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Introduction 
 
Recent experiments suggest that in strategic settings without clear 
precedents, people’s initial responses often deviate systematically from 
equilibrium. 
 
Experimental evidence suggests that in such settings a structural non-
equilibrium model based on “level-k thinking”—or a “cognitive 
hierarchy” model, as Camerer, Ho, and Chong (2004 QJE; “CHC”) call 
their closely related model—can often out-predict equilibrium. 
 
The evidence also suggests that level-k models can out-predict 
“equilibrium with noise” models with payoff-sensitive error distributions, 
such as quantal response equilibrium (“QRE”). 
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The talk begins with an introduction to level-k models and a sampling 
of the supporting experimental evidence. 
 
It then illustrates the use of level-k models in several applications 
involving people’s (usually experimental subjects’) initial responses to 
novel strategic situations and the adaptations that are required in them. 
 
The illustrations show that level-k models are a flexible, tractable, and 
useful modeling tool. 
 
They suggest that level-k models can often explain more of the 
variation in initial responses than equilibrium or QRE, and that it can 
help to resolve empirical puzzles in applications of game theory. 
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The applications I will discuss include (adaptations in parentheses): 
 
● Crawford and Iriberri’s (2007 AER) explanation of systematic 

deviations from unique mixed-strategy equilibrium in O’Neill’s (1987 
PNAS) and Rubinstein, Tversky, and Heller’s (1996) zero-sum two-
person “hide-and-seek” games (non-neutral framing) 

● Crawford, Gneezy, and Rottenstreich’s (2008 in press AER; “CGR”) 
explanation of coordination and miscoordination in Schelling-style 
coordination games (non-neutral framing) 

● Crawford and Iriberri’s (2007 ECMA) analysis of systematic 
overbidding in independent-private-value and common-value 
auctions (incomplete information) 

● Crawford’s (2003 AER) analysis of deceptive preplay 
communication of intentions in zero-sum two-person games 
(extensive-form games) 

● Crawford’s (2007) analysis of preplay communication of intentions in 
coordination games as studied by Farrell (1987 Rand Journal) and 
Rabin (1994 JET) (extensive-form games) 
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Other interesting applications include (list not comprehensive): 
 
● CHC’s analysis of tacit coordination via structure and “magical” ex 

post coordination in market-entry games (normal-form games) 
● CHC’s analysis of speculation and zero-sum betting (incomplete 

information) 
● CHC’s analysis of money illusion in coordination (normal-form 

games) 
● Blume et al.’s (2001 GEB), Cai and Wang’s (2006 GEB), Sánchez- 

Pagés and Vorsatz’s (2007 GEB, 2007), Kawagoe and Tazikawa’s 
(2008 GEB), and Wang, Spezio, and Camerer’s (2006) analyses of 
“overcommunication” in sender-receiver games (extensive-form 
games, incomplete information) 

● Ellingsen and Östling’s (2007) analyses of Aumann’s (1990) critique, 
symmetry-breaking, and reassurance in coordination games with 
one- and two-sided preplay communication of intentions 
(extensive-form games) 

● Crawford, Kugler, Neeman, and Pauzner’s (2008, in progress) 
analysis of behaviorally optimal (level-k) auction design  
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Level- k models 
 
Level-k models were introduced to describe experimental data by Stahl 
and Wilson (1994 JEBO, 1995 GEB) and Nagel (1995 AER). 
 
Level-k models were further studied experimentally by Ho, Camerer, 
and Weigelt (1998 AER; “HCW”); Costa-Gomes et al. (2001 ECMA; 
“CGCB”), Costa-Gomes and Weizsäcker (2008 RES), and Costa-
Gomes and Crawford (2006 AER; “CGC”). 
 
Level-k models allow behavior to be heterogeneous, but assume that 
each player follows a rule drawn from a common distribution over a 
particular hierarchy of decision rules or types (as they are called in this 
literature; no relation to “types” as realizations of private information). 
 
Type Lk anchors its beliefs in a nonstrategic L0 type, which is meant to 
describe Lk’s model of others’ instinctive reactions to the game. 
 
Lk then adjusts its beliefs via thought-experiments with iterated best 
responses: L1 best responds to L0, L2 to L1, and so on. 
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In applications the population type frequencies are treated as 
behavioral parameters, to be estimated from the data or translated or 
extrapolated from previous analyses. 
 
The estimated type distribution is typically fairly stable across games, 
with most weight on L1, L2, and perhaps L3. 
 
The estimated frequency of the anchoring L0 type is usually small. 
 
Thus, L0 “exists” mainly as L1’s model of others, L2’s model of L1’s 
model of others, and so on. 
 
 
Even so, the specification of L0 is the main issue in defining a level-k 
model and the key to its explanatory power. 
 
L0 needs to be adapted to the setting as illustrated below, but the 
definition of higher types via iterated best responses allows a simple, 
reliable explanation of behavior across different settings. 
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Alternative specifications of level-k types have been considered: 
 
● Stahl and Wilson have some higher types (“Worldly”) that best 
respond to mixtures of noisy versions of lower types. 
 
● CHC have Lk best responding to an estimated mixture of lower 
types, via a one-parameter Poisson type distribution. 
 
 
My co-authors and I prefer the simpler specification above, which is at 
least as consistent with the evidence and more tractable. 
 
Estimating an unconstrained type distribution also provides a useful 
diagnostic: If the data can only be fitted by a weird type distribution— 
non-hump-shaped (in a homogeneous population) or with implausibly 
high frequencies of higher types—the explanation is not credible.         
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L1 and higher types have accurate models of the game and are 
decision-theoretically rational, in that they choose best responses to 
beliefs (in many games, Lk makes k-rationalizable decisions). 
 
Lk’s only departure from equilibrium is in replacing its assumed perfect 
model of others’ decisions with simplified models that avoid the 
complexity of equilibrium analysis. 
 
 
Compare Selten (1998 EER): 
 

“Basic concepts in game theory are often circular in the sense that 
they are based on definitions by implicit properties…. Boundedly 
rational strategic reasoning seems to avoid circular concepts. It 
directly results in a procedure by which a problem solution is found.” 
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Although the level-k approach, like equilibrium, is a general model of 
strategic behavior, the two are complements, not competitors. 
 
We all believe that equilibrium (or self-confirming equilibrium, etc.) is a 
reliable model of people’s limiting behavior in situations where they 
have had enough experience from repeated play in stable settings to 
learn to predict each others’ responses. 
 
 
But even if eventual convergence to equilibrium is assured, in novel 
strategic situations we need a reliable model of initial responses. 
 
In such situations a level-k analysis can establish the robustness of 
equilibrium predictions in games where level-k types mimic equilibrium. 
 
It can also challenge the conclusions of equilibrium analyses of games 
where equilibrium is implausible without learning. 
 
And it can resolve empirical puzzles by explaining the systematic 
deviations from equilibrium such games often evoke. 
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Level-k analyses can also elucidate coordination in situations where 
learning assures eventual convergence to equilibrium but equilibrium 
refinements are not a reliable guide to equilibrium selection. 
 
In such situations the limiting equilibrium is jointly determined by the 
rules that describe the learning process and which of the basins of 
attraction those rules create people’s initial responses fall into.       
 
Consider, for example, the “Continental Divide” coordination game 
from Van Huyck, Cook, and Battalio’s (1997 JEBO) experiment, 
discussed in Camerer (Behavioral Game Theory, 2003, Chapter 1). 
 
Seven subjects choose simultaneously and anonymously among 
“effort” levels from 1 to 14, with each subject’s payoff determined by his 
own effort and a summary statistic, the median, of all players’ efforts. 
 
The group median is then publicly announced, subjects choose new 
effort levels, and the process continues. 
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Continental divide game payoffs 

Median Choice

your 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
choice

1 45 49 52 55 56 55 46 -59 -88 -105 -117 -127 -135 -142 
2 48 53 58 62 65 66 61 -27 -52 -67 -77 -86 -92 -98 

3 48 54 60 66 70 74 72 1 -20 -32 -41 -48 -53 -58 

4 43 51 58 65 71 77 80 26 8 -2 -9 -14 -19 -22 

5 35 44 52 60 69 77 83 46 32 25 19 15 12 10 

6 23 33 42 52 62 72 82 62 53 47 43 41 39 38 
7 7 18 28 40 51 64 78 75 69 66 64 63 62 62 
8 -13 -1 11 23 37 51 69 83 81 80 80 80 81 82 
9 -37 -24 -11 3 18 35 57 88 89 91 92 94 96 98 
10 -65 -51 -37 -21 -4 15 40 89 94 98 101 104 107 110

11 -97 -82 -66 -49 -31 -9 20 85 94 100 105 110 114 119

12 -133 -117 -100 -82 -61 -37 -5 78 91 99 106 112 118 123

13 -173 -156 -137 -118 -96 -69 -33 67 83 94 103 110 117 123
14 -217 -198 -179 -158 -134 -105 -65 52 72 85 95 104 112 120
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There is near-perfect lock-in on the equilibrium determined by which 
basin of attraction people’s initial responses fall into. Without a model 
of (the prior distribution of) initial responses, prediction is impossible.       
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Experimental evidence  for level- k models 
 
Camerer (Behavioral Game Theory, 2003, Chapter 5), CHC (Section 
IV), and CGC (Introduction, Section II.D) summarize the experimental 
evidence for level-k models in games with a variety of structures. 
 
Here I give the flavor of the evidence by summarizing CGC’s results. 
 
 
CGC’s experiments randomly and anonymously paired subjects to play 
series of 2-person guessing games, with no feedback; the designs 
suppress learning and repeated-game effects in order to elicit subjects' 
initial responses, game by game. 

 
The goal was to focus on how players model others’ decisions by 
studying strategic thinking “uncontaminated” by learning. 
 
