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LEVEL-k AUCTIONS: CAN A NONEQUILIBRIUM MODEL OF
STRATEGIC THINKING EXPLAIN THE WINNER’S CURSE AND

OVERBIDDING IN PRIVATE-VALUE AUCTIONS?

BY VINCENT P. CRAWFORD AND NAGORE IRIBERRI1

The common curse of mankind, folly and ignorance, be thine in great revenue!
William Shakespeare, Troilus and Cressida

This paper proposes a structural nonequilibrium model of initial responses to
incomplete-information games based on “level-k” thinking, which describes behavior
in many experiments with complete-information games. We derive the model’s implica-
tions in first- and second-price auctions with general information structures, compare
them to equilibrium and Eyster and Rabin’s (2005) “cursed equilibrium,” and evaluate
the model’s potential to explain nonequilibrium bidding in auction experiments. The
level-k model generalizes many insights from equilibrium auction theory. It allows a
unified explanation of the winner’s curse in common-value auctions and overbidding in
those independent-private-value auctions without the uniform value distributions used
in most experiments.

KEYWORDS: Common-value auctions, winner’s curse, overbidding, bounded ratio-
nality, level-k model, nonequilibrium strategic thinking, behavioral game theory, ex-
periments.

1. INTRODUCTION

Common-value auctions, in which the value of the object being sold is un-
known but the same to all bidders ex post and each bidder receives a private
signal that is correlated with the value, have been studied intensively, both
theoretically and empirically, since Milgrom and Weber (MW) (1982); see the
surveys by McAfee and McMillan (1987, Section X), Milgrom (1985, Section
4; 1987, Section 4), Wilson (1992, Section 4.2), and Klemperer (1999).

A central problem in this area is explaining the “winner’s curse,” the fre-
quent tendency for bidders in common-value auctions to overbid, relative to

1Iriberri’s work on this project began when she was affiliated with the University of Cali-
fornia, San Diego. We are grateful to the National Science Foundation (Crawford), the Cen-
tro de Formación del Banco de España (Iriberri), and the Barcelona Economics Program of
CREA (Iriberri) for research support; to Pierpaolo Battigalli, Yong Chao, Gary Charness, Olivier
Compte, Ignacio Esponda, Erik Eyster, Drew Fudenberg, Charles Holt, Mark Isaac, Philippe Je-
hiel, John Kagel, Navin Kartik, Muriel Niederle, David Miller, Thomas Palfrey, Charles Plott,
Matthew Rabin, Jose Gonzalo Rangel, Ricardo Serrano-Padial, Joel Sobel, Yixiao Sun, and, es-
pecially, Dan Levin for helpful discussions; and to Kagel for locating and providing the data from
the experiments of Kagel and Levin (1986, 2002), Garvin and Kagel (1994), Kagel, Levin, and
Harstad (1995), and Avery and Kagel (1997). A web appendix provides further analysis and de-
tailed calculations.
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equilibrium.2 The curse, as we shall call it, was first noted in oil-lease auc-
tions by petroleum engineers (Capen, Clapp, and Campbell (1971)) and stud-
ied theoretically by Wilson (1969). It has since been detected in many analyses
of field data (Hendricks, Porter, and Boudreau (1987), Hendricks and Porter
(1988), and the papers surveyed in McAfee and McMillan (1987, Section XII),
Thaler (1988), Wilson (1992, Section 9.2), and Laffont (1997, Section 3)). The
curse has also been observed in laboratory experiments with precise control
of the information conditions on which it depends (Bazerman and Samuel-
son (1983), Kagel and Levin (KL) (1986), Kagel, Harstad, and Levin (1987),
Lind and Plott (LP) (1991), Kagel, Levin, and Harstad (1995), and the pa-
pers surveyed in Kagel (1995, Section II) and KL (2002)). Finally, curse-like
phenomena have been observed in nonauction settings that share the informa-
tional features of common-value auctions: bilateral negotiations in the acquir-
ing a company game in Samuelson and Bazerman (1985), Holt and Sherman
(HS) (1994), Tor and Bazerman (2003), and Charness and Levin (2005); the
Monty Hall game in Friedman (1998), Tor and Bazerman (2003), and Palacios-
Huerta (2003); zero-sum betting with asymmetric information in Sovik (2000)
and Sonsino, Erev, and Gilat (2002); and voting and jury decisions in Fed-
dersen and Pesendorfer (1996, 1997, 1998). There is also an experimental
literature on independent-private-value auctions, which documents a wide-
spread (though not universal) tendency for subjects to bid higher than in the
risk-neutral Bayesian equilibrium—though not usually to the point of making
losses, on average, as in common-value auctions; see Cox, Smith, and Walker
(1983, 1988); Goeree, Holt, and Palfrey (GHP) (2002), and the references cited
therein.

The curse is often attributed informally to bidders’ failure to adjust their
value estimates for the information revealed by winning. Such adjustments are
illustrated by the symmetric Bayesian equilibrium of a first- or second-price
auction with symmetric bidders, where bidders adjust their expected values for
the fact that the winner’s private signal must have been more favorable than
all others’ signals, and so overestimates the value based on all available infor-
mation.3 But despite the empirical importance of overbidding in independent-
private-value auctions and curse-like phenomena in common-value auctions,
there have been few attempts to model them formally.

KL (1986) and HS (1994) formalized the intuition behind the curse in mod-
els in which “naive” bidders do not adjust their value estimates for the infor-
mation revealed by winning, but otherwise follow equilibrium logic. Eyster and
Rabin’s (ER) (2002, 2005) notion of “cursed equilibrium” generalizes KL’s and

2Some researchers use a more stringent definition: that the winner bids more than the expected
value conditional on winning. Our weaker definition corresponds more closely to the deviations
from equilibrium that are our main focus.

3A bidder’s bid should be chosen as if it were certain to win because it affects the bidder’s
payoff only when it wins.
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HS’s models to allow intermediate levels of value adjustment, ranging from
standard equilibrium with full adjustment to “fully cursed” equilibrium with
no adjustment. ER also generalized KL’s and HS’s models from auctions and
bilateral exchange to other kinds of incomplete-information games.4 All three
models allow players to deviate from equilibrium only to the extent that they do
not draw correct inferences from the outcome. Thus their predictions coincide
with equilibrium in games in which such inferences are not relevant, and they
do not help to explain nonequilibrium behavior in independent-private-value
auctions.

Other analyses, also assuming equilibrium, seek to explain overbidding in
independent-private-value auctions via various deviations from risk-neutral
expected-monetary-payoff maximization: risk aversion in Cox, Smith, and
Walker (1983, 1988) and HS (2000); the “joy of winning” in Cox, Smith, and
Walker (1992) and HS (1994); and both of these plus nonlinear probability
weighting, using McKelvey and Palfrey’s (1995) notion of quantal response
equilibrium (QRE), in GHP (2002).5

These explanations all assume the perfect coordination of beliefs about oth-
ers’ strategies that is characteristic of equilibrium analysis. Such coordination
is plausible when bidders have had ample opportunity to learn from experi-
ence with analogous auctions,6 but some auctions that have been studied using

4In Samuelson and Bazerman’s (1985) Acquiring a Company experiments, both less- and
more-informed subjects tend to choose as if their (more- or less-informed) partner’s information
was the same as their own. In Acquiring a Company, cursed equilibrium would assume this for a
less- but not a more-informed player. It is unclear how to extend this interpretation of Samuel-
son and Bazerman’s results to auctions in which each player has some private information, so
that no one is unambiguously less- or more-informed. Neither of the obvious choices—that a
player ignores his own private information, or that he assumes all others share it—seems sensi-
ble. In related work, Esponda (2005) proposed a model in the spirit of self-confirming equilibrium
(Fudenberg and Levine (1993)) to explain systematic deviations from equilibrium in games like
Acquiring a Company. Jehiel and Koessler (2005) (see also Jehiel (2005)) proposed a general
model of behavior in incomplete-information games in which players mentally bundle others’
private-information types into analogy classes, which in a leading case reduces to fully cursed
equilibrium. Like ER’s notion, Esponda’s and Jehiel and Koessler’s notions are steady-state con-
cepts meant to describe the outcome of a learning process.

5QRE is a generalization of equilibrium that allows players’ choices to be noisy, with the prob-
ability of each choice increasing in its expected payoff, given the distribution of others’ decisions;
a QRE is thus a fixed point in the space of players’ choice distributions. To our knowledge, QRE
has not been used to analyze common-value auctions. Risk aversion has been applied mainly to
explain overbidding in independent-private-value auctions, with the exception of HS (2000). As
LP (1991) noted, common-value auctions with risk aversion are not well understood theoretically.

6Such experience might justify fully-cursed equilibrium, for instance, by teaching bidders the
trade-off between the cost of higher bids and their increased probability of winning without also
teaching them to avoid the curse. In the field, bidders seldom observe others’ values, which im-
pedes learning about the curse. In most of the relevant experiments, subjects’ bids and signals
were made public after each round, but even experienced subjects may focus on the relationship
between the winner’s signal and bid, and the realized value of the object, without looking for
relationships like the curse. It seems much harder to justify less than fully-cursed equilibrium,
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field data lack enough clear precedents to make equilibrium a plausible hy-
pothesis for initial responses and subjects may learn slowly in auction experi-
ments, especially with common values (LP (1991), Ball, Bazerman, and Carroll
(1991), Garvin and Kagel (1994), Kagel and Richard (2001), and Palacios-
Huerta (2003)). The justification for equilibrium then depends on strategic
thinking rather than learning, but such thinking may not follow the fixed-point
logic of equilibrium. It may then be just as plausible to relax the assumption
of equilibrium as to relax correct value adjustment or risk-neutral expected-
money-payoff maximization.7

Progress via relaxing equilibrium requires a structural model that accurately
describes initial responses to games.8 In this paper we reconsider the winner’s
curse in common-value auctions and overbidding in independent-private-value
auctions using nonequilibrium models of initial responses based on “level-k”
thinking, introduced by Stahl and Wilson (1994, 1995) and Nagel (1995), and
further developed and applied by Ho, Camerer, and Weigelt (1998), Costa-
Gomes, Crawford, and Broseta (2001), Bosch-Domènech, Montalvo, Nagel,
and Satorra (2002), Crawford (2003), Camerer, Ho, and Chong (CHC) (2004),
Costa-Gomes and Crawford (2006), and Crawford and Iriberri (2007a). The
level-k model has strong experimental support, which should allay the concern
that once one departs from equilibrium, “anything is possible.” We focus on
symmetric first- and second-price auctions, leaving their progressive Dutch and
English counterparts for future work.

A level-k analysis has the potential to give a unified explanation of overbid-
ding in independent-private-value and common-value auctions as well as curse-
like phenomena in other settings. It also promises to establish a link between

because once one realizes there may be a relationship to look for, there is no obvious reason to
stop at intermediate levels of cursedness.

7Compare Fudenberg (2006): “. . . the fact that the amount of ‘cursedness’ typically declines
as subjects become more experienced suggests that the curse, while real, is not an equilibrium
phenomenon.” It should eventually be possible to adapt the insights into cognition from analy-
ses of initial responses to yield a deeper understanding of learning. Combining the two should
then yield a clearer view of behavior in dynamic settings. Interesting evidence on learning in auc-
tions is reported in Garvin and Kagel (1994), Kagel and Richard (2001), Neugebauer and Selten
(2006), and Filiz-Ozbay and Ozbay (2007). Neugebauer and Selten’s results for initial responses
of subjects playing against random computer-simulated bidders include more underbidding than
overbidding, and so suggest that some overbidding is a learned response, highly dependent on
the feedback about the highest bid among other bidders.

8Maintaining common knowledge of rationality but otherwise leaving beliefs unrestricted
yields notions like rationalizability, which implies some restrictions on behavior in first-price
auctions or common-value second-price auctions, and duplicates equilibrium in independent-
private-value second-price auctions. k-level rationalizability—consistency with rationality and
mutual certainty of (k− 1)-level rationalizability—implies bounds on behavior in first-price auc-
tions characterized in Battigalli and Siniscalchi (2003) and restricts behavior in common-value
second-price auctions; it also duplicates equilibrium in independent-private-value second-price
auctions. By contrast, our approach dispenses with common knowledge of rationality (and of
beliefs), but normally yields unique predictions.
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empirical auction studies and nonauction experiments on strategic thinking,
and thereby to bring a large body of auction evidence to bear on the issue of
how best to model initial responses to games. Finally, it allows us to explore
the issues that arise in extending level-k models to games of incomplete infor-
mation and the robustness of standard auction theory’s conclusions to failures
of the equilibrium assumption.

