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1 Introduction 

 Kahneman and Tversky (1979) and Tversky and Kahneman (1991; “TK”) 

introduce a model of individual decisions in which people have preferences 

over gains and losses relative to a reference point. Such reference-dependence 

alters the domain of preferences from levels of outcomes to changes in 

outcomes; but it remains consistent with a complete and transitive preference 

ordering over changes, thus not inherently irrational. Although Kahneman and 

Tversky and TK focus on changes alone, Kőszegi and Rabin (2006; “KR”) 

and most subsequent analyses allow preferences over both levels and changes; 

and such reference-dependence is also not inherently irrational. 

 Reference-dependent consumer theory has been a workhorse model in 

behavioral microeconomics since Camerer et al.’s (1997) analysis of New 

York City cabdrivers’ labor supply.1 A standard neoclassical model of labor 

supply is analogous to a model of consumer demand, with preferences over 

levels of leisure and earnings—black-boxing the goods earnings can buy. In 

such a model the elasticity of hours with respect to the wage is positive unless 

there are very large income effects. However, Camerer et al., taking a driver’s 

earnings per hour as a proxy for the wage, estimate negative wage elasticities. 

 To explain this anomaly, Camerer et al. propose a model in which drivers 

bracket narrowly, evaluating their choices day by day instead of over their 

working lifetimes; and have daily earnings targets. A reference-dependent 

model in which the domain of preferences includes changes in earnings 

relative to daily targets as well as levels of earnings and leisure can reconcile 

such income-targeting with choice that is rational within the daily bracket.2 

 

1 See also Hardie et al.’s (1993) analysis of consumer demand. Cabdrivers are of particular 

interest because many choose their own hours, unlike most workers in modern economies.  

2 Such narrow bracketing is of course irrational from a lifetime point of view. Some have 

argued that earnings-targeting is irrational even within the daily bracket, because it leads 

drivers to trade off levels of earnings for changes that neoclassical preferences do not respond 

to. In Farber’s (2008, p. 1070) words: “This [earnings-targeting] is clearly nonoptimal from a 
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 For, experiments suggest that most people are loss-averse—more sensitive 

to changes below their targets (losses) than above them (gains). Loss aversion 

creates kinks in drivers’ preferences that make their daily earnings tend to 

bunch around their targets, possibly leading them to work less on days with 

higher wages. This allows a rationality-based account of Camerer et al.’s 

negative daily wage elasticities, without unrealistically large income effects. 

 In a theory paper inspired by TK’s and Camerer et al.’s analyses, KR 

propose a more general model of reference-dependent preferences. KR take 

narrow bracketing as given. Within the bracket, KR assume that a person’s 

utility is additively separable across neoclassical consumption utility and 

reference-dependent “gain-loss” utility. They also assume that reference-

dependence is active for every good and , as a convenient simplification, that 

gain-loss utility is determined, additively separably across goods, by the good-

by-good differences between realized and reference consumption utilities. 

Finally, in the spirit of Camerer et al.’s proxying drivers’ targets via average 

daily earnings, KR close their model by equating a consumer’s reference 

points to her/his good-by-good rational expectations of future consumption.  

 KR’s expectations-based reference-dependent model, like Camerer et al.’s 

earnings-targeting model, can give a rationality-based account of labor supply 

with negative wage elasticities without invoking large income effects: With 

perfectly anticipated changes in earnings and hours, gain-loss utility drops out 

of their model, which then reproduces the neoclassical prediction that higher 

anticipated wages increase labor supply. But with unanticipated changes in 

earnings, loss aversion makes daily earnings tend to bunch around its 

reference point, and earnings surprises can yield a negative overall correlation. 

 

neoclassical perspective, since it implies quitting early on days when it is easy to make money 

and working longer on days when it is harder to make money. Utility would be higher by 

allocating time in precisely the opposite manner.” However, our use of “rational” refers to the 

consistency of a driver’s choices in the larger domain of preferences over levels and changes.  
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 TK’s and KR’s papers have spawned numerous empirical applications of 

reference-dependent consumer theory: to consumer demand itself (Hardie et 

al. 1993), labor supply (Camerer et al. 1997; Oettinger 1999; Fehr and Goette 

2007; Farber 2005, 2008, 2015; Crawford and Meng 2011, “CM”; Thakral and 

Tô 2021; Anderson et al. 2023; Brandon et al. 2023; Crawford et al. 2025), 

housing (Genesove and Mayer 2001, Andersen er al. 2022), and finance 

(Odean 1998; Barberis and Thaler 2003; Barberis 2013; Meng and Weng 

2018). However, the jury is still out on whether reference-dependent models 

of consumer demand are empirically useful, particularly in labor supply.  

 This makes it natural to ask whether the empirical successes (or failures) of 

reference-dependent models of consumer demand are due to reference-

dependence (or its absence) per se or are artifacts of the strong functional-

structure and functional-form assumptions that, to our knowledge, have been 

maintained without testing in all applications to date.  

 This paper begins to answer such questions by deriving nonparametric 

conditions for the existence of reference-dependent preferences that can 

rationalize consumer demand behavior, taking daily bracketing as given.3 

 TK, KR, and the empirical papers all assume—in our view naturally—that 

the reference-dependent utility function that represents preferences can be 

written as the sum of a consumption utility function that depends only on 

levels of consumption and a gain-loss utility function that depends on both 

levels of consumption and a reference point. Without that assumption 

reference-dependent models are unlikely to have any nonparametrically 

refutable implications; and we maintain it. 

 

3 There are several other nonparametric theoretical analyses of reference-dependent models, 

including Gul and Pesendorfer (2006); Abdellaoui et al. (2007); Ok et al. (2015); Masatioglu 

and Raymond (2016); Nishimura et al. (2017); Freeman (2017, 2019); and Kibris et al. (2021). 

All but Gul and Pesendorfer (2006) and Freeman (2017), whose contributions are discussed in 

Section 4, focus on different aspects of the problem than the ones we consider. 
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 TK, KR, and the empirical papers also assume that gain-loss utility is 

determined, additively separably across goods, by the good-by-good 

differences between realized and reference consumption utilities—thus linking 

gain-loss utility to consumption utility in a particular way. They also assume 

(except in KR’s most general model) that the sum of consumption and gain-

loss utility that determines a consumer’s demand has constant sensitivity.4  

 These functional-structure assumptions have two strong implications: The 

sum of consumption and gain-loss utility that determines consumer demand 

must be additively separable across goods.5 And its marginal rates of 

substitution vary across gain-loss regimes in a particular, knife-edge way.6 

 Assuming additive separability across goods would be a non-starter in a 

neoclassical demand analysis. For reference-dependent preferences, neither 

assumption is supported by theory. We show how to relax and test both 

assumptions, which our empirical illustration suggests is important. 

 Under our assumptions, the empirically refutable implications of reference-

dependent models of consumer demand are limited by two factors. Proposition 

1 shows that unless reference points are modelable, in the sense that the 

available data allow them to be precisely predicted, one can construct a 

 

4 TK’s sign-dependence; KR’s A3′. Constant sensitivity is formally defined in Section 2. 

Informally, how an observation’s consumption bundle relates to the observation’s reference 

point puts the bundle into one of several gain-loss regimes, such as “earnings loss, hours gain” 

in labor supply. With constant sensitivity a consumer’s gain-loss utility function can vary 

freely across regimes, with the preferences over bundles determined by consumption plus 

gain-loss utility independent of the reference point within a given regime.  

5 Additive separability across goods is distinct from KR’s and our assumption that the utility 

function is additively separable across consumption and gain-loss utility. 

6 CM’s Table 1. In labor supply, for instance, the marginal rates of substitution are equal 

across the (gain, gain) and (loss, loss) regimes and in constant proportions across the (gain, 

loss) and (loss, gain) regimes.  
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reference-dependent utility function to rationalize any demand data.7 

Proposition 2 then shows that even if reference points are modelable, unless 

sensitivity is constant one can construct a well-behaved reference-dependent 

utility function to rationalize any demand data, with a minor qualification. 

 Propositions 1 and 2 identify a grain of truth in the widespread belief that 

allowing reference-dependence destroys the parsimony of neoclassical 

consumer theory: Without both modelable reference points and constant 

sensitivity, the hypothesis of reference-dependent preferences is 

nonparametrically irrefutable, with Proposition 2’s minor qualification. 

 Proposition 3 paves the way for positive results by characterizing 

continuous reference-dependent utility functions that satisfy constant 

sensitivity. Assuming modelable reference points but relaxing TK’s and KR’s 

functional-form and functional structure assumptions, it identifies the most 

general class of reference-dependent utility functions with nonparametrically 

refutable implications for consumer demand.  

 Empirically, Proposition 3’s characterization could be used to conduct a 

more general structural econometric analysis of reference-dependent demand, 

with conventional assumptions on the functional structure and forms of 

consumption and gain-loss utility, using sample proxies like Camerer et al.’s 

and CM’s for the targets. Several papers cited above provide suitable datasets. 

 In this paper, instead, we continue by deriving nonparametric conditions for 

reference-dependent preferences that rationalize consumer demand behavior 

and using them to assess our generalization’s empirical importance. 

 

7 Examples of modelability include Camerer et al.’s use of average daily earnings as sample 

proxies for earnings targets, KR’s rational-expectations model of reference-points, CM’s and 

Farber’s (2015) implementations of KR’s model, Thakral and Tô’s (2021) dynamic model of 

reference points, and Crawford et al.’s (2025) elicitation of them. By contrast, Kahneman and 

Tversky (1979) and TK take no clear position on how reference points are determined; and 

Farber (2005, 2008) and most other empirical papers estimate them as latent variables. 
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 Like Afriat’s (1967), Diewert’s (1973), and Varian’s (1982) classic 

nonparametric analyses of neoclassical demand, our nonparametric analysis 

makes essential use of rationality in the sense of consistency of choices across 

budget sets. However, as in most reference-dependent analyses, consistency is 

evaluated within the bracket (in this case daily) and over a preference domain 

expanded in the disciplined way suggested by reference-dependence. 

 Our analysis raises issues beyond those resolved by the classic analyses 

because levels of and changes in a good’s consumption are bundled and priced 

together and a reference-dependent consumer can, in effect, change her/his 

preferences by buying a bundle in a different gain-loss regime. And, although 

Afriat’s Theorem shows that demand data are rationalizable via neoclassical 

preferences if and only if the generalized axiom of revealed preference is 

satisfied (“GARP”; Section 3), with reference-dependent preferences there is 

no simple condition to determine whether demand data are rationalizable. 

 We approach these difficulties in two steps. Proposition 4 uses Proposition 

3’s characterization of reference-dependent utility functions with constant 

sensitivity and continuity to derive benchmark necessary and sufficient 

conditions for a reference-dependent rationalization. Proposition 4’s 

conditions are not directly applicable because with finite data there is normally 

a range of preferences that rationalize a consumer’s choices within a gain-loss 

regime (Varian 1982, Fact 4 and Figure 3), and those conditions rely on an 

unspecified choice of such preferences. Proposition 5 then derives directly 

applicable sufficient conditions based on a particular choice of rationalizing 

regime preferences. Proposition 5’s conditions are not necessary, but they 

should approach necessity as the data become rich enough to precisely 

determine the rationalizing preferences within each gain-loss regime. 

 Proposition 5 immediately suggests an algorithm for nonparametric 

estimation. We illustrate our results by adapting it to estimate neoclassical and 

reference-dependent models, re-analyzing Farber’s (2005, 2008) data on 

cabdrivers’ labor supply. We relax Farber’s and CM’s driver homogeneity 
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assumptions (which follow the labor supply literature) to estimate driver by 

driver (as in the nonparametric demand literature). We control for models’ 

differences in flexibility using Beatty and Crawford’s (2011, pp. 2786-2787) 

proximity-based variant of Selten and Krischker’s (1983) and Selten’s (1991) 

nonparametric measures of predictive success, which judge flexibility by the 

likelihood that random data would fit a model. 

 Farber’s drivers are highly heterogeneous. For most drivers, reference-

dependent models that relax TK’s and KR’s constant-sensitivity restrictions of 

additive separability across goods and on how marginal rates of substitution 

vary across gain-loss regimes have significantly higher Selten measures of 

predictive success than their counterparts imposing the restrictions, suggesting 

that Proposition 3’s generalizations are empirically important. 

 Although the GARP condition for a neoclassical rationalization is violated 

for most drivers, our methods yield reference-dependent rationalizations for 

almost all of most drivers’ choices. For many, a reference-dependent model 

has a Selten measure as high or higher than a neoclassical model. And in 

contrast to the focus on earnings-targeting in most previous theoretical and 

empirical work, hours-targeting is more important than earnings-targeting. 

