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Because players whose preferences violate the von Neumann-Morgenstern 
independence axiom may be unwilling to randomize as mixed-strategy Nash 
equilibrium would require, a Nash equilibrium may not exist without independence. 
This paper generalizes Nash’s definition of equilibrium, retaining its rational- 
expectations spirit but relaxing its requirement that a player must bear as much 
uncertainty about his own strategy choice as other players do. The resulting notion, 
“equilibrium in beliefs,” is equivalent to Nash equilibrium when independence is 
satistied, but exists without independence. This makes it possible to study the 
robustness of equilibrium comparative statics results to violations of independence. 
Jotuna/ of’ Gononric, Lirerarurr Classification Numbers: 022, 026. ” 1990 Academic 
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1. INTRODUCTION 

The expected utility analysis of decision-making under uncertainty rests 
on four assumptions about individuals’ preferences over lotteries, now 
commonly called completeness, transitivity, continuity, and independence. 
Completeness, transitivity, and continuity ensure that an individual 
chooses among lotteries as if to maximize a continuous preference function 
whose arguments are the probabilities of the possible outcomes. This 
follows from Debreu’s [16] representation theorem in consumer theory, 
because the probabilities are formally analogous to the (deterministic) 
quantities of goods over which consumers’ preferences are defined. Inde- 
pendence requires, for any positive probability p and lotteries A, B, and C, 
that A be weakly preferred to B if and only if a p: (1 -p) chance of A or 
C is weakly preferred to a p: (1 -p) chance of B or C. This goes far beyond 
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Yong-Gwan Kim, David Kreps, James Mirrlees, William Neilson, Robert Rosenthal, Dennis 
Smallwood, Maxwell Stinchcombe, and, especially, Mark Machina for helpful criticisms and 
suggestions. The National Science Foundation provided financial support under grants SES 
8204038, SES 8408059. and SES 8703337. 
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the analogy with consumer theory, implying, in conjunction with the other 
axioms, that the preference function is linear in the probabilities, so that it 
can be represented as the mathematical expectation of a von Neumann 
Morgenstern utility function. 

The normative appeal and descriptive usefulness of the expected utility 
hypothesis have been the subject of controversy ever since the work of von 
Neumann and Morgenstern [38] brought it to the forefront of research 
in decision analysis and the theory of games. Independence has been 
more often criticized than the other three axioms, due in part to several 
commonly observed systematic experimental violations of the linearity it 
implies and perhaps in part to the persuasive power of the analogy with 
consumer theory. ’ 

Stimulated by this criticism, Machina [27, 281 showed that replacing 
the linearity in the probabilities implied by independence with the 
local linearity of a differentiable preference function yields a “generalized 
expected utility analysis” that allows a convincing and parsimonious 
explanation of the best-known experimental violations of the expected 
utility hypothesis, while preserving many of the techniques and results of 
expected utility analysis. The standard expected utility characterizations of 
risk aversion and increasing risk, and of monotonicity and first-order 
stochastic dominance, in particular, can be extended to give useful 
characterizations that do not rely on independence. Generalized expected 
utility analysis thus shows that much of our understanding of individual 
decisions under uncertainty survives relaxation of the -systematically 
violated linearity assumption embodied in independence. 

However, the influence of independence is even more pervasive in game 
theory than in decision analysis, and individuals whose nonstrategic 
decisions violate independence are unlikely to satisfy it in their interactive 
decisions. Knowing how much of our understanding of strategic behavior 
remains valid without independence might alter our view of important 
applications. It would be of great interest, in particular, to know whether 
the theory of auctions, the theory of bargaining, and the linear-program- 
ming approach to designing incentive schemes (as espoused by Myerson 
[34], among others) are robust to violations of independence. 

Contemplating violations of independence raises basic questions-in game 
theory. The desire for a common, unifying principle of rationality in games 
and decisions (eloquently expressed by Aumann [ 11) makes one hope that 
independence, which is not needed to formulate a sensible notion of 

’ The papers by Malinvaud 1331 and Samuelson [42] and the adjoining papers by Weld, 
Shackle, Savage, Manx, and Charnes in the October, 1952, issue of Ecunome~ricu provide 
interesting evidence on how independence was viewed before expected utility analysis became 
a standard tool. 
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rational individual decisions under uncertainty, can be dispensed with in 
game theory as well. But without independence, mixed-strategy equilibrium 
as defined by Nash [35] may fail to exist in nonpathological games: 
Non-expected utility maximizing players whose preferences cannot be 
represented by functions that are everywhere quasiconcave in the 
probabilities’ may be unwilling to randomize as equilibrium would require, 
and the experimental evidence now available indicates that this strong 
quasiconcavity assumption is unlikely to hold in most applications. 

What does rationality mean, if anything, in games whose players’ 
preferences violate independence? And to what extent does assuming inde- 
pendence when it is not warranted distort predictions of strategic behavior’? 
This paper begins to construct answers to these questions, focusing on 
finite matrix games with complete information. As indicated above, the 
quasiconcavity of players’ preferences plays a crucial role in the analysis. 
Section 2 introduces generalized expected utility analysis with simple 
thought experiments about individual decisions and uses them to develop 
intuition about quasiconcavity; it then discusses the experimental and 
theoretical work on quasiconcavity, finding scarcely more justification for 
assuming quasiconcavity than for assuming linearity. Section 3 extends 
Section 2’s decision analysis framework to games and formally describes 
the class of games to be studied. 

Section 4 defines Nash equilibrium and shows that when not all players’ 
preferences are quasiconcave, a Nash equilibrium may fail to exist, even 
when mixed strategies are allowed. Section 5 defines “equilibrium in 
beliefs,” a notion of equilibrium that extends Nash’s, retaining its rational 
expectations spirit but relaxing its implicit requirement that a player must 
bear as much uncertainty about his own strategy choice as other players 
do.3 Equilibrium in beliefs is shown to be equivalent to Nash equilibrium 
whenever players have quasiconcave preferences, and therefore (given com- 
pleteness, transitivity, and continuity) whenever independence is satisfied. 
Without quasiconcavity, however, the two notions differ, and a mixed- 
strategy equilibrium in beliefs exists whether or not players have quasi- 
concave preferences. (Mixed strategies are needed for this result only to the 
extent that players prefer them to pure strategies.) This existence result is 
a significant (though mathematically trivial) generalization of the Nash 

’ From now on. a player whose preferences can be represented by a preference function that 
is quasiconcave (respectively. linear or quasiconvex) in the probabilities is said to have 
“quasiconcave preferences” (respectively. “linear preferences” or “quasiconvex preferences”). 

‘See Aumann [l], Brandenburger and Dekel [S], and Harsanyi [23]. By relaxing this 
requirement, equilibrium in beliefs answers the comon “businessmen don’t randomize” 
objection to descriptive applications of mixed-strategy Nash equilibrium: If businessmen 
randomize in an equilibrium in beliefs, they do so only because they prefer to. given their 
beliefs. 
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equilibrium existence results in the literature. By generalizing Nash’s notion 
of equilibrium, it extends the internal consistency of the idea of rationality 
that motivated Nash’s notion to a wide class of games in which violations 
of independence cause nonexistence of Nash equilbrium. 