A level-k model allows behavior to be heterogeneous, but it assumes that
each player’s behavior is drawn from a common distribution over a particular
hierarchy of decision rules or types. Type Lk for k > 0 anchors its beliefs in a
nonstrategic L0 type and adjusts them via thought experiments with iterated
best responses: L1 best responds to L0, L2 to L1, et cetera. L1 and L2 have
accurate models of the game and are rational; they depart from equilibrium
only in basing their beliefs on simplified models of other players.9 This yields
a workable model of others’ decisions while avoiding much of the cognitive
complexity of equilibrium analysis.10 In applications the population type distri-
bution is usually translated from previous work or estimated from the current
data set. The estimated distribution tends to be stable across games, with most
of the weight on L1 and L2. Thus the anchoring L0 type exists mainly in the
minds of higher types.

Even so, the specification of L0 is the key to the model’s explanatory power
and the main issue that arises in extending the level-k model from complete-
to incomplete-information games. We consider two alternative specifications,

9Charness and Levin (2005) conducted an interesting experimental test of “simplified models
of others” explanations of the curse like the one proposed here, in an Acquiring a Company
design with a “robot” treatment in which a single decision-maker faces an updating problem that
is mathematically the same as the one that underlies the curse. They find that the curse persists in
their treatment, and conclude that their results favor explanations based on limited cognition in
Bayesian updating or in understanding the problem rather than simplified models of others. Their
results do suggest that the curse is due to some form of limited cognition rather than strategic
uncertainty, but their analysis leaves open the possibility that something like a level-k model
can describe initial responses to environments, interactive or not, that pose cognitive difficulties
isomorphic to those of predicting other players’ strategic decisions. Dorsey and Razzolini (2003)
reported experiments in which subjects made decisions in independent-private-value first-price
auctions and lotteries that duplicate bidders’ incentives in equilibrium. Their lotteries yield some
overbidding, though less than their auctions, which suggests that overbidding is due in part to
limited cognition.

10In Selten’s (1998) words: “Basic concepts in game theory are often circular in the sense that
they are based on definitions by implicit properties. . . . Boundedly. . . rational strategic reasoning
seems to avoid circular concepts. It directly results in a procedure by which a problem solution is
found. Each step of the procedure is simple, even if many case distinctions by simple criteria may
have to be made.” Costa-Gomes and Crawford (2006) summarized the evidence for the level-k
model and gave support for our assumptions that L2 best responds to an L1 without decision
errors, unlike in Stahl and Wilson (1994, 1995), and to L1 alone rather than a mixture of L1 and
L0, unlike Worldly in Stahl and Wilson (1995) and L2 in CHC (2004). We confine attention to L0,
L1, and L2 because they well illustrate the model’s potential to explain auction behavior and the
evidence suggests that other types are comparatively rare.
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both nonstrategic as is usual in level-k analyses. A random L0 bids uniformly
randomly over the feasible range, as in the complete-information level-k analy-
ses of Stahl and Wilson (1994, 1995), Costa-Gomes, Crawford, and Broseta
(2001), CHC (2004), and Costa-Gomes and Crawford (2006). A truthful L0
bids the value that its own private information suggests, taken by itself, as in
LP’s (1991) naive model. We discuss these specifications of L0 in detail in Sec-
tion 3. We call the L1 and L2 types based on a random L0, random L1 and L2
types, with analogous terms for the truthful L1 and L2 types based on a truth-
ful L0. We stress that these L1 and L2 types need not be random or truthful
themselves.

Although a level-k model’s predictions coincide with equilibrium in many
simple games, in games as complex as auctions they may deviate systemati-
cally from equilibrium. The deviations are determined by the same factors that
determine an equilibrium bidder’s bidding strategy—value adjustment for the
information revealed by winning and the bidding trade-off between a higher
bid’s cost and its increased probability of winning—but their influences are al-
tered by types’ nonequilibrium beliefs. The pattern of types’ deviations across
first- and second-price common- and independent-private-value auctions de-
termines whether a level-k model with a sensible type distribution can explain
the systematic deviations from equilibrium such auctions often evoke.

Our analysis yields two main conclusions. First, many insights of equilib-
rium auction theory extend, suitably interpreted, to level-k auction theory.11

Second, an empirically plausible level-k model can explain the winner’s curse
in common-value auctions and overbidding in independent-private-value auc-
tions without the uniform value distributions used in most experiments.12

In common-value auctions, because random L0’s bids are independent of its
signal, random L1 ignores the information revealed by winning, just as ER’s

11To the extent that equilibrium insights do not generalize, it is mainly because level-k types,
by best responding to level-(k− 1) types, break the symmetry of a standard equilibrium analysis,
which creates difficulties like those in equilibrium analyses of asymmetric auctions (McAfee and
McMillan (1987, Section VII), Maskin and Riley (2000)).

12Gneezy (2005) reported experiments in which subjects play stylized common-value first- and
second-price auctions with complete information. He finds that equilibrium predicts poorly and
a level-k model like CHC’s fits better than equilibrium in the second-price but not the first-
price auction. (His first-price auctions yield results like those for the Traveler’s Dilemma, whose
structure is similar (see, for example, Goeree and Holt (2001)).) Gneezy’s complete-information
auctions and the Traveler’s Dilemma raise significantly different behavioral issues than the auc-
tions with diffuse private information considered here. Compte (2004) proposed an explanation
of overbidding in both independent-private-value and common-value second-price auctions in
which the key assumption is that bidders are overconfident in the accuracy of their own signals.
In his model, the highest bidder is likely to be one whose error made him overoptimistic about his
signal and so likely to overbid even in an independent-private-value auction. While such errors
may make the model more realistic in applications, subjects in the experiments we study are told
their signals with no error and no ambiguity of interpretation, so Compte’s explanation is less
plausible here.
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fully-cursed equilibrium bidders do. In a second-price auction, the bidding
trade-off is neutral and the lack of value adjustment makes random L1’s bids
coincide with fully-cursed equilibrium bids, so that it normally overbids relative
to equilibrium. In a first-price auction, random L1 differs from a fully-cursed-
equilibrium bidder in using its nonequilibrium beliefs to evaluate a nonneu-
tral bidding trade-off; this may make it bid higher or lower than fully-cursed
equilibrium or coincide with it. In independent-private-value auctions (first-
or second-price) with uniform values, random L1 coincides with equilibrium.
Without uniformity, in general, random L1 may underbid, overbid, or coincide
with equilibrium in first-price auctions, and it always coincides with equilibrium
in second-price auctions.

In a first- or second-price auction, random L1’s bidding strategy is increas-
ing in its signal. Thus in common-value auctions, random L2 adjusts its value
estimate for the information revealed by winning. In a second-price auction,
random L2 bids the expected value given its own signal, conditional on just win-
ning. In this it follows the same logic as the equilibrium bidding strategy, but its
beliefs do not anticipate winning if and only if it has the highest signal, which
leads to a different adjustment. Value adjustment tends to make bidders’ bids
strategic substitutes, because winning against higher others’ bids means others’
signals are (stochastically) lower, which lowers the expected value conditional
on winning. In a second-price auction, only value adjustment is relevant, so
to the extent that random L1 overbids relative to equilibrium, random L2 un-
derbids. In a first-price auction, the bidding trade-off may either reinforce or
work against this tendency to underbid. In a first- or second-price independent-
private-value auction, value adjustment is irrelevant. With uniform values, the
bidding trade-off is neutral and random L2 coincides with equilibrium even in
first-price auctions. With nonuniform values, random L2 coincides with equi-
librium in second-price auctions, but it may underbid or overbid in first-price
auctions.

In first- or second-price common-value auctions, truthful L1 tends to under-
bid relative to equilibrium or coincide with it. Truthful L2 tends to overbid or
coincide with equilibrium. With uniform, independent private values, truthful
L1 and L2 bids coincide with equilibrium. With nonuniform values, truthful
L1 and L2 may underbid, overbid, or coincide with equilibrium in first-price
auctions and they coincide with equilibrium in second-price auctions.

These bidding patterns allow a level-k model with an empirically plausi-
ble type distribution in which random L1 predominates, with lower frequen-
cies of random L2, truthful L1 and L2, and an Equilibrium type that makes
its equilibrium bid, to fit experimental data for common-value auctions better
than equilibrium or cursed equilibrium, and to fit GHP’s data for nonuniform
independent-private-value auctions better than equilibrium or QRE. A level-k
model has further advantages over cursed equilibrium in that it uses more gen-
eral strategic principles to explain subjects’ bidding behavior, with behavioral
parameters linked to other bodies of evidence, and it may explain nonequilib-
rium bidding in some other independent-private-value auctions.
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The rest of the paper is organized as follows. Section 2 introduces MW’s
(1982) general model with interdependent values and affiliated signals, and
reviews the theories of equilibrium and cursed-equilibrium bidding. Section 3
discusses the specification of a level-k model for auctions and derives its gen-
eral implications for random and truthful types. Section 4 compares equilib-
rium, cursed equilibrium, and the level-k model’s implications in the leading
examples that have been most often studied in auction experiments. Section 4
starts with the two common-value examples that were the basis of the auction
experiments ER (2002, 2005) considered: the first-price auctions of KL (1986)
and Garvin and Kagel (1994) and the second-price auctions of Avery and
Kagel (AK) (1997). It continues with second-price auctions in KL’s example
(for which ER (2002) but not ER (2005) discussed KL’s results). Finally, since
independent-private-value auctions are especially useful for separating cursed
equilibrium from level-k decision rules, Section 4 analyzes GHP’s (2002) de-
sign with discrete, slightly nonuniform values, in which level-k decision rules
are separated, although weakly, from equilibrium. Section 5 compares the
models econometrically in these four environments, using data on the initial
responses of inexperienced subjects, which allow the cleanest tests of models
of initial responses. Section 6 is the conclusion.

2. EQUILIBRIUM AND CURSED EQUILIBRIUM

In this section we review the theories of equilibrium and cursed-equilibrium
bidding in first- and second-price auctions. We use MW’s (1982, Section 3)
general model with interdependent values and affiliated signals, which in-
cludes independent private values, pure common values, and intermediate
cases in which bidders observe affiliated private signals that are informative
about their interdependent values. Although ER’s (2002) cursed equilibrium
includes equilibrium as a special case, we begin with equilibrium and general-
ize to cursed equilibrium. Here and below, we assume risk-neutral, symmetric
bidders and focus on symmetric equilibria.

2A. Milgrom and Weber’s General Model with Interdependent Values and
Affiliated Signals

Milgrom and Weber’s general model with interdependent values and af-
filiated signals has N bidders, indexed i = 1� � � � �N , bidding for a single,
indivisible object. Bidder i observes a private signal Xi that is informative
about his value of the object, with X = (X1�X2� � � � �XN). The vector S =
(S1� S2� � � � � SM) includes additional random variables that may be informa-
tive about the value of the object. In general, bidder i’s value is Vi = ui(S�X),
where ui(·� ·) is symmetric across i in that there is a function u(·� ·) on RM+N

such that for all i�ui(S�X) = u(S�Xi� {Xj}j �=i), so that all bidders’ valuations
depend on S in the same manner and each bidder’s valuation is a symmetric
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function of the other bidders’ signals. Furthermore, the variables in S and X
are affiliated (positively associated) as defined in MW (1982, Assumption 5
and Appendix).

This general model includes three leading special cases that are important in
our analysis: the pure independent-private-value model, in which M = 0 and
Vi = ui(Xi); the pure common-value model (used in KL (1986) and LP (1991)),
in which M = 1 and Vi = ui(S); and an alternative common-value model (used
in AK (1997)), in which Vi = ui(X) = ∑N

n=1 Xn.
Because bidders are risk-neutral, if bidder i wins the auction and pays price

p for the object, his payoff is Vi − p. For each i�Y , the highest signal among
bidders other than i, has distribution function and density function, conditional
on the realization x of Xi�FY(y|x) and fY (y|x); in cases where the signals are
independent, we suppress the conditioning and write FY(y) and fY (y). It is
also useful to define two expected value functions: the expected value condi-
tional on winning, v(x� y) ≡ E[Vi|Xi = x�Y = y], and the unconditional ex-
pected value r(x) = E[Vi|Xi = x]. These functions are symmetric across i be-
cause ui(·� ·) is symmetric across i.

2B. Equilibrium in First- and Second-Price Auctions

Our equilibrium analysis closely follows MW’s analysis of their general
affiliated-signals and interdependent-values model; readers who are familiar
with their analysis can skip ahead to Section 2C’s review of cursed equilibrium.

In equilibrium, bidders correctly predict and best respond to the distribution
of other bidders’ bids, taking into account the information to be revealed by
winning because in a symmetric equilibrium the winner’s signal must be more
favorable than others’ signals. In this subsection, we assume other bidders use
their equilibrium bidding strategies a∗(x) in a first-price or b∗(x) in a second-
price auction, which are both increasing, with inverses a−1

∗ (a) and b−1
∗ (b).