 The rest of paper is organized as follows. Section 2 introduces our model of 

reference-dependent preferences. Section 3 reviews the classic nonparametric 

analyses of neoclassical consumer demand. Section 4 shows that without both 

modelable reference points and constant sensitivity, the hypothesis of 

reference-dependent preferences is nonparametrically irrefutable. Section 5 

characterizes the structure of reference-dependent preferences, assuming 

constant sensitivity and continuity. Section 6 derives the model’s 

nonparametric implications for demand. Section 7 uses using Farber’s (2005, 

2008) data to illustrate Section 6’s methods. Section 8 is the conclusion. 
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2 Reference-dependent Preferences 

 We consider reference-dependent preferences with a finite number of 

demand observations for a single consumer—or equivalently for a pooled 

group of consumers assumed to have homogeneous preferences, but we will 

speak of a single consumer. We index goods k = 1,…, K and observations t = 

1,…, T. We assume the consumer is a price-taker, choosing a consumption 

bundle 𝒒 ∈ ℝ+
𝐾 with a linear budget constraint. Her/his preferences are 

represented by a family of real-valued utility functions 𝑢(𝒒, 𝒓), parameterized 

by an exogenous reference point 𝒓 ∈ ℝ+
𝐾, which is conformable to a K–good 

consumption bundle as in TK and CM.8 If reference points are unmodelable, 

the data are prices and quantities {𝒑𝑡, 𝒒𝑡}𝑡=1,…,𝑇, with hypothetical reference 

points {𝒓𝑡}𝑡=1,...,𝑇. If reference points are modelable, the data are prices, 

quantities, and reference points {𝒑𝑡, 𝒒𝑡, 𝒓𝑡}𝑡=1,...,𝑇. The context will make the 

interpretation of 𝒓𝑡 clear. Sometimes we denote goods by scalars with 

superscripts, so for k = 1,…, K, 𝒒 ≡ (𝑞1, … , 𝑞𝐾) and for observation t = 1,…, 

T, 𝒒𝒕 ≡ (𝑞𝑡
1, … , 𝑞𝑡

𝐾), with analogous notation for 𝒑, 𝒑𝒕, 𝒓, and 𝒓𝒕.                                                                                                                                                                      

 To describe preferences that respond positively to changes in consumption 

relative to the reference point, as well as to levels, we take the reference-

dependent utility function 𝑢(𝒒, 𝒓) to be strictly increasing in 𝒒 and strictly 

decreasing in 𝒓. Our specification is then at least as flexible as a general 

strictly increasing function of levels 𝒒 and changes 𝒒 − 𝒓. It nests the 

neoclassical case where preferences respond only to levels; Kahneman and 

Tversky’s (1979) and TK’s case where they respond only to changes; and 

cases like Camerer et al.’s (1997), Farber’s (2005, 2008), KR’s, and CM’s 

where preferences respond to both. As in those papers, we take 𝑢(𝒒, 𝒓) to be 

 

8 In KR’s theoretical model, which makes no allowance for errors, only probabilistic targets 

make possible the unanticipated changes in outcomes that allow expectations-based reference-

dependence to have any effect. CM use the fact that sampling variation causes unanticipated 

changes to simplify KR’s probabilistic targets to point expectations, as we do here.  
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continuous in 𝒒 and 𝒓; and we assume that 𝑢(𝒒, 𝒓) is additively separable in 

the sense that it can be written as the sum of a consumption utility function, 

which depends only on levels of consumption, and a gain-loss utility function, 

which depends on both levels of consumption and a reference point. 

 We call the general case of preferences in the class just described variable 

sensitivity. An important special case is constant sensitivity (TK’s sign-

dependence; KR’s assumption A3′). Let sign(𝒒 − 𝒓), the vector whose kth 

component is sign(𝑞𝑘 − 𝑟𝑘), be the good-by-good sign pattern of gains and 

losses. A reference point divides commodity space into gain-loss regimes 

throughout each of which sign(𝒒 − 𝒓) remains constant. With constant 

sensitivity a consumer has a separate reference-dependent utility function for 

each regime, with preferences over consumption bundles 𝒒 (but not the level 

of utility) independent of 𝒓 within that regime. Gain-loss regimes’ utility 

functions can vary freely across regimes as long as the sum of consumption 

and gain-loss utility is continuous across regimes. 

 Note that each gain-loss regime’s utility function must be defined for the 

entire commodity space, because any 𝒒 is in the regime for some 𝒓: Each 

value of sign(𝒒 − 𝒓) “switches on” a different regime utility function. 

 

DEFINITION 1: [Preferences and utility functions with constant sensitivity.] 

A reference-dependent utility function 𝑢(𝒒, 𝒓) satisfies constant sensitivity if 

and only if, for any consumption bundles 𝒒 and 𝒒∗and reference points 𝒓 and 

𝒓∗such that 𝑠𝑖𝑔𝑛(𝒒 − 𝒓) = 𝑠𝑖𝑔𝑛(𝒒∗ − 𝒓) = 𝑠𝑖𝑔𝑛(𝒒 − 𝒓∗) = 𝑠𝑖𝑔𝑛(𝒒∗ − 𝒓∗), 

𝑢(𝒒, 𝒓) ≥ 𝑢(𝒒∗, 𝒓) if and only if 𝑢(𝒒, 𝒓∗) ≥ 𝑢(𝒒∗, 𝒓∗). 

 

 With two goods, a reference point in the interior of the commodity space 

divides it into four gain-loss regimes. Figure 1’s panels (a) and (b) show four 

regime indifference maps and the associated global maps for reference points 

𝒓 and 𝒓′. The shift from 𝒓 to 𝒓′ does not alter the regime maps, but as 𝒓 varies, 

even locally, the shift alters how they connect across regimes, as in Figure 1. 
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Figure 1. A set of gain-loss regime maps with constant sensitivity 

and the associated global maps for alternative reference points 

 

(a)                                                    (b) 

 

 Loss aversion is a concept that has strong experimental and empirical 

support and figures in some of our results. Generalizing TK’s (pp. 1047-1048) 

definition for the two-good case, Definition 2 gives a nonparametric definition 

of loss aversion with constant sensitivity.9 

 

DEFINITION 2: [Preferences with constant sensitivity and loss aversion.] 

Assume that reference-dependent preferences and an associated utility 

function 𝑢(𝒒, 𝒓) have constant sensitivity. A collection of gain-loss regime 

preferences over consumption bundles satisfies loss aversion if and only if, for 

any observation {𝒑𝑡, 𝒒𝑡, 𝒓𝑡}, given 𝒓𝑡, the preference ordering’s better-than-

𝒒𝑡  set is weakly contained in each regime preference ordering’s better-than-

𝒒𝑡 set. 

 

 Figure 2 illustrates Definition 2’s notion of loss aversion with one active 

reference point and two gain-loss regimes. As loss aversion is a property of the 

relationship between different regimes’ preferences over consumption bundles 

given a reference point, it is independent of the reference points themselves. 

 

9 The idea of loss aversion is well defined with variable sensitivity, but formalizing it is more 

complex, and Proposition 2 will show that it is then nonparametrically irrefutable anyway. 
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Figure 2. Loss aversion with one active reference point 

(solid curves for active parts of indifference maps, 

dashed for inactive parts) 

 

 Definition 2’s nesting of better-than sets is equivalent to requiring that 

gain-loss regimes’ indifference maps satisfy a global single-crossing property: 

For any observation, across regimes that differ only in the gain-loss status of 

good i, the loss-side marginal rate of substitution between good i and any other 

good (generalized as needed for non-differentiable preferences) is weakly 

more favorable to good i than the gain-side marginal rate of substitution. 

 It is this single-crossing property, not the kinks in global indifference maps 

that it creates, that shapes loss aversion’s nonparametric implications, which 

are testable with finite data. Loss aversion precludes nonconvex kinks, so if 

the regime maps have convex better-than sets, so do the global maps. 

 

3 Nonparametric Implications of Neoclassical Preferences 

 In preparation for our nonparametric analysis, this section reviews Afriat’s 

(1967), Diewert’s (1973), and Varian’s (1982) nonparametric analyses of 

consumer demand in the neoclassical case where preferences respond only to 

levels of consumption. In the revealed-preference tradition of Samuelson 

(1948) and Houthakker (1950), Afriat, Diewert, and Varian show that a 
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consumer’s demand behavior can be nonparametrically rationalized by the 

maximization of a nonsatiated utility function if and only if the data satisfy the 

Generalized Axiom of Revealed Preference (“GARP”). They also show how 

to construct a rationalizing utility function. 

 

DEFINITION 3: [Rationalization with neoclassical preferences.] Preferences 

and an associated utility function 𝑢(𝒒) rationalize the data {𝒑𝑡, 𝒒𝑡}𝑡=1,…,𝑇 if 

and only if 𝑢(𝒒𝑡) ≥ 𝑢(𝒒) for all 𝒒 and 𝒕 such that 𝒑𝑡 ∙ 𝒒 ≤ 𝒑𝑡 ∙ 𝒒𝑡. 

 

DEFINITION 4: [Generalized Axiom of Revealed Preference (“GARP”).] 

𝒒𝒔𝑅𝒒𝒕 implies 𝒑𝑡 ⋅ 𝒒𝑡 ≤ 𝒑𝑡 ⋅ 𝒒𝑠, where R indicates that there is some 

sequence of observations 𝒒ℎ , 𝒒𝑖 , 𝒒𝑗 , … , 𝒒𝑡 such that 𝒑ℎ ⋅ 𝒒ℎ ≥ 𝒑ℎ ⋅ 𝒒𝑖, 𝒑𝑖 ⋅

𝒒𝑖 ≥ 𝒑𝑖 ⋅ 𝒒𝑗 , … , 𝒑𝑠 ⋅ 𝒒𝑠 ≥ 𝒑𝑠 ⋅ 𝒒𝑡. 

 

AFRIAT’S THEOREM: The following statements are equivalent: 

[A] There exists a utility function 𝑢(𝒒) that is continuous, non-satiated, and 

concave, and that rationalizes the data  {𝒑𝑡, 𝒒𝑡}𝑡=1,...,𝑇.  

[B] There exist numbers {𝑈𝑡, 𝜆𝑡 > 0}𝑡=1
𝑇  such that 

(1)  𝑈𝑠 ≤ 𝑈𝑡 + 𝜆𝑡𝒑𝑡 ⋅ (𝒒𝑠 − 𝒒𝑡) for all 𝑠, 𝑡 ∈ {1, … , 𝑇} 

[C] The data  {𝒑𝑡, 𝒒𝑡}𝑡=1,...,𝑇 satisfy GARP. 

[D] There exists a non-satiated utility function 𝑢(𝒒) that rationalizes the data 

{𝒑𝑡, 𝒒𝑡}𝑡=1,...,𝑇.  

 

 In implementing Afriat’s Theorem, for given {𝑈𝑡, 𝜆𝑡 > 0}𝑡=1
𝑇  that satisfy 

[B]’s inequalities (1), we can take 𝑢(𝒒) = 𝑚𝑖𝑛𝑡∊{1,…,𝑇}{𝑈𝑡 + 𝜆𝑡𝒑𝑡 ⋅ (𝒒 − 𝒒𝑡)}.  

With finite data there are generally many possibilities for a rationalization 

(Varian 1982, Fact 4 and Figure 3). However, a choice of 𝑢(𝒒) we call the 

Afriat utility function plays a central role in Proposition 5. 

 

DEFINITION 5: [Afriat preferences and utility function.] For data 

{𝒑𝑡, 𝒒𝑡}𝑡=1,…,𝑇 that satisfy GARP, or equivalently for {𝑈𝑡, 𝜆𝑡 > 0}𝑡=1
𝑇  that 
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satisfy condition [B] of Afriat’s Theorem, the Afriat preferences follow the 

associated utility function 𝑢(𝒒) = 𝑚𝑖𝑛𝑡∊{1,…,𝑇}{𝑈𝑡 + 𝜆𝑡𝒑𝑡 ⋅ (𝒒 − 𝒒𝑡)}. 

 

Figure 3. Neoclassical Afriat preferences for data that satisfy GARP 

 

(a) (b) 

 

 Figure 3 illustrates the Afriat preferences for a three-observation dataset 

that satisfies GARP. Figure 3a shows the observations’ budget sets and 

consumption bundles. Figure 3b shows the Afriat indifference map, whose 

marginal rates of substitution are determined by the budget lines. The Afriat 

utility function is piecewise linear, continuous, non-satiated, and concave. 

 

4 Nonparametric Implications of Reference-Dependent Preferences 

 This section begins our nonparametric analysis of reference-dependent 

preferences. We assume that the reference-dependent utility function is 

additively separable in the sense that it can be written as the sum of a 

consumption utility function and a gain-loss utility function. Then, whether 

reference-dependent preferences can rationalize demand behavior is limited by 

whether sensitivity is constant and reference points are precisely modelable. 
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4.1 Reference-dependent rationalization with unmodelable reference points 

 With unmodelable reference points, Definition 6 allows a reference point to 

be chosen hypothetically for each observation—the nonparametric analogue of 

Farber’s (2005, 2008) econometric treatment of targets as latent variables. 

 

DEFINITION 6: [Rationalization with unmodelable reference points.] 

Reference-dependent preferences, an associated utility function 𝑢(𝒒, 𝒓), and 

hypothetical reference points {𝒓𝑡}𝑡=1,…,𝑇, rationalize the data {𝒑𝑡, 𝒒𝑡}𝑡=1,…,𝑇 if 

and only if 𝑢(𝒒𝑡, 𝒓𝑡) ≥ 𝑢(𝒒, 𝒓𝑡) for all 𝒒 and 𝒕 such that 𝒑𝑡 ∙ 𝒒 ≤ 𝒑𝑡 ∙ 𝒒𝑡. 

 

 Proposition 1 shows that unless reference points are modelable in the sense 

that they can be precisely predicted (possibly as functions of the data), one can 

construct a reference-dependent utility function to rationalize any demand data 

(even if the data violate Definition 4’s necessary and sufficient GARP 

condition for the existence of a neoclassical rationalization,). 

 

PROPOSITION 1: [Rationalization with unmodelable reference points via 

preferences with variable or constant sensitivity.] For any data {𝒑𝑡, 𝒒𝑡}𝑡=1,…,𝑇 

with unmodelable reference points, there exist reference-dependent 

preferences and an associated utility function 𝑢(𝒒, 𝒓) that are continuous, 

increasing in 𝒒, and decreasing in 𝒓, and a sequence of hypothetical reference 

points {𝒓𝑡}𝑡=1,...,𝑇, that rationalize the data.  