(“Eureka!” learning was possible, but can be tested for and is rare.) 
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In CGC’s guessing games, each player has his own lower and upper 
limit, both strictly positive (finite dominance-solvability). 
 
Each player also has his own target, and his payoff increases with the 
closeness of his guess to his target times the other’s guess. 

 
The targets and limits vary independently across players and games, 
with targets both less than one, both greater than one, or “mixed”. 

 
(In previous guessing experiments, the targets and limits were always 
the same for both players, and they varied at most across treatments.) 
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The games have essentially unique equilibria determined (but not 
always directly) by players’ lower (upper) limits when the product of 
targets is less (greater) than one. 

 
Consider for example a game (γ2β4 in our notation) in which players’ 
targets are 0.7 and 1.5, the first player’s limits are [300, 500], and the 
second player’s limits are [100, 900].  
 
The product of players’ targets is 1.05 > 1; in equilibrium the first player 
guesses his upper limit of 500, but the second player guesses 750, 
below his upper limit of 900. 
 
When the product of targets is < 1, the equilibrium is determined by the 
lower limits in a similar way.  
 
The discontinuity of the equilibrium correspondence when the product 
of targets equals one stress-tests equilibrium, which responds much 
more strongly to the product of the targets than alternative rules do, 
and enhances the separation of equilibrium from alternative rules. It 
also reveals other interesting patterns, not discussed here. 
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In standard normal-form games, most of the evidence suggests 
defining L0 as uniform random over the feasible range of decisions. 
 
In addition to Equilibrium and the level-k types L1, L2, and L3, CGC’s 
data analysis considered two “iterated dominance” types: 
 
● D1, which does one round of dominance and then best responds to a 
uniform prior over its partner's remaining decisions 
 
● D2, which does two rounds and then best responds to a uniform prior 
over its partner's remaining decisions 
 
● CGC also considered a Sophisticated type, which best responds to 
the probability distributions of others’ decisions (estimated from 
observed frequencies). 
 
Sophisticated is the behavioral game theory ideal, included to learn 
whether any subjects have an understanding of others’ decisions that 
transcends mechanical rules.
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CGC’s large strategy spaces and the independent variation of targets 
and limits across games enhance the separation of types’ implications, 
to the point where many subjects’ types can be precisely identified 
from their guessing “fingerprints”: 
 

Types' guesses in the 16 games, in (randomized) ord er played  
 L1 L2 L3 D1 D2 Eq. Soph. 

1 600 525 630 600 611.25 750 630 
2 520 650 650 617.5 650 650 650 
3 780 900 900 838.5 900 900 900 
4 350 546 318.5 451.5 423.15 300 420 
5 450 315 472.5 337.5 341.25 500 375 
6 350 105 122.5 122.5 122.5 100 122 
7 210 315 220.5 227.5 227.5 350 262 
8 350 420 367.5 420 420 500 420 
9 500 500 500 500 500 500 500 

10 350 300 300 300 300 300 300 
11 500 225 375 262.5 262.5 150 300 
12 780 900 900 838.5 900 900 900 
13 780 455 709.8 604.5 604.5 390 695 
14 200 175 150 200 150 150 162 
15 150 175 100 150 100 100 132 
16 150 250 112.5 162.5 131.25 100 187 
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Of the 88 subjects in CGC’s main treatments, 43 made guesses that 
complied exactly (within 0.5) with one type’s guesses in from 7 to 16 of 
the games (20 L1, 12 L2, 3 L3, and 8 Equilibrium). 
 
For example, CGC’s Figure 2 shows the “fingerprints” of the 12 
subjects whose guesses conformed most closely to L2’s; 72% of these 
guesses were exact; only the deviations are shown. 
 
The size of CGC’s strategy spaces, with 200 to 800 possible exact 
guesses per game, and the fact that each subject played 16 different 
games, makes exact compliance very powerful evidence for the type 
whose guesses are tracked. 
 
If, say, a subject chooses 525, 650, 900, 546 in games 1 to 4, we 
“know” that he’s L2. 
 
Further, because CGC’s definition of L2 builds in risk-neutral, self-
interested rationality, we also know that the subject’s deviations from 
equilibrium are “caused” not by irrationality, risk aversion, altruism, 

spite, or confusion, but by his simplified model of others.    
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CGC’s Figure 2. "Fingerprints" of 12 Apparent L2 Subjects 
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CGC’s other 45 subjects made guesses that conformed less closely to 
a type, but econometric estimates of their types are concentrated on 
L1, L2, L3, and Equilibrium, in roughly the same proportions. 
 

 
 

CGC’s Table 1 
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Because Lk makes k-rationalizable decisions, it is tempting to take the 
high frequencies of Lk guesses as evidence that subjects are explicitly 
performing finitely iterated dominance; theorists often interpret the 
spikes in Nagel’s (1995 AER) data this way. 
 
Although Dk’s and Lk+1’s guesses are perfectly confounded in Nagel’s 
main games, CGC’s design strongly separates them.  
 
CGC’s data analysis shows that there are essentially no Dk types, 
hence that most of CGC’s subjects who respect finitely iterated 
dominance did so because they were following Lk types that mimic 
iterated dominance, not because they were explicitly performing it. 
 
CGC’s analysis also shows that there are no Sophisticated types, and 
that CGC’s subjects whose guesses are closest to Equilibrium are 
actually following types that only mimic equilibrium in some games. 
 
Further, CGC’s data strongly resist an “equilibrium plus noise” or QRE 
interpretation, and subjects’ “errors” usually appear to be structural or 
cognitive, without the payoff-sensitivity a QRE interpretation requires.  
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Application: Crawford and Iriberri’s (2007 AER) explanation 
of systematic deviations from unique mixed-strategy  
equilibrium in zero-sum two-person “hide-and-seek” games 
with non-neutral framing of locations 
 
Consider Rubinstein, Tversky, and Heller’s (1993, 1996, 1998-99; 
“RTH”) hide and seek games with non-neutral framing of locations. 
A typical seeker’s instructions (hider’s instructions are analogous): 

Your opponent has hidden a prize in one of four boxes arranged in a 
row. The boxes are marked as shown below: A, B, A, A. Your goal is, 
of course, to find the prize. His goal is that you will not find it. You are 
allowed to open only one box. Which box are you going to open? 
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RTH’s framing of the hide and seek game is non-neutral in two ways: 
 
● The “B” location is distinguished by its label  
 
● The two “end A” locations may be inherently focal 
 
This gives the “central A” location its own brand of uniqueness as the 
“least salient” location. 
 
Mathematically this uniqueness is analogous to the uniqueness of “B”, 
but the analysis shows that its psychological effects are quite different. 



 25 

RTH’s design is important as a tractable abstract model of a non-
neutral cultural or geographic frame, or “landscape”. 

  
Similar landscapes are common in “folk game theory”: 
 
● “Any government wanting to kill an opponent…would not try it at 

a meeting with government officials.”  
(comment on the poisoning of Ukrainian presidential 
candidate—now president—Viktor Yushchenko) 

 
(The meeting with government officials is analogous to RTH’s B, but 
there’s nothing in this example analogous to the end locations.)   
 

● “…in Lake Wobegon, the correct answer is usually ‘c’.”  
(Garrison Keillor (1997) on multiple-choice tests) 

 
(With four possible choices arrayed left to right, this example is very 
close to RTH’s design.)
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Perhaps as a result, RTH’s design even made it into an episode of the 
CBS series Numb3rs, “Assassin” (clip at 
http://www.youtube.com/watch?v=HCinK2PUfyk ): 

 
Charlie: Hide and seek. 
Don: What are you talking about, like the kids’ version? 
Charlie: A mathematical approach to it, yes. See, the assassin 
must hide in order to accomplish his goal, we must seek and find 
the assassin before he achieves that goal. 
Megan: Ah, behavioral game theory, yeah, we studied this at 
Quantico. 
Charlie: I doubt you studied it the way that Rubinstein, Tversky and 
Heller studied two person constant sum hide and seek with unique 
mixed strategy equilibria. 
Megan: No, not quite that way. 
Don: Just bear with him. 
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Hide-and-seek has a clear equilibrium prediction, which leaves no 
room for framing to systematically influence the outcome. 
 
Yet framing has a strong and systematic effect, qualitatively the same 
around the world, with Central A (or its analogs in other treatments, as 
explained in the paper) most prevalent for hiders (37% in the 
aggregate) and even more prevalent for seekers (46%). 
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Folk game theory deviates from equilibrium logic in similar ways: Any 
game theorist worth his salt would respond to the Yushchenko quote: 
 
“Any government wanting to kill an opponent…would not try it at a 

meeting with government officials.”  
 
with 
 
“If investigators thought that way, a meeting with government officials 
is precisely where a government would try to kill an opponent.” 
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Puzzles: 
 

● Hiders’ and seekers’ responses are unlikely to be completely 
non-strategic in such simple games. So if they aren’t following 
equilibrium logic, what are they doing? 

 
● On average hiders are as smart as seekers, so hiders tempted 

to hide in central A should realize that seekers will be just as 
tempted to look there. So, why do hiders allow seekers to find 
them 32% of the time when they could hold it down to 25% via 
the equilibrium mixed strategy? 

 
● Further, why do seekers choose central A even more often than 

hiders? Although the payoff structure of RTH’s game is 
asymmetric, QRE coincides with equilibrium in them, and so 
does not help to explain this asymmetry of choice distributions.   
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Resolution: 
 

QRE ignores labeling and (despite the game’s payoff asymmetry) 
coincides with equilibrium, and so cannot help explain the deviations. 
 
The role asymmetry in behavior strongly suggests something like a 
level-k explanation (and is a mystery from the viewpoint any other 
theory we are aware of). 
 
 

Here defining L0 as uniform random would be unnatural given the non-
neutral framing of decisions and that L0 describes others’ instinctive 
responses. (It would also make Lk the same as Equilibrium for k > 0.) 
 