In a first-price auction, bidder i’s optimal bidding strategy solves (for each x)

max
a

E[(Vi − a)1{a∗(Y)<a}|Xi = x](1)

= max
a

∫ a−1∗ (a)

x

(v(x� y)− a)fY (y|x)dy�

where 1{·} is the indicator function and x is the infimum of the support of Y .
Taking the partial derivative with respect to a yields a first-order differential
equation that determines a as a function a(x) of x, which characterizes the
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first-price equilibrium bidding strategy13:

a′(x) = (v(x�x)− a(x))
fY (x|x)
FY(x|x) �(2)

Solving (2) for the equilibrium bidding strategy a∗(x) and using the bound-
ary condition a∗(x) = v(x�x) to determine the constant of integration yields a
general expression for the first-price equilibrium bidding strategy (MW (1982,
p. 1107)):

a∗(x)= v(x�x)−
∫ x

x

exp
(

−
∫ x

y

fY (t|t)
FY (t|t) dt

)
d(v(y� y))�(3)

a∗(x) reflects both the value adjustment for the information revealed by win-
ning, via v(x�x), and the bidding trade-off, via the range of integration. The
logic of value adjustment is that the bidder should bid according to the ex-
pected value given his own signal, conditional on just winning, which in equi-
librium happens when his signal just exceeds the highest of the others’ sig-
nals.

With independent private values, v(x�x) ≡ x, and the functions fY (y|x) and
FY(y|x) no longer depend on x, so the interior integral on the right-hand side
of (3) reduces to FY(y)/FY(x) and the first-price equilibrium bidding strategy
becomes

a∗(x)= x−
∫ x

x

FY (y)

FY(x)
dy ≡E[Y |Y <X]�(4)

In a second-price auction, bidder i’s optimal bidding strategy solves (for
each x)

max
b

E
[
(Vi − b∗(Y))1{b∗(Y)<b}|Xi

]
(5)

= max
b

∫ b−1∗ (b)

x

(v(x� y)− v(y� y))fY (y|x)dy�

13MW (1982, pp. 1107–1108) showed that the objective function in (1) is quasiconcave, so
that the first-order conditions characterize the equilibrium strategies. MW’s quasiconcavity argu-
ment breaks down for some of the optimization problems considered below, and level-k types’
nonequilibrium beliefs can, in general, lead to boundary optima. In Section 4’s examples the first-
order conditions characterize the optimum except for the random L2 and truthful L1 types in
AK’s example, in which the objective function is linear and so either the upper or lower bound is
optimal.
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Because v(x� y) is increasing in x, v(x� y) − v(y� y) > 0 for all y < x and
v(x� y) − v(y� y) < 0 for all y > x. Thus the second-price equilibrium bidding
strategy (MW (1982, pp. 1100–1101)) is

b∗(x) = v(x�x)�(6)

With independent private values, (6) becomes

b∗(x) = x(7)

and the equilibrium b∗(x) is a weakly dominant strategy in this case. In a
second-price auction, a bidder’s bid determines only when he wins, not what
he pays, so the bidding trade-off is neutral, and truthful bidding given correct
value adjustment ensures that he wins if and only if it appears profitable, given
his information. Comparing (3) to (4) and (6) to (7), the only differences be-
tween the common- and independent-private-value equilibrium bidding strate-
gies are value adjustment and the affiliation of signals fY (y|x). The common-
value equilibrium in (6) is truthful like the independent-private-value equilib-
rium in (7), but the common-value equilibrium in (6) is not a weakly dominant
strategy because optimal value adjustment depends on others’ bidding strate-
gies, as Section 3’s level-k analysis shows more concretely.

2C. Cursed Equilibrium in First- and Second-Price Auctions

Our cursed-equilibrium analysis follows ER’s (2002, 2005) analysis; readers
who are already familiar with it can skip ahead to Section 3’s discussion of the
level-k model.

In cursed equilibrium, as in equilibrium, bidders correctly predict and best
respond to the distribution of others’ bids. The only difference is that in cursed
equilibrium bidders do not correctly perceive the relationship between others’
bids and signals. Instead they act as if they believe that with probability χ,
ER’s level of “cursedness,” each other bidder bids the average of others’ bids
over all signals rather than the bid his strategy specifies for his own signal. The
parameter χ ranges from 0 to 1 and cursed equilibrium for a given χ is called
χ-cursed equilibrium. χ = 0 yields equilibrium and χ = 1 yields fully-cursed
equilibrium, in which bidders assume there is no relationship between others’
bids and signals, so that each takes the expected value of the object conditional
on his own signal, ignoring the information revealed by winning.14

ER (2005, proof of Proposition 1, Proposition 5) simplified their analysis by
showing that χ-cursed equilibrium is the same as equilibrium in a hypothetical

14The implicit assumption that a player gives too little weight to others’ sophistication is of-
ten seen in other forms, for which it has considerable experimental support; see for example
Weizsäcker (2003). As ER (2005, footnote 6) noted, cursed equilibrium allows certain kinds of
differences in beliefs about others’ type-contingent strategies.
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“χ-virtual game,” in which players believe that, with probability χ, others’ bids
are type-independent, in which case they learn nothing about the value of the
object from winning. In the χ-virtual game, bidder i’s expected payoff from
winning and paying price p when the value of the object is ui(S�X) is

Vi = u(S�X)�(8)

The χ-cursed-equilibrium bidding strategy can then be obtained from the
χ-virtual game in exactly the same way that the equilibrium bidding strategy
was obtained from the original game.

With independent private values, v(x�x) = r(x) = x, the χ-virtual game re-
duces to the original game and cursed equilibrium coincides with equilibrium;
but with common values, v(x�x) differs from r(x) and cursed equilibrium dif-
fers from equilibrium. In this subsection, we assume that other bidders use
their χ-cursed-equilibrium bidding strategy: aχ(x) in a first-price or bχ(x) in
a second-price auction, which are both increasing, with inverses a−1

χ (a) and
b−1
χ (b).
In a first-price auction, bidder i’s optimal bidding strategy solves (for each x)

max
a

∫ a−1
χ (a)

x

((1 −χ)v(x� y)+χr(x)− a)fY (y|x)dy�(9)

Just as (1) leads to (3), taking the partial derivative yields a differential equa-
tion whose solution determines the first-price χ-cursed-equilibrium bidding
strategy:

aχ(x)= [(1 −χ)v(x�x)+χr(x)](10)

−
∫ x

x

exp
(

−
∫ x

y

fY (t|t)
FY (t|t) dt

)
d[(1 −χ)v(y� y)+χr(y)]�

Like the first-price equilibrium bidding strategy a∗(x)�aχ(x) reflects both
value adjustment and the bidding trade-off. Cursed equilibrium differs from
equilibrium only in underestimating the correct value adjustment to an extent
determined by χ.

Given a cursed-equilibrium bidder’s value estimate and its anticipation of
others’ bids, he responds to the bidding trade-off just as an equilibrium bidder
would. The effect of his cursedness is determined by the difference between
the unconditional expected value r(x) and the expected value conditional on
winning v(x�x). Normally r(x) > v(x�x), so that a cursed-equilibrium bidder
overbids, relative to equilibrium, as in KL’s example (Section 4). But there are
some cases in which v(x�x) > r(x) for some values of x, so that some (in ex-
treme cases, nearly all) cursed-equilibrium bidders underbid, as in AK’s exam-
ple (Section 4; ER (2005, p. 22)).
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In a second-price auction, bidder i’s optimal bidding strategy solves (for
each x)

max
b

∫ b−1
χ (b)

x

((1 −χ)v(x� y)+χr(x)(11)

− (1 −χ)v(y� y)−χr(y))fY (y|x)dy�
which (following the same reasoning as for equilibrium, because both v(x� y)
and r(x) are monotonically increasing in x) yields the second-price χ-cursed-
equilibrium bidding strategy:

bχ(x)= (1 −χ)v(x�x)+χr(x)�(12)

Like the second-price equilibrium bidding strategy b∗(x)�bχ(x) reflects only
the value adjustment for the information revealed by winning, which it under-
estimates just as in a first-price auction.

From now on, we characterize the optimal bidding function only for the gen-
eral model with interdependent values and affiliated signals; independent pri-
vate values are a special case.

3. LEVEL-k MODELS

In this section, we generalize the level-k model to common- and indepen-
dent-private-value auctions. As explained in the Introduction, the level-k
model allows behavior to be heterogeneous, but it assumes that each bidder’s
behavior is drawn from a common distribution over a hierarchy of decision
rules or types, in which L1 best responds to a nonstrategic anchoring type L0,
L2 best responds to L1, et cetera. In this section, we derive types’ implications
in general; in Section 4, we specialize them to the examples used in the leading
auction experiments.15

Bearing in mind that L0 represents only the starting point of a player’s strate-
gic thinking, as he processes the implications of the rules of the game before
starting to think about others’ responses to it, we consider two alternative spec-
ifications, each as naive as possible: A random L0 bids uniformly randomly,
independent of its own private signal, over the entire range determined by the
range of its signal and the value function Vi = ui(S�X).16 A truthful L0 bids the

15Because any convex combination of monotonically increasing belief functions is monoton-
ically increasing, hence invertible, which is all that is needed for our analysis, one could easily
carry it out for CHC’s cognitive hierarchy specification. Such an analysis would probably yield re-
sults close to ours (even allowing types higher than L2). We do not pursue this possibility because
there is at least as much experimental support for our specification as CHC’s (Costa-Gomes and
Crawford (2006)) and our specification greatly simplifies characterizing types’ implications.

16One can imagine more refined specifications of random L0, for example with bids uniformly
distributed below its value instead of over the entire range of bids that are sensible for some
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value its own signal suggests, taken by itself. We consider truthful as well as
random types because it seems implausible to rule them out for all subjects a
priori, but we report how the results change when truthful types are excluded
so readers with stronger priors can draw their own conclusions.17 We assume
that a subject follows a given type, either random or truthful L0�L1, or L2
(footnote 10). Recall that “random” (or “truthful”) L1 or L2 is shorthand for
an L1 or L2 associated with a random (or truthful) L0; random or truthful L1
or L2 types need not be random or truthful themselves.

3A. Random L1 and L2 Bidding Strategies in First- and Second-Price Auctions

Random L1 assumes that other bidders are random L0, hence with bids in-
dependently and identically distributed (henceforth i.i.d.) uniformly over the
range [z� z] determined by the range of its private signal and the value function
Vi = ui(S�X). Random L1 therefore believes that winning conveys no infor-
mation about the value of the object, even with common values and affiliated

value. We avoid such refinements because L0 is meant to represent only the starting point for
a player’s analysis of others’ bids, and it seems appropriate to follow the naive L0’s in most of
the previous level-k literature, reserving more sophisticated thinking for L1 and L2. (Crawford
and Iriberri (2007a) discussed this specification issue in detail. Complete-information models that
adapt random L0 to the setting in other ways include Ho, Camerer, and Weigelt’s (1998) analysis
of guessing games, where L0 is random with an estimated central tendency, and Crawford and
Iriberri’s (2007a) analysis of hide-and-seek games, where L0’s choice probabilities respond to
the nonneutral framing of locations.) In the only other incomplete-information level-k models of
which we are aware, CHC (2004, Section VI.A) used their closely related “cognitive hierarchy”
model, with a random L0 defined like ours, to explain curse-like phenomena in Sonsino, Erev,
and Gilat’s (2002) and Sovik’s (2000) experimental results on zero-sum betting with asymmetric
information. Brandts and Holt (1992, 1993) (see also Partow and Schotter (1993)) reported ex-
periments with signaling games and showed that most of their sender and receiver subjects’ initial
responses are well described by their naive thought process, which is defined like our random L1.
Our random L1 is also close to LP’s (1991) private-value model. Ultimately the best specifica-
tion of L0 is an empirical question and our random L0 allows a simple, coherent account of the
data from auction experiments. By contrast, the level-k model’s other main assumption—the ad-
justment of higher-level types’ beliefs via iterated best responses—appears to allow a satisfactory
account of initial responses to many different kinds of games.

17Our truthful L0 is equivalent to LP’s (1991) naive model and reminiscent of the truthful
sender type W 0 in Crawford’s (2003) level-k analysis of strategic deception via cheap talk. It also
receives support in communication experiments (Crawford (1998), Cai and Wang (2006), and the
papers cited there) and appears frequently in the informal literature on deception. Truthfulness
is meaningful in auctions even though it has no natural meaning in most other settings for which
level-k analyses have been conducted, but there is a nontrivial issue about how to define it. We
take it to mean bidding r(x) rather than x, so that subjects understand the strategic environment
even if they lack sophistication in predicting others’ responses to it. In independent-private-value
auctions, and in KL’s first- and second-price common-value auctions (Section 4A), r(x) = x, so
this distinction is irrelevant. However, in settings like AK’s common-value auctions, where the
valuation is the sum of a player’s own signal and his opponent’s, it seems more sensible for even
a naive subject to bid r(x), which then equals his own signal plus the conditional expected value
of the other’s signal, than to bid just his own signal x.
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signals. Its optimal bid is determined by its own signal, the price it pays if it
wins, and its beliefs about the highest bid among the others’ uniformly random
bids, Z, described by the distribution function FZ(z) = ( z−z

z−z
)N−1 and the den-

sity fZ(z) = (N−1)( z−z

z−z
)N−2 1

z−z
. Note that these do not depend on the bidder’s

own signal x, which is uninformative about Z, or on the distribution of others’
signals.