 

Proof: Recall that we denote goods by superscripts, so that 𝒒 ≡ (𝑞1, … , 𝑞𝐾), 

𝒒𝒕 ≡ (𝑞𝑡
1, … , 𝑞𝑡

𝐾), and so on. Let 𝑎𝑘 ≡ 𝑚𝑖𝑛𝑡=1,…,𝑇{𝑝𝑡
𝑘} > 0 for each k and t 

such that 𝑞𝑡
𝑘 ≥ 𝑟𝑡

𝑘; and 𝑎𝑘 ≡ 𝑚𝑎𝑥𝑡=1,…,𝑇{𝑝𝑡
𝑘} > 0 for each k and t such that 

𝑞𝑡
𝑘 < 𝑟𝑡

𝑘. Define the utility function 𝑢(𝒒, 𝒓) ≡ ∑ 𝑎𝑘𝑞𝑘
𝑘 + ∑ 𝑎𝑘(𝑞𝑘 − 𝑟𝑘)𝑘 , 

which is strictly increasing in 𝒒, strictly decreasing in 𝒓, and satisfies constant 

sensitivity and Proposition 1’s conditions for continuity. For observation t, set 

𝒓𝑡 = 𝒒𝑡 and consider any bundle 𝒒 ≠ 𝒒𝑡 = 𝒓𝑡 that (without loss of generality 
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given strict monotonicity) exactly satisfies t’s budget constraint. For such 

bundles, ∑ 𝑝𝑡
𝑘

𝑘 (𝑞𝑘 − 𝑞𝑡
𝑘) = 0 and, by the definition of the 𝑎𝑘,  

 

(2)  ∑ (𝑎𝑘 − 𝑝𝑡
𝑘)(𝑞𝑘 − 𝑞𝑡

𝑘)𝑘 = ∑ (𝑎𝑘 − 𝑝𝑡
𝑘)(𝑞𝑘 − 𝑟𝑡

𝑘)𝑘 < 0 and ∑ 𝑎𝑘(𝑞𝑘 − 𝑟𝑡
𝑘)𝑘 ≤ 0  

and  

(3)   𝑢(𝒒, 𝒓𝑡) −  𝑢(𝒒𝑡, 𝒓𝑡) = 2 ∑ 𝑎𝑘(𝑞𝑘 − 𝑞𝑡
𝑘)𝑘 = 2 ∑ 𝑎𝑘(𝑞𝑘 − 𝑟𝑡

𝑘)𝑘 ≤ 0, 

so 𝑢(𝒒, 𝒓) rationalizes the choice of 𝒒𝑡 . Similarly for variable sensitivity.10 ■ 

 

 The proof of Proposition 1 hypothesizes a reference point for each 

observation with 𝒓𝑡 = 𝒒𝑡 and preferences that, with those reference points, put 

the observation’s consumption bundle at the kink of an approximately 

Leontief indifference curve (approximately to preserve strict monotonicity). 

Those preferences satisfy continuity, constant sensitivity, and Farber’s, KR’s, 

and CM’s functional-form assumptions, which shows that those assumptions 

are nonparametrically irrefutable as well. Because the rationalization works 

entirely by varying reference points across observations, it shows as directly as 

possible that the empirical usefulness of reference-dependent consumer theory 

depends on modeling reference points. 

 Implicitly, Proposition 1 also shows that analyses that treat targets as latent 

variables may be influenced as much by how they constrain the estimation of 

targets as by reference-dependence. This may be why Farber’s (2005, 2008) 

model yields unstable estimates of earnings targets, which is the basis of his 

argument that reference-dependence is not useful in modeling labor supply. 

By contrast, CM’s sample-proxy model of the targets yields stable estimates. 

 Gul and Pesendorfer (2006) and Freeman (2017) prove results with 

conclusions like Proposition 1’s.11 However, the preferences in Gul and 

Pesendorfer’s proof do not satisfy KR’s and our assumption of additive 

 

10 The 2 in (3) comes from the separate components of the hypothesized 𝑢(𝒒, 𝒓) function. 

11 More precisely, Gul and Pesendorfer show that the choice function for reference-dependent 

preferences is the same as that which maximizes a complete binary relation.     
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separability across consumption and gain-loss utility, and they allow the 

strength of loss aversion to vary wildly with the cardinality of their (finite) 

choice set. Freeman’s Observation 1 does not restrict preferences, even to be 

monotonic. By contrast, the rationalizing preferences in the proof of 

Proposition 1 are credible candidates for an empirical explanation. 

 Cases with limited knowledge of reference points are plausible and may be 

empirically relevant, but we have found no informative results for them.   

 

4.2 Reference-dependent rationalization with modelable reference points and 

variable sensitivity 

 Our next result shows that even if reference points are modelable, unless 

sensitivity is constant the hypothesis of reference-dependent preferences is 

refutable only via violations of Definition 4’s GARP condition within subsets 

of observations that share exactly the same reference point. For such subsets, 

reference-dependent preferences reduce to neoclassical preferences. Thus, 

reference-dependence adds nothing empirically useful to a neoclassical model. 

 Put another way, our result shows that constant sensitivity, which is usually 

seen as no more than a convenient simplification, is essential for a reference-

dependent model to have useful nonparametrically refutable implications. 

 

DEFINITION 7: [Rationalization with modelable reference points.] 

Reference-dependent preferences and an associated utility function 𝑢(𝒒, 𝒓) 

rationalize the data {𝒑𝑡, 𝒒𝑡, 𝒓𝑡}𝑡=1,…,𝑇 with modelable reference points if and 

only if 𝑢(𝒒𝑡, 𝒓𝑡) ≥ 𝑢(𝒒, 𝒓𝑡) for all 𝒒 and 𝒕 such that 𝒑𝑡 ∙ 𝒒 ≤ 𝒑𝑡 ∙ 𝒒𝑡. 

 

PROPOSITION 2:12 [Rationalization with modelable reference points via 

preferences with variable sensitivity.] For any data {𝒑𝑡, 𝒒𝑡 , 𝒓𝑡}𝑡=1,…,𝑇 with 

 

12 As Proposition 2’s proof shows, restricting sensitivity short of assuming that it is constant, 

such as by assuming diminishing sensitivity, still does not yield refutable implications. Unlike 

Proposition 1, Proposition 2 does not claim that 𝑢(𝒒, 𝒓) is continuous in 𝒒 and 𝒓 or decreasing 
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modelable reference points, there exist reference-dependent preferences and 

an associated utility function 𝑢(𝒒, 𝒓) that for each observation t and reference 

point 𝒓𝑡, are continuous and strictly increasing in 𝒒 and that rationalize the 

data, if and only if every subset of the data whose observations share exactly 

the same reference point satisfies GARP. 

 

Proof: Partition the observations into subsets 𝜏𝑗 , 𝑗 = 1, . . . , 𝐽, such that if and 

only if two observations {𝒑𝑠, 𝒒𝑠, 𝒓𝑠} and {𝒑𝑡, 𝒒𝑡, 𝒓𝑡} have the same reference 

point 𝒓𝑠 = 𝒓𝑡, they are in the same subset. If there exists a reference-

dependent utility function with the stated properties that rationalizes the data, 

then the data must satisfy GARP within any such subset, by Afriat’s Theorem. 

Conversely, suppose the data within each such subset satisfies GARP. Let 

𝑏𝑘 ≡ 𝑚𝑖𝑛𝑡=1,…,𝑇 {𝑝𝑡
𝑘}, so that  0 < 𝑏𝑘 ≤ 𝑝𝑡

𝑘, and let 𝒃 ≡ (𝑏1, … , 𝑏𝐾). For any 

subset 𝜏𝑗and observation 𝑡 ∊ 𝜏𝑗, let the indicator function 𝐼𝜏𝑗(𝑡) = 1 if the 

observation 𝑡 ∊ 𝜏𝑗  and 𝐼𝜏𝑗(𝑡) = 0 otherwise, and let 𝑢(𝒒, 𝒓) ≡

∑ 𝐼𝜏𝑗𝑗 (𝑡)𝑈𝑗(𝒒, 𝒓𝑡), where 𝑈𝑗(𝒒, 𝒓𝑡) ≡ 𝑚𝑖𝑛𝜌∊𝜏𝑗{𝑈𝜌
𝑗

+ 𝜆𝜌
𝑗

𝒑𝜌 ⋅ (𝒒 − 𝒒𝜌)} − 𝒃 ∙

𝒓𝑡, which is Definition 5’s Afriat utility function for observations in 𝜏𝑗, with 

the 𝑈𝜌
𝑗
 and 𝜆𝜌

𝑗
 taken from 𝜏𝑗’s binding condition B) inequalities (1) in Afriat’s 

Theorem. If 𝜏𝑗 is a singleton subset, the terms in 𝑈𝑗(𝒒, 𝒓𝑡) follow observation 

t’s budget line. If not, those terms follow the minimum of 𝜏𝑗’s observations’ 

 

in 𝒓. A rationalization might require discontinuous preferences if observations with nearby 𝒓’s 

have very different budget sets. We have not tried to characterize rationalizability via a 

continuous 𝑢(𝒒, 𝒓). But for data generated by continuous preferences, Proposition 2’s 

rationalizations should converge to a continuous limiting 𝑢(𝒒, 𝒓) as the data become rich. The 

lack of refutable implications without constant sensitivity resembles the ambiguity of 

neoclassical consumer demand, where in theory small changes in income can lead to large 

changes in preferences and demand. In structural analyses such large income effects are ruled 

out implicitly by conventional functional-form assumptions. A nonparametric analysis must 

rule them out explicitly, as here via constant sensitivity.         
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budget lines, as in Figure 3b. Either way, 𝒓𝑡 completely determines the 𝒑𝜌 and 

𝒒𝜌 for all 𝜌 ∊ 𝜏𝑗, as required to determine 𝑈𝑗(𝒒, 𝒓𝑡). For each 𝒓𝑡, 𝑢(𝒒, 𝒓𝑡) and 

𝑈𝑗(𝒒, 𝒓𝑡) are continuous and increasing in 𝒒. For any subset 𝜏𝑗and 

observation 𝑡 ∊ 𝜏𝑗  and any 𝒒 with 𝒑𝑡 ∙ 𝒒 ≤ 𝒑𝑡 ∙ 𝒒𝑡, using 𝜏𝑗’s binding 

condition B) inequalities (1) for the preferences in that subset,  

 

(4)          𝑈𝑗(𝒒, 𝒓𝑡) ≡ 𝑚𝑖𝑛𝜌∊𝜏𝑗{𝑈𝜌
𝑗

+ 𝜆𝜌
𝑗

𝒑𝜌 ⋅ (𝒒 − 𝒒𝜌)} − 𝒃 ∙ 𝒓𝑡 

                  ≤ 𝑈𝑡
𝑗

+ 𝜆𝑡
𝑗
𝒑𝑡 ⋅ (𝒒𝑡 − 𝒒𝑡)  − 𝒃 ∙ 𝒓𝑡 = 𝑈𝑡

𝑗
− 𝒃 ∙ 𝒓𝑡 ≡ 𝑈𝑗(𝒒𝑡, 𝒓𝑡). ■ 

 

5 Characterizing Reference-dependent Preferences with Constant 

Sensitivity and Continuity 

 Sections 4’s results show that nonparametrically refutable implications of 

reference-dependence depend on the modelability of reference points and 

constant sensitivity. In this section, to prepare for Section 6’s analysis of 

rationalization in that case, we characterize reference-dependent utility 

functions with constant sensitivity and continuity. 

 Suppose that preferences and a reference-dependent utility function 𝑢(𝒒, 𝒓) 

satisfy: additive separability across consumption and gain-loss utility; constant 

sensitivity; and continuity in 𝒒 and 𝒓; with the number of goods K ≥ 2 and 

reference-dependence active for all K goods;13 and, for any 𝒓, with preferences 

over 𝒒 differentiable in the interior of each gain-loss regime, and marginal 

rates of substitution that differ across regimes throughout commodity space.  

 Let G(𝒒, 𝒓) be a vector of binary numbers of length K with kth component 

1 if 𝑞𝑘 ≥ 𝑟𝑘 and 0 otherwise. The gain-loss regime indicator 𝐼𝒈(𝒒, 𝒓) = 1 if 

 

13 In riskless environments with convex budget sets, if K = 1 all monotone preferences are 

observationally equivalent, so reference-dependence cannot be empirically meaningful. And, 

as Proposition 3’s wording suggests, its assumptions don’t tie down the functional structure 

for goods for which reference-dependence is inactive. As we seek general characterizations, 

Propositions 4 and 5 take Proposition 3’s conclusion, not its assumptions, as their premises. 
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𝒈 = 𝐺(𝒒, 𝒓) and 0 otherwise; and the gain-loss indicators 𝐺+
𝑘(𝒒, 𝒓) = 1 if 

𝑞𝑡
𝑘 ≥ 𝑟𝑡

𝑘 and 0 otherwise and 𝐺−
𝑘(𝒒, 𝒓) = 1 if 𝑞𝑡

𝑘 < 𝑟𝑡
𝑘and 0 otherwise. 

 

PROPOSITION 3: [Preferences and utility functions with continuity and 

constant sensitivity.] Suppose there are K ≥ 2 goods, with reference-

dependence active for all K goods, and that a reference-dependent preference 

ordering and an associated utility function have additively separable 

consumption utility and gain-loss utility components. Then the ordering 

satisfies constant sensitivity if and only if an associated utility function 𝑢(𝒒, 𝒓) 

can be written, for some consumption utility function 𝑈(∙) and gain-loss 

regime utility functions 𝑉𝒈(∙,∙) and 𝑣𝒈(∙), as 

 

(5)               𝑢(𝒒, 𝒓) ≡ 𝑈(𝒒) + ∑ 𝐼𝒈(𝒒, 𝒓)𝑉𝒈(𝑣𝒈(𝒒),𝒈 𝒓). 

 

Suppose further that the induced preferences over 𝒒 are differentiable in the 

interior of each regime, with marginal rates of substitution that differ across 

regimes throughout commodity space. Then the ordering satisfies constant 

sensitivity and continuity if and only if it is representable by a utility function 

𝑢(𝒒, 𝒓) that can be written, for some consumption utility function 𝑈(∙) and 

gain-loss component utility functions 𝑣+
𝑘(∙) and 𝑣−

𝑘(∙) (with the indicator 

functions 𝐺+
𝑘(∙,∙) and 𝐺−

𝑘(∙,∙) doing the work of the indicator 𝐼𝒈(∙,∙)), as 

 

(6)  𝑢(𝒒, 𝒓) ≡ 𝑈(𝒒) + ∑ [𝐺+
𝑘(𝒒, 𝒓){𝑣+

𝑘(𝑞𝑘)𝑘 − 𝑣+
𝑘(𝑟𝑘)} + 𝐺−

𝑘(𝒒, 𝒓){𝑣−
𝑘(𝑞𝑘) − 𝑣−

𝑘(𝑟𝑘)}]. 