But a level-k model with a role-independent L0 that probabilistically 
favors salient locations yields a simple explanation of RTH’s results. 
 
We assume that L0 hiders and seekers both choose A, B, A, A with 
probabilities p/2, q, 1– p – q, p/2 respectively, with p > ½ and q > ¼. 
 
L0 favors both the end locations and the B location, equally for hiders 
and seekers, but we leave it open which is more salient.  
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A level-k model gracefully explains the main patterns in RTH’s data: 
 

● Given L0’s attraction to salient locations, L1 hiders choose central A 
to avoid L0 seekers and L1 seekers avoid central A in searching for L0 
hiders (the data suggest that end locations are more salient than B)  
● For similar reasons, L2 hiders choose central A with probability 
between 0 and 1 and L2 seekers choose it with probability 1 
● L3 hiders avoid central A and L3 seekers choose it with probability 
between zero and one  
● L4 hiders and seekers both avoid central A 
 
For plausible type distributions (estimated 19% L1, 32% L2, 24% L3, 
25% L4—almost hump-shaped), the model explains the prevalence of 
central A for hiders and its even greater prevalence for seekers. 
 
The role asymmetry in behavior follows naturally from hiders’ and 
seekers’ asymmetric responses to L0’s role-symmetric choices. 
(However, only a heterogeneous population with substantial 
frequencies of L2 and L3 as well as L1 can reproduce the patterns.)  
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The analysis suggests that our first epigraph (“Any government 
wanting to kill an opponent…would not try it at a meeting with 
government officials”) reflects the reasoning of an L1 poisoner, or 
equivalently of an L2 investigator reasoning about an L1 poisoner. 
 
RTH took the main patterns in their data as evidence that their 
subjects did not think strategically: 
 
● “The finding that both choosers and guessers selected the least 
salient alternative suggests little or no strategic thinking.” 
 
● “In the competitive games, however, the players employed a naïve 
strategy (avoiding the endpoints), that is not guided by valid strategic 
reasoning. In particular, the hiders in this experiment either did not 
expect that the seekers too, will tend to avoid the endpoints, or else did 
not appreciate the strategic consequences of this expectation.” 
 
But our analysis suggests that their subjects were actually quite 
strategic and in fact unusually sophisticated (with a substantial fraction 
of L3s and even some L4s)—they just didn’t follow equilibrium logic.
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Aside on model evaluation 
 
Although our empirically based prior about the hump shape and 
location of the type distribution imposes some discipline, the freedom 
to specify L0 leaves room for doubt about overfitting and portability. 
 

To see if our proposed level-k explanation is more than a “just-so” 
story, we compare it on the overfitting and portability dimensions with 
the leading alternatives: 

 
● Equilibrium with intuitive payoff perturbations (salience lowers hiders’ 
payoffs, other things equal; while salience raises seekers’ payoffs) 
 
● QRE with similar payoff perturbations 
 
● Alternative level-k specifications  
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We test for overfitting by re-estimating each model separately for each 
of RTH’s six treatments and using the re-estimated models to “predict” 
the choice frequencies of the other treatments. 
 
Our favored level-k model has a modest prediction advantage over the 
alternative models, with mean squared prediction error 18% lower and 
better predictions in 20 of 30 comparisons. 
 

A more challenging test regards portability, the extent to which a model 
estimated from subjects’ responses to one game can be extended to 
predict or explain other subjects’ responses to different games. 

We consider the two closest relatives of RTH’s games in the literature: 

● O’Neill’s (1987 PNAS) famous card-matching game 

● Rapoport and Boebel’s (1992 GEB) closely related game 

These games both raise the same kinds of strategic issues as RTH’s 
games, but with more complex patterns of wins and losses, different 
framing, and in the latter case five locations. 
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We test for portability by using the leading alternative models, 
estimated from RTH’s data, to “predict” subjects’ initial responses in 
O’Neill’s and Rapoport and Boebel’s games.  

In O’Neill’s game, for example, players simultaneously and 
independently choose one of four cards: A, 2, 3, J. 

One player, say the row player (the game was presented to subjects 
as a story, not a matrix) wins if there is a match on J or a mismatch on 
A, 2, or 3; the other player wins in the other cases. 

 A (s) 2 (s) 3 (s) J (h) 

A (h) 1 
0 

0 
1 

0 
1 

1 
0 

2 (h) 0 
1 

1 
0 

0 
1 

1 
0 

3 (h) 0 
1 

0 
1 

1 
0 

1 
0 

J (s) 1 
0 

1 
0 

1 
0 

0 
1 

O’Neill’s Card-Matching Game  
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O’Neill’s game is like a hide-and-seek game, except that each player is 
a hider (h) for some locations and a seeker (s) for others. Even so, it is 
clear how to adapt L0 or payoff perturbations to the game. 
 
A, 2, and 3 are strategically symmetric, and equilibrium (without 
perturbations) has Pr{A} = Pr{2} = Pr{3} = 0.2, Pr{J} = 0.4. 
 
Discussions of O’Neill’s data have been dominated by an “Ace effect,” 
whereby when the data are aggregated over all 105 rounds, row and 
column players respectively played A 22.0% and 22.6% of the time. 
(O’Neill speculated that “players were attracted by the powerful 
connotations of an Ace”.) 
 
But it’s difficult (impossible?) to find a behaviorally plausible level-k 
model in which row players play A more than the equilibrium 20%.  
 
(This requires some algebra to see, starting with types’ predicted 
decisions; see tables A3 and A4 in the paper’s web appendix.) 
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Fortunately, for initial responses it turns out that there is no Ace effect. 
Instead there is a Joker effect, a full order of magnitude stronger: 
 
● 8% A, 24% 2, 12% 3, 56% J for rows 
 
● 16% A, 12% 2, 8% 3, 64% J for columns 
 
Unlike an Ace effect, these frequencies can be gracefully explained by 
a level-k model in which L0 probabilistically favors the salient A and J 
cards. (J’s unique payoff role may make it even more salient than A.) 
 
Our analysis suggests that the Ace effect in the aggregated data is due 
to learning, not salience; if anything is salient, it’s the Joker. 
 
The analysis also traces the superior portability of the level-k model to 
the fact that L0 reflects decision-theoretic rather than strategic 
considerations, for which the evidence cuts across strategic structures.  
 
(If L0 were strategic, it would interact with the differences in strategic 
structure across games in complex ways that stymie generalization.)   
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Application: Crawford, Gneezy, and Rottenstreich’s (2008 
AER) explanation of miscoordination in Schelling-style  
coordination games with non-neutral framing of deci sions 
 
CGR randomly paired subjects to play games with non-neutral framing 
of decisions like those in Schelling’s (1960) classic “meeting in NYC” 
experiments, but (except for a symmetric game like Schelling’s games) 
with payoffs like Battle of the Sexes. 
 
As in Schelling’s experiments, there was a commonly observable 
labeling of decisions: 
 
In unpaid pilots, run in Chicago, the labeling pitted the world-famous 
Sears Tower versus the little-known AT&T Building across the street. 
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  P2 (90% Sears) 
  Sears  AT&T  

Sears  100,100 0,0 P1 (90% Sears)  
AT&T  0,0 100,100 

Symmetric 
    
  P2 (58% Sears) 
  Sears  AT&T  

Sears  100,101 0,0 P1 (61% Sears)  
AT&T  0,0 101,100 

Slight Asymmetry 
    
  P2 (47% Sears) 
  Sears  AT&T  

Sears  100,110 0,0 P1 (50% Sears)  
AT&T  0,0 110,100 

Moderate Asymmetry 
Chicago Skyscrapers 
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Sears Tower with the AT&T Building in the backgroun d on its left 
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More formal, paid treatments pitted the abstract label X against Y, with 
X presumed (and shown) to be more salient than Y. 
 
 
 
 

  P2 
  X Y 

X 5,5 0,0 P1 
Y 0,0 5,5 
Symmetric 

    
  P2 
  X Y 

X 5,5.1 0,0 P1 
Y 0,0 5.1,5 

Slight Asymmetry 
    
  P2 
  X Y 

X 5,6 0,0 P1 
Y 0,0 6,5 

Moderate Asymmetry  
    
  P2 
  X Y 

X 5,10 0,0 P1 
Y 0,0 10,5 

Large Asymmetry 
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Like the salience of Sears Tower, the salience of X makes it easy and 
in principle obvious for subjects to coordinate on the “both-X” 
equilibrium; and they do this in the symmetric version of the game. 
 
Since Schelling’s experiments with symmetric games, people have 
assumed that slight payoff asymmetry would not interfere with this. 
 
But even with slight payoff asymmetry, the game poses a new 
strategic problem because both-X is one player’s favorite way to 
coordinate but not the other’s.  
 
Just as in a society of men and women playing Battle of the Sexes, in 
which Ballet is more salient than Fights, there is a tension between the 
“label salience” of X and the “payoff-salience” of a player’s favorite way 
to coordinate: Payoff salience reinforces label salience in one player 
role (P2s) but opposes it for players in the other (P1s). 
  
This tension may lead players to respond asymmetrically, which in this 
game is bad for coordination.  
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In CGR’s experiments, even slight payoff asymmetries had a large and 
surprising effect. Here are the observed choice frequencies.  

  P2 (76% X) 
  X Y 

X 5,5 0,0 P1 (76% X) 
Y 0,0 5,5 

Symmetric 
    
  P2 (28% X) 
  X Y 

X 5,5.1 0,0 P1 (78% X) 
Y 0,0 5.1,5 

Slight Asymmetry 
    
  P2 (61% X) 
  X Y 

X 5,6 0,0 P1 (33% X) 
Y 0,0 6,5 

Moderate Asymmetry 
    
  P2 (60% X) 
  X Y 

X 5,10 0,0 P1 (36% X) 
Y 0,0 10,5 

Large Asymmetry 
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Even tiny payoff asymmetries cause a large drop in the expected 
coordination rate, from 64% (0.64 = 0.76×0.76 + 0.24×0.24) in the 
symmetric game to 38%, 46%, and 47% in the asymmetric games.     
 