In a first-price auction a random L1 bidder i’s optimal bidding strategy solves
(for each x)

max
a

E[(Vi − a)1{Z<a}|Xi] ≡ max
a

∫ a

z

(r(x)− a)fZ(z)dz(13)

≡ max
a

(r(x)− a)FZ(a)�

Random L1’s first-price bidding strategy, ar
1(x), is characterized by the first-

order condition

(r(x)− a)fZ(a)− FZ(a) = 0�(14)

This problem and first-order condition differ from those for first-price equi-
librium in (1) and (2) in two ways: r(x) replaces v(x�x), and the integral in
(13) and density and distribution function in (14) refer to random L1’s beliefs
about the highest of L0 others’ bids Z, rather than the highest of others’ sig-
nals Y that determines the highest others’ bid in a symmetric equilibrium. The
first difference reflects the fact that random L1 believes that winning conveys
no information about the value of the object. Given the normal tendency for
r(x) > v(x�x), this tends to make random L1 overbid relative to equilibrium,
just as a fully-cursed equilibrium bidder does. The second difference reflects
random L1’s use of its nonequilibrium beliefs to evaluate the bidding trade-off
between a higher bid’s cost and increased probability of winning. Depending on
the signal distribution, this difference may tend to either raise or lower random
L1’s first-price bidding strategy relative to the equilibrium bidding strategy.

In a second-price auction, a random L1 bidder i’s optimal bidding strategy
solves

max
b

E[(Vi −Z)1{Z<b}|Xi] = max
b

∫ b

z

(r(x)− z)fZ(z)dz�(15)

Random L1’s second-price bidding strategy, br
1(x), is characterized by the first-

order condition

(r(x)− b)fZ(b) = 0 or, solving for b� br
1(x)= r(x)�(16)

This problem and first-order condition differ from those for second-price equi-
librium in (5) and (6) in that r(x) replaces v(x�x) and in the use of random
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L1’s nonequilibrium beliefs. But given random L1’s cursed value adjustment,
truthful bidding is optimal, just as it is in an equilibrium analysis.18 This impor-
tant insight from an equilibrium analysis remains valid here and below, even
though the truthful equilibrium bidding strategy in (6) is not weakly dominant
and random L1 beliefs differ from equilibrium beliefs, because a bidder’s bid
in a second-price auction still determines only when he wins, not what he pays,
and truthful bidding, given correct value adjustment taking others’ anticipated
bidding strategies into account, still ensures that he wins when it appears prof-
itable, given his beliefs. Random L1’s bidding strategy therefore coincides with
the second-price fully-cursed equilibrium bidding strategy in (12) with χ = 1,
so that it has the same tendency to overbid in common-value auctions. But
it coincides with equilibrium in second-price independent-private-value auc-
tions, where like other level-k types with k > 0, which all best respond to be-
liefs, it follows its weakly dominant strategy.

Unlike random L1, random L2 adjusts its value estimate for the information
revealed by winning, because random L1’s bidding strategy is an increasing
function of its private signal in either kind of auction.19 We derive the optimal
bids more generally, because the results will determine truthful L1’s and L2’s
bidding strategies as well as random L2’s.

Suppose that in a second-price auction, a level-k bidder expects others to fol-
low the monotonic bidding strategy bk−1(x), with inverse b−1

k−1(b). The bidder’s
optimal bidding strategy with value Vi and signal Xi then solves (for each x)

max
b

E
[
(Vi − bk−1(Y))1{bk−1(Y)<b}|Xi

]
(17)

= max
b

∫ b−1
k−1(b)

x

(v(x� y)− bk−1(y))fY (y|x)dy�

Taking the partial derivative with respect to b, the first-order condition can be
written

(
v(x�b−1

k−1(b))− b
)
fY (b

−1
k−1(b)|x)

∂b−1
k−1(b)

∂b
= 0 or(18)

v(x�b−1
k−1(b))− b = 0�

With independent private values, (18) reduces to the weakly dominant strategy
in (7).

18Fully-cursed equilibrium and random L1 are readily comparable because both are deter-
mined by the unconditional expected value r(x) instead of the value conditional on just winning
v(x�x), and so differ only in their beliefs. Even so, in first-price auctions, random L1 and fully-
cursed equilibrium are not directly comparable, because random L1’s and equilibrium beliefs can
differ considerably, depending on the specific distribution of the signals.

19This is easily verified from (14) for first-price auctions and (16) for second-price auctions.
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Comparing the second-price level-k bidding strategy from (18) with the
second-price equilibrium bidding strategy from (6) isolates the effect of value
adjustment. The logic of value adjustment is the same for both: Each bids ac-
cording to the expected value given its own signal, conditional on just winning.
The only difference is that a level-k bidder’s beliefs do not anticipate winning if
and only if the bidder has the highest signal, as an (symmetric) equilibrium bid-
der’s do. A level-k bidder believes it wins if and only if it bids at least bk−1(Y),
which, depending on others’ anticipated bidding strategy, may be more or less
stringent than having the highest signal.

Value adjustment tends to make bidders’ bids strategic substitutes. Suppose
that a level-k bidder believes others’ bids are higher than in equilibrium, so
winning means others’ signals are (stochastically) lower than it would mean in
equilibrium. Comparing (18) and (6) and noting that v(x� y) is increasing in y
(MW (1982, Theorems 2–5)), this belief lowers his value conditioned on win-
ning, making the curse seem worse and lowering his optimal bid, other things
being equal.

Now suppose that in a first-price auction, a level-k bidder (random or truth-
ful) expects others to bid according to the monotonically increasing bidding
strategy ak−1(x), with inverse a−1

k−1(a). The bidder’s optimal bidding strategy
with value Vi and signal Xi then solves (for each x)

max
a

E[(Vi − a)1{ak−1(Y)<a}|Xi] = max
a

∫ a−1
k−1(a)

x

(v(x� y)− a)fY (y|x)dy�(19)

Taking the partial derivative with respect to a, the first-order condition can be
written

(
v(x�a−1

k−1(a))− a
)
fY (a

−1
k−1(a)|x)

∂a−1
k−1(a)

∂a
− FY(a

−1
k−1(a)|x) = 0�(20)

Comparing the first-price level-k bidding strategy determined by (20) with
the first-price equilibrium bidding strategy determined by (2) reveals that both
involve exactly the same kind of value adjustment as in the second-price bid-
ding strategies. In first-price auctions, however, value adjustment interacts with
the bidding trade-off, which, depending on the signal distribution and how the
others’ anticipated strategy ak−1(x) relates to the equilibrium strategy, may
tend to either raise or lower the level-k bidding strategy relative to the equilib-
rium strategy. The web appendix (Crawford and Iriberri (2007b)) investigates
this interaction in more detail, identifying the general principles that deter-
mine whether types overbid, underbid, or coincide with equilibrium here and
in Section 4’s examples.

Now consider how random L2’s first-price bidding strategy, ar
2(x), is deter-

mined by (20) with ar−1

1 (a) replacing a−1
k−1(a), hence by

(
v(x�ar

1
−1(a))− a

)
fY (a

r
1
−1(a)|x)∂a

r
1
−1(a)

∂a
− FY(a

r
1
−1(a)|x) = 0�(21)
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In a first-price auction, random L2, like random L1, deviates from equilibrium
both in value adjustment and in using its nonequilibrium beliefs to evaluate the
bidding trade-off. Random L2’s value adjustment reflects the same logic as an
equilibrium bidder’s, but its beliefs generally lead to a different adjustment. To
the extent that random L1 overbids relative to equilibrium, because random L2
believes that to win it must bid higher than all others’ random L1 bids, not just
higher than their equilibrium bids, given the strategic substitutability of value
adjustment, random L2 believes that the curse is more severe than in equilib-
rium, and this tends to make it underbid, relative to equilibrium. Depending
on the signal distribution and how random L1’s bidding strategy relates to the
equilibrium strategy, the bidding trade-off may tend to raise or lower random
L2’s bids relative to equilibrium or cursed equilibrium.

Random L2’s second-price bidding strategy, br
2(x), is determined by (18)

with br
1
−1(b) replacing b−1

k−1(b):

(
v(x�br

1
−1(b))− b

)
fY (b

r
1
−1(b)|x)∂b

r
1
−1(b)

∂b
= 0 or(22)

b= v(x�br
1
−1(b))�

The second-price random L2 bidding strategy is again truthful; but to the
extent that random L1 overbids relative to equilibrium, the strategic substi-
tutability of value adjustment makes random L2 underbid because it believes
the curse is more severe than in equilibrium.

3B. Truthful L1 and L2 Bidding Strategies in First- and Second-Price Auctions

A truthful L1 bidder’s bid is a best response to a truthful L0 and thus
assumes that others follow the monotonic bidding strategy at

0(x) ≡ r(x) =
E[Vi|Xi = x] with inverse at

0
−1(a) ≡ r−1(a).

In a first-price auction, truthful L1’s optimal bidding strategy, at
1(x), solves a

problem (for each x) that is a special case of the general first-price monotonic
problem (19). at

1(x) is then determined by the first-order condition (20) with
at

0
−1(a) ≡ r−1(a) (because at

0(x) ≡ r(x)) replacing a−1
k−1(a):

(
v(x� r−1(a))− a

)
fY (r

−1(a)|x)∂r
−1(a)

∂a
− FY(r

−1(a)|x) = 0�(23)

Thus, in a first-price auction, truthful L1 deviates from equilibrium in its
use of its nonequilibrium beliefs to evaluate the bidding trade-off, like random
L1, but its different beliefs imply a different value adjustment.20 Truthful L0

20Because truthful types’ bidding strategies are determined by v(x� y), like equilibrium strate-
gies, they are more readily compared to equilibrium than to cursed-equilibrium strategies, which
are influenced by r(x) as well as v(x� y).
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overbids relative to the first-price equilibrium bidding strategy, because it nei-
ther adjusts for the curse nor shades its bids. Hence truthful L1, which believes
that to win it must bid higher than all others’ truthful bids, not just higher
than their equilibrium bids, believes that the curse is even more severe than
in equilibrium. Thus the strategic substitutability of value adjustment tends to
make truthful L1 underbid. But the bidding trade-off may again tend to raise
or lower truthful L1’s bids relative to equilibrium.

In a second-price auction, a truthful L1 bidder’s optimal bidding strategy,
bt

1(x), solves a special case of the general monotonic problem (17) (for each
x). Truthful L1’s second-price bidding strategy, bt

1(x), is then determined by
(18) with bt

0
−1(b) ≡ r−1(b) replacing b−1

k−1(b):

(
v(x� r−1(b))− b

)
fY (r

−1(b)|x)∂r
−1(b)

∂b
= 0 or b = v(x� r−1(b))�(24)

Thus, bidding is truthful as in the previous second-price analyses. Truthful L0
normally overbids relative to second-price equilibrium because it does not ad-
just for the curse, hence the strategic substitutability of value adjustment nor-
mally makes truthful L1 underbid.21 In a common-value second-price auction,
truthful L1’s bidding strategy is identical to random L2’s, because random L1
bids the expected value of the item based on its own signal, just as truthful L0
does.

In a first-price auction, truthful L2 expects other bidders to bid according to
the monotonic bidding strategy at

1(x), with inverse at
1
−1(a). Truthful L2’s first-

price bidding strategy, at
2(x), is then determined by problem (19) with at

1
−1(a)

replacing a−1
k−1(a):

(
v(x�at

1
−1
(a))− a

)
fY (a

t
1
−1
(a)|x)∂a

t
1
−1(a)

∂a
− FY(a

t
1
−1
(a)|x) = 0�(25)

Thus, to the extent that truthful L1 underbids, value adjustment tends to make
truthful L2 overbid. But the bidding trade-off may again raise or lower truthful
L2’s bids relative to equilibrium.

In a second-price auction, truthful L2 expects other bidders to bid according
to the monotonic bidding strategy bt

1(x), with inverse bt
1
−1(b). Truthful L2’s

second-price bidding strategy, bt
2(x), is again determined by (18), now with

bt
1
−1(b) replacing b−1

k−1(b):

(
v(x�bt

1
−1
(b))− b

)
fY (b

t
1
−1
(b)|x)∂b

t
1
−1(b)

∂b
= 0 or(26)

b= v(x�bt
1
−1
(b))�

21In a second-price auction with independent private values, truthful L0’s (but not random
L0’s) bids coincide with equilibrium when a player’s signal reveals the actual value with certainty.
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To the extent that truthful L1 underbids, value adjustment again makes truthful
L2 overbid.