 

Conversely, any combination of induced regime preferences over 𝒒 is consistent 

with continuity and constant sensitivity for some gain-loss utility functions. 

 

Proof: The “if” part of each claim is immediate. The “only if” part regarding 

(5) follows from Definition 1 via the standard characterization of additively 

separable preferences (Debreu 1960, Section 3). To prove the “only if” part 

regarding (6), note that 𝑢(𝒒, 𝒓) in (5) is continuous if and only if  
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(7)    𝑉𝒈(𝑣𝒈(𝒒), 𝒓) = 𝑉𝒈′(𝑣𝒈′(𝒒), 𝒓) 

 

for any 𝒒, 𝒓, and i with 𝑞𝑖 = 𝑟𝑖 and any gain-loss regimes 𝒈 and 𝒈′ that differ 

in the gain-loss status of good 𝑖. But (7) can hold under those conditions only 

if each regime’s 𝑉𝒈(𝑣𝒈(𝒒), 𝒓) is additively separable in the components of 𝒒 

and, for component utility functions 𝑣+
𝑘(∙) and 𝑣−

𝑘(∙), 𝑘 = 1, … , 𝐾, 

 

(8)  ∑ 𝐼𝒈(𝒒, 𝒓)𝑉𝒈(𝑣𝒈(𝒒), 𝒓)𝒈 ≡ ∑ [𝐺+
𝑘(𝒒, 𝒓){𝑣+

𝑘(𝑞𝑘)𝑘 − 𝑣+
𝑘(𝑟𝑘)} + 𝐺−

𝑘(𝒒, 𝒓){𝑣−
𝑘(𝑞𝑘) − 𝑣−

𝑘(𝑟𝑘)}]. 

 

First suppose that (7) is satisfied for some 𝒒, 𝒓, and i with 𝑞𝑖 = 𝑟𝑖. Using the 

hypothesized differentiability in the interior of each gain-loss regime, if 

𝜕𝑉𝒈(𝑣𝒈(𝒒), 𝒓)/𝜕𝑞𝑗 ≠ 0, (7) implies that 𝜕𝑉𝒈′(𝑣𝒈(𝒒), 𝒓)/𝜕𝑞𝑗 ≠ 0 as well. 

Adding 𝑈(𝒒) to each side of (7), partially differentiating each side with 

respect to 𝑞𝑗and then 𝑞𝑖, with 𝑟𝑖 = 𝑞𝑖, and taking ratios would then show that 

the marginal rates of substitution between goods i and j are equal across 

regimes 𝒈 and 𝒈′ for all 𝑞𝑖 = 𝑟𝑖, a contradiction. Thus with 𝑞𝑖 = 𝑟𝑖, 

𝜕𝑉𝒈(𝑣𝒈(𝒒), 𝒓)/𝜕𝑞𝑗 ≡ 𝜕𝑉𝒈′(𝑣𝒈(𝒒), 𝒓)/𝜕𝑞𝑗 ≡ 0 for any 𝑗 ≠ 𝑖, and standard 

characterization results show that for a regime 𝒈, 𝑉𝒈(𝑣𝒈(𝒒), 𝒓) is additively 

separable across the components of 𝒒. Given that, changing the gain-loss 

status of a good j with 𝑞𝑖 = 𝑟𝑖 would violate (7) and therefore continuity, 

unless for some functions 𝑤+
𝑘(∙) and 𝑤−

𝑘(∙), k = 1,…, K,  

 

(9)  ∑ 𝐼𝒈(𝒒, 𝒓)𝑉𝒈(𝑣𝒈(𝒒),𝒈 𝒓) ≡ ∑ [𝐺+
𝑘(𝒒, 𝒓)𝑘 𝑤+

𝑘(𝑞𝑘, 𝒓) + 𝐺−
𝑘(𝒒, 𝒓)𝑤−

𝑘(𝑞𝑘, 𝒓)]. 

 

Finally, unless the 𝑤+
𝑘(∙,·) and 𝑤−

𝑘(∙,·) are also additively separable in 𝒓, with 

good-by-good responses to reference points that exactly mirror their good-by-

good responses to bundles as in (8) (with 𝑤+
𝑘(𝑞𝑘, 𝒓) ≡ {𝑣+

𝑘(𝑞𝑘) − 𝑣+
𝑘(𝑟𝑘)} 

and 𝑤−
𝑘(𝑞𝑘, 𝒓) ≡ {𝑣−

𝑘(𝑞𝑘) − 𝑣−
𝑘(𝑟𝑘)}), for some 𝒒, 𝒓, and k, changing 𝑞𝑘 and 

𝑟𝑘 with 𝑟𝑘 = 𝑞𝑘would induce different changes in 𝑉𝒈(𝑣𝒈(𝒒), 𝒓) and 

𝑉𝒈′(𝑣𝒈′(𝒒), 𝒓), violating (7) and continuity. The contradiction establishes our 
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claim regarding (8) and completes the proof of (6). A similar argument shows 

that any combination of induced regime preferences over 𝒒 is consistent with 

continuity and constant sensitivity for some gain-loss utility functions. ■ 

 

 Proposition 3’s class of reference-dependent utility functions generalizes 

the constant-sensitivity functional-structure assumptions maintained in TK’s 

and KR’s theoretical analyses and all previous empirical studies. 

 In particular, a gain-loss utility function must be additively separable across 

gain-loss regimes, across 𝒒 and 𝒓, and across goods within each regime, with 

good-by-good responses to reference points that exactly mirror their responses 

to the components of consumption. Thus, KR’s assumption that gain-loss 

utility is determined by good-by-good differences between realized and 

reference utilities is necessary as well as sufficient for continuity. However, 

KR’s further assumption that gain-loss utility is governed by the same 

function that governs consumption utility is not necessary for continuity. 

When the utility function is additively separable across consumption and gain-

loss utility, continuity does not restrict the consumption utility function, which 

is constant across gain-loss regimes by definition. Thus, with nonparametric 

flexibility, Proposition 3’s characterization enables us to relax the restrictions 

that the sum of consumption and gain-loss utility that determines a consumer’s 

demand is additively separable across goods, and on how that sum’s marginal 

rates of substitution vary across gain-loss regimes (CM’s Table 1). As will be 

seen, both generalizations can be very important empirically. 

 Proposition 3’s characterization (6) also plays a central role in Proposition 

4’s and 5’s conditions for a rationalization with modelable reference points 

and constant sensitivity. With constant sensitivity a consumer’s induced 

preferences over 𝒒 and her/his optimal choice of 𝒒 are independent of 𝒓 within 

a gain-loss regime, but the maximized value of 𝑢(𝒒, 𝒓) varies with 𝒓 within a 

regime. (6)’s terms in 𝑣+
𝑘(𝑟𝑘) and 𝑣−

𝑘(𝑟𝑘) ensure continuity of 𝑢(𝒒, 𝒓) despite 

such variation, by subtracting a regime-by-regime “loss cost”. Because the 
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loss costs depend on 𝒓, not 𝒒, a consumer faces a menu of fixed, exogenous 

regime charges, which influence her/his incentive to “defect” from an 

observation’s consumption bundle to bundles in other regimes. This incentive 

constraint figures in Proposition 4’s and 5’s conditions for a rationalization. 

 

6 Nonparametric Implications of Reference-Dependent Preferences with 

Modelable Reference Points, Constant Sensitivity, and Continuity 

 This section uses Proposition 3’s characterization of reference-dependent 

utility functions that satisfy constant sensitivity and continuity to derive 

nonparametric conditions for a reference-dependent rationalization with 

modelable reference points, constant sensitivity, and continuity.  

 With modelable reference points and constant sensitivity, observations’ 

consumption bundles can be objectively sorted into gain-loss regimes. By 

Afriat’s Theorem (Section 3), GARP for each regime’s observations is 

required for the existence of preferences that preclude defections from an 

observation’s bundle to affordable bundles within the same regime, hence 

necessary for a rationalization. However, it is not sufficient, for two reasons. 

First, the gain-loss regime utility functions that rationalize the consumer’s 

choices within each regime must satisfy Proposition 3’s restrictions that their 

component utility functions must be the same across all regimes, and GARP 

regime-by-regime does not ensure that that is possible. Second, the 

rationalizing regime utility functions must also prevent defections from an 

observation’s consumption bundle to affordable bundles in other regimes, in 

which the consumer’s preferences may differ. This involves Section 5’s loss 

costs, which are determined by the rationalizing regime utility functions.  

 Another difficulty in deriving conditions for a rationalization is that there is 

normally a range of rationalizing gain-loss regime utility functions, as in the 

neoclassical case (Varian 1982, Fact 4 and Figure 3). Choosing among them 

involves complex trade-offs, because a choice that lowers the gain from 

defecting from bundles in a regime raises the gain from defecting to them. 
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 Propositions 4 and 5 approach these difficulties in two steps. Proposition 4 

derives benchmark necessary and sufficient conditions for a rationalization, 

conditional on the choice of rationalizing gain-loss regime utility functions. 

Because those conditions are conditional, they are not directly applicable. 

Proposition 5 then derives directly applicable sufficient conditions based on 

rationalizing regime utility functions like Definition 3’s Afriat utility 

functions. Because there are usually other rationalizing regime utility 

functions, Proposition 5’s sufficient conditions are not necessary; but with rich 

enough data they should be asymptotically necessary, as explained below.  

 Let 𝛤(𝑔; 𝒓)} be the set of 𝒒 in regime g for 𝒓. Let 𝛩({𝒒𝑡 , 𝒓𝑡}𝑡=1,…,𝑇; 𝑔) ≡

{𝑡 ∊ {1, … , 𝑇}│𝒒𝑡 ∊ 𝛤(𝑔; 𝒓𝑡)} be the set of 𝑡 with 𝒒𝑡 in regime g for 𝒓𝑡. 

 

PROPOSITION 4: [Rationalization with modelable reference points via 

preferences and utility functions with constant sensitivity.] Suppose that 

reference-dependent preferences and an associated utility function are defined 

over K ≥ 2 goods, that reference-dependence is active for all K goods, that the 

preferences satisfy constant sensitivity and are continuous, and that the utility 

function satisfies Proposition 3’s (6). Consider data {𝒑𝑡, 𝒒𝑡, 𝒓𝑡}𝑡=1,…,𝑇 with 

modelable reference points. Then the statements [A] and [B] are equivalent: 

[A] There exists a continuous reference-dependent utility function 𝑢(𝒒, 𝒓) that 

satisfies constant sensitivity; is strictly increasing in 𝒒 and strictly decreasing 

in 𝒓; and that rationalizes the data {𝒑𝑡, 𝒒𝑡, 𝒓𝑡}𝑡=1,…,𝑇 .  

[B] Each gain-loss regime’s data satisfy GARP within the regime; and there is 

some combination of preferences over consumption bundles, with continuous, 

strictly increasing consumption utility function 𝑈(∙) and gain-loss component 

utility functions 𝑣+
𝑘(∙) and 𝑣−

𝑘(∙), such that, for any regime 𝑔 and any pair of 

observations 𝜎, 𝜏 ∊ 𝛩({𝒒𝑡, 𝒓𝑡}𝑡=1,…,𝑇; 𝑔) (with the indicator functions 𝐺+
𝑘(∙,∙) 

and 𝐺−
𝑘(∙,∙) again doing the work of 𝐼𝒈(∙,∙)), 

 

(10)    𝑈(𝒒𝜎) + ∑ [𝐺+
𝑘(𝒒𝜎, 𝒓𝜏)𝑣+

𝑘(𝑞𝜎
𝑘) + 𝐺−

𝑘(𝒒𝜎, 𝒓𝜏)𝑣−
𝑘(𝑞𝜎

𝑘)𝑘 ] 
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≤ U(𝒒𝜏) + ∑[𝐺+
𝑘(𝒒𝜏, 𝒓𝜏)𝑣+

𝑘(𝑞𝜏
𝑘) + 𝐺−

𝑘(𝒒𝜏, 𝒓𝜏)𝑣−
𝑘(𝑞𝜏

𝑘)]

𝑘

 + 𝜆𝜏𝒑𝜏 ⋅ (𝒒𝜎 − 𝒒𝜏) 

and for each observation {𝒑𝜏, 𝒒𝜏, 𝒓𝜏}𝑡=1,…,𝑇 with 𝜏 ∊ 𝛩({𝒒𝑡, 𝒓𝑡}𝑡=1,…,𝑇; 𝑔) and 

each 𝒒 ∊ 𝛤(𝑔′; 𝒓𝜏) with 𝑔′ ≠ 𝑔 for which 𝒑𝜏 ⋅ 𝒒 ≤  𝒑𝜏 ⋅ 𝒒𝜏, 

 

(11)  𝑈(𝒒) + ∑ [𝐺+
𝑘(𝒒, 𝒓𝜏){𝑣+

𝑘(𝑞𝑘)𝑘 − 𝑣+
𝑘(𝑟𝜏

𝑘)} + 𝐺−
𝑘(𝒒, 𝒓𝜏){𝑣−

𝑘(𝑞𝑘) − 𝑣−
𝑘(𝑟𝜏

𝑘)}] 

 ≤ 𝑈(𝒒𝝉) + ∑ [𝐺+
𝑘(𝒒𝝉, 𝒓𝝉){𝑣+

𝑘(𝑞𝜏
𝑘) − 𝑣+

𝑘(𝑟𝜏
𝑘)} + 𝐺−

𝑘(𝒒𝝉, 𝒓𝝉){𝑣−
𝑘(𝑞𝜏

𝑘) − 𝑣−
𝑘(𝑟𝜏

𝑘)}]𝑘 . 

