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Introduction

This talk concerns experiments that study strategic thinking by eliciting
subjects’ initial responses to series of different but related games, while
monitoring and analyzing the patterns of subjects’ searches for hidden but
freely accessible payoff information along with their decisions.

The talk is based on three papers:

Costa-Gomes and Crawford, “Cognition and Behavior in Two-Person
Guessing Games: An Experimental Study,” American Economic
Review 2006 (“CGC").

Crawford, “Look-ups as the Windows of the Strategic Soul: Studying
Cognition via Information Search in Game Experiments,” in Andrew
Caplin and Andrew Schotter, editors, Perspectives on the Future of
Economics: Positive and Normative Foundations, Volume 1,
Handbooks of Economic Methodologies, Oxford University Press,
2008

Costa-Gomes and Crawford, “Studying Cognition via Information Search
In Two-Person Guessing Game Experiments,” still in preparation.



Other experiments that study strategic thinking via search patterns

Camerer, Johnson, Rymon, and Sen, “Cognition and Framing in Sequential
Bargaining for Gains and Losses,” in Kenneth Binmore, Alan Kirman, and Piero
Tani, editors, Frontiers of Game Theory, 1993 (“CJ")

Johnson, Camerer, Sen, and Rymon, “Detecting Failures of Backward Induction:
Monitoring Information Search in Sequential Bargaining,” Journal of Economic
Theory 2002 (*CJ")

Costa-Gomes, Crawford, and Broseta, “Cognition and Behavior in Normal-Form
Games: An Experimental Study,” Econometrica 2001 (“CGCB")

Camerer and Johnson, “Thinking about Attention in Games: Backward and
Forward Induction,” in Isabel Brocas and Juan Carrillo (editors), The
Psychology of Economic Decisions, Volume Two: Reasons and Choices,
Oxford, 2004

Wang, Spezio, and Camerer, “Pinocchio's Pupil: Using Eyetracking and Pupil
Dilation To Understand Truth-telling and Deception in Games,” 2008
Experiments that study strategic thinking via searc h durations

Ariel Rubinstein, “Instinctive and Cognitive Reasoning: A Study of Response
Times,” Economic Journal 2007
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Adapting methods introduced to the experimental game theory literature
by CJ and CGCB—previously used extensively to analyze decisions, for
example by Payne, Bettman, and Johnson 1993—CGC elicited subjects’
Initial responses to a series of 16 two-person guessing games designed

for this purpose, while monitoring and analyzing the patterns of subjects’
searches for hidden but freely accessible payoff information.

Following CGCB, CGC then used an explicit, procedurally rational model
of cognition to analyze subjects’ searches along with their decisions.



GCG'’s analysis shows that with careful design, subjects’ search patterns
can sometimes directly reveal the algorithms used to choose their
decisions, in such cases making it possible to identify subjects’ decision
rules even without observing their decisions.

The analysis also shows that decisions and search are complementary,
together making it possible to identify subjects’ decision rules more
precisely than would be possible even with unlimited decision data.

CGC'’s analysis also illustrates some novel analytical and econometric
ISsues that arise in analyzing process data.



Motivation

The topic of studying strategic thinking via information search raises two
guestions of motivation:

e Why study strategic thinking when even unthinking people are likely
eventually to converge to equilibrium anyway?

e Why study strategic thinking by monitoring and analyzing process
data if the goal is only to predict decisions?



Why study strategic thinking?

Strategic thinking is an essential part of human interaction, but one whose
Importance from a behavioral point of view has been downplayed.

Most applications of game theory in economics and game theory rely on
Nash equilibrium.

But while equilibrium can be viewed as a model of strategic thinking, there
are many applications for which it is not an adequate model of behavior.



Players’ strategies will be in equilibrium if they are rational and have the
same beliefs about each other’s strategies.

Accepting rationality for the sake of argument, there are two possible
justifications for the assumption that players have the same beliefs:

e Thinking: If players have perfect models of each other’s decisions,
strategic thinking will lead them to have the same beliefs immediately,

and so play an equilibrium even in their initial responses to a game.

e Learning: Even without perfect models, if players repeatedly play
analogous games, experience may eventually allow them to predict
each others’ decisions well enough to play an equilibrium in the limit.



In many applications the theoretical conditions for learning to converge to
equilibrium are approximately satisfied, and in such settings both
experimental and field evidence tends to support assuming that steady-
state strategy choices are in equilibrium (with some qualifications).

In applications where only long-run outcomes matter, or where
equilibrium is unique, or where equilibrium selection does not depend on
the detalls of learning, analysis can safely rely entirely on equilibrium.



However, many other applications involve games played without clear
precedents, so that the standard learning justification for equilibrium is
unavailable.

In other applications, eventual convergence to equilibrium is assured, but
Initial as well as limiting outcomes matter (e.g. FCC Spectrum auction).

And in still other applications, convergence is assured and only long-run
outcomes matter, but the equilibrium is selected from multiple possibilities
via history-dependent learning dynamics.

All such applications depend on reliably predicting initial responses to
games, which may require a non-equilibrium model of strategic thinking.
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As will be seen, empirically successful models of strategic thinking normally
allow equilibrium behavior, but do not assume equilibrium in all games.

Instead they assume that players follow strategic but non-equilibrium
decision rules, which yield decisions that mimic equilibrium in simple
games, but may deviate systematically in more complex games.

The models thereby provide a way to predict, in a given game, whether
players’ responses are likely to deviate from equilibrium, and if so, how.

11



Why study process data?

An experimental design could, in principle, separate the decisions implied
by different kinds of strategic thinking well enough to allow us to infer
thinking entirely from decisions.

But in economically interesting games, our ability to distinguish among
models of strategic thinking is near the limits of experimental feasibility.

For example, although CGC'’s design, described below, is quite powerful
from the standpoint of studying decisions alone, it leaves open some
Important questions regarding subjects’ decision rules.
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If decision data were free, it might be optimal to address open questions
just by gathering more decision data, perhaps in new environments.

But decision data are far from free, and existing methods for gathering
them are fairly easily adapted to gather process data at the same time.

Further, with careful design, monitoring search for hidden payoff
Information can give us an independent “take” on strategic thinking, one
that is more directly related to cognition than are decisions.

As will be seen, monitoring search sometimes allows us to directly
observe the algorithms subjects use to make their decisions, and to
distinguish mistakes from intended behavior.

Thus, exclusive reliance on gathering more decision data seems unlikely
always to be optimal: At least for studying thinking, good research
strategies should be open to process as well as decision data, even if this
requires developing new methods of analysis.
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Outline of the talk

The talk begins by summarizing CGC’s experimental design.

It then discusses CGC'’s results for subjects’ decisions, introducing the
model based on strategic thinking “types” that underlies their analysis and
highlighting econometric issues that remain open.

It next raises some guestions regarding subjects’ thinking that are not
adequately resolved by analyzing decisions alone, but which might be
resolved by analyzing decisions and information search.
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The talk then turns to CGC’s analysis of cognition and search.

The types used to analyze decisions play an essential role in analyzing
search.

CGC’s model of cognition and search takes a procedural view of
decision-making:

In a given game, a subject’s type first determines his search, and his type
and search then jointly determine his decision.

In the analysis, the types provide a basis for the enormous space of

possible decision and search sequences, imposing enough structure to
allow us to describe subjects’ behavior in a comprehensible way and to
make it meaningful to ask how their decisions and searches are related.

The talk concludes by summarizing CGC'’s results for information search
and highlighting open econometric issues involving search.
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CGC'’s experimental design

CGC’s experiments randomly and anonymously paired subjects to play a
series of two-person guessing games, with no feedback between games.

The design suppresses learning from experience and repeated-game
effects in order to elicit subjects’ initial responses, game by game.