4. CAN A LEVEL-k MODEL EXPLAIN THE CURSE AND OTHER
KINDS OF OVERBIDDING?

The auction experiments whose data we analyze are based on two lead-
ing common-value examples and one independent-private-value example. This
section introduces the examples and their equilibrium, cursed equilibrium, and
level-k bidding strategies to assess the level-k model’s potential to explain be-
havior in the experiments and in preparation for Section 5’s econometric analy-
sis. Calculations are in the web appendix.

4A. Kagel and Levin’s, Avery and Kagel’s, and Goeree, Holt, and Palfrey’s
Examples

In the first example, used in KL’s (1986) analyses of first-price auctions and
in LP’s (1991) follow-up experiments, N ≥ 3� Vi = ui(S�X)= S, S is uniformly
distributed on a subset of the real line [s� s], and X|S is conditionally uni-
formly i.i.d. on the interval [s − a

2 � s + a
2 ] with dispersion a > 0, with minor

adjustments due to truncation near s or s. The density, distribution function,
and expected value of X|S are fX|S = 1

a
�FX|S = x−s

a
+ 1

2 , and E[X|S] = s. Thus
r(x) ≡ E[S|X = x] = x. Standard calculations show that

v(x� y)=




x− a

2
+ a

N
− x− y

N
�

x− a≤ y ≤ x�

y − a

2
+ a

N
−

(
y − x

a

)N−1

[
1 −

(
y − x

a

)N−1]
(
N − 1
N

)
(x+ a− y)�

x < y ≤ x+ a�

(27)

Thus v(x�x) = x − a
2 + a

N
≤ r(x) = x, with strict inequality for N > 2, and

cursed-equilibrium bidders overbid relative to equilibrium or coincide with it
for any χ or x.

In the second example, used in AK’s (1997) analysis of second-price auc-
tions, Vi = ui(S�X) = ∑N

i=1 Xi and Xi is i.i.d. uniformly distributed on the
interval [x�x]. Thus, in general, r(x) ≡ E[∑N

k=1 Xk|Xi = x] = x + (N −
1)x+x

2 � v(x� y) = x + y N
2 + (N−2)

2 x, and v(x�x) = x + xN
2 + N−2

2 x > (<) r(x) if
and only if x > (<) (N−1)x+x

N
, so that v(x�x) > r(x) for bidders with high signals

and v(x�x) < r(x) for bidders with low signals: Cursed-equilibrium bidders un-
derbid relative to equilibrium for high signals (because they implicitly assume
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that others’ signals take their average values, when their own signal makes oth-
ers’ more likely to be high) and overbid for low signals.22 When N = 2 and
[x�x] = [1�4], as in AK’s experiments, r(x) = x + 5

2 and v(x�x) = 2x, so that
r(x) < v(x�x) when x > 5

2 and r(x) > v(x�x) when x < 5
2 .

In the third example, used in GHP’s (2002) analysis of first-price indepen-
dent-private-value auctions, N = 2� Vi = ui(S�X) = Xi, and there are two
treatments, each with bids restricted to integer values and discrete, slightly
nonuniform (because of spacing) values—equal probabilities on {0�2�4�6�
8�11} in a low-value treatment and on {0�3�5�7�9�12} in a high-value treat-
ment.

We now describe the relationships among equilibrium, cursed-equilibrium,
and random and truthful L1 and L2 bidding strategies in the examples. Ta-
ble I summarizes the conclusions, first in general and then in KL’s and AK’s
examples. The conclusions follow fairly simply from the facts that only the
bidding trade-off (as influenced by equilibrium, cursed equilibrium, or level-
k beliefs) matters in first-price independent-private-value auctions, that only
value adjustment (as influenced by the various beliefs) matters in second-price
common-value auctions, and that the two effects combine in straightforward
ways in first-price common-value auctions.

4B. Equilibrium and Cursed Equilibrium versus Level-k Models in
Second-Price Auctions

In a second-price auction with independent private values, random and
truthful L1 and L2 bid truthfully, as in equilibrium and cursed equilibrium,
because they follow weakly dominant strategies when they exist. Thus nei-
ther level-k model can explain nonequilibrium bidding (except via random L0,
which we estimate to have 0 or, in one case, low frequency).

In a second-price auction with common values, in KL’s example, random L1
coincides with equilibrium for N = 2 and, like a fully-cursed equilibrium bid-
der, overbids for N > 2, to an extent that increases with N and the dispersion
a. Random L2 coincides with equilibrium for N = 2 but underbids for N > 2,
to an extent that decreases with N and increases with a. In AK’s example,
random L1 with a low (high) signal overbids (underbids) like a fully-cursed
equilibrium bidder. Random L2 with a low (high) signal matches the bid of
random L1 with the lowest (highest) possible signal (with only weak strategic
substitutability for these boundary solutions).

In a second-price auction with common values, because random L1 bids the
value its own signal suggests, like truthful L0, truthful L1 coincides with ran-
dom L2.23 We have not derived a closed-form solution for truthful L2 in the

22This corrects a typographical error in ER (2005, p. 1642), where they say that bidders with
high signals overbid relative to equilibrium, while those with low signals underbid.

23Although in independent-private-value auctions, random Lk types are equivalent to the
analogous truthful Lk types when the distribution of private signals is unconditionally uniform, in
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TABLE I

TYPES’ BIDDING STRATEGIESa�b

Auction/Type Equilibrium χ-Cursed Equilibrium Random L1 Random L2 Truthful L1 Truthful L2

2nd-price x x br
1(x) = x br

2(x) = x bt
1(x) from (24) bt

2(x) from (26)
i.p.v. with v(x� ·) ≡ x with v(x� ·)≡ x

2nd-price b∗(x) = v(x�x) bχ(x) = (1 −χ)v(x�x) br
1(x) = r(x) br

2(x) from (22): bt
1(x) from (24): bt

2(x) from (26):
c.v. +χr(x) b = v(x�br

1
−1(b)) b = v(x� r−1(b)) b = v(x�bt

1
−1(b))

2nd-price x− a
2 + a

N
x− (1 −χ)aN−2

2N x x− a
2 (

N−2
N−1 ) x− a

2 (
N−2
N−1 ) No closed-form

c.v.: KL solution

2nd-price 2x χ(x+ 5
2 )+ (1 −χ)2x x+ 5

2 3.5 if x≤ 2�5; 3.5 if x≤ 2�5; No closed-form
c.v.: AK 6.5 if x > 2�5 6.5 if x > 2�5 solution

1st-price a∗(x) from (4) a∗(x) from (4) ar
1(x) from (14) ar

2(x) from (21) at
1(x) from (23) at

2(x) from (25)
i.p.v. with v(x� ·) ≡ x with v(x� ·) ≡ x with v(x)= x

1st-price a∗(x) from (3) aχ(x) from (10) ar
1(x) from (14) ar

2(x) from (21) at
1(x) from (23) at

2(x) from (25)
c.v.

1st-price x− a
2 + a

N+1 [χx+ (1 −χ)(x− a
2 + a

N
) x− a

N
x− a

2 x− a
2 x− a

2

c.v.: KL ×exp(−N(x−x− a
2 )

a
) − a

N
] + a

N+1 exp(−N(x−x− a
2 )

a
)

aIf there is no general closed-form expression, Table I refers to the equation in the text that determines the bidding strategy.
bThe abbreviation i.p.v. denotes independent private value and c.v. denotes common value.
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examples, but computations show that in KL’s example truthful L2 overbids by
more than a fully cursed-equilibrium bidder, to an extent that increases with
N , and in AK’s example with N = 2 it overbids for some values and underbids
for others.

To sum up for second-price auctions, with independent private values, level-
k types of either kind coincide with equilibrium and cursed equilibrium. With
common values, a level-k model has the potential to improve upon cursed
equilibrium, but this depends on whether an empirically plausible mixture of
level-k types gives a better account of subjects’ heterogeneous bidding behav-
ior than a plausible mixture of cursed types.

4C. Equilibrium and Cursed Equilibrium versus Level-k Models
in First-Price Auctions

In a first-price auction with independent private values, in general the bid-
ding trade-off may tend to make a random or truthful L1 or L2 either underbid
or overbid, depending on the value distribution. Most independent-private-
value experiments used values uniformly i.i.d. on [x�x]. In this case the equi-
librium bidding strategy a∗(x) = N−1

N
(x−x)+x is a best response to any beliefs

derived from others’ bidding strategies c(x−x)+x, as long as 0 < c ≤ 1. Ran-
dom or truthful L1, and therefore random or truthful L2, then coincide with
equilibrium, and this limits the potential for a level-k model to improve upon
an equilibrium explanation of overbidding.24

For nonuniform value distributions, a level-k model may be able to explain
nonequilibrium bidding. In GHP’s (2002) independent-private-value designs,
random L1 or L2 coincides with equilibrium except for the highest valuation in
the high-value treatment, where random L1 slightly overbids and random L2
underbids (see the web appendix). Truthful L1 underbids in the low-value and
overbids in the high-value treatment, and truthful L2 underbids in both.25

In a first-price auction with common values, in KL’s example, when N = 2,
equilibrium and fully-cursed equilibrium bids coincide and random L1 bids

common-value auctions, random and the analogous truthful types are not equivalent in general,
because they differ in value adjustment.

24Some potential for improvement remains because the costs of deviations differ slightly for
Equilibrium and random L1, et cetera, so they are weakly separated. For low values and low
precision, underbidding is less costly for Equilibrium than for random L1, while overbidding is
more costly for Equilibrium than for random L1. As precision increases, this asymmetry between
under- and overbidding disappears except for very low values, and both under- and overbid-
ding are costlier for Equilibrium. For high values, both under- and overbidding are costlier for
Equilibrium than for random L1, so the L1 probability distribution of decisions has thicker tails.
Differences in deviation costs sometimes separate types in other treatments (Section 5).

25In GHP we define random L0 with equal probabilities for subjects’ possible values in each
treatment. Random and truthful specifications do not coincide in GHP’s design, even though
the ex ante values and random L0 are uniformly distributed, because the values are discrete and
unevenly spaced, and integer bids between the values are allowed.
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are slightly lower than but approximately coincide with them; random L2 bids
approximately coincide with equilibrium or fully-cursed equilibrium.26 When
N > 2, random L1 bids approximately coincide with fully-cursed equilibrium
bids, but both overbid relative to equilibrium, by an amount that increases with
N and a; random L2 bids approximately coincide with equilibrium, but under-
bid relative to fully-cursed equilibrium, by an amount that increases with N and
a. Value adjustment and the bidding trade-off offset each other for random L2
and truthful L1, which approximately coincides with equilibrium. Truthful L2
approximately coincides with equilibrium because truthful L1 does.

To sum up for first-price auctions, with uniform independent private val-
ues, level-k types coincide with equilibrium and cursed equilibrium, but with
nonuniform value distributions as in GHP (2002), random (or truthful) L1 bids
coincide with (or fall below) equilibrium bids in the low-value treatment and
exceed equilibrium bids in the high-value treatment; random (or truthful) L2
bids coincide with (or fall below) equilibrium bids for both treatments. A level-
k model is then weakly separated from equilibrium and cursed equilibrium,
and may be able to explain nonequilibrium bidding. With common values, a
level-k model again has the potential to improve upon cursed equilibrium.

5. COMPARING THE MODELS ECONOMETRICALLY

All of the models compared here depend on behavioral parameters: logit
error precisions for all of them, plus population type frequencies for level-k
models or cursedness parameters for cursed-equilibrium models. This section
uses existing data from auction experiments to estimate the models econo-
metrically and compare their abilities to account for observed behavior in the
experiments. Our goal in the econometrics is to constrain our discretion in cali-
brating the models and to obtain likelihoods that provide an objective criterion
for comparing them, not to take a definitive position on the parameters. We es-
timate treatment by treatment: Because our main purpose is model evaluation
and the treatments have widely differing subject populations and experimental
conditions, we have not tried to pool them.

Table II summarizes the data we use. Because learning can lead even unso-
phisticated subjects to equilibrium, strategic thinking appears most clearly be-
fore subjects have seen others’ responses. We therefore (unlike ER) use data
only from inexperienced subjects and (instead of pooling data from all periods
and usually all subjects as ER did) we focus on individual subjects’ initial re-
sponses, interpreted as the first five periods (in which a subject typically had
five different realizations of his private signal) to compensate for small sample
size.