 

Proof: That [B] implies [A] is immediate. To prove that [A] implies [B], take 

the rationalizing regime preferences represented by 𝑈(∙) and the 𝑣+
𝑘(∙) and 

𝑣−
𝑘(∙), which satisfy (10). Use Proposition 3 to write the condition preventing 

defections from the bundle of observation 𝜏 ∊ 𝛩({𝒒𝑡, 𝒓𝑡}𝑡=1,…,𝑇; 𝑔) in regime 

𝑔 to a bundle 𝒒 ∊ 𝛤(𝑔′; 𝒓𝜏) in regime 𝑔′ ≠ 𝑔 for 𝒓𝜏 with 𝒑𝜏 ⋅ 𝒒 ≤  𝒑𝜏 ⋅ 𝒒𝜏: 

 

      𝑢(𝒒, 𝒓𝜏) − 𝑈(𝒓𝜏) ≡ 𝑈(𝒒) + ∑ [𝐺+
𝑘(𝒒, 𝒓𝜏){𝑣+

𝑘(𝑞𝑘)𝑘 − 𝑣+
𝑘(𝑟𝜏

𝑘)} +

𝐺−
𝑘(𝒒, 𝒓𝜏𝜏

){𝑣−
𝑘(𝑞𝑘) − 𝑣−

𝑘(𝑟𝜏
𝑘)}] − 𝑈(𝒓𝜏) 

(12) ≡ {𝑈(𝒒) + ∑ [𝐺+
𝑘(𝒒, 𝒓𝝉)𝑣+

𝑘(𝑞𝑘)𝑘 + 𝐺−
𝑘(𝒒, 𝒓𝝉)𝑣−

𝑘(𝑞𝑘)]} − {𝑈(𝒓𝜏) +

∑ [𝐺+
𝑘(𝒒, 𝒓𝝉){𝑣+

𝑘(𝑟𝜏
𝑘)𝑘 + 𝐺−

𝑘(𝒒, 𝒓𝝉)𝑣−
𝑘(𝑟𝜏

𝑘)]} 

      ≤ {𝑈(𝒒𝜏) + ∑ [𝐺+
𝑘(𝒒𝝉, 𝒓𝝉)𝑣+

𝑘(𝑞𝜏
𝑘)𝑘 + 𝐺−

𝑘(𝒒𝝉, 𝒓𝝉)𝑣−
𝑘(𝑞𝜏

𝑘)]} − {𝑈(𝒓𝝉) +

∑ [𝐺+
𝑘(𝒒𝝉, 𝒓𝝉){𝑣+

𝑘(𝑟𝜏
𝑘)𝑘 + 𝐺−

𝑘(𝒒𝝉, 𝒓𝝉)𝑣−
𝑘(𝑟𝜏

𝑘)]} 

≡ 𝑈(𝒒𝝉) + ∑ [𝐺+
𝑘(𝒒𝝉, 𝒓𝝉){𝑣+

𝑘(𝑞𝜏
𝑘) − 𝑣+

𝑘(𝑟𝜏
𝑘)} + 𝐺−

𝑘(𝒒𝝉, 𝒓𝝉){𝑣−
𝑘(𝑞𝜏

𝑘) −𝑘

𝑣−
𝑘(𝑟𝜏

𝑘)}] ≡ 𝑢(𝒒𝝉, 𝒓𝝉) − 𝑈(𝒓𝜏). 

 

(12)’s central inequality can then be rearranged to yield (11). ■ 

 

 Proving Proposition 4 requires linking Section 4’s loss costs to things that 

can be estimated from the data, not only at given points but as functions of 𝒓. 

The proof shows that this can be done, as in (12). 

 Figures 4 and 5 illustrate Proposition 4. In each case the entire dataset 

violates GARP, with observation 1’s consumption bundle chosen in 1’s budget 

set over observation 2’s bundle, and vice versa. In each case the observations’ 
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reference points put their bundles in different gain-loss regimes, so constant 

sensitivity allows different preferences for each observation. And in each case 

each regime’s single observation trivially satisfies GARP within its regime. 

 Figures 4a-b depict Afriat and non-Afriat rationalizing regime preferences. 

In each case condition (11) is satisfied, so that a rationalization is possible. 

 

Figure 4. Rationalizing data that violate GARP via reference-dependent 

preferences with constant sensitivity 

(Solid lines for loss maps, dashed lines for gains maps) 

 

(a) (b) 

 

Figure 5. Failing to rationalize data that violate GARP via reference-

dependent preferences with constant sensitivity 

(Solid lines for (a)’s loss maps, dashed lines for (a)’s gains maps) 

 

    (a)                                    (b) 

 

 By contrast, in Figure 5a Afriat rationalizing regime preferences do not 

satisfy (11) and Figure 5b shows that there can be no choice of rationalizing 

regime preferences (Afriat or not) for which (11) is satisfied, so that a 

rationalization is impossible. A rationalization in Figure 5b would require 
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regime preferences that connect a loss-regime indifference curve through 

observation 1’s bundle to a gain-regime curve that cuts into observation 2’s 

budget set and stays outside observation 1’s budget set, thus passing northeast 

of 2’s bundle; and also loss- and gain-regime indifference curves satisfying the 

analogous conditions interchanging observations 1 and 2. Such curves are 

inconsistent with optimality of each observation’s consumption bundle.  

 The difference between Figure 4’s and Figure 5’s examples can be 

understood in terms of loss aversion (Definition 2). The change in 

rationalizing Afriat preferences across the gain-loss regimes in Figure 4a is 

consistent with loss aversion, but the analogous change in Figure 5a is not. 

 A Corollary shows that if the rationalizing regime preferences satisfy loss 

aversion, Proposition 4’s no-cross-regime-defections constraints (11) must be 

satisfied, so that its conditions (10) are then sufficient for a rationalization. 

Thus loss aversion, which is empirically well-established but not usually seen 

as essential to modelling reference-dependent demand, plays a substantial role 

in the sufficient conditions for a reference-dependent rationalization.   

 Recall that the gain-loss indicator functions 𝐺+
𝑘(𝒒, 𝒓) = 1 if 𝑞𝑡

𝑘 ≥ 𝑟𝑡
𝑘 and 0 

otherwise and 𝐺−
𝑘(𝒒, 𝒓) = 1 if 𝑞𝑡

𝑘 < 𝑟𝑡
𝑘and 0 otherwise; and that 

𝛩({𝒒𝑡 , 𝒓𝑡}𝑡=1,…,𝑇; 𝑔) ≡ {𝑡 ∊ {1, … , 𝑇}│𝒒𝑡 ∊ 𝛤(𝑔; 𝒓𝑡)} is the set of observation 

indicators 𝑡 for which 𝒒𝑡 is in regime g for 𝒓𝑡. 

 

COROLLARY: [Rationalization with modelable reference points via 

preferences and utility functions with constant sensitivity that satisfy a 

condition weaker than loss aversion.] Suppose that reference-dependent 

preferences and an associated utility function are defined over K ≥ 2 goods, 

that reference-dependence is active for all K goods, that the preferences 

satisfy constant sensitivity and are continuous, and that the utility function 

therefore satisfies Proposition 3’s (6). Consider data {𝒑𝑡, 𝒒𝑡, 𝒓𝑡}𝑡=1,…,𝑇 with 

modelable reference points. If each gain-loss regime’s data satisfy GARP 

within the regime; and there is some combination of preferences over 
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consumption bundles, with continuous, strictly increasing consumption utility 

function 𝑈(∙) and gain-loss component utility functions 𝑣+
𝑘(∙) and 𝑣−

𝑘(∙), such 

that, for any regime 𝑔 and any pair of observations 𝜎, 𝜏 ∊

𝛩({𝒒𝑡 , 𝒓𝑡}𝑡=1,…,𝑇; 𝑔) for which 𝒑𝜏 ⋅ 𝒒𝜎 ≤  𝒑𝜏 ⋅ 𝒒𝜏 (with the indicator functions 

𝐺+
𝑘(∙,∙) and 𝐺−

𝑘(∙,∙) doing the work of a regime indicator function  𝐼𝒈(∙,∙)), 

 

(13)    𝑈(𝒒𝜎) + ∑ [𝐺+
𝑘(𝒒𝜎 , 𝒓𝜏)𝑣+

𝑘(𝑞𝜎
𝑘) + 𝐺−

𝑘(𝒒𝜎, 𝒓𝜏)𝑣−
𝑘(𝑞𝜎

𝑘)𝑘 ] 

 ≤ U(𝒒𝜏) + ∑ [𝐺+
𝑘(𝒒𝜏, 𝒓𝜏)𝑣+

𝑘(𝑞𝜏
𝑘) + 𝐺−

𝑘(𝒒𝜏, 𝒓𝜏)𝑣−
𝑘(𝑞𝜏

𝑘)]𝑘  + 𝜆𝜏𝒑𝜏 ⋅ (𝒒𝜎 − 𝒒𝜏), 

 

and there are no observations for which 𝒒𝑡 is not on the boundary of the 

convex hull of 𝒒𝑡’s upper contour set for the associated candidate global 

preference ordering for 𝒓𝑡, then the consumption utility function 𝑈(∙) and 

gain-loss component utility functions 𝑣+
𝑘(∙) and 𝑣−

𝑘(∙) rationalize the data. 

 

Proof: As in Proposition 4, by Afriat’s Theorem, the hypothesized 

combination of preferences over bundles with consumption utility function 

𝑈(∙) and gain-loss component utility functions 𝑣+
𝑘(∙) and 𝑣−

𝑘(∙) prevent 

defections from any observation’s consumption bundle to any affordable 

bundle in the same own gain-loss regime. If the hypothesized preferences are 

such that there are no observations t for which 𝒒𝑡 is not on the boundary of the 

convex hull of the better-than-𝒒𝑡  set for the candidate global preference 

ordering given 𝒓𝑡, then we can assume that they satisfy loss aversion without 

loss of generality. For, the candidate global ordering can then be replaced by a 

convexified ordering whose better-than-𝒒𝑡 sets are the convex hulls of the 

candidate global ordering, without changing any observation’s optimal bundle. 

Definition 2 then implies that 𝑈(∙) and the 𝑣+
𝑘(∙) and 𝑣−

𝑘(∙) also prevent 

defections from any observation’s bundle to any affordable bundle in a 

different regime. Alternatively, consider a defection from 𝒒𝜏 ∊  𝛤(𝑔; 𝒓𝜏) to 

some 𝒒 ∊  𝛤(𝑔′; 𝒓𝜏) with 𝑔′ ≠ 𝑔 and 𝒑𝜏 ⋅ 𝒒 ≤ 𝒑𝜏 ⋅ 𝒒𝜏. If 𝒒 were in regime 𝑔, 

we would have, by Afriat’s Theorem,  
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(14) 𝑈(𝒒) + ∑ [𝐺+
𝑘(𝒒, 𝒓𝜏){𝑣+

𝑘(𝑞𝑘)𝑘 − 𝑣+
𝑘(𝑟𝜏

𝑘)} + 𝐺−
𝑘(𝒒, 𝒓𝜏){𝑣−

𝑘(𝑞𝑘) − 𝑣−
𝑘(𝑟𝜏

𝑘)}] 

 ≤ 𝑈(𝒒𝝉) + ∑ [𝐺+
𝑘(𝒒𝝉, 𝒓𝝉){𝑣+

𝑘(𝑞𝜏
𝑘) − 𝑣+

𝑘(𝑟𝜏
𝑘)} + 𝐺−

𝑘(𝒒𝝉, 𝒓𝝉){𝑣−
𝑘(𝑞𝜏

𝑘) − 𝑣−
𝑘(𝑟𝜏

𝑘)}]𝑘 . 

 

Given that 𝒒 is actually in regime 𝑔′, the interpretation of loss aversion in 

terms of marginal rates of substitution implies that the left-hand side of (14) is 

lower or at least no higher than if 𝒒 were in regime 𝑔. (14) thus prevents 

defections from 𝒒𝜏 to affordable bundles in different regimes. ■ 

 

 Loss aversion is an empirically well-supported assumption known to have 

important implications, but to our knowledge it has not previously been linked 

to the existence of a reference-dependent rationalization. As the Corollary’s 

proof suggests, loss aversion’s testability is limited for the same reason that 

the convexity of neoclassical preferences is not nonparametrically testable. 

 The Corollary’s final “no observations for which 𝒒𝑡 is not on the boundary” 

condition rules out bunching of consumption bundles in regions of commodity 

space where the rationalizing regime preferences violate loss aversion and is 

vacuously satisfied for preferences that satisfy loss aversion. Such restrictions 

on bunching are unusual in a nonparametric analysis. 

 In Figure 6 the entire dataset violates GARP, the Afriat gain-loss regime 

preferences violate loss aversion, but the data satisfy the Corollary’s final 

conditions, thus allowing a rationalization. Only reference point 𝒓1 is shown 

and observation 1 is in the good-2 loss regime. Assume that 𝒓2 = [0, 0], so 

that observation 2’s budget set is entirely in the good-2 gain regime; and that 

𝒓3 = [0, 𝑚], where m is large enough that observation 3’s budget set is 

entirely in the good-2 loss regime. The Afriat regime preferences yield a 

candidate for global preferences that make all three observations’ consumption 

bundles optimal: Observations 2’s and 3’s budget sets are entirely in their 

regimes (good-2 gain and good-2 loss, respectively), so their bundles’ 

optimality in their regimes suffices for global optimality. Observation 1’s 
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bundle is optimal for its good-2 loss regime preferences and Corollary 1 

ensures that its bundle’s optimality extends to its entire budget set. 

 

Figure 6. Rationalizing data that violate GARP when preferences violate loss 

aversion but satisfy the Corollary’s sufficient conditions for a rationalization 

(solid curves for active parts of indifference maps, dashed for inactive parts) 

 

 As already noted, Proposition 4’s necessary and sufficient conditions for a 

rationalization are not directly applicable because they are conditional on the 

choice of rationalizing gain-loss regime utility functions. Proposition 5 derives 

directly applicable sufficient conditions by specifying rationalizing regime 

utility functions in the style of the regime’s Afriat utility functions (Definition 

5). Those conditions include inequalities like (1) in Afriat’s Theorem or 

Proposition 4’s (10), which prevent defections from an observation’s 

consumption bundle to affordable bundles in the same gain-loss regime, while 

enforcing Proposition 3’s restrictions (6) on the component gain-loss utility 

functions. The conditions also include inequalities like Proposition 4’s (11), 

which prevent defections to affordable bundles in other regimes. 