Section 6 records some observations about the relationship between 
Nash equilibrium and equilibrium in beliefs in games and linearized 
versions of the games. Section 7 studies how the comparative statics of 
equilibrium are altered by violations of independence, comparing the 
qualitative responses of equilibrium beliefs under alternative assumptions 
about the quasiconcavity, linearity, and quasiconvexity of players’ 
preferences. Quasiconvexity and linearity have similar (but not identical) 
implications for comparative statics, but quasiconcavity and linearity can 
have qualitatively different implications. 

Section 8 concludes the paper by discussing related work. 

2. QUASICONCAVITY AND INDIVIDUAL DECISIONS 

This section uses simple thought experiments about individual decisions 
to introduce generalized expected utility analysis, and discusses some of the 
qualitative features of the stochastic choices among lotteries generated by 
strictly quasiconcave preferences. It then summarizes the experimental and 
theoretical work that is helpful in evaluating the quasiconcavity assump- 
tion: 

In this section, I restrict attention to three-outcome lotteries with known 
probabilities. The three outcomes are quantities of money, denoted y,, y2, 
and .v3, with y, <y2 <J’~; their probabilities are denoted s,, s2, and s3. As 
noted above, an individual with complete, transitive, and continuous 
preferences over lotteries chooses as if to maximize a continuous preference 
function whose arguments are the probabilities of the possible outcomes. 
Following Machina [27], this function is assumed to be differentiable, and 
the individual is assumed to prefer first-order stochastically dominating 
shifts in the distribution of money outcomes. To avoid confusion about the 
source of the phenomena to be discussed in this section, the individual is 
also assumed to be strictly risk-averse; and I restrict attention for simplicity 
to preferences that are either (globally) quasiconcave or (globally) 
quasiconvex. 

It is also assumed that the individual can commit himself to abide by the 
outcome of a randomized choice among lotteries, even when he is not indif- 
ferent among the alternatives. Such commitments could be enforced by an 
experimenter. Without them, the individual might choose the alternative 
that is most preferred ex post without regard to the outcome of his ran- 
domization, making his ex ante choice irrelevant to his ultimate decision 
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and therefore (if he anticipates that he will renege) useless in inferring his 
preferences.4 Assuming commitment in this context is often considered 
innocuous (see, however, Aumann and Maschler [2, pp. P61-P62]), 
because it requires an expected utility maximizer to randomize only when 
he is indifferent among the possible outcomes. But commitments that 
violate this indifference condition may be optimal for quasiconcave 
preferences. 

Figure 1 depicts the set of possible lotteries over the money outcomes y,, 
?:2, and y.i.5 In the figure, S is a “status quo” lottery, A is an “alternative” 
lottery, and I, I, and I, I, are two of an individual’s indifference curves. 
Independence would require these to be linear and parallel, but I, I, and 
Z,Z, represent strictly quasiconcave preferences. 

I,I, and Z,Z, also exhibit first-order stochastic dominance preference- 
that is, a preference for moving probability from low-money outcomes to 
high-money outcomes. The transition from the lottery (s,, s2, s3) to 
(6 2 4 3 s;) is a first-order stochastically dominating shift if and only if 
s; 3 s3 and si + s; 2 sZ + s3. Thus, the natural generalization of the assump- 
tion that money is desirable to choice over uncertain outcomes requires 

0 ' =2 

FIG. 1. Stochastic choice with quasiconcave preferences. 

4 Machina [32], however, questions such mechanical impositions of dynamic consistency 
for decisions not significantly separated in time. Adopting his point of view would make my 
commitment assumption unnecessary, 

’ Figure 1 differs from Machina’s [27. Fig. 5; 30, Figs. I l-141 diagrams in that it represents 
lotteries in (sz, s,)-space, suppressing S, = 1 - .F: - .Y~, instead of in (sr, s,)-space; the translation 
is straightforward. 
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that the individual prefer S to any lottery that lies to the southwest of the 
two dashed lines through S, and that he prefers any lottery that lies to the 
northeast of the two dashed lines to S. The indifference curve III, must 
therefore pass between the two dashed lines as shown, and similar restric- 
tions must be satisfied at any other point in the triangle of possible 
lotteries. This is all that first-order stochastic dominance preference 
requires, for linear or nonlinear indifference curves. 

The natural behavioral definition of risk aversion-aversion to mean- 
preserving spreads (see Rothschild and Stiglitz [41])--is equivalent to a 
uniform slope restriction on the individual’s indifference curves. The only 
mean-preserving spreads possible in the three-outcome case are reductions 
in s2 coupled with compensating increases in s, and s3. A mean-preserving 
spread therefore appears in Fig. 1 as a move to the northwest along a line 
with slope - [yr -,I’,]/[ y3 -J,]. A risk-averter must be made worse off 
by such a move, and must therefore have indifference curves that are 
uniformly steeper. The numerical magnitudes of .vl, v2, and y3, which do 
not otherwise enter my arguments, can be taken to be such that this is true 
for the indifference curves shown in Fig. 1. 

Now imagine that the individual is offered a choice between the status 
quo lottery S and the alternative lottery A. When commitment to 
randomized choice is possible, he can also obtain any desired probability 
combination of the two. In Fig. 1, his choice set is then the line segment 
connecting S to A; the linearity of this segment follows from the laws of 
probability, and therefore holds with or without independence. 

The individual’s choice probabilities vary with the alternative lottery A 
as follows. Construct the supporting line to Z,Z, at S, labeled LL in Fig. 1, 
and the offer curve (defined as in consumer theory!) through S, labeled 
00. The probability, 71, with which he chooses the alternative lottery over 
S is zero for all alternatives below the supporting line and one for all alter- 
natives above the offer curve, and varies continuously from zero to one as 
the alternative is varied from the supporting line to the offer curve. Note 
that an alternative that first-order stochastically dominates S must be 
chosen with probability one, but that, with strict quasiconcavity instead of 
linearity, many alternatives that would be preferred to S if randomized 
choice were not possible are chosen with probability less than one. 

The offer curve appears in these unfamiliar surroundings beeause the 
individual’s randomized choice among lotteries is formally analogous to a 
consumer’s deterministic choice among consumption bundles in a com- 
petitive market.6 An individual whose preferences are quasiconcave exhibits 

6 Machina [30] discusses further implications of this analogy and how individuals with 
quasiconcave preferences choose among lotteries in more general situations. Dekel [18] 
discusses the related question of how quasiconcavity and risk aversion interact to determine 
an individual’s preference for diversification of asset portfolios. 
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precisely the same kind of preference for “variety” that a quasiconcave 
utility function represents in ordinary consumer theory. A preference for 
variety is consistent with a complete, transitive, and continuous ordering 
over lotteries, hence is not irrational in the sense in which the term is 
normally used. Further, even though it can lead to randomized choice, the 
above arguments make clear that it is not inconsistent with risk aversion. 