26“Approximately coincides” means that the bidding strategies differ only by the exponential
part of KL’s example’s first-price equilibrium bidding strategy, which is positive but negligible for
all x not very close to x; KL and all other analysts have ignored this exponential part. We follow
them in this, for cursed equilibrium as well as equilibrium.
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TABLE II

DATA SOURCES AND EXPERIMENTAL DESIGNS

n

G (treatment) Auction Type u(S�X) Signals (Sample Size) Treatment Variables

1. KL first-price First-price common value u(S�X) = S X|S ∼ U[s − a/2� s + a/2] 51 a (dispersion),
N (number of bidders),
limits of s

2. KL second-price Second-price common value u(S�X) = S X|S ∼ U[s − a/2� s + a/2] 28 a (dispersion)
3. AK second-price Second-price common value u(S�X) = X1 +X2 X ∼ U[x�x] = [1�4] 23 No variation, N = 2
4. GHP First-price independent u(S�X) = X X ∼ U{0�2�4�6�8�11} 40 No variation, N = 2

private value X ∼ U{0�3�5�7�9�12}
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Given these choices, we maximize comparability with ER’s analysis of KL’s
(1986) first-price and AK’s (1997) second-price data. KL, however, had only ex-
perienced subjects (who had participated in at least one prior auction session),
and while AK had some inexperienced subjects, ER’s analysis focused on their
experienced subjects. For common-value second-price auctions, we therefore
use AK’s data for inexperienced subjects and the unpublished data for inex-
perienced subjects in the second-price version of KL’s design mentioned in the
Appendix to Kagel, Levin, and Harstad (1995) as reprinted in KL (2002, Chap-
ter 4), referring to the latter as the KL second-price data. For common-value
first-price auctions, we use the data for inexperienced subjects in KL’s design
from Garvin and Kagel (1994) (reprinted in KL (2002, Chapter 10)), referring
to them as the KL first-price data.27

Finally, because cursed equilibrium coincides with equilibrium in indepen-
dent-private-value auctions, they are particularly important in assessing the
level-k model, but with independent private values, level-k types coincide with
equilibrium in second-price auctions and with the i.i.d. uniform values used in
most designs in first-price auctions as well (Section 4C).28 We therefore use
GHP’s (2002) data from first-price independent-private-value auctions with
discrete nonuniform values, which weakly separate level-k types from equilib-
rium.29

Our econometric specification follows the mixture-of-types models of Stahl
and Wilson (1994, 1995), Costa-Gomes, Crawford, and Broseta (2001),
Camerer, Ho, and Chong (2004), Costa-Gomes and Crawford (2006), and
Crawford and Iriberri (2007a). Level-k and cursed types, Equilibrium, and
QRE types are all assumed to make logistic errors as described below. (Ran-
dom L0 directly specifies a uniform distribution of decisions and so has no
precision parameter.)

27Other common-value experiments whose data would enrich our analysis include LP’s (1991)
and HS’s (2000), but despite those authors’ generous efforts, their data are unavailable.

28This coincidence extends even to Kagel and Levin’s (1993) uniform independent-private-
value third-price auctions.

29Goeree and Holt (2001, Section III) reported similar results for a closely related design,
which we do not consider here (although their data are available). In Palfrey’s (1985) and Chen
and Plott’s (1998) independent-private-value designs, level-k types also deviate from equilibrium,
but despite their generous efforts, their data are unavailable. We define payoffs as payments for
performance, omitting show-up fees, and express them in 1989 dollars. Following GHP, to avoid
distorting the estimates, we edited a small number of “crazy” bids (6 in AK, 11 in KL first-price,
4 in KL second-price, and 12 in GHP)—3.6% of the sample—replacing bids above the highest
(below the lowest) rationalizable bid with the highest (lowest) such bid. In the subject-by-subjects
estimation, this editing affects only the edited subjects’ type estimates. In the type-specific and
constant-precision estimates, editing can potentially affect all subjects’ estimates via the esti-
mated precisions, but in these cases, not editing the data, and so requiring the error structure
to “explain” crazy bids along with normal decision noise, seems more likely to distort the esti-
mates than editing them, especially for inexperienced subjects. The alternative—throwing these
subjects’ data away—would yield similar estimates, but seems arbitrary and would discard data
from subjects most of whose choices were sensible.
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For our level-k plus equilibrium models, we allow random L0 and both ran-
dom and truthful L1 and L2 types as well as Equilibrium, each with its own be-
liefs (Section 3). In footnotes 37, 39, and 40, we report how the results change
with truthful types excluded; the details of those estimates are provided in Sec-
tion C of the web appendix.30 The most general specifications allow subject-
specific precisions, but we also consider type-specific and constant precisions.

For our cursed-equilibrium models in the common-value treatments, we also
allow random L0 to avoid biasing the comparisons. In the most general speci-
fication, we allow subject-specific precisions and levels of ER’s cursedness pa-
rameter χ, as in their analysis of AK’s data, but we also consider models with
“cursed types,” both with type-specific precision and constant precision. In the
former case, for computational tractability, we constrain χ to multiples of 0.1
in [0�1]. In the latter cases we constrain χ to a number of estimated values
in [0�1] equal to the number of types in the analogous level-k model. Either
way, unlike ER, we restrict χ to [0�1].31 Each of our cursed-equilibrium models
allows χ = 0 and so nests equilibrium, which is important for a fair compari-
son of cursed-equilibrium and level-k models. We have more confidence in the
cursed types χ = 0 or 1 because their theoretical rationales are stronger than
for intermediate values of χ (footnote 6), but estimates of models allowing
intermediate values are useful diagnostics.

For GHP’s first-price independent-private-value treatments, where cursed
equilibrium coincides with equilibrium, we replace cursed equilibrium with a
QRE model like the one GHP favor. Random L0 is implicitly included as a
QRE type with 0 precision. In the most general specification, we again allow
subject-specific precisions, but we also consider models with QRE types, both
with type-specific and constant precision. We again constrain the number of
types to that of the analogous level-k model.32

The formal discussion that follows covers all three models and all three error
structures, with k= 1�2� � � � �K indexing level-k (or Equilibrium) types, cursed

30We omit truthful L0 in the econometric analysis because truthful bidding is very rare for
the first-price treatments (6/255 observations in KL and 6/400 in GHP, with no subject making
more than two truthful bids) and because there is no way to assign beliefs that make truthful
bidding optimal in first-price auctions, where it is dominated, which makes it difficult to specify
logit errors like those we use for the other types.

31Unlike level-k models, cursed equilibrium can accommodate heterogeneous bidding behav-
ior only via cursed types or subject-specific cursedness parameters. ER (2005, Table II) allowed
χ to take any value and reported many estimates for AK’s inexperienced subjects outside [0�1],
contradicting χ’s interpretation as a probability. This problem would also arise in unconstrained
estimates for KL’s examples, where the below-equilibrium or above-signal bids sometimes ob-
served correspond to χ < 0 or χ > 1. Level-k types often explain such bids better than cursed
types with χ = 0 or 1, particularly in second-price common-value auctions like AK’s and KL’s
(Table I).

32We depart from GHP by ruling out nonneutral risk preferences and payoffs for “joy of win-
ning,” in keeping with our goal of learning whether a level-k model can explain auction behavior
without such augmentations.
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types, or QRE types. Index Table II’s treatments (first- or second-price) g (for
“games”) = 1�2�3�4. Each type k implies a bidding strategy in game g, de-
noted c

g
k(x); c

g
it denotes subject i’s observed bid in game g at time t. We assume

that a subject of type k normally follows cgk(x), but subject to logistic errors of
precision λ, assumed independent across the five periods in which he plays.
Write his expected payoff for bid c given signal x with type k’s beliefs Sg

k(c|x)
(formally defined in Section 2 or 3). The probability of observing bid c within
the range of possible bids [c� c] for type k is then

Pr(c|k�x�g�λ)= exp(λSg
k(c|x))∫ c

c
exp(λSg

k(e|x))de
�(28)

As usual, this implies that the costlier an error is ex ante, given type k’s beliefs,
the lower the player’s probability of making it, with the cost sensitivity tuned
by the precision λ. The player’s bids approach uniform randomness as λ → 0
or the error-free bid c

g
k(x) as λ → ∞.

The matrix Λ≡ [λik] gives precision indexed by subject i and type k. Subject-
specific precisions do not restrict how λik varies with i and k. Type-specific pre-
cisions restrict λik to be independent of i for any given k. Constant precisions
restrict λik to be independent of i and k.

With errors independent, conditional on type, the likelihood of observing
the five-observation sample c

g
i = (c

g
i1� c

g
i2� c

g
i3� c

g
i4� c

g
i5) for subject i of type k with

signal x and precision λik in game g is

Lk(c
g
i |k�x�g�λik) =

5∏
t=1

Pr(cgit|k�x�g�λik)�(29)

Let πk denote the proportion of type k in the population, with
∑

k πk = 1.
The likelihood of observing c

g
i unconditional on type is then

K∑
k=1

πkLk(c
g
i |k�x�g�λik)=

K∑
k=1

πk

5∏
t=1

Pr(cgit |k�x�g�λik)�(30)

Given (28), because the payoff function is quasiconcave and the logit term
increases with payoff, the likelihood treats a bid as stronger evidence for a
type the closer it is to the type’s bid or the better the deviations are explained
given its beliefs. In most cases, types’ bids differ and the first factor is more
important. Although some types’ bids always or almost always coincide, even
they are usually weakly separated by differences in the deviation costs implied
by their beliefs.

Indexing treatment g’s subjects i = 1�2� � � � �Ng and letting cg = (c
g
1 � c

g
2 � � � � �

c
g
Ng
), from (30) we can now write the models’ likelihood (L) and log-likelihood



LEVEL-k AUCTIONS 1749

(LL) functions for treatment g:

L(π�Λ|cg) =
Ng∏
i=1

K∑
k=1

πkLk(c
g
i |k�x�g�λik) and(31)

LL(π�Λ|cg) =
Ng∑
i=1

log

(
K∑

k=1

πkLk(c
g
i |k�x�g�λik)

)
�

Tables IIIa–c summarize treatment-by-treatment parameter estimates and
likelihoods for our level-k and cursed-equilibrium models for KL first- and
second-price and AK second-price. Table IIId summarizes parameter esti-
mates and likelihoods for our level-k and QRE models for GHP first-price.
Standard errors except for the models with subject-specific precisions (in the
web appendix (Crawford and Iriberri (2007b)) Sections D and E as explained
below) are in parentheses.33 Level-k types that are not separated from other
types in a treatment are listed with equivalences indicated by a tilde (∼).34

In each treatment, likelihood-ratio tests for the level-k plus equilibrium
models, for which the alternative error structures are nested, strongly reject
constant or type-specific error precisions (p-values < 0�0015). The Bayesian
information criterion (BIC), which adjusts the likelihood to penalize models
with more parameters without requiring that the models be nested, also favors
models with subject-specific precisions, except in GHP, where it favors con-
stant precisions for the level-k model and type-specific precisions for the QRE
model.35 For the cursed-equilibrium models, for which the error structures are

33Standard errors of the parameters in the models with type-specific or constant precision were
obtained using a jackknife procedure. In each run of the jackknife, the model was reestimated
with one subject excluded. The standard deviations of the parameter estimates across these runs
are the estimated standard errors of the parameters. In each run, we initialized the computations
at the estimates with all subjects included. Although in theory this choice can bias the estimated
standard errors downward, initializing randomly yielded estimates only slightly higher. Standard
errors of the precisions in the models with subject-specific precisions were also obtained using
a jackknife procedure. In each run, the model was reestimated with one period excluded, with
each subject’s estimated type fixed at its value with all periods included. The standard deviations
of the parameter estimates across these runs are the estimated standard errors of the subject-
specific precisions.

34In KL first-price, random L2 and truthful L1 are separated from each other and from Equi-
librium only by deviation costs (due to their different beliefs), and truthful L2 is not separated
from equilibrium even by deviation costs. In the second-price auctions, truthful L1 and random
L2 are not separated even by deviation costs (because their beliefs are the same), and neither are
truthful L2 and random L3. In GHP first-price, random L1 and equilibrium are separated only by
bids for v = 12 in the high-value treatment (web appendix) and by deviation costs for other values;
random L2 and equilibrium are separated only in the high-value treatment and only by deviation
costs. For simplicity, Table IIId pools the results for GHP’s low- and high-value treatments.