 

PROPOSITION 5: [Sufficient conditions for rationalization with modelable 

reference points, via reference-dependent preferences and utility function with 

constant sensitivity and continuity.] The following conditions are sufficient for 
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the existence of continuous reference-dependent preferences and utility 

function with constant sensitivity 𝑢(𝒒, 𝒓) that rationalize data with modelable 

reference points {𝒑𝑡, 𝒒𝑡 , 𝒓𝑡}𝑡=1,…,𝑇: There exist numbers 𝑈𝑡, 𝑣𝑡+
𝑘 , 𝑣𝑡−

𝑘 , and 

𝜆𝑡 > 0 for each 𝑘 = 1, … , 𝐾 and 𝑡 = 1, … , 𝑇 such that: 

[A] For any gain-loss regime 𝑔 and any pair of observations 𝜎, 𝜏 ∊

𝛩({𝒒𝑡 , 𝒓𝑡}𝑡=1,…,𝑇; 𝑔) (with the indicator functions 𝐺+
𝑘(∙,∙) and 𝐺−

𝑘(∙,∙) again 

doing the work of 𝐼𝒈(∙,∙)), 

 

(15)   𝑈𝜎 + ∑ [𝐺+
𝑘(𝒒𝜎 , 𝒓𝜏)𝑣𝜎+

𝑘 + 𝐺−
𝑘(𝒒𝜎, 𝒓𝜏)𝑣𝜎−

𝑘
𝑘 ] 

 ≤ 𝑈𝜏 + ∑ [𝐺+
𝑘(𝒒𝜏, 𝒓𝜏)𝑣𝜏+

𝑘 + 𝐺−
𝑘(𝒒𝜏, 𝒓𝜏)𝑣𝜏−

𝑘 ]𝑘  + 𝜆𝜏𝒑𝜏 ⋅ (𝒒𝜎 − 𝒒𝜏). 

 

[B] For observations 𝜎, 𝜏, 𝑞𝜎
𝑘 ≥ 𝑞𝜏

𝑘 for k = 1,…, K, 𝑈𝜎 ≥ 𝑈𝜏; and for 

observations 𝜎, 𝜏 and any k = 1,…, K, 𝑞𝜎
𝑘 ≥ 𝑞𝜏

𝑘, 𝑣𝜎+
𝑘 ≥ 𝑣𝜏+

𝑘 , and 𝑣𝜎−
𝑘 ≥ 𝑣𝜏−

𝑘 .  

[C] For any pair of regimes 𝑔 and 𝑔′ ≠ 𝑔, observation 𝜏 ∊

𝛩({𝒒𝑡 , 𝒓𝑡}𝑡=1,…,𝑇; 𝑔), and bundle 𝒒 ∊ 𝛤(𝑔′; 𝒓𝜏) for which 𝒑𝜏 ⋅ 𝒒 ≤  𝒑𝜏 ⋅ 𝒒𝜏, 

 
 𝑚𝑖𝑛𝜌∊𝛩({𝒒𝑡,𝒓𝑡}𝑡=1,…,𝑇;𝑔′){𝑈𝜌 + ∑ [𝐺+

𝑘(𝒒𝜌, 𝒓𝜏)𝑣𝜌+
𝑘 + 𝐺−

𝑘(𝒒𝜌, 𝒓𝜏)𝑣𝜌−
𝑘

𝑘 ] + 𝜆𝜌𝒑𝜌 ⋅ (𝒒 − 𝒒𝜌)} 

(16) −𝑚𝑖𝑛𝜌∊𝛩({𝒒𝑡,𝒓𝑡}𝑡=1,…,𝑇;𝑔′){𝑈𝜌 + ∑ [𝐺+
𝑘(𝒒𝜌, 𝒓𝜏)𝑣𝜌+

𝑘 + 𝐺−
𝑘(𝒒𝜌, 𝒓𝜏)𝑣𝜌−

𝑘
𝑘 ] + 𝜆𝜌𝒑𝜌 ⋅ (𝒓𝜏 − 𝒒𝜌)} 

 ≤ 𝑚𝑖𝑛𝜌∊𝛩({𝒒𝑡,𝒓𝑡}𝑡=1,…,𝑇;𝑔){𝑈𝜌 + ∑ [𝐺+
𝑘(𝒒𝜌, 𝒓𝜏)𝑣𝜌+

𝑘 + 𝐺−
𝑘(𝒒𝜌, 𝒓𝜏)𝑣𝜌−

𝑘
𝑘 ] + 𝜆𝜌𝒑𝜌 ⋅ (𝒒𝜏 − 𝒒𝜌)} 

 −𝑚𝑖𝑛𝜌∊𝛩({𝒒𝑡,𝒓𝑡}𝑡=1,…,𝑇;𝑔){𝑈𝜌 + ∑ [𝐺+
𝑘(𝒒𝜌 , 𝒓𝜏)𝑣𝜌+

𝑘 + 𝐺−
𝑘(𝒒𝜌 , 𝒓𝜏)𝑣𝜌−

𝑘
𝑘 ] + 𝜆𝜌𝒑𝜌 ⋅ (𝒓𝜏 − 𝒒𝜌)}. 

 

Proof: Given choices of 𝑈𝑡, 𝑣𝑡+
𝑘 , 𝑣𝑡−

𝑘 , and 𝜆𝑡, t = 1,…, T, that satisfy [A] and 

[B], let 𝑢𝑔(𝒒, 𝒓) denote the rationalizing Afriat regime utility function for 

regime 𝑔, including (6)’s loss costs, which exists by Afriat’s Theorem. For 

𝒒 ∊ 𝛤(𝑔; 𝒓), using (10) as in the proof of Afriat’s Theorem: 

 

𝑢𝑔(𝒒, 𝒓) − 𝑈(𝒓) ≡ 𝑈(𝒒) + ∑[𝐺+
𝑘(𝒒, 𝒓){𝑣+

𝑘(𝑞𝑘)

𝑘

− 𝑣+
𝑘(𝑟𝑘)} + 𝐺−

𝑘(𝒒, 𝒓){𝑣−
𝑘(𝑞𝑘) − 𝑣−

𝑘(𝑟𝑘)}] − 𝑈(𝒓) 

≡ {𝑈(𝒒) + ∑[𝐺+
𝑘(𝒒, 𝒓)𝑣+

𝑘(𝑞𝑘)

𝑘

+ 𝐺−
𝑘(𝒒, 𝒓)𝑣−

𝑘(𝑞𝑘)]}

− {𝑈(𝒓) + ∑[𝐺+
𝑘(𝒒, 𝒓){𝑣+

𝑘(𝑟𝑘)

𝑘

+ 𝐺−
𝑘(𝒒, 𝒓)𝑣−

𝑘(𝑟𝑘)]} 
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(17)  

≡ 𝑚𝑖𝑛𝜌∊𝛩({𝒒𝑡,𝒓𝑡}𝑡=1,…,𝑇;𝑔) {𝑈𝜌 + ∑[𝐺+
𝑘(𝒒𝜌, 𝒓)𝑣𝜌+

𝑘 + 𝐺−
𝑘(𝒒𝜌, 𝒓)𝑣𝜌−

𝑘

𝑘

] + 𝜆𝜌𝒑𝜌 ⋅ (𝒒 − 𝒒𝜌)} 

− 𝑚𝑖𝑛𝜌∊𝛩({𝒒𝑡,𝒓𝑡}𝑡=1,…,𝑇;𝑔){𝑈𝜌 + ∑ [𝐺+
𝑘(𝒒𝜌, 𝒓)𝑣𝜌+

𝑘 + 𝐺−
𝑘(𝒒𝜌, 𝒓)𝑣𝜌−

𝑘
𝑘 ] + 𝜆𝜌𝒑𝜌 ⋅ (𝒓 − 𝒒𝜌)}, 

where the last identities follow as in Afriat’s Theorem in the neoclassical case. 

The rationalizing reference-dependent utility function, including loss costs, is 

then 𝑢(𝒒, 𝒓) ≡ 𝑈(𝒒) +  ∑ 𝐼𝒈(𝒒, 𝒓)𝑔 𝑢𝑔(𝒒, 𝒓). By construction, 𝑢(𝒒, 𝒓) is 

continuous, strictly increasing in 𝒒, and strictly decreasing in 𝒓. 

 For observations 𝜎, 𝜏 ∊ 𝛩({𝒒𝑡 , 𝒓𝑡}𝑡=1,…,𝑇; 𝑔) in the same gain-loss regime 

𝑔, with 𝒑𝜏 ⋅ 𝒒𝜎 ≤  𝒑𝜏 ⋅ 𝒒𝜏, loss costs cancel out and (16) reduces to the usual 

Afriat inequalities (with its utilities expressed not as single numbers but as 

sums of consumption plus gain-loss utilities). Thus by Afriat’s Theorem, [A] 

prevents defections to affordable bundles in the same regime.  

 For gain-loss regimes 𝑔 and 𝑔′ ≠ 𝑔, observation 𝜏 ∊ 𝛩({𝒒𝑡 , 𝒓𝑡}𝑡=1,…,𝑇; 𝑔), 

and bundle 𝒒 ∊ 𝛤(𝑔′; 𝒓𝜏) with 𝒑𝜏 ⋅ 𝒒 ≤  𝒑𝜏 ⋅ 𝒒𝑡,  

 
𝑢(𝒒, 𝒓𝜏) − 𝑈(𝒓𝜏) 

≡ 𝑈(𝒒) + ∑[𝐺+
𝑘(𝒒, 𝒓𝜏){𝑣+

𝑘(𝑞𝑘)

𝑘

− 𝑣+
𝑘(𝑟𝜏

𝑘)} + 𝐺−
𝑘(𝒒, 𝒓𝜏𝜏

){𝑣−
𝑘(𝑞𝑘) − 𝑣−

𝑘(𝑟𝜏
𝑘)}] − 𝑈(𝒓𝜏) 

 ≡ {𝑈(𝒒) + ∑[𝐺+
𝑘(𝒒, 𝒓𝝉)𝑣+

𝑘(𝑞𝑘)

𝑘

+ 𝐺−
𝑘(𝒒, 𝒓𝝉)𝑣−

𝑘(𝑞𝑘)]}

− {U(𝐫τ) + ∑[G+
k (𝐪, 𝐫𝛕){v+

k (rτ
k)

k

+ G−
k (𝐪, 𝐫𝛕)v−

k (rτ
k)]} 

  ≡ 𝑚𝑖𝑛𝜌∊𝛩({𝒒𝑡,𝒓𝑡}𝑡=1,…,𝑇;𝑔′){𝑈𝜌 + ∑ [𝐺+
𝑘(𝒒𝜌, 𝒓𝜏)𝑣𝜌+

𝑘 + 𝐺−
𝑘(𝒒𝜌, 𝒓𝜏)𝑣𝜌−

𝑘
𝑘 ] + 𝜆𝜌𝒑𝜌 ⋅ (𝒒 − 𝒒𝜌)} 

  −𝑚𝑖𝑛𝜌∊𝛩({𝒒𝑡,𝒓𝑡}𝑡=1,…,𝑇;𝑔′){𝑈𝜌 + ∑ [𝐺+
𝑘(𝒒𝜌, 𝒓𝜏)𝑣𝜌+

𝑘 + 𝐺−
𝑘(𝒒𝜌, 𝒓𝜏)𝑣𝜌−

𝑘
𝑘 ] + 𝜆𝜌𝒑𝜌 ⋅ (𝒓𝜏 − 𝒒𝜌)} 

(18) ≤ 𝑚𝑖𝑛𝜌∊𝛩({𝒒𝑡,𝒓𝑡}𝑡=1,…,𝑇;𝑔){𝑈𝜌 + ∑ [𝐺+
𝑘(𝒒𝜌, 𝒓𝜏)𝑣𝜌+

𝑘 + 𝐺−
𝑘(𝒒𝜌, 𝒓𝜏)𝑣𝜌−

𝑘
𝑘 ] + 𝜆𝜌𝒑𝜌 ⋅ (𝒒𝜏 − 𝒒𝜌)} 

  −𝑚𝑖𝑛𝜌∊𝛩({𝒒𝑡,𝒓𝑡}𝑡=1,…,𝑇;𝑔){𝑈𝜌 + ∑ [𝐺+
𝑘(𝒒𝜌, 𝒓𝜏)𝑣𝜌+

𝑘 + 𝐺−
𝑘(𝒒𝜌, 𝒓𝜏)𝑣𝜌−

𝑘
𝑘 ] + 𝜆𝜌𝒑𝜌 ⋅ (𝒓𝜏 − 𝒒𝜌)} 

≡ {𝑈(𝒒𝜏) + ∑[𝐺+
𝑘(𝒒𝜏 , 𝒓𝝉)𝑣+

𝑘(𝑞𝜏
𝑘)

𝑘

+ 𝐺−
𝑘(𝒒𝜏 , 𝒓𝝉)𝑣−

𝑘(𝑞𝜏
𝑘)]}

− {𝑈(𝒓𝜏) + ∑[𝐺+
𝑘(𝒒𝜏 , 𝒓𝝉){𝑣+

𝑘(𝑟𝜏
𝑘)

𝑘

+ 𝐺−
𝑘(𝒒𝜏 , 𝒓𝝉)𝑣−

𝑘(𝑟𝜏
𝑘)]} 

≡ 𝑢(𝒒𝜏 , 𝒓𝜏)) − 𝑈(𝒓𝜏), 

 

which prevents defections across regimes. ■ 
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Figure 7. A rationalization may require non-Afriat rationalizing regime 

preferences (solid lines for the loss map, dashed for the gain map) 

 

(a) (b) 

 

 Proposition 5 depends on the choice of Afriat rationalizing regime utility 

functions.14 As other choices might also suffice, its sufficient conditions are 

not necessary. For example, the Afriat regime preferences in Figure 7a do not 

yield a rationalization but the non-Afriat regime preferences in Figure 7b do. 

 In the neoclassical case, Mas-Colell (1978) and Forges and Minelli (2009) 

results study the limit of the rationalizing preferences as the data become 

“rich” in the sense that as T → ∞ they include budget sets as close as desired 

to any possible budget set. They show that the range of convexified 

rationalizing preferences then collapses on Definition 5’s Afriat preferences.15 

In the reference-dependent case with constant sensitivity, this result cannot be 

immediately applied gain-loss regime by regime, because of Proposition 3’s 

constraint that the gain-loss utility functions must be the same in all regimes. 