The thought-experiment just considered has completely different results 
if the individual’s preferences are quasiconvex. When an individual who 
can randomize chooses among a finite number of lotteries, his feasible set 
is the convex hull of those lotteries. A maximum of a quasiconvex function 
can always be found among the vertices of such a feasible set, and a 
maximum of a strictly quasiconvex function can occur only at a vertex. 
Individuals with strictly quasiconvex preferences, risk-averse or not, thus 
always choose either S with probability one or A with probability one in 
the thought-experiment, and their choice probabilities are therefore either 
locally constant or (in special cases) discontinuous in A. Such individuals 
would even pay a fee to avoid randomizing over lotteries between which 
they are indifferent. This striking behavioral difference between quasicon- 
cavity and quasiconvexity is the basis of some of the experiments discussed 
below. 

I now turn to the experimental work on quasiconcavity. It is important 
to note that the large body of evidence on violations of independence sum- 
marized in Machina [27, 28, 301 does not help to discriminate between 
quasiconcavity and quasiconvexity. Machina showed that almost all of 
the violations discussed in the literature can be elegantly explained by 
assuming that individuals have nonlinear preference functions that satisfy 
two simple hypotheses. These hypotheses are satisfied, under reasonable 
assumptions, by quasiconcave or quasiconvex quadratic preference func- 
tions. Thus, most of the evidence against linearity so far accumulated has 
no immediate implications for quasiconcavity. 

Becker, DeGroot, and Marschak [3] found evidence of randomized 
choice, which, as noted above, is generally inconsistent with quasi- 
convexity: their experimental design, however, made it possible to detect 
violations of linearity only if they were in the direction of quasiconcavity. 
Coombs and Huang [lo] overcame this masking problem by asking 
experimental subjects to give complete rankings of two lotteries and a third 
formed by randomizing between them. Of their observations, 45% were 
inconsistent with linearity; 59% of these were consistent with strict 
quasiconcavity and the other 41% were consistent with strict quasicon- 
vexity. In more recent experiments, Camerer [6], Chew and Waller [S], 
and Conlisk [9] all found strong evidence against independence, with 
the violations distributed roughly equally between quasiconcavity and 
quasiconvexity. 
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Turning to the relevant theoretical work, Kreps and Porteus [26] 
(see also Machina [29]) presented an interesting argument that favors 
quasiconvexity over quasiconcavity. They showed that in situations of 
“temporal risk,” in which an individual chooses among lotteries knowing 
that he must make an auxiliary decision before the uncertainty is resolved, 
an expected utility maximizer will have “induced preferences” that are non- 
linear and quasiconvex. Although such choices can be handled within the 
expected utility framework by modeling the auxiliary decision explicitly, 
this is often not the most convenient way to proceed. When the analyst 
decides to leave the auxiliary decision in the background, the individual 
will appear to have quasiconvex preferences. More generally, unmodeled 
auxiliary decisions make the individual’s induced preferences “more 
quasiconvex” than his underlying preferences, preserving quasiconvexity 
and possibly overcoming quasiconcavity. 

A different kind of induced-preferences argument, mentioned by Green 
[21, Section V], notes that if an individual optimally randomizes his 
choices, his derived preferences over lotteries must be quasiconvex. 

Green [21] also studies whether an individual with nonlinear preferen- 
ces can be induced to “make book against himself,” in the sense of accept- 
ing a series of gambles that together yield a final wealth distribution that 
is first-order stochastically dominated by the distribution that would result 
from not accepting the gambles. When the individual’s preferences satisfy 
independence, his choices are dynamically consistent, and it is an 
immediate consequence of first-order stochastic dominance preference that 
he will find any such series of gambles unacceptable. Noting that quasicon- 
vexity is sufficient and, in general, necessary for dynamic consistency, 
Green shows that when it fails, the resulting inconsistency can be exploited 
to lead the individual to make book against himself. He argues that this is 
a strong argument in favor of assuming quasiconvexity (see, however, 
Machina’s [32] carrat). 

3. GAMES WITHOUT INDEPENDENCE 

This section describes the class of games to be studied. In the formal 
analysis, attention is restricted to two-person games of complete informa- 
tion in which each player has a finite set of pure strategies and each com- 
bination of pure strategies yields each player a deterministic quantity of 
money. The results and arguments extend immediately to n-person games 
of complete information with more complex outcomes. Vector outcomes 
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and shared background uncertainty, in particular, can be accomodated 
simply by reinterpreting players’ preference functions7 

As in Section 2, it is assumed that each player can commit himself to 
abide by the outcome of a randomized choice among pure strategies, even 
when he is not indifferent among the distributions of outcomes they induce. 
The ability to make such commitments is implicit in the assumption that 
the player can use mixed strategies. In what follows, “mixed strategy” refers 
in general to a randomized choice of pure strategy, but is not meant to 
exclude unrandomized choices. 

If players were expected utility maximizers, the games studied here could 
be completely described by specifying two matrices, one for the Row player 
(henceforth called R) and one for the Column player (henceforth called C), 
made up of the von Neumann-Morgenstern utilities whose expectations 
they maximize. To admit players whose preferences do not have an expec- 
ted utility representation, it is necessary to separate their preferences over 
probability distributions of outcomes and the mapping from pure-strategy 
combinations to outcomes. R’s pure strategies are indexed by i = 1, . . . . nz, 
and C’s are indexed by j= 1, . . . . H. The m x n matrices r f [r;,] and c z [c,~] 
give R’s and C’s money payoffs as functions of their pure strategies, with 
r,, and c,; denoting R’s and C’s payoffs, respectively, if R plays his ith pure 
strategy and C plays, his jth pure strategy. Given this monetary payoff 
function, a combination of mixed strategies induces a probability 
distribution of money outcomes for each player. V(p; y) is the preference 
function that represents R’s preferences over these probability distributions, 

’ Background uncertainty generally affects the quasiconcavity of players’ preferences, but 
my results are either independent of this or conditional on it. Footnote 8 below describes a 
device, due to von Neumann and Morgenstern [38, pp. 182-1861, that provides an alternative 
way to handle background uncertainty. Complete information means that the structure of the 
game (except for the realization of any shared uncertainty) is common knowledge; Aumann 
[l] and Brandenburger and Dekel [S] discuss the role played by this assumption and give 
references to the literature. 

Incomplete information could be handled formally by summarizing players’ private 
information in parameters of their preferences called “types,” and assuming that players 
choose type-contingent strategies before observing their types, as in Harsanyi [22] (who 
introduced the notion of types and showed that it could be used to model the kinds of private 
information normally considered); see also von Neumann and Morgenstern 138, Chap. 191. 
This, together with the assumption that it makes no difference to a rational player whether 
he knows his type when he chooses his type-contingent strategy, turns a game of incomplete 
information into an equivalent game of complete information. But without independence, a 
player generally has different type-contingent preferences over type-contingent strategies 
before and after he observes his type. A further complication is that, with continuously 
distributed types, the possibility of puritication along the lines described by Harsanyi [23] 
arises. This possibility interacts in complex ways with the effect of violations of independence 
on players’ type-contingent preferences. An adequate treatment of games of incomplete 
information therefore involves signilicant new difficulties. which are not considered here. 
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expressed in terms of the mixed-strategy probabilities p E (p, , . . . . p,) and 
q = (41, ..., q,?) with which R and C play their pure strategies, and W(p; q) 

is the analogous preference function for C. 
When independence is satisfied, V( .) and W( .) are linear in the 

probabilities of the possible money outcomes, and therefore bilinear (and 
jointly continuous) in p and q. V( ) and W( .) can then be completely 
described by specifying the coefficients of these probabilities; these coef- 
ficients are players’ von Neumann-Morgenstern utilities for the possible 
outcomes. I assume instead, following Machina [27], that V( .) and W( .) 
are everywhere once (and in Section 7, twice) continuously differentiable. 