35Here and below, the Akaike information criterion, which makes an adjustment similar to
the BIC but requires that the models be nested, always orders nested models in the same way



1750
V.P.C

R
A

W
F

O
R

D
A

N
D

N
.IR

IB
E

R
R

I

TABLE IIIa

MODELS AND ESTIMATES FOR KAGEL AND LEVIN FIRST-PRICE

Level-k Plus Equilibrium Cursed Equilibrium

Subject-
Specific Subject-Specific Precision (λi) and

Precision Type-Specific Constant Fixed Cursedness Types Type-Specific Precision Constant Precision
Specification (λi) Precision (λk) Precision (λ) (χ = (1�0�9� � � � �0)) (λk) (λ)

π̂k π̂k λ̂k π̂k λ̂ Types χ π̂k χ̂k π̂k λ̂k χ̂k π̂k λ̂

Random L0 0�04 0 — 0 — Random L0 — 0�06 — 0 — — 0 —
(0�00) (0�00) (0�00) (0�00)

Random L1 0�59 0�35 1 0�49 1�62 Type 1 1 0�47 0�99 0�83 0�60 1 0�50 0�68
(0�04) (0�14) (0�02) (0�11) (0�03) (0�01) (0�02) (0�00) (0�02) (0�02)

Random L2 0�04 0�03 280�90 0 1�62 Type 2 0�90 0�02 0�78 0�06 46�20 0 0�50 0�68
(0�00) (299�12) (0�01) (0�11) (0�01) (0�01) (77�91) (0�00) (0�02) (0�02)

Truthful L1 0�18 0�54 1�21 0�29 1�62 Type 3 0�80 0�08 0 0�11 14�74
(0�04) (0�07) (0�02) (0�11) (0�00) (0�01) (0�71)

Truthful L2 ∼Eq. ∼Eq. ∼Eq. ∼Eq. ∼Eq. Type 4 0�70 0�06

Equilibrium 0�16 0�08 11�09 0�22 1�62 Type 5 0�60 0
(0�01) (0�58) (0�02) (0�11)

Type 6 0�50 0
Type 7 0�40 0�04
Type 8 0�30 0�04
Type 9 0�20 0�04
Type 10 0�10 0
Type 11 0 0�20

Log-like- −1�658�30 −1,739.60 −1,753.54 −1�635�96 −1,736.62 −1,762.24
lihood

BIC −1�724�48 −1,749.23 −1,759.56 −1�710�56 −1,747.45 −1,768.26
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TABLE IIIb

MODELS AND ESTIMATES FOR KAGEL AND LEVIN SECOND-PRICE

Level-k Plus Equilibrium Cursed Equilibrium

Subject-
Specific Subject-Specific Precision (λi) and

Precision Type-Specific Constant Fixed Cursedness Types Type-Specific Precision Constant Precision
Specification (λi) Precision (λk) Precision (λ) (χ = (1�0�9� � � � �0)) (λk) (λ)

π̂k π̂k λ̂k π̂k λ̂ Types χ π̂k χ̂k π̂k λ̂k χ̂k π̂k λ̂

Random L0 0 0 — 0 — Random L0 — 0�18 — 0�43 0 — 0 —
(0�00) (0�00) (0�02) (0�00) (0�00)

Random L1 0�21 0�10 95�84 0�62 8�91 Type 1 1 0�18 0�86 0�27 8�89 0�79 0�43 2�95
(0�10) (2�30) (0�02) (0�39) (0�02) (0�03) (1�51) (0�03) (0�03) (0�40)

Random L2 0�21 0�27 2�50 0�11 8�91 Type 2 0�9 0�11 0�18 0�30 5�35 0�33 0�15 2�95
(0�02) (0�58) (0�01) (0�39) (0�01) (0�04) (0�30) (0�09) (0�04) (0�40)

Truthful L1 ∼R�L2 ∼R�L2 ∼ R�L2 ∼R�L2 ∼ R�L2 Type 3 0�8 0�04 0 0�42 2�95
(0�00) (0�02) (0�40)

Truthful L2 0�32 0�33 6�10 0�27 8�91 Type 4 0�7 0
(0�02) (0�23) (0�02) (0�39)

Equilibrium 0�25 0�30 49�76 0 8�91 Type 5 0�6 0�07
(0�02) (3�17) (0�00) (0�39)

Type 6 0�5 0�04
Type 7 0�4 0�04
Type 8 0�3 0
Type 9 0�2 0�11

Type 10 0�1 0�07
Type 11 0 0�18

Log-like- −918�26 −967.80 −973.81 −950�91 −987.48 −995.59
lihood

BIC −952�60 −976.39 −979.17 −992�76 −997.14 −1,003.11
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TABLE IIIc

MODELS AND ESTIMATES FOR AVERY AND KAGEL SECOND-PRICE

Level-k Plus Equilibrium Cursed Equilibrium

Subject-
Specific Subject-Specific Precision (λi) and

Precision Type-Specific Constant Fixed Cursedness Types Type-Specific Precision Constant Precision
Specification (λi) Precision (λk) Precision (λ) (χ = (1�0�9� � � � �0)) (λk) (λ)

π̂k π̂k λ̂k π̂k λ̂ Types χ π̂k χ̂k π̂k λ̂k χ̂k π̂k λ̂

Random L0 0 0 — 0 — Random L0 — 0�13 — 0 — — 0 —
(0�00) (0�00) (0�00) (0�00)

Random L1 0�65 0�56 12�75 0�94 4�3 Type 1 1 0�43 1 0�37 9�67 0�8 1 2�77
(0�03) (0�79) (0�01) (0�27) (0�00) (0�03) (0�69) (0�03) (0�00) (0�17)

Random L2 0�09 0 — 0�06 4�3 Type 2 0�9 0 0�73 0�08 161�45
(0�00) (0�01) (0�27) (0�05) (0�01) (42�60)

Truthful L1 ∼ R� L2 ∼ R� L2 ∼ R� L2 ∼ R� L2 ∼ R� L2 Type 3 0�8 0 0�63 0�55 1�33
(0�06) (0�03) (0�15)

Truthful L2 0�22 0�05 633�01 0 4�3 Type 4 0�7 0�13
(0�01) (3�54) (0�00) (0�27)

Equilibrium 0�04 0�39 0�63 0 4�3 Type 5 0�6 0�04
(0�03) (0�20) (0�00) (0�27)

Type 6 0�5 0�09
Type 7 0�4 0�04
Type 8 0�3 0
Type 9 0�2 0�04

Type 10 0�1 0�04
Type 11 0 0�04

Log-like- −668�23 −702.44 −710.53 −677�65 −706.00 −715.77
lihood

BIC −696�05 −710.69 −715.68 −712�68 −715.27 −722.98
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TABLE IIId

MODELS AND ESTIMATES FOR GOEREE, HOLT, AND PALFREY FIRST-PRICEa

Level-k Plus Equilibrium QRE

Subject-
Specific

Precision Type-Specific Constant Subject-Specific Type-Specific Constant Precision
Specification (λi) Precision (λk) Precision (λ) Precision (λi) Precision (λk) (λ)

π̂k π̂k λ̂k π̂k λ̂ Types π̂k λ̂k π̂k λ̂ π̂k

Random L0 0 0 — 0 — Random L0 0 — 0 — 0
(0�00) (0�00) (0�00) (0�00)

Random L1 0�65 0�98 8�54 0�99 8�71 λ̂ > 0 1 2�74 0�80 3�14 1
(0�00) (0�09) (0�00) (0�09) (0�02) (0�01) (0�03) (0�00)

Random L2 0�04 0 — 0 8�71 9�63 0�20
(0�00) (0�00) (0.09) (0�29) (0�01)

Truthful L1 0�14 0 — 0 8�71
(0�00) (0�00) (0.09)

Truthful L2 0�01 0 — 0 8�71
(0�00) (0�00) (0.09)

Equilibrium 0�16 0�02 29�84 0�01 8�71
(0�00) (35�05) (0�00) (0.09)

Log-likelihood −569�53 −642.91 −644.12 −624�28 −684.81 −688.44
BIC −680�11 −655.92 −651.93 −728�31 −688.71 −689.74

aThis summary pools GHP’s results for the low- and high-value treatments.
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not nested, the BIC again favors subject-specific precisions. Given these results
and that our primary purpose is to explore the models’ ability to describe be-
havior rather than to forecast, we focus on the results for subject-specific pre-
cisions, with some attention to those for type-specific precisions and, in GHP,
constant precisions.36

First consider the KL first-price estimates in Table IIIa. For the level-k plus
equilibrium model with subject-specific precisions, we estimate 4% random
L0, 59% random L1, 4% random L2, 18% truthful L1, and 16% truthful L2
or Equilibrium (not separated here) subjects. With type-specific precisions, we
estimate 35% random L1, 3% random L2, 54% truthful L1, and 8% truth-
ful L2 or Equilibrium.37 The log-likelihood is substantially higher with subject-
specific than type-specific or constant precisions, corresponding to the rejec-
tions via likelihood-ratio tests reported above. The BIC also favors the model
with subject-specific precisions, but less strongly.

For the cursed-equilibrium models in the right half of Table IIIa, with
subject-specific precisions and 11 cursed types, restricted to χ’s that are mul-
tiples of 0.1 in [0�1], we estimate 47% of the subjects with χ = 1 (fully-
cursed equilibrium) and 20% with χ = 0 (Equilibrium), with the remaining
33% spread almost uniformly over intervening values of χ. With type-specific
precisions, the model estimates only three cursed types with positive frequency,

that the BIC does. For the common-value treatments, with type-specific precisions and random
L0 plus four types (in each such treatment, one pair of types is not separated even by deviation
costs), the level-k model has 8 independent parameters (4 type frequencies and 4 precisions). The
analogous cursed-equilibrium model has 12 (4 levels of χ, 4 type frequencies, and 4 precisions;
random L0 has no precision). For GHP, with type-specific precisions and random L0 plus five
types, the level-k model has 10 independent parameters (5 type frequencies and 5 precisions).
The analogous QRE model has 10 (5 type frequencies and 5 precisions). But as will be seen, for
KL first-price and AK second-price, cursed-equilibrium models with type-specific and constant
precisions estimate fewer types with positive frequencies than we allowed. For GHP, QRE models
with type-specific and constant precisions also estimate fewer types than we allowed.

36Type-specific precisions, or a parameterized distribution of subject-specific precisions, are
likely to be more useful for prediction. But models with subject-specific precisions are more
robust to specification bias (e.g., if some subjects are very erratic but their precisions are con-
strained to equal those of other subjects) and so more useful as diagnostics. They also make our
estimates more comparable with ER’s, some of which allow subject-specific (though nonlogistic)
error distributions. With subject-specific precisions, estimating (31) reduces to estimating subject
by subject.

37In KL first-price with truthful types excluded from the specification, random L1 and L2 and
in one case Equilibrium gain at the expense of truthful L1. With subject-specific precisions we
then estimate 4% random L0 as before, 63% random L1, 18% random L2, and 16% Equilibrium
as before. In this case, a restriction excluding truthful L1 and L2 is not rejected (p-value 0.2180).
With type-specific precisions, we estimate 0% random L0 as before, 46% random L1, 6% random
L2, and 48% Equilibrium; and a restriction excluding truthful L1 and L2 is strongly rejected (p-
value 0.00098). With constant precisions, we estimate 0% random L0 as before, 53% random
L1, 35% random L2, and 13% Equilibrium; and a restriction excluding truthful L1 and L2 is not
rejected (p-value 0.2543).
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χ = 0�0�78, and 0.99.38 As for the level-k models, the log-likelihood is highest
with subject-specific precisions, likelihood-ratio tests reject restrictions to type-
specific or constant precisions (p-values far below 0.001), and the BIC favors
subject-specific precisions. In this treatment (unlike AK or KL second-price),
the constraint that χ is equal to either 0 or 1 is strongly rejected (p-value far
below 0.001) and intermediate levels of χ fit some subjects better than random
L1 (χ= 1) or Equilibrium (χ= 0).

Overall, in KL first-price, a cursed-equilibrium model has a modest likeli-
hood advantage over a level-k model with subject-specific or type-specific pre-
cisions, which persists when the BIC is used to correct for its larger number of
parameters with subject-specific precisions. Most (but not all) of the cursed-
equilibrium model’s advantage here is due to the fact that cursed types with
intermediate values of χ fit some subjects better than any of our level-k types.
(By contrast, in AK or KL second-price, intermediate values of χ add little to
a cursed-equilibrium model’s fit.)

Now consider the results for AK second-price in Table IIIc. For the level-k
models, the estimated frequency of random L0 drops from the 4% estimated
in KL first-price to 0% in AK second-price. As in most previous estimates from
other settings, random L0 exists mainly in the minds of random L1 and (indi-
rectly) of L2. With subject-specific precisions the estimated type frequencies
are close to those for KL first-price. They are less close with type-specific pre-
cisions, but this may be due to restricting to type-specific precisions when they
are strongly rejected.39

Turning to the cursed-equilibrium estimates in the right half of Table IIIc,
with subject-specific precisions our cursed type frequency estimates are fairly
close to those for KL first-price. But in AK second-price, unlike in KL first-
price, our level-k models have substantial advantages in likelihood and the
BIC over the cursed-equilibrium models for all error specifications.

Now consider the results for GHP first-price in Table IIId. For the level-
k models, the estimated frequency of random L0 is again 0%. With subject-
specific precisions, the estimated type frequencies are close to those for KL
first-price and AK second-price. With type-specific precisions, the frequency

38When four cursed types are allowed, two of them are estimated to have χ = 1, with different
precisions; thus the extra type serves mainly to relax the restriction to type-specific precisions.
Likelihood ratio tests fail to reject the restriction to three types (p-value 0.0639).