But we conjecture that in the limit, as the data become rich in the sense of 

including {reference point × budget set} combinations as close as desired to 

 

14 Varian’s (1982, Fact 4) bounds for the neoclassical case don’t imply that all rationalizing 

preferences are convex, but examples show that requiring such convexity involves a loss of 

generality for some rationalizing regime preferences in Proposition 4. Proposition 5 avoids 

that difficulty by using the Afriat regime preferences, which are convex by construction. 

15 Also requiring richness of consumption bundles would rule out non-convex preferences.  
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any possible combination, if the Afriat regime preferences do not yield a 

reference-dependent rationalization, neither can any other regime preferences, 

so that Proposition 5’s sufficient conditions are asymptotically necessary. 

 Propositions 4 and 5 somewhat refocus the view of reference-dependent 

consumer demand from structural models. Constant sensitivity, usually seen as 

a convenient simplification, is essential for reference-dependent models to 

have any nonparametrically refutable implications, as explained in footnote 4. 

And loss aversion, usually seen as empirically well-established but not as 

essential to the existence of a reference-dependent rationalization, now plays a 

role in the sufficient conditions for existence. 

 

7 Empirical Illustration 

 Proposition 5’s sufficient conditions for a reference-dependent 

rationalization with modelable reference points and constant sensitivity 

suggest methods for recovering rationalizing preferences when they exist. 

Although Proposition 3’s characterization of reference-dependent preferences 

in that case would be well suited to a structural econometric analysis, here we 

illustrate our methods by reconsidering Farber’s and CM’s econometric 

analyses nonparametrically, using sample proxies like CM’s for the targets. 

Our choice is motivated by curiosity regarding the robustness of Farber’s and 

CM’s structural analyses and by the computational difficulty of nonparametric 

estimation using more recent datasets, which are much larger than Farber’s.16 

 We consider preferences over levels of and changes in earnings and leisure. 

With two goods, GARP (Definition 4) reduces to the Weak Axiom of 

Revealed Preference (“WARP”). WARP is then necessary and sufficient for a 

neoclassical rationalization. In this section we use “WARP” for “GARP”. 

 

 

16 We are just as curious about Camerer et al.’s data, but they are no longer fully available. 
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DEFINITION 6: [Weak Axiom of Revealed Preference (“WARP”).] 𝒒𝒔𝑅𝒒𝒕 

and 𝒒𝑠 ≠ 𝒒𝑡 implies not 𝒒𝒕𝑅𝒒𝒔, where R indicates that there is some sequence 

of observations 𝒒ℎ, 𝒒𝑖 , 𝒒𝑗 , … , 𝒒𝑡 such that 𝒑ℎ ⋅ 𝒒ℎ ≥ 𝒑ℎ ⋅ 𝒒𝑖, 𝒑𝑖 ⋅ 𝒒𝑖 ≥ 𝒑𝑖 ⋅

𝒒𝑗 , … , 𝒑𝑠 ⋅ 𝒒𝑠 ≥ 𝒑𝑠 ⋅ 𝒒𝑡. 

 

 We relax Camerer et al.’s (1997), Farber’s (2005, 2008), and CM’s 

assumption that drivers have homogeneous preferences, instead allowing 

unrestricted heterogeneity of preferences. (Our theory covers both cases, 

distinguished only by whether the data are pooled across drivers.) 

 To guide future work, we compare several models of reference points, 

including expectations-based and recent-experience-based alternatives to 

CM’s sample proxies. Like CM, but unlike Camerer et al. and Farber, we 

allow three different forms of reference-dependence: in earnings alone, in 

hours alone, or in both earnings and hours. 

 Section 7.1 reviews Farber’s data. Section 7.2 outlines the models of 

reference-dependent preferences we compare. Section 7.3 discusses Selten and 

Krischker’s (1983), Selten’s (1991), and Beatty and Crawford’s (2011) 

nonparametric notions of predictive success. Section 7.4 describes our 

estimation procedure. Section 7.5 reports our results. 

 

7.1 Data 

 Like CM, we use Farber’s (2005, 2008) data.17 Farber collected 593 trip 

sheets for 13461 trips by 21 drivers between June 1999 and May 2001. Each 

sheet records the driver’s name, hack number, date, each fare’s start time and 

location, each fare’s end time and location, and the fare paid. Nine sheets 

duplicate the day and driver, so there are only 584 shifts. Because our methods 

 

17 The datasets are posted at https://www.aeaweb.org/aer/data/june08/20030605_data.zip, and  

https://www.aeaweb.org/aer/data/aug2011/20080780_data.zip. The CPI data are posted at 

https://data.bls.gov/timeseries/CUURS12ASA0, under the years 1999-2001. 

https://www.aeaweb.org/aer/data/june08/20030605_data.zip
https://www.aeaweb.org/aer/data/aug2011/20080780_data.zip
https://data.bls.gov/timeseries/CUURS12ASA0
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make some allowance for sample size, in addition to the 15 drivers Farber and 

CM studied we include the 6 with samples of 10 or fewer shifts they excluded.  

 The Supplemental Appendix’s Table A.1 reports descriptive statistics 

driver by driver. The values are the same as those in Farber’s (2005) Table B1, 

except for the hourly wage variable and the Afriat efficiencies in the last two 

columns. Our earnings and wage variables differ from Farber’s and CM’s in 

two ways, which affect the Afriat efficiencies. First, we use the NY/NJ urban 

CPI to control for price level changes in the sample period. Second, Farber’s 

and CM’s wage variable is income per hour spent working, with working time 

defined as the sum of time driving with a passenger and time waiting for the 

next passenger. However, as waiting time varies randomly from shift to shift 

with weather, the flow of customers, etc., and is not directly linked to 

earnings, it appears largely exogenous. Accordingly, we define the wage as 

earnings per hour driving, treating waiting time as an exogenous fixed cost. 

This seems a natural choice in a model where income targeting is day by day. 

 Our redefinition of the wage matters more in our nonparametric analysis 

than it would in Farber’s and CM’s structural analyses. Drivers’ waiting times 

range from about 25-40% of their shifts. If we included waiting in driving 

time, shift-to-shift wage variation would make a driver’s observations’ budget 

lines pivot around their common zero-hours end, they would never cross, he 

would trivially satisfy WARP, and a nonparametric analysis would give only a 

meaningless recapitulation of his data. By contrast, treating waiting times as a 

fixed cost allows a driver’s budget lines to cross. The Appendix’s Figure A.1 

shows that with our wage definition drivers’ budget lines cross frequently, 

making WARP a meaningful restriction and allowing a nonparametric analysis 

to provide a meaningful interpretation of the data. 

 Table A.1’s last column reports each driver’s Afriat efficiency index. The 

index is 1 for a driver whose data satisfy WARP but is otherwise less than 1. 

Only 7 of Farber’s 21 drivers satisfy WARP. Except for drivers 12 (sample 

size 13), 14 (sample size 17), and 17 (sample size 10), the drivers with exact 
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neoclassical fits (2, 3, 6, 9, 11, 13, and 15) are the ones with the smallest 

sample sizes among the 21 drivers. Except for drivers 2 (sample size 14), 9 

(sample size 19), and 17 (sample size 10), those drivers are the same as the six 

(3, 6, 11, 13, 15, and 17) that Farber and CM excluded due to sample sizes ≤ 

10. Small samples make it easier to satisfy WARP by chance, and those 

drivers’ data may simply be too under-powered to reject the neoclassical 

model. We return to the issue of correcting for power to reject in Section 7.3. 

 

7.2 Alternative models of reference-dependent preferences 

 Our reference-dependent models vary in three dimensions.18 The first 

distinguishes models based on proxied rational expectations from those based 

on recent experience. Our expectations-based models are sample averages of a 

driver’s choices, excluding the current shift. Our experience-based models are 

one-shift lags. For each kind of model we consider both unconditional models 

and models that condition on Farber’s and CM’s variables that shift demand 

and influence waiting time: weather (rain, snow, or dry) and time of day (day 

or night). This yields 18 different kinds of reference-point model. 

 The second dimension distinguishes three forms of reference-dependence: 

with respect to hours, earnings, or both hours and earnings. 

 The third dimension distinguishes reference-dependent or neoclassical 

models that do or do not impose additive separability across goods.  

 

7.3 Nonparametric notions of predictive success 

 The simplest possible measure of a model’s predictive success is its pass 

rate. A model’s pass rate for driver i, denoted 𝑟𝑖 ∈ [0,1], is defined as the 

maximal proportion of the driver’s observations that are consistent with the 

model. A closely related measure replaces 𝑟𝑖 with a model’s proximity 𝜋𝑖, 

 

18 We explicitly compare only static models of reference points, but our theory covers cases 

where reference points are dynamic, as long as they are modelable. 
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defined as one minus the Euclidean distance, rescaled as a proportion of the 

maximum possible distance, between i’s set of observations and the set of sets 

of observations that fit the model exactly (Beatty and Crawford 2011, pp. 

2786-87). Like 𝑟𝑖, 𝜋𝑖 ∈ [0,1], with higher values for more successful models.   

 However, neither measure is adequate for comparing models of varying 

flexibility. Reference-dependent models are more flexible than neoclassical 

models and must have pass rates and proximities at least as high. This 

accounts for much of the profession’s skepticism about their parsimony. Even 

neoclassical models can be highly restrictive or without nonparametric content 

depending on the number of observations and whether budget lines cross. 

 To control for flexibility, Selten and Krischker (1983) and Selten (1991) 

penalize a model’s pass rate for flexibility using what they call the model’s 

“area”, 𝑎𝑖 ∈ [0,1]. The area is the size of the set of all model-consistent sets of 

observations for driver i, relative to the size of the set of all feasible sets of 

observations of the same size, or equivalently the probability that uniformly 

random data are consistent with the model. Noting that successful models have 

small values of 𝑎𝑖 and large values of 𝑟𝑖, Selten and Krischker define a 

measure of predictive success, 𝑚(𝑟𝑖, 𝑎𝑖) ≡ 𝑟𝑖 − 𝑎𝑖 ∈ [−1,1].19 As 𝑚 → 1 a 

model’s restrictions grow tighter but behavior satisfies them: a highly 

successful model. As 𝑚 → −1 a model’s restrictions become looser but 

behavior fails to satisfy them: a pathologically bad model. As 𝑚 → 0 a 

model’s compliance approaches random: a harmless but useless model.  

 Selten and Krischker’s all-or-nothing pass rate 𝑟𝑖 is not discriminating 

enough for our application, in which drivers with more than a few trips have 

little chance of satisfying even a reference-dependent model exactly. 

Accordingly, we replace their pass rate 𝑟𝑖 with Beatty and Crawford’s 

 

19 Selten (1991) shows that three axioms, monotonicity 𝑚(1,0) > 𝑚(0,1); equivalence of 

trivial theories 𝑚(1,1) = 𝑚(0,0); and aggregability 𝑚(𝜆𝑟1 + (1 − 𝜆)𝑟2, 𝜆𝑎1 + (1 − 𝜆)𝑎2) =

𝜆𝑚(𝑟1, 𝑎1) + (1 − 𝜆)𝑚(𝑟1, 𝑎1) for 𝜆 ∈ [0,1], characterize the measure 𝑚(𝑟𝑖 , 𝑎𝑖) ≡ 𝑟𝑖 − 𝑎𝑖.  
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proximity measure 𝜋𝑖, following Beatty and Crawford in continuing to 

penalize it via Selten and Krischker’s area. Thus our proposed measure is 

𝑛(𝜋𝑖 , 𝑎𝑖) ≡ 𝜋𝑖 − 𝑎𝑖 ∈ [−1,1]. Like Selten and Krischker’s measure, 𝑛(𝜋𝑖 , 𝑎𝑖) 

levels the playing field between more- and less-flexible models in a well-

defined, objective way. Both measures are similar in spirit to the adjusted 𝑅2 

or the Akaike Information Criteria in structural econometrics, which penalize 

model fit and likelihood for a model’s number of free parameters. From now 

on we use “Selten measure” loosely for Beatty and Crawford’s proximity-

based measure of predictive success. 

 

7.4 Estimation procedure 

 We estimate driver by driver and model by model.20 For each model we fix 

whether preferences are additively separable across goods and the form and 

kind of reference-dependence.21 The details are in our replication materials. 

 Proposition 5 immediately suggests an estimation procedure:22  

(i) Use the observations’ modeled reference points to sort their 

consumption bundles into gain-loss regimes. 

 

20 Rather than nesting and estimating the form and kind of reference-dependence we condition 

on them and compare the resulting models. Nesting and estimating would be computationally 

complex, in part because the Afriat regime preferences are not invariant to merging regimes. 

21 With regard to additive separability across goods, Debreu’s (1960) necessary and sufficient 

“double cancellation” condition shows that with two goods the Afriat rationalizing regime 

preferences preclude it in gain-loss regimes with more than one observation. We therefore use 

Varian’s (1983, Theorem 6) linear program, specializing inequalities like those in condition 

[B] of Afriat’s Theorem, and a version of condition (14) modified to require such separability. 

For proximities and Selten measures, we design and implement a computationally efficient 

search algorithm using the fact that that the proximity for a separable model cannot exceed 

that for its non-separable counterpart. Details and code are in our Replication files. 

22 This description ignores the choice of rationalizing regime preferences for drivers who are 

reference-dependent on less than K dimensions, or who are neoclassical. But Propositions 3-5 

continue to hold, mutatis mutandis, for such preferences and our arguments extend to them.  
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(ii) Pooling the data from all regimes, use linear programming to find 

Afriat numbers 𝑈𝑡, 𝑣𝑡+
𝑘 , 𝑣𝑡−

𝑘 , and 𝜆𝑡 > 0 for each 𝑘 = 1, … , 𝐾 and 

𝑡 = 1, … , 𝑇 that satisfy [A]’s Afriat inequalities (15). 