The goal is to focus on how people model others’ decisions by studying
strategic thinking “uncontaminated” by learning from experience.

“Eureka!” learning remains possible, but CGC tested for it and found it to
be rare.

(The results yield insights into cognition that also help us think about how
to model learning from experience, but that’s another story.)
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CGC’s design combines the variation of the games each subject played
of CJ’'s 1993 design and Stahl and Wilson’s 1995 GEB design with the
very large strategy spaces of Nagel's 1995 AER and Ho, Camerer, and
Weigelt's ("HCW”) 1998 AER designs.

This combination greatly enhances the design’s power:

A subject’s profile of guesses forms a “fingerprint” that identifies his
strategic thinking more precisely than is possible by observing his
responses to a series of different games with small strategy spaces or
any single game, even with a very large strategy space.
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In CGC'’s two-person guessing games, each player has a lower and an
upper limit, both strictly positive, each taking one of two possible values.

However, players are not required to guess between their limits: Instead
guesses outside the limits are automatically adjusted up to the lower or

down to the upper limit as necessary—a trick to enhance the separation
of decision rules via their information search implications.

Each player also has his own target, taking one of four possible values.

A player’s payoff increases with the closeness of his adjusted guess to
his target times the other player’s adjusted guess.

The targets and limits vary independently across players and 16 games,
with targets either both less than one, both greater than one, or “mixed”.

(In Nagel’'s and HCW'’s previous guessing game experiments, the targets
and limits were always the same for both players, and they varied only
across treatments with different subject groups, or not at all.)
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For example, in game y403 (#5 in CGC'’s Table 3), player I's limits and
target are [300, 500] and 1.5; and player j's are [300, 900] and 1.3.

The product of targets 1.5 x 1.3 > 1, and players’ equilibrium adjusted
guesses are determined (not always directly) by their upper limits:

I's equilibrium adjusted guess equals his upper limit of 500, but j's is
below his upper limit at 650.

In the figure, guesses in the interval R(K) are eliminated in round k of
iterated dominance; thus the game is finitely dominance solvable.

Playeri p'=15 Eq. Gues
: R(1) | RO |
360 4%0 éOO
Player j p/=1.3 Eq. Guess
| R(1) R(2) | R v R(1)

| |
I J J I
300 390 585 650 900



CGC'’s sixteen games are all finitely dominance-solvable, in from 3 to 52
rounds, with essentially (due to automatic adjustment) unique equilibria.

The way In which equilibrium is determined in game y403, by players’
upper limits (in the indirect sense illustrated in the example) when the
product of their targets is greater than 1—or by their lower limits when the
product is less than 1—is general in CGC’s games.

CGC'’s design exploits the discontinuity of the equilibrium correspondence
when the product of targets is 1 by including some games that differ
mainly in whether the product is slightly greater, or slightly less, than 1.

Equilibrium responds strongly to such differences, but empirically
plausible non-equilibrium decision rules are largely unmoved by them.

That equilibrium is jointly determined by both players’ payoff parameters
also helps to separate search implications of equilibrium and other rules.
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CGC'’s types-based model of decisions

Following CGCB and other previous work in this area, CGC’s analysis of
decisions uses a types-based structural non-equilibrium model.

The model assumes that each subject’s guesses are determined in all 16
games, up to logit errors, by a single decision rule or “type” (as they are
called in this literature; no relation to private-information variables).

CGC’s types, listed on the next slide, all build in risk-neutrality and rule
out social preferences, again following previous work.

Risk aversion and social preferences are somewhat implausible in this
context, and the results and CGC'’s specification test, explained below,
suggest that they were not important factors in subjects’ decisions.

The list of types also excludes some others that might seem plausible,
mainly because they did not show up significantly in earlier analyses;
CGC'’s specification test doesn’t find any empirically important omissions.
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e O, L1 L2, and L3, with LO uniform random between a player’s limits, L1
best responding to LO, L2 to L1, and so on.

(LO represents a subject’s instinctive, nonstrategic reaction to the
game, and usually has zero estimated population frequency. Lk for k
> 0 Is rational, but deviates from equilibrium because it uses a
simplified model of others’ decisions. It is k-rationalizable, and so
coincides with equilibrium in games that are k-dominance solvable.)

e D1 and D2, which does one round (respectively, two) of iterated
dominance and best responds to a uniform prior over its partner’s
remaining decisions (a selection from the k-rationalizable strategies).

(By a quirk of our notation, L2 is D1’s cousin, and L3 is D2’s. Those
pairs’ guesses are perfectly confounded in Nagel’'s AER 1995 games;
and in two-person games Lk guesses are k-rationalizable, like Dk-1's.)

e Equilibrium, which makes its equilibrium decisions.

e Sophisticated, which best responds to the probabilities of others’
decisions, proxied by subjects’ observed frequencies.
(Sophisticated is an ideal, included to learn if any subjects have an
understanding of others’ decisions that transcends mechanical rules.)
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CGC's results for decisions

The large strategy spaces of CGC’s games and their variation of targets
and limits greatly enhance the separation of types’ implications.

(In the table, a player’s lower limit, upper limit, and target are denoted
a;,b;, and p; respectively; and his partner’s are denoted a;,b;, and p;.)

Types' guesses in the 16 games, in (randomized) ord _er played
Game|l a | by | pi|l a | b | p; JL1|L2] L3 D1 D2 Eq So
1 100 /900 | 1.5]1300|500| 0.7|600]525] 630 | 600 |611.25] 750 630
2 300|900 1.3|300|/500| 1.5]15201650] 650 |617.5] 650 650 650
3 300|900 1.3|300/900| 1.3]17801900| 900 }838.5]1 900 900 900
4 300|900 | 0.7 1100 /900 | 1.31350]1546|318.5]1451.51423.15| 300 420
5 |]100 500 1.5]|100 500 0.7 |450]|315|472.5|337.5]|341.25| 500 | 375
6 |100|500 0.7 100|900 0.5]350]|105|122.5]122.5| 122.5 | 100 | 122
7 100|500 0.7 100|500 1.5]210]|315|220.5|227.5| 227.5 | 350 | 262
8 |300|500 0.7]100|900 1.5]350]|420|367.5] 420 | 420 | 500 | 420
9 |300|500 1.5]300|900 1.3]500|500| 500 | 500 | 500 | 500 | 500
10 | 300 500 0.7 |100 900 0.5]350|300| 300 | 300 | 300 | 300 | 300
11 1100 500 1.5]1100 900 0.5]500]1225]| 375 |262.5] 262.5 | 150 300
12 1300 900 1.31300 900 1.3]|7801900}| 900 |838.5] 900 900 900
13 1100 900 1.3]1300 900 0.7]780]1455]|709.8]1604.5] 604.5 | 390 695
14 1100 900 0.5]1300 500 0.7]1200)1175] 150 | 200 150 150 162
15 |]100 900 0.5]100 500 0.7 ]|150|175| 100 | 150 | 100 | 100 | 132
16 |100 900 0.5]100 500 1.5]150|250|112.5|162.5|131.25| 100 | 187
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Of the 88 subjects in CGC’s main treatments, 43 made guesses that
complied exactly (within 0.5) with one type’s guesses in from 7 to 16 of
the games (20 L1, 12 L2, 3 L3, and 8 Equilibrium).

For example, CGC’s Figure 2 (next slide) shows the strategic thinking
“fingerprints” of the twelve subjects whose guesses conformed very
closely (that is, with high rates of exact compliance) to L2’s guesses.

72% (138) of these subjects’ 192 guesses were exact L2 guesses; only
their deviations are shown in Figure 2.
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Notes; Unly deviations from 127 guesses are shown. OF these subjects” 192 guesses, 138 (72
percent) were exact L2 guesses,
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Given how strongly CGC’s design separates types’ guesses, and that
guesses could take from 200 to 800 different rounded values in the
games, these subjects’ exact compliance rates are far higher than could
possibly occur by chance:

If a subject chooses 525, 650, 900 in games 1-3, both intuitively and
econometrically we already “know” he’s an L2.