39In second-price common-value auctions, recalling that truthful L1 is equivalent to random
L2 and truthful L2 is equivalent to random L3 (which we exclude for consistency), with truthful
types excluded the estimates change mostly in interpretation. In AK second-price, random L1
and in one case Equilibrium gain at the expense of truthful L2. With subject-specific precisions,
we estimate 0% random L0 as before, 74% random L1, 9% random L2, and 17% Equilibrium.
A restriction excluding truthful L2 (with random L2 proxying for truthful L1) is strongly rejected
(p-value 0.00045). With type-specific precisions, we estimate 0% random L0, 62% random L1,
0% random L2, and 38% Equilibrium. A restriction excluding truthful L2 is not rejected (p-value
0.2901). With constant precisions, the estimated frequency of truthful L2 was 0, so the estimates
are unchanged.
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estimates are less plausible (with a 98% frequency of random L1), which may
again be due to imposing a restriction that is strongly rejected.40 In GHP our
level-k models have a substantial likelihood and BIC advantage over QRE
models for all error specifications, and the model with subject-specific preci-
sions gives a plausible account of some of the deviations from equilibrium that
GHP attribute to risk aversion or joy of winning.

With subject-specific precisions, the estimated level-k type frequencies are
very stable across KL first-price, AK second-price, and GHP: Ignoring lack of
separation of types for the purpose of this comparison, the frequency of ran-
dom L1 ranges from 0.59 to 0.65; of random L2 from 0.04 to 0.09; of truthful
L1 from 0.09 to 0.18; of truthful L2 from 0.01 to 0.16; and of equilibrium from
0.04 to 0.16. (The estimated frequencies are less stable with type-specific pre-
cisions, but this may be due to imposing restrictions that are strongly rejected.)
These type frequencies are behaviorally plausible and close to previous esti-
mates (Stahl and Wilson (1995), Costa-Gomes, Crawford, and Broseta (2001),
Camerer, Ho, and Chong (2004), Costa-Gomes and Crawford (2006), Craw-
ford and Iriberri (2007a)). However, the frequency of random L1 is higher
than in most previous estimates, perhaps due to the heavier cognitive load of
incomplete-information games.

The estimates for KL second-price in Table IIIb are very different. With
subject-specific precisions, the estimated frequency of random L1, at 0.21, is
far below the range of the other three treatments. The estimated frequency of
truthful L2, at 0.32, is correspondingly high.41 But in KL second-price as well,
our level-k models have substantial advantages in likelihood and the BIC over
cursed-equilibrium models for all error specifications.

We suggest a tentative explanation for the differences in the KL second-price
estimates as follows.42 In KL second-price, equilibrium shades its bid below the
value suggested by its signal to adjust for the curse, random L1 bids the value

40With truthful types excluded in GHP first-price, random L1 and in one case Equilibrium gain
at the expense of truthful L1 and L2. With subject-specific precisions, we estimate 0% random
L0, 78% random L1, 4% random L2, and 19% Equilibrium; and a restriction excluding truthful
L1 and L2 is rejected (p-value 0.0013). With type-specific or constant precisions, the estimated
frequencies of truthful L1 and L2 were 0, so the estimates are unchanged.

41With truthful types excluded (and excluding random L3) in KL second-price, random L1
and in one case Equilibrium gain at the expense of truthful L2, just as in AK second-price. With
subject-specific precisions, we estimate 18% random L0, 32% random L1, 21% random L2, and
29% Equilibrium. A restriction excluding truthful L2 is strongly rejected (p-value < 0�0000). With
type-specific precisions, we estimate 49% random L0, 44% random L1, 10% random L2, and 0%
Equilibrium. A restriction excluding truthful L2 is strongly rejected (p-value < 0�0000). We take
the high estimated frequencies of random L0, unique to KL second-price with or without truthful
types excluded, as probable evidence of misspecification. With constant precisions, we estimate
0% random L0, 0% random L1, 47% random L2, and 53% Equilibrium. A restriction excluding
truthful L2 is strongly rejected (p-value < 0�0000).

42Similar deviations from the dominant bidding strategy occur in second-price independent-
private-value auctions (Kagel, Harstad, and Levin (1987)). This and the evidence on experience
and/or ability effects in Kagel and Richard (2001), Casari, Ham, and Kagel (2007), and Charness
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suggested by its signal, truthful L1 and random L2 shade more than in equilib-
rium, and truthful L2 bids above the value suggested by its signal. There are
two main patterns in the data: Some subjects shade their bids, but less than in
equilibrium; in a level-k model, they are best captured by Equilibrium or ran-
dom L1. Others bid above the values suggested by their signals; they are best
captured by truthful L2. We suspect the latter subjects bid so high not because
they believe (like truthful L2) that others are shading their bids more than in
equilibrium, but because they do not fully process the subtle implications of
the second-price auction for their optimal bidding strategy: They know they
will not have to pay their own bid, and they underestimate its indirect cost via
winning and paying more than the value, which may be less salient than what
they will have to pay. Our model rules out this error by assumption, leaving
truthful L2 as the best proxy for these subjects.

Turning in more detail to the cursed-equilibrium estimates in the right halves
of Tables IIIa-c, despite our different specification and focus on inexperienced
subjects, our cursed-equilibrium estimates for KL first-price and AK second-
price are generally consistent with ER’s estimates for their subjects, particu-
larly AK’s inexperienced subjects.43 They are also close to our estimates for the
level-k plus equilibrium model: For all three common-value treatments, with
subject-specific precisions and 11 cursed types restricted to multiples of 0.1 in
the interval [0�1], there are spikes in the estimated distribution at χ= 1 (fully-
cursed equilibrium or random L1) and χ = 0 (Equilibrium), and little weight
on the intervening values (with minor exceptions at χ = 0�2 in KL second-
price and χ = 0�7 in AK second-price). The estimated type frequencies for
cursed types are similar except in KL second-price, where with type-specific
precisions, the cursed-equilibrium model also breaks down, estimating the fre-
quency of random L0 subjects as 0.43.

In all four treatments, the type frequency estimates have low standard er-
rors, as do the precision estimates for the models with type-specific and con-
stant precisions, with the exception of the precisions for types estimated to
have very low population frequencies. However, the estimated precisions are
highly heterogeneous across subjects; this is consistent with previous studies
(e.g., Costa-Gomes and Crawford (2006)). Section D of the web appendix
reports subject-specific precision estimates and their standard errors for our

and Levin (2005) suggest that some nonequilibrium bidding has nothing to do with strategic
uncertainty and so cannot be explained by level-k thinking. This, and evidence from new ex-
periments, should ultimately make it possible to build a more comprehensive model of bidders’
behavior.

43In KL’s and AK’s designs, cursed-equilibrium bids are linear in both the bidder’s private
signal x and the cursedness parameter χ. Pooling the data across time periods, ER regressed
subjects’ bids on those variables, finding that when constrained to be equal for all subjects, χ
is closer to 1 for inexperienced subjects and to 0 for experienced subjects, and that for AK’s
data, when χ was allowed to vary across subjects, it varied much more for inexperienced than
experienced subjects and was significantly different from 0 for both.
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level-k plus equilibrium and cursed-equilibrium or QRE models in each treat-
ment. To give a clearer picture of these estimates and how precisely they are
estimated, Figures 1–8 present grouped histograms of the population distrib-
ution of precisions for each treatment–model pair: one of subjects’ point pre-
cision estimates, one of subjects’ estimates less their standard errors, and one
of subjects’ estimates plus their standard errors. The histograms show that the
models with subject-specific precisions yield reasonably tight estimates of most
subjects’ precisions. To illustrate the implications of these and our type-specific
and constant precision estimates for subjects’ bidding behavior, Section E of
the web appendix graphs the implied logit bid densities for each type with pos-
itive estimated frequency in each treatment, for representative low, medium,
and high precision values.

To sum up, in KL and AK second-price, but not in KL first-price, our level-k
models have substantial advantages in likelihood and the BIC over cursed-
equilibrium models for all error specifications. In GHP, our level-k models
also have a substantial likelihood and BIC advantage over QRE models, and
they explain some of the deviations from equilibrium that GHP attribute to
risk aversion or joy of winning. Thus, in two out of three common-value treat-
ments, a level-k model with an empirically plausible type distribution fits the
experimental data better than equilibrium or cursed equilibrium, and in GHP’s
independent-private-value treatments, a level-k model with a plausible type
distribution fits the data better than equilibrium or QRE.

6. CONCLUSION

This paper has proposed a new approach to explaining the winner’s curse in
common-value auctions and overbidding in some independent-private-value
auctions, based on a structural nonequilibrium level-k model of initial re-
sponses that describes behavior in a variety of experiments with complete-
information games. We consider alternative ways to generalize complete-
information level-k models to this leading class of incomplete-information
games, and derive their implications in first- and second-price auctions with
general information structures, comparing them to equilibrium and Eyster and
Rabin’s (2005) notion of cursed equilibrium.

Our analysis shows that many of the insights of equilibrium auction theory,
properly interpreted, extend to an empirically plausible model of nonequilib-
rium bidding. The model yields tractable characterizations of the two factors
that determine equilibrium bidding strategies in first- or second-price auc-
tions: value adjustment for the information revealed by winning in common-
value auctions (the winner’s curse) and the bidding trade-off between the cost
of higher bids and their higher probability of winning in first-price auctions
with common or independent private values. These characterizations guide the
choice of a model that can track the variation in subjects’ initial responses to
auctions across several experimental treatments.
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FIGURE 1A.—Subject-specific precisions in KL first-price level-k model.

FIGURE 1B.—Subject-specific precisions less standard errors in KL first-price level-k model.

FIGURE 1C.—Subject-specific precisions plus standard errors in KL first-price level-k model.
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FIGURE 2A.—Subject-specific precisions in KL first-price cursed-equilibrium model.

FIGURE 2B.—Subject-specific precisions less standard errors in KL first-price
cursed-equilibrium model.

FIGURE 2C.—Subject-specific precisions plus standard errors in KL first-price
cursed-equilibrium model.



LEVEL-k AUCTIONS 1761

FIGURE 3A.—Subject-specific precisions in KL second-price level-k model.

FIGURE 3B.—Subject-specific precisions less standard errors in KL second-price level-k
model.

FIGURE 3C.—Subject-specific precisions plus standard errors in KL second-price level-k
model.
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FIGURE 4A.—Subject-specific precisions in KL second-price cursed-equilibrium model.

FIGURE 4B.—Subject-specific precisions less standard errors in KL second-price
cursed-equilibrium model.

FIGURE 4C.—Subject-specific precisions plus standard errors in KL second-price
cursed-equilibrium model.



LEVEL-k AUCTIONS 1763

FIGURE 5A.—Subject-specific precisions in AK second-price level-k model.

FIGURE 5B.—Subject-specific precisions less standard errors in AK second-price level-k
model.

FIGURE 5C.—Subject-specific precisions plus standard errors in AK second-price level-k
model.
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FIGURE 6A.—Subject-specific precisions in AK second-price cursed-equilibrium model.

FIGURE 6B.—Subject-specific precisions less standard errors in AK second-price
cursed-equilibrium model.

FIGURE 6C.—subject-specific precisions plus standard errors in AK second-price
cursed-equilibrium model.
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FIGURE 7A.—Subject-specific precisions in GHP first-price level-k model.

FIGURE 7B.—Subject-specific precisions less standard errors in GHP first-price level-k model.

FIGURE 7C.—Subject-specific precisions plus standard errors in GHP first-price level-k model.
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FIGURE 8A.—Subject-specific precisions in GHP QRE first-price model.

FIGURE 8B.—Subject-specific precisions less standard errors in GHP first-price QRE model.

FIGURE 8C.—Subject-specific precisions plus standard errors in GHP first-price QRE model.
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In our econometric analysis, a level-k model with an empirically plausible
type distribution fits better except in KL first-price than the leading alterna-
tives of cursed equilibrium or QRE, and yields a simple, unified explanation
of the winner’s curse in some leading common-value auction designs and over-
bidding in some independent-private-value auction designs with nonuniform
value distributions. Random L1 is by far the most frequent type in all but KL
second-price, with truthful L1 playing a substantial supporting role. Thus most
subjects’ behavior is strategic, even though it does not usually conform to equi-
librium. Even though random L1 yields the same bidding strategies as Eyster
and Rabin’s notion of fully-cursed equilibrium in the common-value treat-
ments, our estimated level-k type distribution fits the distribution of subjects’
responses better than an estimated model with the same number of cursed
types in all but KL first-price.

Thus, by viewing behavior in these auctions through the lens of a general,
portable model of strategic behavior, the level-k model allows us to link a large
body of data from auction experiments, most of which has been analyzed by
assuming equilibrium in some form, to data from nonauction experiments that
were specifically designed to study strategic thinking.
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