Perhaps more surprisingly (and unlike in the unpaid Chicago 
Skyscrapers treatment), the pattern of miscoordination reversed as 
asymmetric games progressed from small to large payoff differences: 
 
● With slightly asymmetric payoffs, most subjects in both roles favored 

their partners’ payoff-salient decisions. 
● But with moderate or large asymmetries, most subjects in both roles 
 switched to favoring their own payoff-salient decisions. 
 
Puzzles: 
● Why didn’t subjects in the asymmetric games ignore the payoff 
asymmetry, which cannot be used to break the symmetry as required 
for coordination, and use the salience of Sears Tower to coordinate?  
● Why did the pattern of miscoordination reverse as the asymmetric 
games progressed from small to large payoff differences? 
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Resolution: 
Standard notions such as QRE ignore labeling, and so cannot help.  
 
A level-k model can gracefully explain the patterns in the data, but 
again it’s important to have an L0 that realistically describes people’s 
beliefs about others’ instinctive reactions to the tension between label- 
and payoff- salience that seems to drive the results.   
 
CGR assume that L0 is the same in both player roles, and that it 
responds instinctively to both label and payoff salience; but with a 
“payoffs bias” that favors payoff over label salience, other things equal: 
● In symmetric games L0 chooses X with some probability greater 

than ½. 
● In any asymmetric game, (for simplicity only) whether or not label- 

salience opposes payoff-salience, L0 chooses its payoff-salient 
decision with probability p > ½. 

(These assumptions are consistent with Crawford and Iriberri’s L0 
assumptions, because their games had no payoff-salience.) 
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Under these assumptions about L0, L1’s and L2’s choices for P1 and 
P2 are completely determined by p, the extent of L0’s payoff bias. 
 
Except in symmetric games, even though L0’s choice probabilities are 
the same for P1s and P2s, they imply L1 and L2 choice probabilities 
that differ across player roles due to the asymmetric relationships 
between label and payoff salience for P1s and P2s. 
 
Simple calculations (CGR’s Table 3, reproduced next slide) show that 
a level-k model can track the reversal of the pattern of miscoordination 
between the slightly asymmetric game and the games with moderate 
or large payoff asymmetries if (and only if) 0.505 (= 5.1/[5.1+5]) < p < 
0.545 (= 6/[6+5]), so that L0 has only a modest payoff bias. 
 
If p falls into this range and the population frequency of L1 is 0.7 and 
that of L2 is 0.3, close to most previous estimates, the model’s 
predicted choice frequencies differ from the observed frequencies by 
more than 10% only in the symmetric game, where the model 
somewhat overstates the homogeneity of the subject pool (Table 3). 
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Symmetric 

Labeled 
(SL) 

Asymmetric 
Slight 

Labeled 
(ASL) 

Asymmetric 
Moderate 
Labeled 
(AML) 

Asymmetric 
Large 

Labeled 
(ALL) 

Payoffs for coordinating on “ X”  $5, $5 $5, $5.10 $5, $6 $5, $10 
Payoffs for coordinating on “ Y”  $5, $5 $5.10, $5 $6, $5 $10, $5 

Pr{X} for P1 L0 > ½ 1-p 1-p 1-p 
Pr{X} for P2 L0 > ½ p p p 
Pr{X} for P1 L1 1 1 0 0 
Pr{X} for P1 L2 1 0 1 1 
Pr{X} for P2 L1 1 0 1 1 
Pr{X} for P2 L2 1 1 0 0 

Total P1 predicted Fr{X} 100% 100 q% 100(1-q)% 100(1-q)% 
Total P1 predicted Fr{X}| q=0.7 100% 70% 30% 30% 

Total P1 observed Fr{X} 76% 78% 33% 36% 
Total P2 predicted Fr{X} 100% 100(1- q)% 100q% 100q% 

Total P2 predicted Fr{X}| q=0.7 100% 30% 70% 70% 
Total P2 observed Fr{X} 76% 28% 61% 60% 

Table 3. L1’s and L2’s choice probabilities in X-Y treatments when 0.505 < p < 0.545 
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The details are as follows: 
 
 
 
 
 
● In the symmetric game, with no payoff salience, L0 favors the 
salience of X. 
 
● L1 P1s and P2s therefore both choose X. 
 
● L2 P1s and P2s do the same. 
 
In this case the model predicts that 100% of P1s and P2s will choose 
X. Thus, here it makes the same prediction as equilibrium selection 
based on salience as in a Schelling focal point. This is fairly accurate, 
but it overstates the homogeneity of the subject pool. 

  P2 (76%) 
  X Y 

X 5,5 0,0 P1 (76%) 
Y 0,0 5,5 

Symmetric 
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● In the slightly asymmetric game, with p > 0.505 (= 5.1/[5.1+5]), the 
payoff differences are small enough that L1 P1s choose P2s’ payoff-
salient decision, X, because L1 P1s think it is sufficiently likely that L0 
P2s will choose X that X yields them higher expected payoffs. 
● L2 P2s, who best respond to L1 P1s, thus choose X as well. 
● With p > 0.505, L1 P2s choose P1s’ payoff-salient decision, Y, 
because L1 P2s think it is sufficiently likely that L0 P1s will choose Y. 
● L2 P1s thus choose Y. 
 
In this case the model predicts that L1 P1s choose X and L2 P1s 
choose Y, while L1 P2s choose Y and L2 P2s choose X. Thus, when q 
= 0.7, the model predicts that 70% of P1s will choose X but only 30% 
of P2s will choose X. This comes reasonably close to the observed 
frequencies of 78% and 28%. 

  P2 (28%) 
  X Y 

X 5,5.1 0,0 P1 (78%) 
Y 0,0 5.1,5 

Slight Asymmetry  
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● In the games with moderate or large payoff asymmetries, L0’s 
payoffs bias is strong enough, but not too strong (p < 0.545 (= 
6/[6+5])), that L1 P1s and P2s both choose their own instead of their 
partners’ payoff- salient decisions, Y for P1s and X for P2s. 
● L2 P1s choose X and L2 P2s choose Y. 
In this case the model predicts that L1 P1s choose Y and L2 P1s 
choose X, while L1 P2s choose X and L2 P2s choose Y. Thus, when q 
= 0.7, the model predicts that 30% of P1s will choose X but 70% of 
P2s will choose X. This is again reasonably close to the observed 
frequencies of 33-36% and 61-60%. 

  P2 (61%) 
  X Y 

X 5,6 0,0 P1 (33%) 
Y 0,0 6,5 

Moderate Asymmetry 
    
  P2 (60%) 
  X Y 

X 5,10 0,0 P1 (36%) 
Y 0,0 10,5 

Large Asymmetry 
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Application: Crawford and Iriberri’s (2007 ECMA) analysis of 
systematic overbidding in independent-private-value  and 
common-value auctions 
 

Equilibrium predictions 
 First-Price  Second-Price  
Independent-
Private-Value 
Auctions  

Shaded Bidding  Truthful Bidding  

Common-Value 
Auctions  

Value Adjustment + 
Shaded Bidding  

Value Adjustment  

Puzzle:  Systematic overbidding (relative to equilibrium) has been 
observed in subjects’ initial responses to all kinds of auctions (Goeree, 
Holt, and Palfrey (2002 JET), Kagel and Levin (1986 AER, 2000), 
Avery and Kagel (1997 JEMS), Garvin and Kagel (1994 JEBO)). 

(With independent private values, most of the examples that have 
been studied experimentally do not separate level-k from equilibrium 
bidding strategies, hence our choice to study GHP’s results.) 
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But the literature has proposed completely different explanations of 
overbidding for private- and common-value auctions: 

● Risk-aversion and/or joy of winning for private-value auctions 

● Winner’s curse for common-value auctions
 
Resolution: 
 
We propose a level-k analysis that provides a unified explanation of 
these results, without invoking risk-aversion and/or joy of winning. 
 
Our analysis extends Kagel and Levin’s (1986 AER) and Holt and 
Sherman’s (1994 AER) analyses of “naïve bidding”. 
 
It also builds on Eyster and Rabin’s (2005 ECMA; “ER”) analysis of 
“cursed equilibrium” and CHC’s (2004, Section VI) level-k/cognitive 
hierarchy analysis of zero-sum betting. 
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The analysis allows us to explore how to extend level-k models to an 
important class of incomplete-information games. 
 
It also links experiments on auctions to experiments on strategic 
thinking. 
 
It also allows us to explore the robustness of equilibrium auction theory 
to failures of the equilibrium assumption. 
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The key issue is how to specify L0; there are two natural possibilities: 

 
● Random L0 bids uniformly on the interval between the lowest 

and highest possible values (even if above own realized value) 
 
● Truthful L0 bids its expected value conditional on its own signal 

(meaningful here, but not in all incomplete-information games)   

 

In judging these, bear in mind that they describe only the instinctive 
starting point of a subject’s strategic thinking about others. 

We have found it best to make L0 as dumb as possible, letting higher 
Lks model strategic thinking.   

 

The model constructs separate type hierarchies on these L0s, and 
allows each subject to be one of the types, from either hierarchy.  

(Random (Truthful) Lk is Lk defined by iterating best responses from 
Random (Truthful) L0; and is not itself random or truthful). 
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Given a specification of L0, the optimal bid must take into account: 
 
● Value adjustment for the information revealed by winning (only in 
common-value auctions) 
● The bidding trade-off between the higher price paid if the bidder wins 
and the probability of winning (only in first-price auctions) 
 

With regard to value adjustment, Random L1 does not condition on 
winning because Random L0 bidders bid randomly, hence 
independently of their values; Random L1 is “fully cursed” (ER’s term). 

