: 

(22)                                                                                                                                     max{0 ≤ π ≤ 1} ∫ ∫ (𝑉 − 𝐶)
𝜋

0
𝑔(𝐶)𝑓(𝑉)𝑑𝐶𝑑𝑉

1

𝜋
. 

(15) gives the first-order condition for this problem. Multiple optima appear to be possible, but 

randomizing serves no purpose and a deterministic posted price is always among the optima. ■ 

 

Corollary 1. Assume that level-k traders’ levels are not observable. If traders have positive 

value densities with overlapping supports, then no level-k-incentive-compatible and interim 

individually rational mechanism can assure ex post efficiency with probability one. 

 

Proof.  The proof is immediate as MS’s Corollary 1 applies in Theorem 4’s exceptional cases. ■ 

 

 A posted price foregoes the sensitive dependence on reported values of the mechanisms that 

maximize traders’ total expected surplus when their levels are observable (Section 5.3, Theorems 

2-3). Even though Theorem 1 does not apply directly to Theorem 4’s case of general value 

densities, it allows an estimate of the cost of giving up such sensitivity when the value densities 

are close to uniform and traders’ levels are not observable. With exactly uniform densities, the 

surplus-maximizing mechanism yields probability of trade 9/32 ≈ 28% and total expected surplus 

9/64 ≈ 0.14 (Section 5.1). With levels unobservable and uniform densities, the optimal posted 

price is ½, which yields probability of trade 1/4 = 25% and surplus 1/8 = 0.125. The optimal 

posted price with approximately uniform densities yields approximately these results, a modest 

cost for the mechanism’s robustness to the unpredictability of traders’ strategic thinking. 

 That the surplus-maximizing mechanism when levels are not observable makes truthful 

reporting a dominant strategy for all levels is an alternative, behaviorally plausible rationale for 

the dominant-strategy implementation often assumed in robust mechanism design (Hagerty and 

Rogerson, 1987; Čopič and Ponsatí, 2008, 2016). When levels are not observable the surplus-
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maximizing mechanism comes close to satisfying Wilson’s (1987) desiderata in that its rules are 

distribution-free. However, the optimal posted price is sensitive to the value densities in (16). 

Even so, the optimal price can be implemented without knowing the densities, fully satisfying 

Wilson’s desiderata, via Čopič and Ponsatí’s (2008) dynamic, continuous-time double auction, in 

which the auctioneer reveals traders’ bids only when they become compatible. 

 

6. Level-k design when level-k-incentive-compatibility is not required 

 This section records some observations about design when level-k-incentive-compatibility is 

not required, allowing direct mechanisms that create incentives to lie but continuing to assume 

that traders best respond to them. One can still define a general class of feasible direct 

mechanisms, with payoff-relevant outcomes p(v, c) and x(v, c). But their effects can no longer be 

tractably captured via incentive constraints and must be modeled directly via traders’ level-k 

responses.  I consider the cases where traders’ levels are observable and not observable in turn. 

6.1. Traders’ levels observable 

 With traders’ levels observable, assume uniform value densities for simplicity and consider 

double auctions with reserve prices, as a proxy for what is achievable via direct mechanisms. 

Reserve prices have no benefits if level-k traders anchor beliefs on an L0 that is uniformly 

random on the full range of values [0, 1]. However, a double auction with a restricted menu of 

bids or asks might make level-k traders anchor on the restricted menu instead of [0, 1]. I know of 

no evidence for such an L0 specification, but analogous menu effects are commonplace in 

marketing. Such anchoring can make reserve prices useful for level-k traders: CKNP showed that 

in first-price auctions with level-k bidders such anchoring can change the optimal reserve price, 

often yielding the seller expected revenue that exceeds Myerson’s (1981) bound.  

 In bilateral trading via double auction without reserve prices, L1 traders believe they face 

bids or asks uniformly distributed on [0, 1], yielding outcomes that do not maximize total 

expected surplus subject to L1 incentive constraints. In a double auction with reserve prices for 

buyer’s bids of ¾ and seller’s asks of ¼, if L1 traders anchor on the restricted menu, they bid or 

ask as if facing asks or bids uniformly distributed on [¼, 1] or [0, ¾] respectively, or 

equivalently (given the ranges of their optimal bids or asks) on [¼, ¾] for both: exactly the 

ranges of serious bids or asks in CS’s linear double-auction equilibrium (Section 2). Thus, a 

double auction with those reserve prices rectifies L1 traders’ beliefs and is outcome-equivalent to 
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MS’s mechanism that maximizes total expected surplus for equilibrium traders. The probability 

of trade is 9/32 ≈ 28% and the total surplus is 9/64 ≈ 0.14 (Section 2.2), far higher than matched 

L1s’ probability of trade 1/8 = 12.5% and total surplus 1/24 ≈ 0.04 in the double auction without 

reserve prices (Section 4.1). Pushing the reserve prices beyond ¾ and ¼ further reduces the value 

gap needed for trade, which is a benefit, other things equal; but it also precludes some bids or 

asks that would allow trade. The cost of precluding those bids or asks exceeds the benefits, and 

computations not reproduced here show that reserve prices of ¾ and ¼ are in fact optimal.   