Further, because CGC'’s definition of L2 builds in risk-neutral, self-
Interested rationality, we also know that with such high exact compliance,
a non-Equilibrium subject’s deviations from equilibrium are “caused” not
by irrationality, risk aversion, altruism, spite, or confusion, but by his
simplified (in this case L1) model of others.
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Guessmetrics

CGC'’s other 45 subjects made guesses that conformed exactly to one of
the types less frequently; analyzing their guesses requires econometrics.

Our econometric approach builds on Harless and Camerer 1994
Econometrica, EI-Gamal and Grether 1995 JASA, Stahl and Wilson 1994
JEBO and 1995 GEB, and CGCB; but we estimate subject by subject,
and because of the very high sample frequency of exact guesses, we use
a maximume-likelihood error-rate model with “spike-logit” errors:

We assume that in each game, a subject makes his type’s guess exactly
(within 0.5) with probability 1- € and otherwise makes logit errors; this
gives extra likelihood credit for exact guesses, whose likelihood weight is
discontinuously higher than guesses that are close but not within 0.5.

Estimating a mixture model as in CGCB and most other previous studies
IS often theoretically superior; but in an exploratory study of cognition,
estimating subject by subject is safer and, comparing CGCB with subject-
by-subject estimates in its earliest version, likely yields similar estimates.
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Subject i's log-likelinood for guesses reduces to:

- (G-n")InG-n*)+n*In@*) + > Ind;(R,(x,),4) ~GInG

where g indexes games and k types.

k [ [
The first two terms concern exact guesses; dg (Rg (Xg)’)l) IS the standard

logit term for non-exact guesses, with deviation costs measured using
each type's beliefs; and A is the logit precision.

The maximum likelihood estimate of € is N*/G, the sample frequency of
subject i's non-exact guesses for type k.

The maximum likelihood estimate of A is the standard logit precision,
restricted to non-exact guesses.

The maximum likelihood estimate of the subject’s type k maximizes (7)
over kK, given the estimated € and A, trading off the count of exact guesses
against the logit cost of deviations.
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Estimation yields type estimates as in column 3 of Table 1: 43 L1, 20 L2,
3 L3, 5 D1, 14 Equilibrium, and 3 Sophisticated.

(Some of these estimates are called into question by CGC'’s specification
test as discussed below; see Table 1's columns 4 and 5).

TABLE 1 —SUMMARY OF BASELINE AND OB SupBIecTS’ ESTIMATED TYPE DISTRIBUTIONS

Econometric from

Apparent Econometric Econometric from Econometric from guesses and
from from guesses, guesses, with search, with
Type gUesses gUesses excluding random specification test specification test
Li 20 43 37 27 29
L 12 20 20 17 14
L3 3 3 3 !
D] 0 3 3 I 0
D2 0 0 0 0 0
Eq. 8 14 13 11 10
Soph. 0 3 2 ] l
Unclassified 45 0 10 30 33

Note: The far-right-hand column includes 17 OB subjects classified by their econometric-from-guesses type estimates.
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The hypothesis that € = 1 is rejected for all but seven of 88 subjects, so
the spike Is necessary.

The hypothesis that A = 0 (payoff-insensitivity) is rejected for 34 subjects.

Thus, payoff-sensitive logit errors significantly improve the fit over a
spike-uniform model like CGCB'’s for only 34/88 = 39% of the subjects.

The lack of significant payoff-sensitivity for most subjects suggests that
most of their “errors” are either cognitive or due to misspecification.

The hypothesis {A = 0 and € = 1} is rejected at the 5% level for all but ten
of 88 subjects (6 L1, 2 D1, 1 Equilibrium, 1 Sophisticated).

Thus, the model does significantly better than a completely random model
of guesses for 78/88 = 89% of the subjects.



Specification test

For those 45 subjects whose guesses conformed less closely to one of
CGC’s types, there is room for doubt about whether CGC'’s specification
omits relevant types and/or overfits by including irrelevant types.

To test for this, CGC conducted a specification test comparing the
likelihood of each subject’s econometric type estimate with the likelihoods
of estimates based on 88 pseudotypes, each constructed from one of
their subject’s guesses in the 16 games.
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With regard to overfitting, for a subject's type estimate to be credible it
should have higher likelihood than at least as many pseudotypes as it
would at random: With 8 types, assuming approximately i.i.d. likelihoods,
this suggests it should have higher likelihood than 87/8 = 11 pseudotypes.

Some subjects’ type estimates do not pass this test, and so are left
unclassified in columns 5 and 6 of CGC’s Table 1.

TABLE 1 —SUMMARY OF BASELINE AND OB SUBIECTS’ ESTIMATED TYPE DISTRIBUTIONS

Econometric from

Apparent Econometric Econometric from Econometric from guesses and
from from guesses, guesses, with search, with
Type gUesses gUesses excluding random specification test specification test
Ll 20 43 37 27 29
L 12 20 20 17 14
L3 3 3 3 I I
D] 0 3 3 I 0
D2 0 0 0 0 0
Eq. 8 14 13 11 10
Soph. 0 3 2 ] l
Unclassified 45 0 10 30 33

Note: The far-right-hand column includes 17 OB subjects classified by their econometric-from-guesses type estimates.
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With regard to omitted types, imagine that CGC had omitted a relevant
type, say L2 for concreteness.

The pseudotypes of CGC’s estimated L2 subjects would then outperform

the non-L2 types estimated for them, and make approximately the same
guesses.

Finding such a cluster, CGC diagnosed an omitted type, and studied what
Its subjects’ guesses had in common to reveal its decision rule.
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CGC found five small clusters involving 11 of the 88 subjects, and the
subjects in these clusters were also left unclassified in Table 1.

TABLE 1—SUMMARY OF BASELINE AND OB SUBIECTS' ESTIMATED TYPE DISTRIBUTIONS

Econometric from

Apparent Econometric Econometric from Econometric from guesses and
from from guesses, guesses, with search, with
Type guesses gUESSEes excluding random specification test specification test
Ll 20 43 37 27 29
L2 12 20 20 17 14
L3 3 3 3 | I
Dl U 3 3 1 0
D2 0 0 0 U U
Egq. 8 14 13 11 10
Soph. 0 3 2 ] I
Unclassified 45 0 10 30 33

Note: The far-right-hand column includes 17 OB subjects classified by their econometric-from-guesses type estimates.

The paper and its web appendix discuss what these 11 subjects seemed
to be doing; most of it appears quite idiosyncratic.

Because a cluster must contain at least two subjects, it is reasonable to
anticipate finding more than the five CGC found in a larger sample.

But because any such clusters did not reach the two-subject threshold in
CGC’s sample of 88, they are probably at most 2% of any larger sample,
hence probably not worth modeling.
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Taking the specification test into account (as in the right-most column of
Table 1 above), econometric estimates of subjects’ types are
concentrated on L1, L2, L3, and Equilibrium, in roughly the same
proportions as the subjects whose types are apparent from their guesses.

TABLE 1—SuMmMARY OF BASELINE anD OB SuBiecTs’ ESTIMATED TYPE DISTRIBUTIONS

Econometric from

Apparent Econometric Econometric from Econometric from guesses and
from from guesses, guesses, with search, with
Type guesses gUESSEes excluding random specification test specification test
Ll 20 43 37 27 29
L2 12 20 20 17 14
L3 3 3 3 | I
Dl U 3 3 1 0
02 0 0 0 U U
Egq. 8 14 13 11 10
Soph. 0 3 2 ] I
Unclassified 45 0 10 30 33

Note: The far-right-hand column includes 17 OB subjects classified by their econometric-from-guesses type estimates.