All other types do condition on winning, in various ways, but this 
conditioning tends to make bidders’ bids strategic substitutes, in that 
the higher others’ bids are, the greater the (negative) adjustment. 

Thus, to the extent that Random L1 overbids, Random L2 tends to 
underbid (relative to equilibrium): if it’s bad news that you beat 
equilibrium bidders, it’s even worse news that you beat overbidders. 

 

The bidding tradeoff, by contrast, can go either way. 
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The question, empirically, is whether the distribution of heterogeneous 
types’ bids (for example, a mixture of Random L1 overbidding and 
Random L2 underbidding) fits the data better than the alternatives. 
 

In three of the four leading cases we study, a level-k model has an 
advantage over equilibrium, cursed equilibrium, and/or QRE. 

For the remaining case (Kagel and Levin’s first-price auction), the most 
flexible specification of cursed equilibrium has a small advantage. 

 

Except in Kagel and Levin’s second-price auctions, the estimated type 
frequencies are similar to those found in other experiments: 

Random and Truthful L0 have low or zero estimated frequencies, and 
the most common types are (in order of importance) Random L1, 
Truthful L1, Random L2, and sometimes Equilibrium or Truthful L2. 
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Application: Crawford’s (2003 AER) analysis of preplay 
communication of intentions in zero-sum two-person games 
 
Consider a simple perturbed matching pennies game, viewed as a 
model of the Allies’ choice of where to invade Europe on D-Day: 
 

   Germans 

  Defend 
Calais 

Defend 
Normandy 

Attack 
Calais 

1 
-1 

-2 
2 Allies  

Attack 
Normandy 

-1 
1 

1 
-1 

 
● Attacking an undefended Calais is better for the Allies than 
attacking an undefended Normandy, so better for them on average 

 
● Defending an unattacked Normandy is worse for the Germans than 
defending an unattacked Calais, and so worse for them on average 
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Now imagine that D-Day is preceded by a message from the Allies to the 
Germans regarding their intentions about where to attack. 
 
Imagine that the message is (approximately!) cheap talk. 
 
 

 
 

An Inflatable “Tank” from Operation Fortitude 
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In an equilibrium analysis of a zero-sum game preceded by a cheap-talk 
message regarding intentions, the sender must make his message 
uninformative, and the receiver must ignore it. Thus the underlying game 
must be played according to its mixed-strategy equilibrium, and 
communication can have no effect. 

Yet intuition suggests that in many such situations: 

● The sender’s message and action are part of a single, integrated 
strategy 

● The sender tries to anticipate which message will fool the receiver 
and chooses it nonrandomly  

●The sender’s action differs from what he would have chosen with no 
opportunity to send a message 

Moreover, in my stylized version of D-Day:  

● The deception succeeded (the Allies faked preparations for invasion 
at Calais, the Germans defended Calais and left Normandy lightly 
defended, and the Allies then invaded Normandy) 

● But the sender won in the less beneficial of the two possible ways 
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Admittedly, D-Day is only one datapoint (if that)…. 

But there’s an ancient Chinese antecedent of D-Day, Huarongdao, in 
which General Cao Cao chooses between two roads, trying to avoid 
capture by General Kongming (thanks to Duozhe Li of CUHK for the 
reference to Luo Guanzhong's historical novel, Three Kingdoms). 

 
  Kongming  
  Main Road Huarong 

Main Road 3 
-1 

0 
1 Cao Cao 

Huarong 1 
0 

2 
-2 

Huarongdao 
 
● Cao Cao loses 2 and Kongming gains 2 if Cao Cao is captured 

● Both Cao Cao and Kongming gain 1 by taking the Main Road, 
whether or not Cao Cao is captured—it’s important to be comfortable, 
even if (especially if?) if you think you’re about to die  
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In Huarongdao, essentially the same thing happened as in D-Day: 
Kongming lit campfires on the Huarong road; Cao Cao was fooled by 
this into thinking Kongming would wait for him on the Main Road; and 
Kongming captured Cao Cao but only by taking the bad Huarong road. 

(The ending however was happy: Kongming later let Cao Cao go.) 
 
In what sense did the “essentially the same thing” happen? 
 
In D-Day the message was literally deceptive but the Germans were 
fooled because they “believed” it (either because they were credulous 
or because they inverted the message one too many times). 
 
Kongming's message was literally truthful—he lit fires on the Huarong 
Road and ambushed Cao Cao there—but Cao Cao was fooled 
because he inverted the message. 
 
Although the sender’s and receiver’s message strategies and beliefs 
were different, the end result—what happened in the underlying 
game—was the same: The sender won, but in the less beneficial way. 
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Why was Cao Cao fooled by Kongming’s message?  

 

One advantage of using fiction as data (aside from not needing human 
subjects approval) is that it can reveal cognition (without eye-tracking): 

 

● Three Kingdoms gives Kongming’s rationale for sending a 
deceptively truthful message: “Have you forgotten the tactic of ‘letting 
weak points look weak and strong points look strong’?” 

 

● It also gives Cao Cao's rationale for inverting Kongming’s message: 
“Don’t you know what the military texts say? ‘A show of force is best 
where you are weak. Where strong, feign weakness.’ ” 
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Why was Cao Cao fooled by Kongming’s message?  

 

One advantage of using fiction as data (aside from not needing human 
subjects approval) is that it can reveal cognition (without eye-tracking): 

● Three Kingdoms gives Kongming’s rationale for sending a 
deceptively truthful message: “Have you forgotten the tactic of ‘letting 
weak points look weak and strong points look strong’?” 

● It also gives Cao Cao's rationale for inverting Kongming’s message: 
“Don’t you know what the military texts say? ‘A show of force is best 
where you are weak. Where strong, feign weakness.’ ” 

 

Cao Cao must have bought a used, out-of-date edition…. 

 

As we will see, with L0 suitably adapted to this setting Cao Cao’s 
rationale resembles L1 thinking; but Kongming’s rationale resembles 
L2 thinking. 
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Puzzle:   
 
We can now restate the puzzle more concretely, for both examples: 
 
● Why did the receiver allow himself to be fooled by a costless (hence 
easily faked) message from an enemy? 
 
● If the sender expected his message to fool the receiver, why didn't 
he reverse it and fool the receiver in the way that would have allowed 
him to win in the more beneficial way? (Why didn't the Allies feint at 
Normandy and attack at Calais? Why didn't Kongming light fires and 
ambush Cao Cao on the main road?) 
 
● Was it a coincidence that the same thing happened in both cases? 
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Resolution: 
 
A level-k analysis suggests that it was more than a coincidence. 
 
Assume that Allies’ and Germans’ types are drawn from separate 
distributions, including both level-k, or Mortal, types and a fully 
strategically rational, or Sophisticated, type (interesting but rare). 
 
Mortal types use step-by-step procedures that generically determine 
unique, pure strategies, and avoid simultaneous determination of the 
kind used to define equilibrium (recall the Selten (1998 EER) quote).  
 
Sophisticated types know everything about the game, including the 
distribution of Mortal types; and play equilibrium in a “reduced game” 
between Sophisticated players, taking Mortals’ choices as given. 
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How should L0 be adapted to an extensive-form game with 
communication? 
 
Here a uniform random L0 does not seem natural, at least for senders. 
Instead Mortal types’ behaviors regarding the message are anchored 
on L0s based on truthfulness for senders and credulity for receivers, 
just as in the informal literature on deception. 
 
(The literature has not yet converged on whether L0 receivers should 
be defined as credulous or uniform random—compare Ellingsen and 
Östling (2007)—but the distinction is partly semantic because L1 
receivers’ best responses to truthful L0 senders are credulous.)   
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L1 or higher Mortal Allied types always expect to fool the Germans, 
either by lying (like the Allies) or by telling the truth (like Kongming); 
given this, all such Allied types send a message they expect to make 
the Germans think they will attack Normandy; and then attack Calais. 
 
If we knew the Allies and Germans were Mortal, we could now derive 
the model’s implications from an estimate of type frequencies. 
 
But the analysis can usefully be extended to allow the possibility of 
Sophisticated Allies and Germans.  
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To do this, note that Mortals’ strategies are determined independently 
of each other’s and Sophisticated players’ strategies, and so can be 
treated as exogenous (even though they affect others’ payoffs). 
 
Next, plug in the distributions of Mortal Allies’ and Germans’ 
independently determined behavior to obtain a “reduced game” 
between Sophisticated Allies and Sophisticated Germans. 
 
Because Sophisticated players’ payoffs are influenced by Mortal 
players’ decisions, the reduced game is no longer zero-sum, its 
messages are not cheap talk, and it has incomplete information. 
 
(The sender’s message, which is ostensibly about his intentions, is in 
fact read by a Sophisticated receiver as a signal of the sender’s type.) 
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The equilibria of the reduced game are determined by the population 
frequencies of Mortal and Sophisticated senders and receivers. 
 

There are two leading cases, with different implications: 

● When Sophisticated Allies and Germans are common—not that 
plausible—the reduced game has a mixed-strategy equilibrium whose 
outcome is virtually equivalent to D-Day’s without communication 

● When Sophisticated Allies and Germans are rare, the game has an 
essentially unique pure equilibrium, in which Sophisticated Allies can 
predict Sophisticated Germans’ decisions, and vice versa 

In that equilibrium, Sophisticated Allies send the message that fools 
the most common kind of Mortal German (depending on how many 
believe messages and how many, like Cao Cao, invert them) and 
attack Normandy; while Sophisticated Germans defend Calais 
(because they know that Mortal Allies, who predominate in this case, 
will attack Calais). 