The quasiconcavity of players’ preferences plays a central role in the 
analysis. A function ,f( .) is quasiconcave if its upper contour sets are con- 
vex-that is, if for any points x’ and x” in the domain of f( .) such that 
,f(x’) > k and f(x”) 3 k, then f( (x’ + d/)/2) > k as well. Strict quasicon- 
cavity is defined, in the usual way, by requiring the last inequality in this 
definition to hold strictly when x’ and x” are distinct. A function g( .) is 
(strictl?)) quasiconue.~ if -g( ) is (strictly) quasiconcave. Thus, linear 
functions are both quasiconcave and quasiconvex, but neither strictly 
quasiconcave nor strictly quasiconvex. 

“V( .; q) is quasiconcave” (respectively, “V( .; q) is quasiconvex”) is short 
for “V(p; q) is quasiconcave in p for all q” (respectively, “V(p; q) is 
quasiconvex in p for all 4”). “W(p; ) is quasiconcave” (respectively, 
“W(p; .) is quasiconvex”) is short for “W(p; q) is quasiconcave in q for all 
p” (respectively, “W(p; q) is quasiconvex in q for all p”). The “strict” ver- 
sions of these statements are used analogously. Because the probabilities of 
the possible outcomes in the game are linear in p for any given q, and vice 
versa, V( .; q) and W(p; .) are quasiconcave (respectively, continuous) 
when-and, except in special cases, only when-R’s and C’s underlying 
preferences over probability distributions of outcomes are quasiconcave 
(respectively, continuous) in the outcomes’ probabilities. 

The term “upper contour set” refers below to the subsets of a player’s 
own mixed strategies that are required to be convex by the quasiconcavity 
of his preferences. A typical upper contour set for R, for instance, is a set 
of R’s mixed strategies, p, that satisfy V(p; q) 3 2) for a given mixed 
strategy, q, for C and a given constant, v. 

4. NASH EQUILIBRIUM 

This section defines Nash equilibrium and shows that, when players’ 
preferences are not quasiconcave, it may fail to exist in nonpathological 
games even when mixed strategies are allowed. Let argmax,,,f(x) denote 
the set of solutions of max it X,f(x), and let Sk denote the unit simplex in 
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il?, the set of mixed strategies feasible for a player with k pure strategies. 
Nash’s [35] definition of equilibrium can be stated as follows: 

DEFINITION I. A Nash equilibrium is a pair of mixed strategies, 
(p*, q*), such that 

p* E wwaxpt .y, 0: q* 1 and q*Eargmax,.s,l Wp*:q). (1) 

Under the assumption that players are expected utility maximizers, Nash 
[35 J proved (generalizing to non-zero-sum n-person games a result of 
von Neumann [37] for zero-sum two-person games) that any finite matrix 
game of complete information has a Nash equilibrium when mixed 
strategies are allowed. In other words, Nash showed that if players’ 
strategy spaces are compact and convex, and each player’s preferences over 
strategy combinations can be represented by a preference function that is 
jointly continuous in both players’ strategies and linear in his own strategy 
for any given value of the other player’s strategy-as implied by the expec- 
ted utility hypothesis when players’ strategies are vectors of mixed-strategy 
probabilities-then there exists a pair of strategies that are best replies to 
each other, as required by (1). 

It is well known (see for example Debreu [15]) that Nash’s linearity 
assumption can be weakened to allow quasiconcavity. (In fact, von 
Neumann’s [37] original result for zero-sum two-person games assumed 
only quasiconcavity.) Thus, Nash’s existence result goes through if players’ 
preferences are nonlinear but quasiconcave. If they are not quasiconcave, 
there may be no Nash equilibrium in pure or mixed strategies, even though 
players’ strategy spaces are compact and convex and their payoff functions 
are continuous. 

To see this, consider an example, zero-sum in money, with R’s monetary 
payoffs given by the matrix 

C 

R 0 

R 

El 
0 h 

Suppose that a, b > 0, that each player always prefers first-order stochasti- 
tally dominating shifts in the probability distribution of his money payoff, 
and that at least one player has strictly quasiconvex preferences. It is then 
immediate from first-order stochastic dominance preference that a player’s 
best reply to his opponent’s pure strategy must be a pure strategy. It is 
clear that there is no Nash equilibrium in pure strategies, so any Nash 
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equilibrium must involve each player playing both of his pure strategies 
with positive probability. But a player whose preferences are strictly 
quasiconvex is unwilling to randomize between distinct alternatives even 
when he is indifferent between them. His best replies to mixed strategies 
must therefore always be pure strategies when a # h, so there can be no 
Nash equilibrium in pure or mixed strategiesx 

5. EQUILIBRIUM IN BELIEFS 

Section 4’s example of nonexistence shows that Nash’s definition of 
equilibrium is not well suited to games whose players do not all have 
quasiconcave preferences. However, although our intuitions about 
rationality are inconsistent with a player’s probabilistic beliefs about other 
players’ strategies being systematically incorrect, even with complete 
information they do not require a player to bear as much uncertainty as 
other players about his own strategy choice. On the contrary, requiring an 
individual to bear uncertainty about his own decisions just because other 
players do is somewhat counterintuitive. 

This section extends Nash’s definition of equilibrium by relaxing its 
equal-uncertainty requirement. The resulting notion of equilibrim, called 
“equilibrium in beliefs,” allows players with quasiconcave preferences (who 
may prefer the “variety” afforded by mixed strategies even when they yield 

’ More formally, the set of probability distributions a player can bring about by varying his 
strategy for a given value of his opponent’s strategy is the convex hull of a finite number of 
points. A maximum of a strictly quasiconvex function over such a set must occur at a vertex; 
when the set is nondegenerate, which is always true in the example when a # h, this requires 
him to play a pure strategy. 

It is tempting to conclude that there is no Nash equilibrium whenever there is no pure- 
strategy Nash equilibrium and players’ preferences are strictly quasiconvex. My argument 
does not quite show this, and considering the example with a = h makes clear that it is not 
true. When u = h, there is a strategy combination (in which each player plays each of his pure 
strategies with equal probability) such that neither player can unilaterally change the 
probability distribution of money outcomes. Such a combination must be in Nash equilibrium 
for any specification of players’ preferences in which they depend only on the probability 
distribution of money outcomes. The existence of this kind of equilibrium, in conjunction with 
the nonexistence just noted for all members of a wide class of neighboring games, is not 
incompatible with the upper hemi-continuity of the equilibrium correspondence, but it is 
somewhat startling. It is therefore natural to ask how common such equilibria are. This question 
was answered for finite zero-sum two-person games by von Neumann and Morgenstern 138. 
pp. 18221861 in the process of inventing a device for reducing background uncertainty to 
mixed-strategy uncertainty. They showed that in such games, there is an equilibrium at which 
neither player can unilaterally alter the probability distribution of money outcomes if and 
only if each payoff appears the same number of times in each row, and in each column, of 
the payoff matrix. This suggests that games in which a mixed-strategy Nash equilibrium exists 
despite players’ having strictly quasiconvex preferences are extremely rare. 
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no strategic benefits; see Section 2 or Machina [30]) to take full advantage 
of their randomization possibilities, while letting players whose preferences 
are not quasiconcave reap the strategic benefits of mixed strategies without 
enduring the associated uncertainty. 