35



Note that unlike the often-suggested interpretation of previous guessing
results—that subjects are performing finitely iterated dominance—
separating Lk from Dk-1 reveals that Dk types don’t exist in any
significant numbers, at least in this setting.

Further, CGC'’s results for robot/trained subjects, discussed below,
suggest that people find doing iterated dominance highly unnatural—as
opposed to following Lk types that make k-rationalizable decisions, and
so respect finitely iterated dominance without explicitly performing it.

Sophisticated, which is clearly separated from Equilbrium here, as it tends
to be when not all subjects play equilibrium strategies, also doesn’t exist.
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Econometric puzzles regarding CGC'’s analysis of dec  isions

Although CGC'’s specification test addresses the possibility of bias due to
omitting relevant types and/or overfitting by including irrelevant types, it is
reasonable to ask if there any way to estimate the distribution of subjects’
decision rules without imposing an a priori list of possible types.

However types are determined, they must be general decision rules that
are meaningful in any new game.

That is, they cannot just be lists of predicted guesses in CGC’s 16 games.
There are at least three reasons for this:
e A worthy competitor to equilibrium must be a general decision rule.

e Allowing completely unrestricted types makes it possible to overfit by
defining types like Miguel and Vince that just happen to do what
Miguel and Vince did in the sample

e Because a type’s search implications depend not only on what guesses
It implies, but why, and types like Miguel and Vince give us no way to
predict what they will do beyond the games we estimated them for.
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But the space of possible types is enormous and it has little mathematical
structure: Just to avoid ruling out equilibrium, it may have to allow all
(even discontinuous) piecewise linear functions of the targets and limits.

Further, conventional clustering analyses rely heavily on Euclidean
distance, but without a priori types (whose beliefs imply deviation costs,
as required for logit errors) it seems hard to find a credible definition of
what it means for subjects’ decision patterns to be close.

(For this reason CGC'’s specification test’s analysis of clusters gives more
weight to qualitative and structure-dependent patterns of deviation from a
reference pattern, such as the tendency, discussed below, of our
Equilibrium subjects with the clearest fingerprints to deviate much more
often in games with mixed targets, and always in the direction of L3.)

Finally, it is natural to ask if there is better way to do the specification test.
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Questions left unresolved by CGC'’s analysis of deci sions

Some questions regarding subjects’ strategic thinking are not resolved by
analyzing decisions, but might be resolved by analyzing searches.

Here it is necessary to distinguish CGC'’s three kinds of treatment.

In the Baseline, subjects played the games with other subjects, looking up
both subjects’ targets and limits via an interface as explained below.

Open Boxes (“OB”) was identical to the Baseline, except that both
subjects’ targets and limits were continually displayed.

(All the analysis discussed above pooled the data from CGC’s Baseline
and OB treatments, which did not differ significantly.)

Six different Robot/Trained Subjects (“R/TS”) treatments were identical to
the Baseline, except subjects played against a “robot” (“the computer”)
and the computer played according to a pre-specified, announced type,
either L1, L2, L3, D1, D2, or Equilibrium; subjects were trained to identify
that type’s guesses and paid for their payoffs against the computer.
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Puzzle A. What are the Baseline “ Equilibrium” subjects really doing?

Consider the 8 Baseline or OB subjects with near-Equilibrium fingerprints:
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FIGURE 4. “FINGERPRINTS” OF EIGHT APPARENT EQUILIBRIUM SUBJECTS

Notes: Only deviations from Eguelibrium's guesses are shown. Of these subjects’ 128 guesses,
69 (54 percent) were exact Equilibrium guesses.
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Ordering the games by strategic structure as in CGC'’s Figure 4, with the
eight games with mixed targets (CGC’s Table 3, not reproduced here) on
the right, shows that those 8 subjects’ deviations from equilibrium almost
all (50 out of 59, or 85%) occurred in games with mixed targets.

Thus those subjects, whose exact compliance with Equilibrium guesses
was off the scale by normal standards, are actually following a rule that
only mimics Equilibrium, and that only in games without mixed targets.

Yet all of the ways we teach people to identify equilibria (best-response
dynamics, equilibrium checking, or iterated dominance) work equally well
with and without mixed targets: Whatever these subjects were doing, it's
something we haven’t thought of yet.

(And their debriefing questionnaires don’t tell us what it is.)

Whatever it is, it has some structure: All 44 of these subjects’ deviations
from Equilibrium (solid line) when it is separated from L3 (dotted line) are
In the direction of (and sometimes beyond) L3 guesses.

However, this structure could reflect nothing more than the fact that
Equilibrium guesses are more extreme than other types’ guesses.
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Equilibrium R/TS subjects’ compliance is as high with as without mixed
targets, so training eliminates whatever the Baseline subjects were doing:
Fingerprints of 10 UCSD Equilibrium R/TS Subjects
(only deviations from Equilibrium’s guesses are shown)

900 -
800 -
700
600 -

Guesses
500
400 -
300

200

100+

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
amao Nhiiimhare
—=Eq. e L3 a 604 (0 o 606 (2 x 608 (5 + 7013

e 703(15 ° 706 (15) = 9024 g piects with 16 exact guesses: 603, 704, 705
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Fingerprints of 18 York Equilibrium R/TS Subjects
(only deviations from Equilibrium’s guesses are shown)

- -
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800 X
700
600
Guesgs e
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400
300 i "
+ o
+
200 O+A
7 +
O A O A X X
X 1206x(5) x 1303 (15) + 1304 (6)
100| ® 1306 (15 o /1403 (15) - 1410 (15 x 1503 (5) A 1504 (1)
- 1505 (15 = / 1506 (7) " o 2005 (1,
Subjects with 16 exact guesses: 1205, 1404, 1410, 2002
’ 1__2/ \9/
10 3 4 5 6 7 8 10 11 12 13 14 15 16
Game Numbers

s Eq . L3
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Puzzle B. Why are Lk the only non- Equilibrium types that exist?
Recall that a careful analysis of CGC’s decision data reveals many
subjects of types L1, L2, Equilibrium, or hybrids of L3 and/or Equilibrium,
but no other types that do better than a completely random model of
guesses for more than one of 88 Baseline/OB subject.

Why do these few rules predominate out of myriads of possible rules?

Why, for instance, aren’t there Dk subjects, closer to what we teach?

Answering this question may shed some light on bounded rationality.

We suggest possible explanations of both puzzles after discussing CGC’s
analysis of information search.
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CGC’s design for studying cognition via information search

In CGC'’s design for studying cognition via information search, within a

publicly announced structure each game was presented via MouselLab,
which normally concealed the targets and limits but allowed subjects to
look them up as often as desired, one at a time, by clicking on the boxes.

LOWER LINIT TARGET UPPER LINWIT

- nltg&TdrHEt . . .
S

S . . .

Enter your guess (a number From @ to 18601,

[ Keyboard Input: |

Enter this box and click a mouse button when you are rcadH.

FIGURE 6. SCREEM SHOT OF THE MoUSEL AR DNSPLAY

CGC's Figure 6. Screen Shot of the MouseLab Display
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Detalls:

CGC used the click option in MouseLab, versus CJ’s use of the rollover
option.

Thus, opening and closing boxes both required conscious decisions.

Subjects were not allowed to write, and the data strongly suggest that
subjects did not memorize the targets and limits.

With search costs as low as subjects’ searches make them seem, free
access made the entire structure effectively public knowledge, so the
results can be used to test theories of behavior in complete-information
versions of the games.

The design also maintains control over subjects’ motives for search by
making information from previous plays irrelevant to current payoffs.
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From the point of view of studying cognition via search, CGC’s normal-
form design combines the strengths of CJ’s extensive-form design and
CGCB’s matrix-game design.