(For more subtle reasons, there is no pure-strategy equilibrium in 
which Sophisticated Allies feint at Normandy and attack Calais.) 
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In the pure-strategy equilibrium, the Allies’ message and action are 
part of a single, integrated strategy; and the probability of attacking 
Normandy is much higher than if no communication was possible.  
 
The Allies choose their message nonrandomly, the deception 
succeeds most of the time, but it allows the Allies to win in the less 
beneficial of the possible ways.  
 
 
Thus for plausible parameter values, without postulating an 
unexplained difference in the sophistication of Allies and Germans,  
the model explains why even Sophisticated Germans might allow 
themselves to be “fooled” by a costless message from an enemy. 
 
In a weaker sense (resting on a preference for pure-strategy equilibria 
and high-probability predictions), the model also explains why 
Sophisticated Allies don’t feint at Normandy and attack Calais, even 
though this would be more profitable if it succeeded. 
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Application: Crawford’s (2007) analysis of preplay 
communication of intentions in coordination games 
 
(preliminary paper and more detailed slides at 
http://dss.ucsd.edu/~vcrawfor/#Talk ) 
 
The analysis builds on two classic analyses of explicit coordination, 
Farrell (1987 Rand J) and Rabin (1994 JET); henceforth “FR”. 
 
FR’s models consist of a preplay communication phase followed by 
play of an underlying game. 
 
Farrell studies symmetry-breaking with conflicting preferences about 
how to coordinate as in Battle of the Sexes (or in pure coordination 
games); Rabin studies coordination in a more general class of games.  
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FR’s analyses address two conjectures: 
 
● That preplay communication will yield an effective agreement to play 
an equilibrium in the underlying game  
 
● That the agreed-upon equilibrium will be Pareto-efficient within the 
underlying game’s set of equilibria 
 
Regarding the structure of the communication phase, FR assume: 
 
● Communication consists of one or more two-sided, simultaneous 
exchanges of messages about players’ intended decisions (Rabin 
discusses the rationale for studying simultaneous two-sided messages 
rather than one-sided or sequential messages) 
  
● The messages are in a pre-existing common language, hence 
understood 
 
● The messages are nonbinding and costless (“cheap talk”) 
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Regarding players’ behavior, FR assume: 
 
● Equilibrium, sometimes weakened to rationalizability 
 
● Plausible behavioral restrictions defining which combinations of 
messages create agreements, and whether and how agreements can 
be changed 
 
 
Under these assumptions, FR show that: 
 
● Rationalizable preplay communication need not assure equilibrium  
 
● Although communication enhances coordination, even equilibrium 
with “abundant” (Rabin’s term for “unbounded”) communication does 
not assure that the outcome will be Pareto-efficient 
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Equilibrium and rationalizability are natural places to start in analyses 
like FR’s.  
 
But the existence of an empirically successful alternative to treating 
deviations from equilibrium as errors makes equilibrium (or QRE) seem 
too strong. Rationalizability, on the other hand, may be too weak. 
 
It therefore seems useful to reexamine FR’s analyses from the point of 
view of a structural non-equilibrium model such as level-k. 
 
Level-k models have not yet been tested in this setting, but their strong 
experimental support elsewhere makes them a natural candidate. 
 
A level-k analysis allows a unified treatment of players’ messages and 
actions and how messages create agreements; and it allows a 
reevaluation of FR’s restrictions on how players use language. 
 
I focus on Farrell’s analysis of Battle of the Sexes, with some attention 
to Rabin’s more general analysis. I begin with tacit coordination and 
then consider two-sided one-round and abundant communication. 
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Tacit coordination in Battle of the Sexes 

As suggested by CHC’s (2004 QJE, Section III.C) analysis of market-
entry games, a level-k analysis already has surprising implications for 
tacit coordination in Battle of the Sexes. 
 
Subjects in market-entry experiments (e.g. Rapoport and Seale (2002)) 
regularly achieve better ex post coordination (number of entrants 
closer to market capacity) than in the symmetric mixed-strategy 
equilibrium, the natural benchmark. 
 
This led Kahneman (1988, quoted in CHC) to remark, “…to a 
psychologist, it looks like magic”. (Actually, though, it would only look 
like magic to a game theorist.) 
 
CHC show that the magic can be explained by a level-k model: The 
heterogeneity of strategic thinking allows more sophisticated players to 
mentally simulate less sophisticated players’ entry decisions and 
(approximately) accommodate them. They behave like Stackelberg 
followers, breaking the symmetry with coordination benefits for all. 
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The basic idea can be illustrated in Battle of the Sexes: 
 

  Column 
  H D 

Row H 0 
0 

1 
a 

 D a 
1 

0 
0 

Battle of the Sexes ( a > 1) 
 
The unique symmetric equilibrium is in mixed strategies, with p ≡ Pr{H} 
= a/(1+a) for both players. 
 
The equilibrium expected coordination rate is 2p(1–p) = 2a/(1+a)2; and 
players’ payoffs are a/(1+a) < 1. 
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In the level-k model, each player is one of four types, L1, L2, L3, or L4. 
 
L0 chooses its action uniformly randomly, with Pr{H} = Pr{D} = ½. L1s 
mentally simulate L0s’ random decisions and best respond, thus 
choosing H; L2s choose D, L3s choose H, and L4s choose D. 

  Column 
  H D 

Row H 0 
0 

1 
a 

 D a 
1 

0 
0 

Battle of the Sexes ( a > 1) 
 
The model’s predicted outcome distribution is determined by the 
outcomes of the possible type pairings and the type frequencies. 
 

Types  L1 L2 L3 L4 
L1 H, H H, D H, H H, D 
L2 D, H D, D D, H D, D 
L3 H, H H, D H, H H, D 
L4 D, H D, D D, H D, D 
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Assume that the frequency of L0 is 0, and the type frequencies are 
independent of player roles and payoffs (as they “should” be). 
 
Players’ level-k ex ante (before knowing own type) expected payoffs 
are equal, proportional to the expected coordination rate. 
 

Types  L1 L2 L3 L4 
L1 H, H H, D H, H H, D 
L2 D, H D, D D, H D, D 
L3 H, H H, D H, H H, D 
L4 D, H D, D D, H D, D 

Combining L1 and L3 and denoting their total probability v, the level-k 
coordination rate is 2v(1–v), maximized at ½ when v = ½. 
 
By contrast, the mixed-strategy equilibrium coordination rate 2a/(1+a)2 
is maximized at ½ when a = 1, but converges to 0 like 1/a as a→∞. 
 
Thus, for v near ½, empirically plausible, the level-k coordination rate, 
near ½, is higher than the mixed-strategy equilibrium rate even for 
moderate values of a, and dramatically higher for higher values of a. 
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Even though players’ decisions are simultaneous and there is no 
actual communication, the predictable heterogeneity of strategic 
thinking allows some players (say L2s) to mentally simulate others’ 
(L1s) entry decisions and accommodate them, breaking the symmetry 
as required for coordination, with coordination benefits for all. 
 
The more sophisticated players become like noisy Stackelberg 
followers (noisy because others’ types are unobservable). 
 
The level-k model improves upon the mixed-strategy equilibrium by 
relaxing the incentive constraints requiring players to be in equilibrium. 
 
Because Lk types best respond to non-equilibrium beliefs, it is natural 
to compare the level-k outcome to the best symmetric rationalizable 
outcome, in which players play the non-equilibrium mixed strategy v ≡ 
Pr{H} = ½. When v = ½ the level-k model uses the heterogeneity of 
strategic thinking to “purify” this best symmetric rationalizable outcome. 
 
Not that level-k thinking always makes this ideal outcome attainable: 
The type frequencies are behavioral parameters, not choice variables. 
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The level-k model yields a view of coordination radically different from 
the traditional view: 
 
Although players are rational in the decision-theoretic sense, 
equilibrium—let alone selection principles such as risk- or payoff-
dominance—plays no direct role in their strategic thinking. 
 
Coordination, when it occurs, is an almost accidental (though 
statistically predictable) by-product of non-equilibrium thinking. 
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Farrell’s equilibrium analysis of Battle of the Sex es with 
communication, and Rabin’s generalizations 
 
In Farrell’s model of Battle of the Sexes with communication, the 
underlying game is preceded by one or more communication rounds in 
which players send simultaneous messages regarding their pure-
strategy intentions. 
 
The messages are in a pre-existing common language and they are 
nonbinding and costless. 
 
I denote the possible messages “h” meaning “I intend to play H” and 
“d” meaning “I intend to play D”. 
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Farrell studies the symmetric mixed-strategy equilibrium in the entire 
game, including the communication phase, in which players take the 
first pair of messages that identify a pure-strategy equilibrium in the 
underlying game as an agreement to play that equilibrium, ignoring all 
previous messages. 
 
In Farrell’s equilibrium, players randomize their messages in each 
round until some round yields an equilibrium pair of messages, in 
which case they play that equilibrium; or the communication phase 
ends, in which case they revert to the symmetric mixed-strategy 
equilibrium in Battle of the Sexes. 
 
Farrell calculates the equilibrium coordination rate with one or more 
rounds of communication and studies how it depends on the number of 
rounds.  
 
I will describe his equilibrium by players’ common values of q ≡ Pr{h} in 
each communication round and p ≡ Pr{H} if the communication phase 
ends and they play Battle of the Sexes without an agreement. 
 



 83 

Without communication, the equilibrium failure rate is [p2 + (1–p)2], 
which equals (1+a2)/(1+a)2 when p takes its equilibrium value of 
a/(1+a). 
 
With one round of communication, the equilibrium failure rate is [q2 + 
(1–q)2][p2 + (1–p)2], less than the rate without communication. The 
equilibrium q = a2/(1+a2) so the equilibrium rate is (1+a4)/[(1+a2)(1+a)2]. 
 