 With traders’ levels observable and uniform value densities, for L2s a double auction without 

reserve prices already improves upon MS’s mechanism that maximizes total expected surplus for 

equilibrium traders, or a mechanism that maximizes total surplus in the set of L2-incentive-

compatible and interim individually rational mechanisms (Sections 2.2, 4.2, and 5.1). Feasible 

reserve prices (restricted to [0, 1]) bring L2s’ beliefs closer to equilibrium beliefs, reducing the 

unaggressiveness that allows the double auction without reserve prices to yield better outcomes 

for them. Computations not reproduced here show that a double auction without reserve prices is 

in fact optimal. It has probability of trade 25/72 ≈ 35% and total surplus 11/72 ≈ 0.15, higher 

than the equilibrium probability of trade 9/32 ≈ 28% and surplus 9/64 ≈ 0.14 (Section 4.2). 

6.2. Traders’ levels not observable 

 With traders’ levels not observable, one can estimate the potential benefits of allowing direct, 

non-level-k-incentive-compatible mechanisms. Suppose for example that the population is 

known to include a high frequency of one particular level with low frequencies of one or more 

other levels. With multiple, unobservable levels and nonuniform value densities, requiring level-

k-incentive-compatibility significantly lowers total expected surplus (Section 5.4, Theorem 4). If 

the level frequencies are extreme enough, a mechanism that maximizes total surplus in the set of 

level-k-incentive-compatible and interim individually rational mechanisms for only the high-

frequency level (Section 5.3, Theorems 2-3), or possibly a non-level-k-incentive-compatible 

mechanism (Section 6.1), will yield more total surplus than a mechanism that maximizes total 

surplus in the set of level-k-incentive-compatible mechanisms for all levels in the population. 

 Assuming approximately uniform value densities allows an estimate of the cost of requiring 

level-k-incentive-compatibility for all levels in such cases, even though with uniform densities 

the cost is zero by Theorem 1. With uniform densities the optimal posted-price mechanism has 

optimal price ½, probability of trade 1/4 = 25%, and total expected surplus 1/8 = 0.125, all 
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independent of the population level frequencies (Section 5.4, Theorem 4). With approximately 

uniform densities the optimal posted-price mechanism will yield approximately those results. By 

contrast, with uniform densities the mechanism that maximizes total expected surplus subject 

only to L1-incentive-compatibility constraints yields probability of trade 9/32 ≈ 28% and 

expected total surplus 9/64 ≈ 0.14 (Sections 4.1 and 5.1). With approximately uniform densities 

and a frequency of L1s close to one, it will yield approximately these significantly better results.  

 Similarly, if L2’s frequency is high enough, the double auction without reserve prices yields 

probability of trade 25/72 ≈ 35% and surplus 11/72 ≈ 0.15, an even better result (Section 4.2). 

 As these examples make clear, insisting on exact implementation may be quite costly with 

level-k traders. And whether or not traders’ levels are observable, relaxing level-k-incentive-

compatibility when an application does not require it can yield total expected surplus-

maximizing mechanisms that differ qualitatively as well as quantitatively from those that 

maximize surplus for equilibrium traders, possibly with a significant increase in surplus. 

 

7. Related literature 

 Beyond CS’s and MS’s analyses, this paper builds on Crawford and Iriberri’s (2007) positive 

level-k analysis of auctions and CKNP’s level-k analysis of optimal independent-private-value 

auctions, which builds on Myerson’s (1981) equilibrium analysis of optimal auctions. 

 This paper’s closest relatives in the recent literature are de Clippel et al. (2019) and Kneeland 

(2018). Both study level-k implementation of social choice rules, allowing general distributions 

of unobservable levels, and allowing both direct mechanisms and indirect mechanisms in which 

players report their levels as well as their private information.  