CJ’s extensive-form design allows subjects to search for a small number
of hidden payoff parameters (pies in alternating-offers bargaining) within a
simple, publicly announced structure.

However, it also makes subjects’ search patterns essentially one-
dimensional, and so less informative than they could be.
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CGC’s design maintains the simplicity of CJ’s design, allowing subjects to
focus on predicting others’ decisions without getting lost in the details of
the structure.

Unlike CJ’s design but like CGCB’s, CGC'’s design makes search higher-
dimensional, hence more informative.

Like CGCB’s design, CGC'’s design also independently separates types’
Implications for search and decisions, revealing relationships between
them.

But unlike CGCB’s design, CGC’s makes types’ search implications
almost independent of the game, an important convenience in analysis.
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Search data for representative R/TS and Baseline su  bjects

We start by comparing search data for representative R/TS and Baseline
subjects whose guesses conform closely to their assigned or estimated
type with the implications of CGC's theory of cognition and search.

Eyeballing compliance with the types’ search implications will suggest
that there is some usable structure in the data, and provide some hints
about how to model it.

We will then explain CGC’s (and CGCB'’s) theory of cognition and
Information search, show how the search implications were derived, and
show how to use them to model subjects’ searches econometrically.

(Because CGC's theory is close to CGCB's, it was almost completely
specified before these data were generated).

But first....
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Speak rodent like a native in one easy lesson!

LOWER LIMIT TARGET UPPER LIMIT

Your Limits&Target 188
au

R . . .

Enter your guess (a number from B to 1088),
Keyboard Input:

Enter this box and click a mouse button when wou are readu.

a p b
You (i) | 1 2
' S/he (j)| 4 5 6

MouselLab box numbers

5C



Selected R/TS Subjects’ Information Searches and As  signed Types’ Search Implications
Types' Search Implications

MouseLab box L1 {[4,6],2}

a p b L2 {(11,31,5).4,6,2}
You (i) 1 2 3 L3 {(14,61,2),1,3,5}
sihe )| 4 5 6 D1 {(4,[5,1], (6,[5,3]),2}

D2 [4(1.12,41),(3.12.61),(4.[5,11,(6.[5,31).5,
Eq | {[2,5],4}if pr. tar.<1,{[2,5],6} if > 1

Subject 904 1716 1807 1607 1811 2008 1001 1412 8QE01 804 1110 1202 704 1205 1408 2002
Type(#rt. L1 (16)L1 (16)L1(16) L2 L2 L2 L3 L3 D1 Dl D13 D2 D2 Eq Eq Eq Eq(16)

Alt.(#rt.) L2
Est. stvle late often earlh ofter earlh Earlv
Game
1 12345¢ 14646: 46251 13546:13444¢11131:46213" 14623 15435¢ 25451 15434¢ 135462 24646¢ 12345¢12345¢12312: 14253¢
462- 13464¢ 1312 5213*413131:21364' 5646242321 36231 521: 2646*113546: 36325¢42465. 45644 12536
23 6 542: 24623 1 264: 31Z 64132:56536! 56252 63213.25361¢
52 34246.62636:6352*4 11 36145
42264¢65265. 65 61345:
12462 45226: 21345:
5%1224 652¢ 63
65464¢

2 12345¢ 46246: 46213 13546: 13465 1313146213 46246. 51453 514651 51513! 13513« 12364* 12345¢ 12345¢ 12345t 14362
4231 13 25 35462:12564: 56662: 64256. 5462361536« 621z 36546:64216:13246. 52512 24456! 45612 36142}

3 31356: 33: 22314¢54623. 23 3 45146142626:65262! 5652664352« 14252:
52 2562*¢€ 21113¢24135¢63525¢21255: 1  62565¢
2 41426:462*1: 26236% 14666: 3
13536:52424. 45€ 65425
*1465446613! 44526’
6 646- 31

Notes: The subjects' frequencies of making their asiggpes' (and when relevant, alternate typestejsesses are in parentheses after the
assigned type. A * in a subject's look-up sequeneans that the subject entered a guess there withmediately confirming it.
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Selected Baseline Subjects’ Information Searches an  d Estimated Types’ Search Implications
Types Search Implications

Mousel ab box L1 {14.61.2}
a o) o L2 {(11.31.56).4.6.2}
You (i) 1 2 3 L3 {(14.61.2).1.3.5}
S/he |) 4 5 6 D1 {(4,[5,1], (6,[5,3]),2}
D2 {(1.12.4N.(3.12.611.(4.15.11.(6.15.31.5.
Eqg {[2,5],4} if pr. tar.<1,{[2,5],6} if > 1

Subieci 101 11€ 41%= 10€ 20€ 30¢ 40k 21C 302 31€ 417 404 20z 31C 31E
Tvoe(#rt. L1 (15) L1 (15 L1 (14 L2 L2 L2 L2 L3(9) L3(7Y L1 (7Y Ea(8 Ea(9 Ea(8 Ea Ea
Alt.(#rt.) Ea (9 Ea (7 D1(5 L3(7Y L2(6) D2 (T

Alt.(#rt.) D2 (8 L2 (5) L3 (7N

Est. stvle earlv/le earl late earh earln earlv/le earln earlh Earlv earlh earlv earlh earl earlv/le earl
Game

1 14624¢ 24613« 12345¢ 13564:53314¢ 135z 14465:12345¢22113 13245¢ 2525346213 12345¢12312¢ 21346

21 626247 54561: 215 313312 12345646564 46525: 46465¢ 46465: 2546154412 62416!
32*13% 3463* 54623:21345¢21321:13242° 44653 64551: 62134:56542:56412:
12517 254217145456 146z 6412521354 *525 25436: 32546¢
654 541 462121 13546 *2154¢
3 42625t 4*
35623«
13135«
64<

2 4621 24626: 12356« 13564 53146: 13526 13245t 12345t 21354¢ 13246% 25523 46246 12345t 12354( 13465
2131 62213° 3 31 1526*z 25315¢ 465562 56621 132*4€ 62*36< 35252 44561 21632t 12465:
*3  45654!123165:¢54546: 2 2435626131t 25546:23145(65612:

46312 456*2 21*26¢ 46356: 51356 *62 3
1525362 5412¢ 23
3 462*4€ 24624: 26423 13564 53514 13526 31245¢ 12345¢ 265411 13465: 52136 46213¢ 12345¢ 12365: 13246!
466411 53 2231 5231*164561: 23214 1323*464152¢ 21563+ 12356: 46321 54416:
*426 23654¢ 3 56321« 5263*€ *52 3 *3625
5233** 56321+ 52
SURS 523*6E

412¢
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These data suggest the following conclusions:

(1) Search is so heterogeneous and noisy that we should study it at the
Individual subject level.

(i) There is little difference between the look-up sequences of R/TS and
Baseline subjects of a given type (assigned type for R/TS, apparent type
for Baseline), except that the R/TS look-up sequences are usually shorter
than the Baseline ones. (Perhaps the small difference is unsurprising,
because R/TS subjects were not trained in search strategies.)

(i) A subject’s type’s predicted look-up sequence is unusually dense in
his searches, at least for types L1 and L2, and one can quickly learn to
read the algorithms many subjects are using directly from the data.

(iv) For some subjects search is an important check on decisions; for
example, Baseline subject 309, with 16 exact L2 guesses, missed some
of L2’s relevant look-ups in the first few games, avoiding deviations from
L2 only by luck. (S/he had a Eureka! moment between games 5 and 6,
and from then on complied perfectly.) This recalls CJ’s finding that in their
alternating-offers bargaining games, 10% of the subjects never looked at
the last-round pie and 19% never looked at the second-round pie.
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How does cognition show up in information search?