It is shown that equilibrium in beliefs is completely equivalent to Nash 
equilibrium whenever players have quasiconcave preferences, so that, 
although Nash’s equal-uncertainty requirement is arbitrary, it is also 
innocuous when independence is satisfied. But without quasiconcavity the 
two concepts differ, and a mixed-strategy equilibrium in beliefs exists 
whether or not players have quasiconcave preferences; mixed strategies are 
required for this result only to the extent that players whose preferences are 
not quasiconvex prefer them to pure strategies. Thus, equilibrium in beliefs 
provides an internally consistent formalization, without the assumption of 
independence, of the idea of rationality that motivated Nash’s definition of 
equilibrium, allowing a unified treatment of players with linear, quasi- 
concave, and quasiconvex preferences. 

Equilibrium in beliefs can be defined as follows. For any set T of mixed 
strategies, let D[T] denote the set of probability distributions over the 
elements of T, each expressed as vector, conformable to a mixed strategy, 
that gives the ultimate distribution of pure strategies. 

DEFINITION 2. An equilibrium irz helie@ is a pair of probability distribu- 
tions, (P*, Q*), such that 

p* E Warmax,..sna VP: Q*)l and Q*~~Cargmax,,,~ W(P*; q)]. 
(2) 

P* and Q* should be thought of as C’s and R’s respective equilibrium 
beliefs about each other’s ultimate pure-strategy choices. (Lower case 
letters are used throughout for players’ mixed strategies, and upper case 
letters are used for players’ beliefs, when they may differ.) In the words of 
Aumann [l, p. 151: 

. the players simply do not know what actions the other players will take. In 
“matching pennies”, each player knows very well what he himself will do, but 
ascribes i-i probabilities to the other’s actions, and knows that the other ascribes 
those probabilities to his own actions. 

Equilibrium in beliefs requires each player’s beliefs about the other’s mixed 
strategy to be a (possibly degenerate) probability distribution over the 
other’s best replies, given his beliefs about the first player’s mixed strategy; 
the second player’s beliefs about the first player’s mixed strategy are 
required, in turn, to be the same as the first player’s beliefs about the 
second player’s beliefs, and so on. Once players’ beliefs are determined, 
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their best-reply correspondences are easily recovered. These correspon- 
dences completely summarize the implications of rational play in the game; 
players’ choices from them do not affect their (ex ante) equilibrium 
welfares, and are not determined by the model in any case. 

Because equilibrium in beliefs explicitly allows for a player’s uncertainty 
about his opponent’s choice from his best-reply correspondence, it is 
reminiscent of Bernheim’s [4] and Pearce’s [39] notion of rationalizability. 
However, because its definition is formulated in terms of a single set of 
commonly held beliefs, it rests implicitly on the assumption that those 
beliefs are common knowledge (see Aumann [ 1 ] and Brandenburger and 
Dekel [IS, Section 4]), and is therefore more closely related to Nash 
equilibrium than to rationalizability. In fact, equihbrium in beliefs is 
equivalent to Nash equilibrium when players’ preferences are quasiconcave, 
hence when independence is satisfied; what I have called equilibrium in 
beliefs is therefore often viewed simply as an alternative interpretation of 
Nash equilibrium, with the equilibrating variables viewed not as players’ 
strategy choices, but as their beliefs. However, the distinction between 
Nash equilibrium and equilibrium in beliefs is substantive when not all 
players’ preferences are quasiconcave. 

The equivalence of Nash equilibrium and equilibrium in beliefs when 
players’ preferences are quasiconcave follows from two observations: 

OBSERVATION 1. [f‘ (P*, Q* ) is u Nash equilibrium in a game, it is ulso 
un equilibrium ill heli@ in that game. 

ProoJ: Observation 1 follows immediately from Definitions 1 and 2, 
because an element of argmax,. s,, V( p; Q*) is also an element of 
DCargmax,.,m UP: Q*)l, and an element of argmax,. ,s, W(P*; q) is also 
an element of D[argmax,E,sfl W(P*; q)]. 1 

OBSERVATION 2. If  (P*, Q*) is an equilibrium in beliefs in a game in 
which players have quasiconcave prgferences, then (P*, Q*) is also a Nash 
equilibrium in that game. 

Proox By Definition 2, an equilibrium in beliefs (P*, Q*) satisfies (2). 
Because argmax.,, r, f(x) is a convex set whenever f ( .) is quasiconcave and 
X is convex, the quasiconcavity of V(. ) and W( . ) then implies that 
(P*, Q*) satisfies (1 ), Definition l’s condition for a Nash equilibrium. 1 

The equivalence of Nash equilibrium and equilibrium in beliefs is 
intuitively clear when players’ preferences satisfy independence. Then, a 
player’s uncertainty about his own equilibrium pure-strategy choice does 
not affect his welfare, because all choices to which his equilibrium mixed 
strategy assigns positive probability must be best replies, and independence 
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implies that he is indifferent about how uncertainty over indifferent out- 
comes is resolved. Strict quasiconcavity does not destroy this equivalence, 
because in equilibrium a player with strictly quasiconcave preferences 
always chooses to bear as much uncertainty about his pure-strategy choice 
as his opponent. (The game’s information structure does not allow him to 
bear more.) 

The next result shows how Nash equilibrium and equilibrium in beliefs 
are related in games with players who do not have quasiconcave preferen- 
ces, and are therefore unwilling to bear as much uncertainty about their 
own pure-strategy choices as their opponents do. 

DEFINITION 3. The conuexgierd version of a game is obtained from the 
game by replacing each player’s preferences by the quasiconcave preferen- 
ces whose upper contour sets are the convex hulls of his original upper 
contour sets (defined in Section 3), leaving other aspects of the game 
unchanged. 

It can be shown, using Caratheodory’s Theorem, that players’ preferen- 
ces in the convexified version of the game inherit the continuity of their 
original preferences.’ 

THEOREM 1. (P*, Q*) is an eqzrilibriunz in he1iqf.k in a game (f and onI) 
if it is a Nash equilibriun~ in the conoe.u$ied version oj‘ the game. 

Proof: Suppose first that (P*, Q*) is an equilibrium in beliefs in a 
game. Because the “players” in the convexified version of the game have 
continuous, quasiconcave preferences, the proof of Observation 2 shows 
that (P*, Q*) satisfies (1) for the convexilied version of the game, and is 
therefore a Nash equilibrium in that game. Now suppose that (P*. Q*) is 
a Nash equilibrium in the convexilied version of a game. Then P* is in the 
convex hull of R’s (true) equilibrium upper contour set, and is thus a 
convex combination of his best replies to Q*. Similarly, Q* is a convex 
combination of C’s best replies to P*. Thus, (P*, Q*) satisfies (2), and is 
therefore an equilibrium in beliefs in the game. 1 

Because the convexified version of a game whose players have quasi- 
concave preferences is the game itself, Theorem 1 subsumes Observation 2 
and, when players have quasiconcave preferences, Observation 1 as well. 
Theorem 1 also makes it possible to deduce the existence of an equilibrium 
in beliefs from standard results: 

‘See, for example, Rockafellar [40, Theorem 17.21. A different argument is required for 
games with more complex strategy spaces. 
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THEOREM 2. Any ,finite matrix game of’ complete information whose 
players have continuous preference functions has an equilibrium in beliefs. 