 Kneeland assumes uniform random L0s and allows mechanisms to treat levels unequally, as 

here; and considers both single- and set-valued rules. She gives general necessary and sufficient 

conditions for level-k implementation that is robust to variations in players’ beliefs about others’ 

values and levels, which amounts to requiring ex post incentive-compatibility. For single-valued 

rules or direct mechanisms, such robustness makes level-k and equilibrium incentive constraints 

coincide. In general, however, she shows that robust level-k incentive constraints are weaker than 

equilibrium incentive constraints. As a result, in an environment near MS’s, there are set-valued 

indirect mechanisms, in which players’ report their levels as well as their values and which may 
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treat levels unequally, that robustly assure ex post efficient trade with probability one—in 

contrast to my result for level-k incentive-compatible direct mechanisms in MS’s setting.  

 De Clippel et al. require equal treatment of levels and consider a range of L0 specifications.19 

Their main result (Theorem 1) allows L0 to be chosen as part of the implementation. Like 

Kneeland, they show under otherwise mild restrictions that for single-valued rules, robust level-k 

and equilibrium incentive constraints coincide. Requiring single-valued rules and equal treatment 

of levels, they reach the opposite conclusion from Kneeland’s about whether ex post efficient 

trade with probability one can be assured with level-k traders in MS’s setting.  

 De Clippel et al.’s and Kneeland’s results allowing heterogeneous, unobservable levels 

closely parallel Theorem 4, which shows that a posted-price mechanism is then generically 

optimal. That result would also hold for de Clippel et al.’s wider set of L0 anchors, but treating 

them as exogenous, as here and as the experimental evidence suggests. Generalizing Theorem 4 

would also make equal treatment of levels a conclusion rather than an assumption. However, my 

results for unobservable levels, unlike theirs, are limited to the bilateral trading environment.  

 De Clippel et al.’s and Kneeland’s analyses have no counterparts to my analyses of cases 

where traders’ levels are observable, with or without requiring level-k incentive-compatibility.  

 In other work on nonequilibrium design, Hagerty and Rogerson (1987), Bulow and Roberts 

(1989, relaxing ex post budget balance), and Čopič and Ponsatí (2008, 2016) study dominant-

strategy or distribution-free implementation in MS’s setting. Saran (2011a) studies MS’s design 

problem when some traders report truthfully without regard to incentives; Saran (2011b) studies 

how menu-dependent preferences affect the revelation principle; and Saran (2016) studies 

implementation with complete information when players’ levels of rationality are heterogeneous 

and bounded, obtaining a version of the revelation principle. Börgers and Li (2019) characterize 

mechanisms that are “strategically simple” in the sense that players need form only first-order 

beliefs, with applications to voting and bilateral trade. Gorelkina (2018) conducts a level-k 

analysis of the expected-externality mechanism. 

 In more abstract settings, Mookherjee and Reichelstein (1992) study dominant-strategy 

implementation; Matsushima (2007, 2008) studies implementation via finitely iterated 

dominance; and Bergemann and Morris (2009) and Bergemann, Morris, and Tercieux (2011) 

                                                 
19 De Clippel et al. argue that treating levels equally is standard, but there are few if any precedents for how to treat levels of 

reasoning and in mainstream screening analyses it is seldom assumed that private-information types must be treated equally. 
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study implementation in rationalizable strategies. Ollár and Penta (2017, 2019), study 

rationalizable implementation via direct mechanisms under varying degrees of robustness and 

provide sensitivity results that are closely connected to level-k implementation.20  

8. Conclusion   

 This paper has revisited MS’s analysis of mechanism design for bilateral trading with 

independent private values, replacing their equilibrium assumption with the assumption that 

traders follow a structural nonequilibrium model based on level-k thinking, and restricting 

attention to direct mechanisms. 

 The anchoring of level-k beliefs on L0 creates menu effects that make the revelation principle 

fail, so that neither restricting attention to direct mechanisms nor imposing level-k-incentive-

compatibility are without loss of generality. If one nonetheless focuses on direct mechanisms, the 

characterization of mechanisms that maximize total expected surplus depends on two things: 

whether only level-k-incentive-compatible and interim individually rational mechanisms are 

truly feasible and whether traders’ levels can be observed. 

 My main results are for cases where only level-k-incentive-compatible and interim 

individually rational mechanisms are truly feasible. Then, if traders’ value densities are uniform, 

MS’s equilibrium-based result that the incentive-compatible mechanism that mimics CS’s linear 

double-auction equilibrium also maximizes traders’ total expected surplus subject to incentive 

constraints, generalizes exactly to level-k models with any distribution of levels, observable or 

not. However, with level-k traders the mechanism must be implemented not as the double 

auction but in its level-k-incentive-compatible form, a failure of the revelation principle. 