In studying cognition via information search, CJ followed the tradition in
the psychology literature, giving roughly equal weight to look-up durations
and to the numbers of look-ups of each pie (*acquisitions”) and the
transitions between pies.

Gabaix, Laibson, Moloche, and Weinberg, “Costly Information Acquisition:
Experimental Analysis of a Boundedly Rational Model,” AER 2006,
focused on acquisitions and considered aspects of look-up order too.

Rubinstein EJ 2007, which considers some matrix games, considered
only durations.

These analyses were mostly conducted at a high level of aggregation,
both across subjects and over time.
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By contrast, CGC, following CGCB, took it as a given that cognition is
sufficiently heterogeneous and search sufficiently noisy that they are best
studied at the individual level.

CGC and CGCB also assumed that which look-ups subjects make, in
which order, are at least as revealing as look-up durations or acquisition
frequencies.

(CGC and CGCB made no claim that durations are irrelevant, just that
they don’t deserve the top priority they have been given.

CGCB present some results on durations, “gaze times” in their Table 1V.)

CGC’s views were shaped by simple-minded theories of cognition, CJ’s
R/TS searches, and CGCB’s Equilibrium Trained Subjects’ searches.
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Thinking types as models of cognition and search

CGC’s (and CGCB’s) models of cognition, search, and decisions are
based on a procedural view of decision-making, in which a subject’s type
determines his search, and type and search then determine his decision.

Each type is naturally associated with algorithms that process payoff
Information into decisions. (As noted above, because a type’s search
Implications depend not only on what decisions it specifies, but why,

something like a types-based model seems necessary here.)

The analysis uses the algorithms as models of cognition, deriving a type’s
search implications under simple assumptions about how cognition
determines search.

The types then provide a basis for the enormous space of possible
decision and search sequences, imposing enough structure to describe
subjects’ behavior in a comprehensible way, and to make it meaningful to
ask how subjects’ decisions and searches are related.
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How Does Cognition Determine Search?

Without further assumptions, nothing precludes a subject’s scanning and
memorizing the information and then “going into his brain” to figure out
what to do, in which case his searches will reveal nothing about cognition.

But inspecting the sample of actual searches above suggests that there
are strong regularities in search behavior, and that subjects’ searches
might therefore contain a lot of information about cognition.

The goal in analyzing search is to add enough assumptions to make it
possible to extract the signal from the noise in subjects’ look-up
sequences; but not so many that they distort the meaning of the signal.

CGC'’s (and CGCB'’s) assumptions are conservative, resting on types’
minimal search implications and adding as little structure as possible.
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Types’ Search Implications

CGC derived types’ minimal search implications from their ideal guesses,
those they would make if they had no limits. (With automatic rounding of
guesses and quasiconcave payoffs, ideal guesses are all that subjects
need to know, and all that matters for minimal search implications.)

Evaluating a formula for a type’s ideal guess requires a series of
operations, some of which are basic in that they logically precede any
other operation.

For example, [a+b'] (averaging the partner’s limits) is the only basic
operation for L1's ideal guess, p'[a'+b']/2.

CGC derived types’ search implications assuming that subjects perform
basic operations one at a time via adjacent look-ups, remember their
results, and otherwise rely on repeated look-ups rather than memory.

These empirically-based assumptions seem to yield a reasonably
accurate model of most subjects’ search behavior.
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The left side of Table 4 on the next slide lists the formulas for types’ ideal
guesses in CGC’s games.

The right side of Table 4 lists types’ minimal search implications, derived
as just explained: first in terms of our notation, then in terms of the box
numbers in which MouseLab records the data.

Basic operations are represented by adjacent look-up pairs that can
appear in either order, but cannot be separated by other look-ups.

Such pairs are grouped within square brackets, as in {[a, b'], p'} for L1.
Other operations can appear in any order and their look-ups can be
separated.

Such operations are represented by look-ups grouped within curly
brackets or parentheses.

A type’s operations are listed in the order that seems most natural, if
there is one; but this is not a requirement of the theory.
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Type |deal guess Relevant look-ups
L1 p' [+b]/2 {[a,b"],p"} = {[4, 6], 2}
L2 p'R(@.b’; p'[a'+b')/2) {(a',b],p),a,bp'} ={([1, 3], 5), 4, 6, 2}
L3 p'R@.b"; p'R(@@\b'; p'[a+b']/2))  {([&.b'],p).a'b"p'} ={(4. €], 2), 1, 3, 5}
D1 p'(max{a,p'a’} + min{ p'b’,b'})/2 {(aj{’([ArFt’[ﬁ']l)],)(’t()g’[[F;’,g]'g?g})'} =
oo pmamaxdpdiomaapey ) SEEDOE
OO L S
Hminpmingp, bEmin{pb Y2 g 5y (3.12.6]).(4.[5.,1]).(6.[5.3]).5.2)
i’j’jE 5], 'fij
Bq.  paifppi<lorpbiifpp'>1 or{ [{?p?g"ig"} ;[5[2?15]?}6'} ifp |§‘|oj<>1 1
[no closed-form expression, but - {@[p\a),mp,
Soph.  CGC took its search implications b),(@.[p'al),(0',[p',b]).p'p’}

to be the same as D2’s]

={(1,[2,4]).(3.[2,6]).(4.[5.1]).(6,[5,3]).,5,2}

CGC's Table 4. Types’ Ideal Guesses and Relevant Lo  ok-ups
(p is a target; a (b) is a lower (upper) limit; i and j are the player and his
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L1’s search implications
(Unlike in this picture, subjects could never open more than one box at a time.)

LOWER LIMIT TARGET UPPER LIMIT

. . - .

S . . .

Enter Huur guess (a number from @ to 100@),

Type Response:

Enter this box and click a mouse button when you are ready.
L1's ideal guess: p[a+b']/2 = 750. L1’s search implications: {[&, b'], p} = {[4, 6], 2}.

(L1 does not need to look up its own limits because it can enter its ideal guess

and rely on automatic adjustment to ensure that its adjusted guess is optimal. Thus this

design even separates L1 from a Solipsistic type that only looks up its own parameters.)
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L2’s search implications: first step
(Unlike in this picture, subjects could never open more than one box at a time.)

LOWER LIMIT TARGET UPPER LIMIT

. . . '

S . . .

Enter Huur guess (a number from @ to 100@),

Type Response:

Enter this box and click a mouse button when you are ready.

L2’s model of its partner’'s L1 guess: p[a+b)/2 = 300.
Search implications: {[a',b"],p’} = {[1,3],5}.

(L2 needs to look up its own limits only to predict its partner’'s L1 guess; like L1 it can enter

its ideal guess and rely on automatic adjustment to ensure its adjusted guess is optimal.)
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L2’s search implications: second step
(Unlike in this picture, subjects could never open more than one box at a time.)

LOWER LIMIT TARGET UPPER LIMIT

. . - .

S . . .

Enter Huur guess (a number from @ to 100@),

Type Response:
Enter this box and click a mouse button when you are ready.

L2’s ideal guess: p'R(a,b’; pl[a'+b/2) = 450.
L2's search implications: {([a',b],p)),d,b,p} = {([1, 3], 5), 4, 6, 2}.

(L2 needs to look up its partner’s limits @ = 4 and b’ = 6 to predict its partner’s L1 adjusted

guess.)
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Aside on types’ search implications

L1, L2, L3, D1, D2 search implications are easy to derive from the
formulas in Table 4.