Proqf Given Theorem 1 and the continuity of players’ convexilied 
preferences, the theorem follows immediately from Debreu’s [ 151 Social 
Equilibrium Existence Theorem, applied to the convexified version of the 
game. 1 

Mixed strategies are needed for Theorem 2 only when players whose 
preferences are not quasiconvex prefer them to pure strategies, given their 
equilibrium beliefs. It is of course necessary to allow “mixed” beliefs in 
general, but this is not inconsistent with players playing pure strategies. 

A straightforward extension of the arguments that underlie Theorems 1 
and 2, working with the agent normal form (as in Karni and Safra 
[24,25]) or (as suggested by Machina 1321) ignoring the dynamic-con- 
sistency issues raised by violations of independence as irrelevant in games 
whose decisions are not significantly separated in time, yields the existence 
of a “subgame-perfected” version of equilibrium in beliefs under the 
assumptions maintained here. Theorem 1 suggests natural extensions of 
other refinements to equilibrium in beliefs; these are left for future work. 

I conclude this section by using the example introduced in Section 4, 
with u> b >O, to illustrate the construction of an equilibrium in beliefs 
when players’ preferences are strictly quasiconvex. It follows from 
Section 4’s arguments that the convexified version of this example has no 
Nash equilibrium in which either player plays a pure strategy. Theorem 1 
therefore implies that, given the strict quasiconvexity of players’ preferen- 
ces, an equilibrium in beliefs (P:, P* ; QF, Q5) must satisfy 

and 

V(0, 1; Q:, Qr*)= Vl, 0; PI", Qz*) 

W(PT, Pz*;O, I)= W(PF, PT; 1,O). 

(3) 

Continuity and first-order stochastic dominance preference ensure that (3) 
determines unique values of (PF, P:) and (Q:, QT), which are plainly in 
Nash equilibrium in the convexified version of the game and in equilibrium 
in beliefs in both the game itself and its convexilied version. 

The construction of this equilibrium in beliefs is illustrated in Fig. 2. 
Probability distributions over the three possible outcomes, 0, a, and b, are 
depicted with the ex ante probability of R winning z from C denoted P(z), 
suppressing P(0) = 1 - P(a) - P(b). Figure 2 graphs each player’s equi- 
librium indifference curve, given the unique beliefs (P:, PT ; QT, QT) that 
satisfy (3). The intercepts of these indifference curves are located by noting 
that, because players’ ultimate pure-strategy choices are statistically 
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FK. 2. Equilibrium in beliefs with quasiconvex preferences. 

independent, P(a) = P, Q, and P(b) = P,Q,. Thus, when C’s beliefs about 
R’s ultimate pure-strategy choice are given by (Pf, PT), C can bring 
about any distribution on the line segment from (P(a), P(b)) = (P:, 0) 
to (P(a), P(b)) = (0, Pf) by varying his strategy from (Q,, Q2) = (1,O) to 
(Qt, Qd = (0, 1); (3) re uires q that he be indifferent between these two 
extreme points. Similarly, when R’s beliefs are given by (Q:, Q:), he can 
bring about any distribution on the line segment from (P(a), P(b)) = 
(Q:, 0) to (P(u), P(h)) = (0, Q;) by varying his strategy from (P, , Pz) = 
( 1,0) to (P,, P2) = (0, 1); (3) again requires indifference between these 
points. It is easy to verify that these line segments intersect at 
(P: Q:, P? Q:), the equilibrium value of (P(a), P(h)). Given first-order 
stochastic dominance preference and that a > h > 0, R prefers higher values 
of P(a) and P(b), and C prefers lower values; R’s and C’s indifference 
curves are distinguished in each figure by arrows indicating these 
preference directions. 

Figures 3 and 4 illustrate the construction of Nash equilibrium and equi- 
librium in beliefs when players’ preferences are respectively linear and 
quasiconcave. Figures 2 and 3 together illustrate Theorem 1. Figure 3 is 
constructed like Fig. 2. However, because Nash equilibrium and equi- 
librium in beliefs are no longer characterized by (3) when players have 
strictly quasiconcave preferences, Figure 4 is constructed by applying 
Observation 3 from Section 6 and then using the construction of Fig. 3. 
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FIG. 3. Equilibrium in beliefs (and Nash equilibrium) with linear preferences. 

FIG. 4. Equilibrium in beliefs (and Nash equilibrium) with quasiconcave preferences 
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6. LINEARIZED GAMES 

This section records two observations about Nash equilibrium and equi- 
librium in beliefs in games and linearized versions of the games. 

DEFINITION 4. A player’s focal preference function at a given point is the 
linear preference function tangent to his preference function at that point. 
A player’s local preferences at a given point are the preferences represented 
by his local preference function at that point.” 

A player’s local preferences satisfy independence by construction. When 
his preference function is differentiable, his local preferences at any given 
point are unique; the local preference function is then unique up to increas- 
ing transformations. 

DEFINITION 5. The linearized version of a game at a given point is 
obtained from the game by replacing each player’s preferences by his local 
preferences at that point. 

OBSERVATION 3. A Nash equilibrium in a game is also a Nash equi- 
Iibrium in the linearized uersion of the game at the equilibrium. 

OBSERVATION 4. A Nash equilibrium in a game whose pla.yers have linear 
preferences is also a Nash equilibrium in any game whose players have 
quasiconcave preferences for which the game is the linearized version at the 
equilibrium. 

Observations 3 and 4 are illustrated in Fig. 4. Their proofs follow 
immediately from the facts that a player’s preference function and his local 
preference function at a given point have the same first derivative at that 
point, and that the first-order conditions are sufficient as well as necessary 
for a maximum of a quasiconcave (or linear) function over a convex set. 
Mathematically, these observations are roughly analogous to the first and 
second basic theorems of welfare economics; note in particular that they 
rest on the same separation theorems, and that Observation 4, but not 
Observation 3, requires that players have quasiconcave preferences. 

Together with Theorem 1, Observations 3 and 4 map out the relationship 
between Nash equilibrium and equilibrium in beliefs in games and their 

” Here, linearity refers to the player’s underlying preferences over outcome probabilities; 
thus, his local preference function is bilinear in p and 9. Machina [27] worked instead with 
the “local utility function” that gives the coefficients of the outcome probabilities in the local 
preference function, just as the von Neumann-Morgenstern utility function gives those 
coetlicients for an individual with linear preferences. The local preference function contains the 
same information as the local utility function, and is more convenient for my purposes. 
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linearized versions. Theorem 1 shows that Observation 4 remains valid 
when “equilibrium in beliefs” replaces “Nash equilibrium” in its statement. 
This replacement invalidates Observation 3 unless players’ preferences are 
quasiconcave, because otherwise the linearized version of the convexitied 
version of a game generally differs from the convexitied version of the 
linearized version of the game. To see this, note that players’ indifference 
curves through the point (P(a), P(b)) = (P:Q:, PtQ$) in Fig. 2 need not 
be tangent to the dashed lines that represent the indifference curves of their 
convexitied preferences through that. point. 