With abundant communication, the equilibrium failure rate is a product 
like [q2 + (1–q)2][p2 + (1–p)2], but with a separate q for each round.  
 
If the qs were bounded between 0 and 1, the rate would approach 0 as 
the number of rounds grew; but the equilibrium qs converge to 1 so 
quickly that the failure rate converges to a limit above 0 even with 
abundant communication. 
 
Farrell shows that the limiting failure rate is (a–1)/(a+1), and the 
corresponding coordination rate is 1–[(a–1)/(a+1)] = 2/(1+a), greater 
than the equilibrium coordination rate with one round. But even with 
abundant communication, the coordination rate → 0 as a → ∞. 
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Rabin (1994) evaluates the generality of Farrell’s analysis: 
● A much wider class of underlying games 
● No symmetry restriction 
● Richer characterization of how players use language, allowing 
interim agreements 
● Considering the implications of rationalizability as well as equilibrium 
 
Rabin defines notions called negotiated equilibrium and negotiated 
rationalizability that combine the standard notions of equilibrium and 
rationalizability with his restrictions on how players use language. 
 
With abundant communication, each player’s negotiated equilibrium 
expected payoff is at least his worst efficient equilibrium payoff in the 
underlying game. 
 
Replacing negotiated equilibrium by negotiated rationalizability, each 
player expects (perhaps wrongly) at least the payoff of his worst 
efficient equilibrium. 
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Thus, Rabin concludes (p. 373), Farrell’s insights are quite general:  
 
“…the potential efficiency gains from communication illustrated by 
[Farrell (1987)] do not rely on ad hoc assumptions of symmetry or on 
selecting a particular type of mixed-strategy equilibrium. Rather, the 
efficiency gains…inhere in the basic assumptions about how players 
use language.” 
 
 
Costa-Gomes (2002 JET) extends Rabin’s theory and tests it with the 
experimental data of Cooper, DeJong, Forsythe, and Ross (1989 
Rand) and the data from Roth and collaborators’ experiments on 
unstructured bargaining. 
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A Level- k analysis with one round of communication 
 
The key difficulty in analyzing two-sided level-k communication is 
extending normal-form level-k types to extensive-form types that 
determine both messages and actions. 
 
I do this, following Ellingsen and Östling (2007), by adapting the L0 
sender type in Crawford’s (2003) model of one-sided communication. 
 
(Crawford’s (2003) type hierarchy is built on a “credible” sender type, 
which tells the truth (there called W0 but here called L0; Crawford’s 
“credulous” receiver type S0 is a best response to W0, like an L1).) 
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With two-sided communication, as Ellingsen and Östling note, a 
player’s beliefs and best responses as a credible sender and a 
credulous receiver are inconsistent for sent and received messages 
that do not specify an equilibrium action pair, so the analysis must 
reconcile them in some way. 
 
Like Ellingsen and Östling, I do this by giving priority to the credible 
sender type and dispensing (with regard to L0) with the credulous 
receiver type. 
 
Thus I assume that L0 uniformly randomizes its action, without regard 
to its partner’s message, and sends a truthful message. 
 
This truthful L0 generalizes the uniform random L0 used for games 
without communication and is intuitively plausible—bearing in mind 
that it is only the starting point for players’ strategic thinking—with 
some experimental support from papers like those cited above. It also 
generalizes Crawford’s (2003) truthful W0 sender type. 
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In deriving types’ strategies in Battle of the Sexes with two-sided 
communication, I assume that a type always chooses an action with 
the highest expected payoff, given its beliefs. 
 
As in previous applications, I assume that payoff ties are broken 
randomly, so that a type chooses equally desirable actions with equal 
probabilities. 
 
I also assume that the types have a slight preference for truthfulness, 
so that if telling the truth and lying have exactly equal payoffs, a type 
tells the truth. 
 
If, in addition, both messages have equal probabilities of being true, I 
assume that a type sends them with equal probabilities. 
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With regard to types’ beliefs, I assume that, because each type has a 
unitary model of others (L2 believing others are L1 etc.), it does not 
draw inferences about others’ types from their messages. 
 
(In Crawford’s (2003) analysis, the Sophisticated type but not the 
Mortal (level-k) types draw inferences from others’ messages about 
their types; Ellingsen and Östling assume that level-k types draw such 
inferences in their analysis of the “Poisson cognitive hierarchy” model, 
where types above L1 have positive weights on all lower types.) 
 
I also assume that if a type receives a message that contradicts its 
beliefs regarding its partner’s action, it disregards the message and 
maintains its beliefs about the action, on the grounds that action 
preferences are stronger. 
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Under these and other simple assumptions, it is not hard to derive the 
messages for all types and the resulting coordination outcomes on the 
non-equilibrium path for all type pairings. 
 

Type 
(message) 

L1 
(random) 

L2 (h) L3 (d) L4 (h) 

L1 
(random) 

½H+½D, 
½H+½D 

D, H H, D D, H 

L2 (h) H, D H, H H, D H, H 
L3 (d) D, H D, H D, D D, H 
L4 (h) H, D H, H H, D H, H 

Table 2. Level- k Messages and Outcomes 
with One Round of Communication 

 
“½H+½D, ½H+½D” refers to players’ independently random choices in 
L1 versus L1, which make all four possible outcomes equally likely. 
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For example, given L0’s strategy of uniformly randomizing its action 
and sending a truthful message, L1 expects its partner’s message to 
be truthful and its own message to be ignored. 
 
L1 therefore accommodates by choosing action D if it receives 
message h from its partner, and action H if it receives message d. 
 
When L1 chooses its own message it has not yet received its partner’s 
message, and so it cannot predict its own action; and because L1 
expects its partner’s message to be h and d with equal probabilities, 
both of its own messages have equal probabilities of being true. 
 
L1 therefore sends h and d with equal probabilities, independent of its 
action. 
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Given L1’s strategy, L2 expects its partner’s message to be 
uninformative and its own message to be believed and 
accommodated. 
 
L2 therefore chooses action H and sends message h, in each case 
without regard to its own or its partner’s message (but if for some 
reason it had chosen action D instead, it would have sent message d). 
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Coordination outcomes 
Repeat the table for the model without communication for comparison: 
 

Types  L1 L2 L3 L4 
L1 H, H H, D H, H H, D 
L2 D, H D, D D, H D, D 
L3 H, H H, D H, H H, D 
L4 D, H D, D D, H D, D 

Table 1. Level- k Outcomes without 
Communication 

 
Type 

(message) 
L1 

(random) 
L2 (h) L3 (d) L4 (h) 

L1 
(random) 

½H+½D, 
½H+½D 

D, H H, D D, H 

L2 (h) H, D H, H H, D H, H 
L3 (d) D, H D, H D, D D, H 
L4 (h) H, D H, H H, D H, H 

Table 2. Level- k Messages and Outcomes 
with One Round of Communication 
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There are three notable differences between Table 1 and Table 2. 
 
First, with one round of communication types other than L1 always 
(without regard to the message sent or received) choose the action 
opposite to the one they choose without communication. 
 
For example, L2 expects its messages to be believed and 
accommodated, and so sends h and chooses H; but without 
communication L2 expected L1 to choose H, and so accommodates by 
choosing D. 
 
Returning to the Stackelberg analogy used for tacit coordination, 
without communication L1 is effectively committed (in L2’s mind) to 
choosing H; but with communication L1 is not committed not to listen 
(because its L0 is truthful), and this allows L2 to use its message to 
take over the leadership role. 
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Second, in the pairing L1 versus L1, there are now equal probabilities 
of all four {H, D} combinations, instead of the H, H outcome without 
communication. 
 
This is because L1 expects its partner’s message to be truthful and its 
own message to be ignored. 
 
L1 therefore believes and accommodates its partner’s message but 
(unable to predict which message will be true) chooses its own 
message randomly, so that both L1s end up playing H and D with 
equal probabilities. 
 
L1’s communication skills here leave something to be desired, but its 
listening skills still yield a large improvement over the L1 versus L1 
outcome without communication. 
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Third, in the pairing L1 versus L3, L1 still chooses H but L3 now 
accommodates by choosing D. 
 
This is because L3 expects its partner to choose H, and so chooses D 
and sends d, while L1 sends a random message but expects its 
partner’s message to be truthful, and so ends up choosing H. 
 
Although L1 is not good at talking, it doesn’t matter because L3 is not 
listening. 
 
The improvement here is entirely due to L1’s listening skills, which 
suffice for coordination with L3. 
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How much does one round of level-k communication improve 
coordination over level-k outcomes without communication or 
equilibrium outcomes with one round? 
 
Focus again on the coordination rate (ignoring changes from H, D to D, 
H, or vice versa). 
 
Comparing the level-k outcomes without communication (Table 1) and 
with one round (Table 2), the rate goes up from 0 to ½ for the pairing 
L1 versus L1, from 0 to 1 for the pairings L1 versus L3, and is 
otherwise unchanged. 
 
If the frequencies of L1, L2, L3, and L4 are r ≈ 0.4, s ≈ 0.3, t ≈ 0.2, and 
u ≈ 0.1 then the overall coordination rate without communication is 
2(r+t)(s+u) ≈ 0.48, while with communication the overall rate goes up 
by ½r2 + 2rt, to 0.68. 
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Comparing the level-k and equilibrium coordination rates with one 
round of communication, the equilibrium rate is 
2(a+a2+a3)/[(1+a2)(1+a)2], which equals 3/4 when a = 1, 28/45 when a 
= 2, and converges to 0 like 1/a as a → ∞. 
 
Thus when a ≈ 1 the coordination rate with one round of 
communication is likely to be somewhat higher for equilibrium than for 
a level-k model (0.75 versus 0.68). 
 
But even for moderate values of a, the level-k coordination rate is likely 
to be higher than the equilibrium coordination rate. 
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A level-k analysis yields very different conclusions about the 
effectiveness of communication than Farrell’s equilibrium analysis. 
 