Note that although most theorists instinctively identify Lk with Dk-1, etc.,
they are cognitively very different:

Lk starts with a naive prior over the other’s decisions and iterates the
best-response mapping; Dk-1 starts with reasoning based on iterated
knowledge of rationality and closes the process with a naive prior.
This difference shows up clearly in their search implications in Table 4:
{([a'\,b"],p,d,bl,p} = {([1, 3], 5), 4, 6, 2} for L2

vVersus

{@.,[p,aD.®.[p',b1),p} = {(4.[5.1]),(6,[5,3]),2} for D1.
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Equilibrium can use any workable method to find its ideal guess; we allow
any method, and seek the one with minimal search requirements.

Equilibrium-checking (conjecturing guesses and checking them for
consistency with equilibrium) is less demanding than other methods, but
requires more luck than almost all of our subjects appeared to have.

Accordingly, we allow Equilibrium to use both targets to determine
whether the equilibrium is High or Low, and then to enter its own target
times its partner’s lower (upper) limit when the product of targets is < (>)
1, which CGC’s Observation 1 shows ensures its adjusted guess is Iin
equilibrium.

This has the same search requirements as equilibrium-checking except
that it requires the targets to be adjacent; and thereby avoids the need for

luck.

(Unlike in CGCB’s and CJ’s designs, Equilibrium’s search implications are
just as simple as L1’s, and simpler than other boundedly rational types’!)

(End of aside)
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Searchmetrics

CGC’s econometric analysis of guesses and search extends CGC’s (and
CGCB’s) maximum likelihood error-rate models of decisions to explain
search compliance as well as decisions, treating search as just another
kind of decision as much as possible.

The main econometric problem is extracting signals from subjects' highly
idiosyncratic, noisy look-up sequences, without a well-tested model that
Implies strong restrictions on how cognition drives search.

Among other things, subjects vary in the location of look-ups relevant to
their types in their sequences.

CGC filter this out via subject-specific nuisance parameters called style
(“early” or “late”), assumed constant across games for each subject.

(58 of 71 Baseline subjects’ estimated styles are early, 10 are late, and 3
are tied.)
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CGC summarize a subject’s compliance with a type’s search implications
In a game by the density of the type’s look-up sequence in the relevant
part (as determined by estimated style) of the subject’s look-up sequence.

If, for example, style is early, a subject’s search compliance for a given
type is defined by starting at the beginning of his look-up sequence and
continuing until the type’s relevant sequence (Table 4) is first completed.

Compliance is then the length of the relevant sequence divided by the
length of the sequence that first completed it.

This definition filters out irrelevant look-ups (except if they separate the
adjacent look-ups required for a basic operation) in a simple way, while
making compliance meaningfully comparable across games and styles.
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CGC assume that a subject’s type and style determine his search and
guess in a given game, each with error.

They further assume that, given type and style, errors in search and
guesses are independent of each other and across games.

(This strong but useful simplifying assumption makes the log-likelihood
separable across guesses and search, avoiding complications in CGCB.)

To avoid stronger distributional assumptions CGC discretized compliance
Into three categories: Cy = [0.67,1.00], Cy =[0.33,0.67], and C, =[0,0.33].
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Subject I's guesses-and-search log-likelihood is:

Y| M) +(m* =) In@-) +n*In(e) + Y Ind (R, (x,).4) |5

c gaN

(G-nING-n)+n“Ing) + SInd (R (X).4) ~GInG+ Y ni*Inni*| -2GInG

ISk
where M is the number of games for which subject i has type-k style-s
compliance c.

ISk
The search term is convex in the M , and therefore favors types for

which compliance varies less across games, because such types
"explain” search behavior better. See CGCB, Section 4.D.
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The maximume-likelihood estimates of £ and Zc, given k and s, are n“/G

isk
and M /G , the sample frequencies with which subject I's adjusted
guesses are non-exact for that k and i has compliance c for that k and s.

The maximum likelihood estimate of A is the standard logit precision.

The maximum likelihood estimate of subject i's type k maximizes the
above log-likelihood over k and s, given the estimated € and A.

Note that the model favors such types without regard to whether
compliance is high or low.

This seems appropriate because compliance is neither meaningfully
comparable across types (as opposed to across games and styles); nor is
It guaranteed to be high for the “true” type (which could be cognitively
very difficult).

But it means that CGC need to rule out estimates where a type wins
simply because its compliance is very low in all games.
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Most guesses-and-search type estimates, especially those for subjects
whose guess fingerprints were clear, reaffirm guesses-only estimates.

Thus, overall, incorporating search into the econometric analysis confirms
our conclusions, including the absence of significant numbers of subjects
of types other than L1, L2, Equilibrium, or hybrids of L3 or Equilibrium.

Incorporating search does refine and sharpens our conclusions in some
ways; and a few subjects’ type estimates change (Table 1, 7A, and 7B).

TABLE 1 —SUMMARY OF BASELINE AND OB SuBlects’ ESTIMATED TYPE DISTRIBUTIONS

Econometric from

Apparent Econometric Econometric from Econometric from guesses and
from from guesses, guesses, with search, with
Type gUesses gUesses excluding random specification test specification test
Ll 20 43 37 27 29
L 12 20 20 17 14
L3 3 3 3 I I
D] 0 3 3 I 0
D2 0 0 0 0 0
Eq. 8 14 13 11 10
Soph. 0 3 2 ] l
Unclassified 45 0 10 30 33

Note: The far-right-hand column includes 17 OB subjects classified by their econometric-from-guesses type estimates.
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For some subjects the guesses-and-search estimate resolves a tension
between guesses-only and search-only estimates in favor of a type other
than the guesses-only estimate.

The search part of the likelihood has weight only about 1/6 of the guesses
part, because our theory of search makes much less precise predictions
than our theory of guesses—a necessary evil, given the noisiness and
idiosyncrasy of search behavior.
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For other subjects the guesses-only type estimate has 0 search
compliance in 8 or more games, and so CGC rule it out a priori.

For example, Baseline 415, with apparent type L1 with 9 exact guesses,
had O L1 search compliance in 9 of the 16 games because s/he had no
adjacent [a,b'] pairs as required for L1.

However, her/his sequences were unusually rich in (&,p',b') and (b',p',a)
triples, in those orders.

Because the sequences were not rich in such triples with other
superscripts, we conclude that 415 was a true L1 who was more
comfortable with several numbers in working memory than our
characterization assumes, or than our other subjects were comfortable
with.

But because this violated our assumptions on search, this subject was
“officially” estimated to be a D1.

(This is why we downplay the official estimate above.)
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Many subjects’ types can be reliably identified from search alone (Table 7A):
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And most subjects’ types can be more precisely identified by decisions
and search than by decisions or search alone (Table 7B):
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Econometric puzzles regarding CGC’s analysis of sea  rch

Are there better ways to do the search analysis econometrically?

Our search analysis has so far focused on the order of look-ups. How can
we incorporate duration data while retaining order information?

Can we say more about types’ cognitive difficulty using duration data?

To what extent can Baseline subjects’ guess “errors” be explained by a
more detailed analysis of search?
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Can we separate the effects of training from the strategic-uncertainty-
eliminating effects of robot treatments?

Conditional on style, how does search differ between Baseline subjects
with clear fingerprints (Equilibrium, L1, L2, or L3) and successful R/TS
subjects of same type?

(Baseline subjects with high compliance for some type are like robot
untrained subjects, which don’t usually exist because you can’t tell robot
subjects how they will be paid without teaching them how the robot works,
and so training them. Thus we can separate the effects of training and
strategic uncertainty, by comparing Baseline and R/TS subjects:

Either Equilibrium is natural with mixed targets, but untrained subjects
don’t see it; or Equilibrium is unnatural, and/or subjects don’t believe even
trained others will make Equilibrium guesses with mixed targets.)
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Possible answers via search to puzzle A. What aret  hose
Baseline * Equilibrium” subjects really doing?

(i) Can we tell how Baseline Equilibrium subjects find equilibrium in
games without mixed targets: best-response dynamics, equilibrium
checking, iterated dominance, or something else that doesn’t “work” with
mixed targets?