7. COMPARATIVE STATICS 

This section considers how the comparative statics properties of equi- 
librium are altered by violations of independence. Attention is restricted, 
for simplicity, to games in which players’ preferences are either both strictly 
quasiconcave or both strictly quasiconvex. 

Suppose first that players’ preferences are strictly quasiconcave, and 
recall that Nash equilibrium and equilibrium in beliefs are equivalent in 
this case. Observations 3 and 4 suggest the possibility of a useful corre- 
spondence between the qualitative comparative statics of equilibrium in a 
game and in its linearized version. This suggestion is reinforced by 
Machina’s [27, Theorem 41 (see also his discussion in [29, Section 21) 
demonstration that global restrictions on an individual’s local Arrow-Pratt 
measure of absolute risk aversion (that is, the Arrow-Pratt measure 
computed for the von Neumann-Morgenstern utility function associated 
with his local preference function) determine the qualitative comparative 
statics of his demand for safe versus risky assets in the same way with and 
without independence. 

An optimistic conjecture about the correspondence might go as follows. 
(The term “game” is used loosely here, to refer to a specification of players’ 
strategy spaces and their monetary payoffs, leaving their preferences free to 
vary. ) 

Conjecrure. If a given qualitative comparative statics result holds in a 
game whenever its players have linear preferences in a given class, then it 
also holds for that game when players have nonlinear, differentiable 
preferences whose local preferences are everywhere in that class. 

When players’ preferences are strictly quasiconcave, the conjecture is 
invalid for two reasons, one common to games and individual decisions, 
and one specific to games. The first reason is that the signs and magnitudes 
of comparative statics derivatives for individual decisions, and a.fortiori for 
games, depend in general on second-order as well as first-order partial 
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derivatives. Simple examples (see, for instance, Crawford [ 11, Section 61) 
show that the direction of an individual’s responses can change when his 
quasiconcave preferences are replaced by his local preferences. The second- 
order conditions determine the signs of the denominators of the com- 
parative statics derivatives, and ensure that they are the same in each case; 
but the second-order restrictions implied by independence are generally 
instrumental in signing the numerators, which can therefore differ in sign 
between the two cases. Machina [27, Theorem 41 (see also Machina [31] 
and Neilson [ 361) avoids this diffkulty by placing stronger restrictions on 
individuals’ preferences-in this case, that the local absolute risk aversions 
of the individuals being compared are everywhere ordered in the same 
way-than are needed to establish the comparative statics results when 
their preferences satisfy independence. These restrictions make it possible to 
derive, from information about first-order partial derivatives, conclusions 
about behavior that would otherwise depend on second-order partial 
derivatives. 

The second reason is that, in games as in individual decisions, the 
second-order conditions of individuals’ optimization problems are impor- 
tant in determining the signs of the denominators of comparative statics 
derivatives. But in games, the signs of these denominators (which are the 
determinants of matrices derived from the second-order partial derivatives 
of all players’ objective functions) are no longer completely determined by 
individuals’ second-order conditions. This leaves them free to differ between 
the game and its linearized version. 

The example used in Sections 4 and 5 can be used to illustrate both of 
these sources of differences. Assume again that a> b>O, and treat the 
monetary payoff a as a parameter of V( .), assuming that C’s monetary 
payoff when each player plays his first pure strategy remains fixed at its 
initial value of -a. A totally mixed equilibrium in beliefs-that is, one in 
which each player’s beliefs assign positive probability to each of his 
opponent’s pure strategies-is characterized, substituting out P2 E 1 - P, 
and Q, = I - Q, for simplicity and interpreting the partial derivatives with 
these substitutions in mind, by the first- and second-order conditions 

and 

~V(P:,~-P:;Q:,~-Q:;~)/~P,=O, 

~2v(f’T, l-P:;QT, l-QT;a)/dpf<O, 

dw(p:, 1 -pi+; Q:, 1 -QF)/dQ, =o, 

(4) 

(5) 

(6) 

a2w(P:, 1 - PF; Q:, I- Q:)/~Q: ~0, (7) 

where P: and P: denote the equilibrium values of P, and P2 
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Applying the Implicit Function Theorem to the system of first-order 
conditions composed of (4) and (6) yields 

In (8), all functions are evaluated at the equilibrium values of P: and QT; 
and it is assumed that H, the determinant of the matrix on the left-hand 
side, is nonzero. (Note that even when players’ preference functions are 
linear, so that the diagonal elements of the matrix are zero, H is generically 
nonzero.) Applying Cramer’s Rule to (8) yields 

and 

dP:/da= -[a2V(.)/aP,aa][32W(.)/aQ:]/H (9) 

dQf/da= -[a2V(.)/dP,aall[a2w(.)/aQ,ap,l/H. (10) 

The conjecture fails for two reasons. First, when V( .) is linear, 
a’V( .)/aP, da must be positive if R prefers more money to less, but it is 
easily verified that this does not follow from first-order stochastic 
dominance preference when V(. ) is required only to be quasiconcave. The 
separability across outcomes implied by independence is instrumental in 
signing the numerators of the comparative statics derivatives in (9) and 
(10). Second, the determinant H is not signed by the second-order condi- 
tions of players’ optimization problems, and is therefore free to differ in 
sign from the analogous determinant in the corresponding game where 
V(. ) and W( -) are replaced by R’s and C’s local preference functions. 

Now consider games whose players’ preferences are strictly quasiconvex, 
and recall that, by Theorem 1, an equilibrium in beliefs in such a game is 
equivalent to a Nash equilibrium in its convexilied version. Because 
players’ preferences in the convexified version of such a game are linear, 
this makes the conjecture highly plausible. Somewhat surprisingly, the 
analysis that follows shows that it is not quite correct. 

It is assumed that the game has a totally mixed equilibrium inibeliefs. 
This is a significant restriction, required by the standard comparative 
statics methodology employed. However, in games that do not have a 
totally mixed equilibrium, the set of pure strategies that are “active” in 
equilibrium is almost everywhere unaffected by a small parameter change. 
Results derived for totally mixed equilibria therefore apply, locally, except 
for parameter values at which the set of active pure strategies changes, and 
thus hold locally for almost all games that do not have a totally mixed 
equilibrium. I consider only changes in the monetary payoff Y,, , 
abbreviated for clarity to r from now on; the results can be reinterpreted 
to obtain the effects of changing the other r,,, or the c,,. 
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Let e, denote a vector (of dimension determined by the context) with a 
one in the ith place and zeros everywhere else. It follows from Theorem 1 
that the equilibrium in beliefs (P*. Q*) is characterized by the systems 

V(e,;Q*;r)= -h, 

V(ez; Q*; r) = -h, 

(11) 

V(e,; Q*; r) = -h, 

iQ;= 1, 

and 

W(P*; e, ) = k, 

W( P*; e2) = -k, 

(12) 

W( P*; e,) = -k, 

tP:=l, 

where h and k are constants to be determined. Systems (11) and (12) 
ensure that each player is indifferent, given his beliefs, between any two of 
his active pure strategies, and that the probabilities he assigns to his 
opponent’s playing his available pure strategies sum to one. System (12) 
reflects the fact that the parameter r, which appears as an argument of I’( .) 
in ( 1 l), does not directly affect C’s welfare. 