With or without communication, level-k coordination rates in Battle of 
the Sexes are largely independent of the difference in players’ 
preferences. 
 
By contrast, in Farrell’s equilibrium analysis coordination rates are 
highly sensitive to the difference in players’ preferences. 
 
Unless the difference in preferences is very small, coordination rates 
are likely to be higher with level-k thinking than in Farrell’s equilibria. 
 
 
With one round, the analysis also justifies FR’s assumption that a 
message pair that identifies an equilibrium leads to that equilibrium. 
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A Level-k analysis of Battle of the Sexes with abun dant 
communication 
 
Farrell’s equilibrium analysis of abundant communication assumes that 
players continue exchanging messages until an agreement is reached. 
 
I assume in the spirit of Rabin’s analysis that players can agree to 
continue for an additional round of communication by mutual consent, 
and that they will do so if it is mutually beneficial. 
 
I also assume players have a slight preference for avoiding additional 
rounds. 
 
Finally, I assume that players draw no inferences about their partners’ 
types from the history of their interactions. 
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Under these and other simple assumptions, it is not hard to derive the 
messages for all types and the resulting coordination outcomes on the 
non-equilibrium path for all type pairings. Table 3 gives the outcomes:  
 

Type L1 L2 L3 L4 

L1 

½H+½D, ½H+½D if a < 
2; 

1/3H,H + 1/3D,H + 
1/3H,D if a > 2 

D, H H, D D, H 

L2 H, D H, H H, D H, H 
L3 D, H D, H D, D 

(?) 
D, H 

L4 H, D H, H H, D H, H 
Table 3. Level- k Outcomes with Abundant 

Communication 
 
“½H+½D, ½H+½D” refers to the uniform distribution o ver the four 
possible outcomes for L1 versus L1 following message pair h,h when a 
< 2. 
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Continuing communication can never be better for both players if their 
current messages already identify one of the Pareto-efficient pure-
strategy equilibria in Battle of the Sexes. 
 
By continuing they incur the slight cost of an additional round of 
communication, and no deviation could make that worthwhile for both 
of them. 
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This implies (finding Table 2’s inefficient outcomes) that there are three 
kinds of type and realized message pair that might continue: 
  

Type 
(message) 

L1 
(random) 

L2 (h) L3 (d) L4 (h) 

L1 
(random) 

½H+½D, 
½H+½D 

D, H H, D D, H 

L2 (h) H, D H, H H, D H, H 
L3 (d) D, H D, H D, D D, H 
L4 (h) H, D H, H H, D H, H 

Table 2. Level- k Messages and Outcomes 
with One Round of Communication 

 
● L1 versus L1 following one of the message pairs, d,d or h,h, that 
don’t identify an equilibrium 
 
● L3 versus L3 following its normal message pair d,d 
 
● L2 or L4 versus L2 or L4 following their normal message pair h,h 
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L1 versus L1 following message pair d,d both expect to play H against 
their partner’s D if communication is cut off, because each expects its 
partner’s message to be truthful and its own to be ignored. 
 
Given this, each is too sure of its optimistic beliefs to continue 
communicating. 
 
Instead, as Rabin’s analysis of negotiated rationalizability suggests is 
possible out of equilibrium, L1 versus L1 following message pair d,d 
both cut off communication, and so play H, H in the underlying game. 
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L1 versus L1 following message pair h,h both expect to play D against 
their partner’s H if communication is cut off. These beliefs are too 
pessimistic so there is potential for improvement; but it may seem 
pointless to continue because they will have just failed to reach 
agreement in a round like the one that would ensue. 
 
But both of L1’s messages have equal expected payoffs and are 
equally likely to be true; so if L1’s randomness is an unstudied 
response to those indifferences, the random outcomes need not be 
perfectly correlated each round. 
 
Given this, the outcome if L1 versus L1 following message pair h,h 
continue will be a new random pair of messages, with a new, positive 
probability of identifying an efficient equilibrium (compare Costa-
Gomes’s (2002) “mutual grain of agreement” assumption). 
 
If L1 versus L1 continue, and if the types draw no inferences from 
history, the process is a Markov chain with all states but h,h absorbing; 
the eventual outcome is either H, H; D, H; or H, D, each with 
probability 1/3, with expected payoff (1+a)/3. 
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If L1 versus L1 cut off communication, they expect to play D against H, 
with payoff 1. 
 
Thus it’s better to continue if and only if (1+a)/3>1, equivalently if a > 2. 
 
The definition of L1 gracefully overcomes what might appear an 
insurmountable problem in extending Farrell’s equilibrium analysis of 
the effectiveness of abundant communication to a level-k model. 
 
These models concern repeated interaction in fixed pairs, and Farrell’s 
analysis of abundant communication inherently relies on randomness. 
 
We are socialized to think that equilibrium players can and do 
consciously randomize; but it is conventional and plausible to assume 
that level-k players cannot, or at least do not, consciously randomize. 
 
Fortunately, level-k players can unconsciously randomize, and the 
definition of L1 creates just the indifferences needed to make this work 
for L1 versus L1 following message pair h,h. 



 107 

Summing up for L1 versus L1, in the first round each of the four 
possible message pairs is equally likely. 
 
If players send one of the pairs, d,h or h,d, that identify an equilibrium, 
then they cut off communication and play that equilibrium. 
 
If they send d,d, then they cut off communication and play H, H. 
 
When a < 2, if they send h,h, they cut off communication and play D, 
D. 
 
When a > 2, if they send h,h they continue communicating for (at least) 
one more round; in that case, the eventual outcome is either H, H; D, 
H; or H, D, each with probability 1/3. 
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Like L1 versus L1 following message pair d,d, L2 or L4 versus L2 or L4 
are too optimistic to continue communicating. They too cut off 
communication after the first round and play H, H in the game. 
 
Finally, like L1 versus L1 following message pair h,h, L3 versus L3 are 
too pessimistic. But unlike L1’s messages L3’s are deterministic, so L3 
versus L3 may think it’s pointless to continue communicating anyway. 
 
If they do continue, they are possibly doomed to repeat d,d forever and 
never reach an efficient agreement. 
 
The only ray of hope is that, if L3 versus L3 do continue and there is 
some exogenous randomness in how messages are sent or received, 
or some random variation in how they learn from experience, they 
might eventually reach an efficient agreement by accident (such 
randomness is superfluous for L1 versus L1 following h,h; and it won’t 
stop L1 versus L1 from following d,d or L2 or L4 versus L2 or L4 from 
cutting off communication after the first round).  
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Coordination outcomes 
Type 

(message) 
L1 

(random) 
L2 (h) L3 (d) L4 (h) 

L1 
(random) 

½H+½D, 
½H+½D 

D, H H, D D, H 

L2 (h) H, D H, H H, D H, H 
L3 (d) D, H D, H D, D D, H 
L4 (h) H, D H, H H, D H, H 

Table 2. Level- k Messages and Outcomes 
with One Round of Communication 

 
Type L1 L2 L3 L4 

L1 
½H+½D, ½H+½D if a < 2; 

1/3H,H + 1/3D,H + 1/3H,D if 
a > 2 

D, H H, D D, H 

L2 H, D H, H H, D H, H 
L3 D, H D, H D, D (?) D, H 
L4 H, D H, H H, D H, H 

Table 3. Level- k Outcomes with Abundant Communication 
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The outcomes with abundant communication are the same as with one 
round of communication, except that if a > 2, L1 versus L1 now have a 
coordination rate of 2/3 instead of ½; and some exogenous 
randomness might allow L3 versus L3 to raise its coordination rate 
above its rate of 0 with one round (the “?” in Table 3). 
 
Updating the calibration for one round of communication, with 
frequencies of L1, L2, L3, and L4 r ≈ 0.4, s ≈ 0.3, t ≈ 0.2, and u ≈ 0.1, if 
a > 2 the first change adds another r2/6 ≈ 0.03 to the overall level-k 
coordination rate with abundant communication, raising it to 
approximately 0.71 from the rate of 0.68 with one round and of 0.48 
without communication (if a < 2 the rate stays at 0.68). 
 
The second change could conceivably add as much as t2(1–0) = 0.06 
more, raising the coordination rate to approximately 0.77 or, if a < 2, 
0.74. 
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With abundant communication, when a > 1.94 and possibly for lower 
values, the level-k coordination rate is greater than the equilibrium rate, 
2/(1+a), which equals 1 when a = 1, 2/3 when a = 2, and → 0 like 1/a 
as a → ∞.  
 
To the extent that level-k types do better than in Farrell’s equilibrium 
analysis, they do so because, as in the level-k analysis of tacit 
coordination, the level-k model relaxes the equilibrium incentive 
constraints. 
 
As in Farrell’s analysis, the benefits of abundant communication are 
limited and, unless players’ preferences are fairly close, most of the 
gains from communication are realized with only one round. 
(Here, oddly, the benefits of abundant communication are more limited 
when a is small, because L1 versus L1 following message pair h,h 
then cut off communication.) 
 
The level-k model’s predictions are consistent with Rabin’s bounds 
based on negotiated rationalizability, but their precision yields 
additional insight. 
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A level-k analysis also allows a reevaluation of FR’s plausible but ad 
hoc restrictions on how players use language. 
 
With abundant communication, as Rabin’s analysis of negotiated 
rationalizability suggests, level-k players need not keep communicating 
until an agreement is reached as they do in Farrell’s equilibrium. 
 
But because “agreements” do not fully reflect the meeting of the minds 
that FR sought to model (instead they reflect either one player’s 
perceived credibility as a sender or the other’s perceived credulity as a 
receiver), a level-k analysis may not fully support the assumptions 
about agreements in Rabin’s analysis of negotiated rationalizability. 
 
 