 If, instead, only level-k-incentive-compatible and interim individually rational mechanisms 

are feasible, traders’ levels are observable, and they have general well-behaved value densities, 

then MS’s characterization of mechanisms that maximize traders’ total expected surplus subject 

to incentive constraints generalizes qualitatively to level-k models, with a novel feature, tacit 

exploitation of predictably incorrect beliefs. MS’s result that in equilibrium no mechanism can 

assure ex post efficient trade with probability one does not quite generalize to level-k models.  

 If only level-k-incentive-compatible and interim individually rational mechanisms are 

feasible but traders’ levels are not observable, with general well-behaved value densities, 

                                                 
20 Glazer and Rubinstein (1998), Neeman (2003), Eliaz and Spiegler (2006, 2007, 2008), and Wolitzky (2016) study design when 

the “behavioral” aspect concerns individual decisions or judgment. Bartling and Netzer (2016) and Bierbrauer and Netzer 

(2016) study robustness to various kinds of social preferences in auction design and implementation of social choice rules. 



29 

 

generically a posted price mechanism, which makes truthful revelation of values a weakly 

dominant strategy and thereby incentivizes all levels despite their differences in beliefs, 

maximizes traders’ total expected surplus subject to level-k incentive constraints. The optimal 

posted price is sensitive to traders’ value densities, but it can be implemented dynamically via a 

device of Čopič and Ponsatí (2008), in a way that satisfies Wilson’s (1987) desiderata. 

 Finally, if direct, non-level-k-incentive-compatible mechanisms are feasible and traders best 

respond to them, total expected-surplus-maximizing mechanisms may take quite different forms. 

Further study of this case might identify important roles for indirect and/or non-incentive 

compatible mechanisms, which are irrelevant in an equilibrium analysis by revelation principle 

fiat. Preliminary analyses show that nonequilibrium design must go beyond weakening the 

behavioral assumptions under which desirable outcomes can be implemented in equilibrium. 

 At first glance, MS’s analysis appears to depend on the full strength of their assumption that 

traders will play the desired equilibrium in any game that the designer’s choice of mechanism 

creates. This bundles four distinct behavioral assumptions: decision-theoretic rationality, 

homogeneity of strategic thinking, and predictability and coordination/correctness of traders’ 

beliefs. The level-k analysis unbundles those assumptions, retaining decision-theoretic rationality 

while relaxing the behaviorally more questionable assumptions of homogeneity and 

coordination/correctness of beliefs, in a structured way. It also links the predictability of traders’ 

beliefs to the observability of their levels, relaxing predictability in a structured way when levels 

are not observable and tracing the need for robust implementation to the unpredictability of 

traders’ strategic thinking, a plausible rationale for robustness. Thus, the structure of level-k 

models allows an analysis of the cases where only direct, level-k-incentive-compatible 

mechanisms are feasible with most of the power and precision of MS’s equilibrium analysis, 

retaining its assumptions of decision-theoretic rationality and predictability or partial 

predictability of traders’ beliefs, while dispensing with the equilibrium analysis’s strong 

assumptions of homogeneity of strategic thinking and coordination/correctness of beliefs. 

 To sum up, the level-k model adds generality to MS’s analysis of design for bilateral trading 

in behaviorally important ways while making specific, empirically disciplined predictions that 

allow an analysis with power and precision close to that of their equilibrium analysis. I hope that 

this analysis will encourage further study of design for structural nonequilibrium models. 
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Figure 1. Trading regions (in black) for mechanisms that maximize traders’ total expected 

surplus in the set of equilibrium-incentive-compatible or L1-incentive-compatible 

mechanisms with a homogenous population of L1 traders and observable levels21 
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L1: 0.25, 1.75 

 

                                                 
21 The buyer’s value V is on the vertical axis; the seller’s value C is on the horizontal axis. All value densities are linear; “x, y” 

means the buyer’s density f(V) satisfies f(0) = x and f(1) = 2-x, and the seller’s density g(C) satisfies g(0) = y and g(1) = 2-y. 
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Figure 1 (continued). Trading regions (in black) for mechanisms that maximize traders’ 

total expected surplus in the set of equilibrium-incentive-compatible or L1-incentive-

compatible mechanisms with a homogenous population of L1 traders and observable levels 
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Figure 1 (continued). Trading regions (in black) for mechanisms that maximize traders’ 

total expected surplus in the set of equilibrium-incentive-compatible or L1-incentive-

compatible mechanisms with a homogenous population of L1 traders and observable levels 
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Figure 1 (concluded). Trading regions (in black) for mechanisms that maximize traders’ 

total expected surplus in the set of equilibrium-incentive-compatible or L1-incentive-

compatible mechanisms with a homogenous population of L1 traders and observable levels 
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