The absence of Baseline Dk subjects suggests that they are not using
iterated dominance.

Best-response dynamics, perhaps truncated after 1-2 rounds, seems
more likely.

Can check by refining characterization of Equilibrium search and redoing
the searchmetrics, separately with and without mixed targets.

(At the very end of these slides is a refined characterization of Equilibrium
search.)
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(1) Is there any difference in Baseline Equilibrium subjects’ search
patterns in games with and without mixed targets? If so, how does the
difference compare to the differences for L1, L2, or L3 subjects?

(Our 20 Baseline apparent L1 subjects’ compliance with L1 guesses is
almost the same with and without mixed targets (CGC’s Figure 1, below),
unsurprisingly because the distinction is irrelevant to L1.

But our 12 apparent L2 and 3 apparent L3 (CGC'’s Figures 2-3, below)
subjects’ compliance with their apparent types’ guesses is lower with
mixed targets. This is curious, because for L2 and L3, unlike for
Equilibrium, games with mixed targets require no deeper understanding.)
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CGC’s Figure 1
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(i) Can we tell how R/TS Equilibrium subjects with high compliance
manage to find their Equilibrium guesses even with mixed targets? How
does their search in those games differ from Baseline Equilibrium
subjects’ search?

CGC strove to make the R/TS Equilibrium training as neutral as possible,
but something must come first.

CGC taught them equilibrium checking first, then best-response
dynamics, then iterated dominance (some were taught only one method).

To the extent that subjects used one of those methods, it explains why
they have equal compliance with mixed targets.

If subjects used something else, and it deviates from equilibrium in games
with mixed targets, it might provide a clue to what CGC’s Baseline
Equilibrium subjects did.

Does it help to know which Understanding Test questions an R/TS
Equilibrium subject missed?
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R/TS Equilibrium subjects’ exact compliance is sensitive to the method
that subjects were taught.

These average rates are for exact compliance, and so are quite high.

R/TS Subjects’ Exact Compliance according to Equili brium Method

Eq.(N/A) Eq.(A) EF BR ID EQC

Number of subjects 29 50 11 13 13 13
% Compliance|Passed UT2 70.3 784 88.1 86.1 625 85.1
% Failed UT2 19.4 275 00 00 278 519
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Possible answers to puzzle B. Why are

Lk the only types other

than Equilibrium with nonnegligible frequencies?

(1) Most R/TS subjects could reliably identify their type’s guesses, even

Equilibrium or D2.

These average rates are for exact compliance, and so are quite high.

Individual subjects’ compliance was usually bimodal within type, on very

high and very low.

R/TS Subjects’ Exact Compliance with Assigned Type’

s Guesses and

Duration
L1 L2 L3 D1 D2 Eqg.(N/A)
Number of subjects 25 27 18 30 19 29
% Compliance|Passed UT2 80.0 91.0 84.7 621 56.6 70.3
% Failed UT2 00 00 00 3.2 5.0 19.4

Duration (seconds)

454 549 792 77 120.5 96.3
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(i) But there are noticeable signs of differences in difficulty across types:

(a) No one ever failed an Lk Understanding Test, while some failed the
Dk and many failed the Equilibrium Understanding Tests.

(b) For those who passed, compliance was highest for Lk types, then
Equilibrium, then Dk. This suggests that Dk is harder than Equilibrium, but
could be an artifact of more stringent screening of the Equilibrium Test.

(c) Among Lk and Dk types, compliance was higher for lower k as
expected, except L1 was lower than L2 or L3 compliance.

(We suspect that this is because L1 best responds to a random LO robot,
which some subjects think they can outguess; L2 and L3 best respond to
a deterministic L1 or L2 robot, which doesn’t invite “gambling” behavior.)
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(d) Remarkably, 7 of 19 R/TS D1 subjects passed the D1 Understanding
Test, in which L2 answers are wrong; and then “morphed” into L2s when
making their guesses, significantly reducing their earnings (next slide).

(Recall that it is L2 that is D1’s cousin.)

For example R/TS D1 subject 804 made 16 exact L2 (and so only 3 exact
D1) guesses. Her/his search also suggests L2 rather than D1 thinking.

lable 10.2. Selected Robot/Trained Subjects’ Information Searches.

Subject Type/Alt? Game 17 Game 27
B4 DI3yL2(16) 1543465213 5151353654623
L2 {([1,3],5),4,6,2}
D1 {(4,[5,1], (6,[5,3]).2}

This kind of morphing, in this direction, is the only kind of morphing that
occurred: compelling evidence that Dk types are unnatural.

However, a comparison of Lk’s and Dk-1's search and storage
requirements may add something, as Dk-1 needs more memory than LK.
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Aside: Refined characterization of  Equilibrium search

Equilibrium’s ideal guess can be identified by (1) evaluating a formula, (2)
equilibrium-checking, (3) iterated dominance, or (4) best-response
dynamics.

(1) Two ways to evaluate a formula: using Equilibrium’s ideal guess, or
using Observation 1's proxy for Equilibrium’s ideal guess.

Because they are logically related, our theory cannot distinguish them.
The latter is less stringent, and yields requirements:

(1) {[p'.p1,a} = {[2, 5], 4} if p'p’ < 1 or {[p',p.0'} = {[2, 5], 6} if p'p' > 1.

(2) Equilibrium-checking’s requirements are almost the same, usually
requiring both of the partner’s limits but excluding one in some cases,
depending on luck.

| omit the requirements here, noting only that this method also requires
[p'.p].
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(3) Iterated dominance we assume requires one or more complete
rounds, stopping when there is a clear up-or-down direction in which
dominance eliminates guesses, enough to guess whether the equilibrium
IS High or Low.

Once the required rounds are completed, the player can use CGC’s
Observation 1's proxy for Equilibrium’s ideal guess; this adds a p'times
either a' (Low equilibrium) or b’ (High) to his sequence.

As it happens, the search requirements for k rounds are independent of k;
thus, the search requirements for iterated dominance are like CGC’s
characterization for D2 (D2, not D1, because unlike D1, a k-round
iterated-dominance player must delete k rounds of dominated guesses for
himself too).

(3) {@. [0 a) @ [p b @ ¥ al), ' [p, b)), P, p}
={(1. [2, 4. (3. [2. 6]). (4,5, 1), (6, [5. 3], 5, 2}
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(4) For best-response dynamics we assume the subject does only one
complete round: that is, starting with a trial guess for one player, best-
responding for the other, and then best-responding back for the first
player.

We also assume the subject can infer from whether the iterated best
response goes up or down (if it changes) whether equilibrium is High or
Low.

(4) {([a,p'] or [b',p'] or [&),p] or [(b',p]), p',p,(all but at most one of &',b',a,
and b)}.

The main difference among Equilibrium methods is that methods 1 and 2
have a [p, p'] requirement and methods 3 and 4 do not.

We know from the absence of Baseline Dk subjects in CGC’s guesses-
and-search estimates that method 3’s requirements don't fit the data well.
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Its also seems, from the data, that [pi, pj] are comparatively rare for
Baseline apparent Equilibrium subjects, and even for R/TS Equilibrium

subjects.

Thus searchmetrics may favor best-response dynamics, truncated 1-2
rounds.

(CGC strove to make the R/TS Equilibrium training as neutral as possible,
but something must come first. A subset of the R/TS subjects were taught
equilibrium-checking first, then best-response dynamics, then iterated
dominance; another subset was taught only one of the methods. To the
extent that they used one of those methods, it explains why they have
equal compliance with and without mixed targets. If they used something
else that deviates from equilibrium with mixed targets, it might be a clue
to what Baseline Equilibrium subjects did.)

(End of aside.)
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