Systems (11) and (12) closely resemble those that characterize a totally 
mixed Nash equilibrium when players are expected utility maximizers; 
compare systems (1) and (2) in Crawford and Smallwood [14]. Just as 
when independence is satisfied, a player’s beliefs about his opponent’s 
strategy make him indifferent between any two of his active pure strategies 
(although in this case he would not be indifferent between those pure 
strategies and randomizing over them), and the equations that determine 
one player’s equilibrium beliefs are completely separable from those that 
determine the others. Further, as standard equation-counting arguments 
show, for almost all games a totally mixed equilibrium can exist only when 
m = n, so that each player has the same number of active pure strategies. 

To evaluate the conjecture in the quasiconvex case, note first that, just 
as when independence is satisfied, changing r has no effect on P* as long 
as the same sets of pure strategies remain active, because P* is determined 



dv(e,; Q*; r)ldQ, 

1 : 

... dV(e,; Q*; r)/aQ, 1 dQ I”ldr dv(e,; p*; r)PQ, ... aV(e,,; e*; r)/i3Q,, ; dQ,*/dr 
I 
L 1 . . . 1 I : 0 dh/dr 1 

-dV(e, ; Q*; r)/dr 

0 L : 1. 0 

(13) 

0 

150 VINCENT P. CRAWFORD 

by (12) alone. Further, r affects V( .) only when R plays his first pure 
strategy with positive probability, so that dV(e,; Q*; r)/& = 0 for all if 1. 
To compute the effect of changing r on Q*, apply the Implicit Function 
Theorem to (11) to obtain 

(13) is derived under the assumption that the matrix that appears on its 
left-hand side has a nonzero determinant. The nonsingularity of this matrix 
for generic games reflects the fact that, even though C’s best reply is discon- 
tinuous in P at equilibrium when his preferences are quasiconvex, the value 
of Q* at an equilibrium in beliefs normally varies smoothly with r. This 
stands in interesting contrast to the discontinuity of individual decisions 
with quasiconvex preferences (see Section 2 or Machina [30]). 

(13) can be solved by Cramer’s Rule to obtain the desired comparative 
statics derivatives, which are determined entirely by the first-order partial 
derivatives of V( .). Despite the fact that changing r generally affects these 
partial derivatives in complex ways when R’s preference function is non- 
linear, (13) takes precisely the same form as when independence is satisfied: 
The same zero restrictions are satisfied, and the partial derivative 
d V(e,; Q*; r)/c3Qj is the nonlinear analog of R’s von Neumann-Morgenstern 
utility for the monetary payoffr,. 

If the local von Neumann-Morgenstern utilities that make up the matrix 
on the left-hand side of (13) were evaluated at the same probability dis- 
tribution of outcomes, the conjecture would therefore follow immediately 
from (13). Because they are not, the conjecture requires an additional 
assumption: When players’ preferences satisfy betweenness in the sense of 
Chew [7] and Dekel [17)-that is, when their preferences are both 
quasiconcave and quasiconvex, so that their indifference surfaces are linear 
(but not necessarily parallel)-local utilities evaluated at different distribu- 
tions on the same indifference surface can be taken to be independent of 
where they are evaluated. This is precisely what is needed for the conjecture 
to hold. 
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When betweenness is replaced by strict quasiconvexity, the conjecture is 
invalid as stated. It fails, despite Theorem 1, because a player whose 
preferences are strictly quasiconvex has widely separated best replies. Thus, 
other players’ beliefs about his strategies are determined by global com- 
parisons, and local linearity of his preference function is not enough to 
justify a generalized expected utility analysis of his strategic responses. 
Betweenness overcomes this difficulty by extending local linearity to global 
linearity along the equilibrium indifference surfaces. 

In general, if a qualitative comparative statics result holds in a game 
whenever its players have linear preferences in a given class, then it also 
holds for that game whenever players have quasiconvex, differentiable 
preferences such that local preference functions made up of their partial 
derivatives (possibly evaluated at different points) always fall in that class. 
This is considerably weaker than the conjecture. It shows, however, that 
the comparative statics of games whose players have quasiconvex preferen- 
ces bear at least a family resemblance to the comparative statics of the 
corresponding games whose players are expected utility maximizers. 

8. CDNCLUSION 

This section concludes the paper by discussing related work. 
The earliest mention of the issues considered here of which I am aware 

is a passage in von Neumann and Morgenstern [38, p. 1561 (paraphrased 
where indicated to remove dependence on context): 

That the [payoff function] is a bilinear form is due to our use of the “mathematical 
expectation” whenever probabilities intervene. It seems significant that the linearity 
of this concept is connected with the existence of a solution. in the sense in which 
we found one. Mathematically this opens up a rather interesting perspective: One 
might investigate which other concepts, in place of “mathematical expectation,” 
would not interfere with our solution.-i.e. with the [minimax theorem] for zero- 
sum two-person games. 

Interestingly, despite the apparently conclusive evidence in this quotation, 
there is ample evidence elsewhere in Theory of Games and Economic 
Behavior that relaxing independence is not what von Neumann and 
Morgenstern had in mind. They thought it desirable [38, pp. 6088616 and 
63&632] to relax their assumptions that preferences are complete and con- 
tinuous, and that they depend only on the ultimate probability distribution 
of outcomes (without regard to how that distribution was obtained by 
reducing compound lotteries). Of independence, however, they say only 
that it “expresses a property of monoton[icit]y which it would be hard to 
abandon” ([38, p. 6301; letters added for clarity). Aside from the 
experimental evidence accumulated in the last four decades, relaxing inde- 
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pendence may appear more interesting today than it did to von Neumann 
and Morgenstern because their original formulation made independence 
hard to separate from the rest of their axiom system (see Malinvaud [33] 
and Samuelson [42]). 

Since von Neumann and Morgenstern wrote, there has been very little 
work in game theory outside the expected utility framework. Shapley and 
Shubik [44] outlined a generalization of the von Neumann-Morgenstern 
solution for n-person cooperative games that does not require inde- 
pendence. Weber [45] and Karni and Safra [24,25] found it useful to 
consider certain kinds of violations of independence in explaining behavior 
in auctions. Fishburn [ 191 established the existence of Nash equilibrium 
with a relaxed continuity assumption. And Fishburn and Rosenthal [20] 
(see also Shafer and Sonnenschein [43]) proved the existence of equi- 
librium when players’ preferences violate transitivity and independence in 
certain ways. 

In recent years, non-expected utility decision models have given us 
significantly better explanations of observed behavior in nonstrategic 
environments. These successes, and the weight of the experimental evidence 
against the expected utility hypothesis, suggest that much might be learned 
about strategic behavior by basing applications of game theory on more 
general models of individual decisions under uncertainty. This paper has 
shown that at least one obstacle to such applications can be overcome. 
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