(iii) Use the fact that for each observation in a regime, (15) can hold 

with equality for another observation in the regime, to choose 

numbers so that for observation t in regime g, the rationalizing 

Afriat utilities are given as in (17) in the proof of Proposition 5: 

(iv) 𝑈𝑡 = 𝑢𝑔(𝒒𝑡, 𝒓𝑡) ≡ 𝑚𝑖𝑛𝜌∊𝛩({𝒒𝑡,𝒓𝑡}𝑡=1,…,𝑇;𝑔){𝑈𝜌 +

∑ [𝐺+
𝑘(𝒒𝜌, 𝒓𝑡)𝑣𝜌+

𝑘 + 𝐺−
𝑘(𝒒𝜌 , 𝒓𝑡)𝑣𝜌−

𝑘
𝑘 ] + 𝜆𝜌𝒑𝜌 ⋅ (𝒒𝑡 − 𝒒𝜌)} . 

(v) Use (ii)’s Afriat numbers 𝑈𝑡, 𝑣𝑡+
𝑘 , and 𝑣𝑡−

𝑘  to check that [B]’s 

monotonicity restrictions are satisfied. 

(vi) Use (iii)’s rationalizing Afriat utilities to check, regime by regime 

and observation by observation, that [C]’s conditions (16) are 

satisfied by scanning along the budget surface. 

  

 Proposition 5’s conditions (15) involve linear inequalities in a finite 

number of variables; and its conditions (16) involve nonlinear inequalities in a 

continuum of 𝒒 values. Both sets of inequalities are finitely parameterized by 

the 𝑈𝑡, 𝑣𝑡+
𝑘 , 𝑣𝑡−

𝑘 , and 𝜆𝑡 that satisfy [A]’s (15). 

 Thus, as with Diewert’s (1973) and Varian’s (1982) methods for the 

neoclassical case, our procedure rests on inequality restrictions that can be 

checked directly in the data, without estimating econometric models of 

unobservable objects such as demand or labor supply curves. It also largely 

avoids the need for the auxiliary statistical assumptions that structural 

econometric approaches require for consistent estimation. Measurement error 

is an exception, but it too can be handled nonparametrically (Varian 1985). 

 For computational efficiency, instead of using the estimation procedure 

directly suggested by Proposition 5, or analogues of Varian’s (1982, Appendix 

I) methods for finding solutions to (15), we use linear programming methods 

analogous to Diewert’s (1973, Section 3) methods for the neoclassical case.  
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 We estimate Selten and Krischker’s area 𝑎𝑖 by checking the conditions for 

a rationalization repeatedly for random data, as in Beatty and Crawford.23 For 

a neoclassical model we use WARP or, for models that impose additive 

separability across goods, Varian’s (1983, Theorem 6) conditions.24 For a 

reference-dependent model we use Proposition 5’s conditions [A]-[C], with 

Varian’s (footnote 21) modifications for additive separability across goods.  

 When a model of either type does not fit exactly for driver i, we define its 

proximity 𝜋𝑖 as the Euclidean distance, rescaled as a proportion of the 

maximum possible distance, between driver i’s set of observations and the set 

of sets of observations that fit exactly, with the latter estimated in the process 

of estimating the area 𝑎𝑖 (Beatty and Crawford 2011, pp. 2786-87). However, 

the conditions for fitting a model exactly greatly increase in stringency with 

the number of observations, and for the drivers with the seven largest sample 

sizes of the 21 (1, 4, 10, 16, 18, 20, and 21; sample sizes 39 to 70), repeated 

sampling (up to 20,000 times) yielded no passes. For such drivers we set 𝜋𝑖 =

0, as if we found passing observations only at the maximum possible distance.    

 Given Propositions 5’s gap between the sufficient and necessary conditions 

for a reference-dependent rationalization, which precludes precise estimation 

of proximities and Selten measures for reference-dependent models, we bound 

them as follows.25 Imposing Proposition 5’s within-regime conditions [A] 

((15)) and monotonicity conditions [B], but not its cross-regime conditions [C] 

 

23 We calculate the area by numerical (Monte Carlo) integration over the budget sets. New sets 

of choices that satisfy the budget constraints are repeatedly drawn and the conditions of 

interest are tested for each draw. The area is the proportion of those draws that satisfy the 

conditions. The area estimate converges as the square root of the number of draws. We draw 

until the uncertainty of the estimate is confined to the fifth decimal place. 

24 Because we only need WARP, not GARP, this is easily implemented for the non-additively 

separable model using R’s igraph package. Details and code are in our Replication files. 

25 Such bounds are unnecessary for a neoclassical model because GARP is necessary and 

sufficient for a rationalization without regard to Varian’s (1982, Fact 4). 
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((16)), yields an approximate upper bound on the proximity—“approximate” 

because conditions [A] assume the Afriat regime utilities and so are sufficient 

but not necessary; so the true proximity could be higher than the upper bound. 

Imposing [A]-[C] yields an approximate lower bound on the proximity, which 

could also be higher than the lower bound. The approximate lower and upper 

bounds on a reference-dependent model’s Selten measure follow similarly. In 

each case a one-sided approximate lower bound suffices for our purposes. 

 

7.5 Results 

 We now summarize our estimation results. To create a comprehensible path 

through the large number of models considered, we proceed sequentially. We 

first compare neoclassical and reference-dependent models that impose or 

relax additive separability across goods. This comparison so strongly favors 

relaxing separability that that can be seen by looking at aggregate summaries. 

 Next, relaxing additive separability across goods, we compare reference-

dependent models that differ in the kind and form of reference-dependence. 

Although reference-dependent models differ significantly from neoclassical 

models for many drivers, the kind and form of reference-dependence make 

little difference, as we show again via aggregate summaries. 

 Finally, continuing to relax additive separability across goods, we compare 

neoclassical and reference-dependent models more comprehensively, first via 

aggregate summaries and then driver by driver. 

 

7.5a Additive separability across goods 

 Additive separability across goods has been assumed in all previous 

theoretical and empirical work on this topic, but it lacks theoretical or 

empirical justification, and Proposition 3’s characterization of reference-

dependent preferences with constant sensitivity shows that it is unnecessary. 

 Figures 8-11 give the empirical cumulative distribution functions (“CDFs”) 

of proximities and Selten measures for neoclassical and reference-dependent 
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models that impose or relax additive separability across goods.26 Each CDF 

pools over all 21 drivers. For reference-dependent models each CDF also 

pools over all 18 kinds and three forms of reference-dependent model. 

 

Figure 8: Empirical CDFs of Proximities for Neoclassical Models 

Imposing and Relaxing Additive Separability Across Goods  

 

Figure 9: Empirical CDFs of Selten Measures for Neoclassical Models 

Imposing and Relaxing Additive Separability Across Goods 

 

 Figures 8-9 show that neoclassical models that relax additive separability 

across goods have higher proximities and Selten measures than models that 

impose it. These aggregate summaries don’t show for how many drivers 

 

26 These comparisons also relax KR’s constant-sensitivity constraints on how marginal rates of 

substitution vary across gain-loss regimes. A reference-dependent model must have at least as 

high a proximity as its neoclassical counterpart, but its Selten measure could be higher or 

lower. There is a minor exception for experience-based reference-point models, in which we 

lose one observation (two for models that condition on something) due to the construction of 

the lag. This can yield a slightly higher upper proximity bound for the neoclassical model. 
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relaxing additive separability improves a neoclassical model’s fit enough to 

justify the added flexibility but the gap in Selten measures is large enough to 

confirm that relaxing separability is preferable for neoclassical models. 

 Figures 10-11 show that reference-dependent models that relax additive 

separability across goods also have significantly higher proximities and Selten 

measures than models that impose it. Figure 11’s gap in Selten measures is 

large enough to confirm that relaxing separability is also preferable for 

reference-dependent models. From now on, we set aside models that impose 

additive separability across goods and focus on models that relax it. 

 

Figure 10: Empirical CDFs of Proximities for Reference-dependent 

Models Imposing and Relaxing Additive Separability Across Goods  

 

Figure 11: Empirical CDFs of Selten Measures for Reference-dependent 

Models Imposing and Relaxing Additive Separability Across Goods 

 

7.5b. Reference-point models 

 Figures 12-15 give the empirical CDFs of proximities and Selten measures 

for the unconditional reference-dependent models we consider, again relaxing 
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additive separability across goods. Figures 12 and 13 compare the CDFs for 

our 18 different kinds of reference-point model, again pooling over all 21 

drivers. Figures 14 and 15 compare the CDFs for our three forms of reference-

dependence, also pooling over all 21 drivers.  

 

Figure 12: Empirical CDFs of Proximities 

for Different Kinds of Reference-dependent Model 

 
 

Figure 13: Empirical CDFs of Selten Measures 

for Different Kinds of Reference-dependent Model  
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Figure 14: Empirical CDFs of Proximities 

for Different Forms of Reference-dependence 

 

Figure 15: Empirical CDFs of Selten Measures 

for Different Forms of Reference-dependence  

 
 Figures 13’s and 15’s Selten measures show that in these data there are 

comparatively small differences among models’ kinds and forms of reference-

dependence. Expectations-based models usually have higher Selten measures 

than experience-based models, and unconditioned expectations-based models 

have measures almost as high as conditioned ones, though expectations-based 

models that are conditioned on day/night usually have even higher Selten 

measures. Expectations-based models with hours- and earnings-targeting have 



 

 

47 

measures approximately as high as such models with only hours-targeting and 

somewhat higher measures than such models with only earnings-targeting.27 

 Accordingly, from now on we focus on unconditioned expectations-based 

models (also relaxing additive separability across goods), but we also report 

results for unconditioned experience-based reference-point models, in each 

case considering all three forms of reference-dependence. 

 

7.5c Comparing neoclassical and reference-dependent models 

 Figures 16 and 17 give the empirical CDFs of proximities and Selten 

measures for neoclassical versus expectations-based reference-dependent 

models, pooling over drivers and kinds and forms of reference-dependent 

model. In these aggregate summaries, neoclassical models have higher Selten 

measures than reference-dependent models for measure values from 0 to 0.5, 

but slightly lower Selten measures for values from 0.5 to 1.0, so the 

comparison is inconclusive, we believe due mainly to driver heterogeneity. 

Figure 16: Empirical CDFs of Proximities 

for Neoclassical and Reference-dependent Models  

 

 

27 Figure 15’s demonstration that expectations-based models with only hours-targeting 

perform better than those with only earnings-targeting is surprising, given the exclusive focus 

in most previous empirical work on earnings-targeting. We stress that our analysis uses 

modelable targets to identify and distinguish the influences of hours through consumption 

versus via gain-loss utility (see (12) and (15)), so this is not a “neoclassical” effect. 
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Figure 17: Empirical CDFs of Selten Measures  

for Neoclassical and Reference-dependent Models 

 

  
 Figures 18-21 give driver-by-driver plots for neoclassical and expectations-

based and experience-based reference-dependent models’ proximities and 

Selten measures. (The Appendix’s Tables A.2-A.5 give the precise numerical 

values behind the plots.) Each figure has separate plots for different forms of 

reference-dependence, with a separate “spoke” for each driver. Figures 14’s 

and 16’s proximity plots are centered at -0.25, for clarity a tick below the 

lowest possible value of 0; with outer rims at the highest possible value of 1. 

The solid lines trace proximities for the neoclassical model. The shaded areas 

depict Section VII.D’s approximate bounds on the proximities for the 

reference-dependent models. Figures 19’s and 21’s Selten measure plots are 

centered at the lowest possible value of -1, with outer rims at the highest 

possible value of 1. The solid lines trace measures for the neoclassical model. 

 Overall, the qualitative model comparisons differ only slightly across forms 

of reference-dependence, so we focus on models with reference-dependence in 

both hours and earnings, whose plots are in the left-most panels. 

 Neither model has uniformly higher Selten measures. In Figure 19, the 

expectations-based reference-dependent model has the same bounded Selten 

measure as the neoclassical model (thus possibly higher, Section 7.3) for 

seven of 21 drivers (1, 4, 10, 16, 18, 20, and 21); an unambiguously higher 
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measure for six (5, 7, 8, 12, 17, and 19); and an unambiguously lower measure 

for eight (2, 3, 6, 9, 11, 13, 14, and 15). Similarly, in Figure 21, the 

experience-based reference-dependent model has the same (possibly higher) 

bounded Selten measure as the neoclassical model for six drivers: 1, 10, 16, 

18, 20, and 21; a higher measure for four: 4, 8, 17, and 19; a lower measure for 

nine: 2, 3, 6, 9, 11, 12, 13, 14, and 15; and ambiguous bounds for two: 5 and 7. 

 However, not all drivers’ comparisons are equally informative. Consider 

first the expectations-based model with reference-dependence in both hours 

and earnings. With our CPI adjustment, all but one of the six drivers Farber 

and CM excluded due to small (≤ 10) sample sizes (3, 6, 11, 13, 15, and 17) 

has an exact neoclassical fit, and the neoclassical model has a higher Selten 

measure than its more flexible reference-dependent counterpart. This is good 

news for the neoclassical model, but might only reflect overfitting. For seven 

other drivers (1, 4, 10, 16, 18, 20, and 21) the sample sizes were too large for 

us to estimate the set of sets of observations that fit exactly. So for them the 

proximities are set to 0 for both models and the neoclassical model again has a 

higher Selten measure; but that does not truly favor the neoclassical over the 

reference-dependent model. For the eight remaining drivers (2, 5, 7, 8, 9, 12, 

14, and 19), the expectations-based model with reference-dependence in hours 

and earnings has a higher Selten measure for five (5, 7, 8, 12, and 19) and the 

neoclassical model has a higher Selten measure for three (2, 9, and 14). 

 Similarly, the experience-based model with reference-dependence in hours 

and earnings has a higher Selten measure for four drivers (7, 8, 14, and 19) 

and the neoclassical model has a higher measure for four (2, 5, 9, and 12). 

 Thus, for many of Farber’s drivers who violate rationality for a neoclassical 

model a reference-dependent model gives a coherent rationality-based account 

of their choices. Judging by Selten measures, for many of these drivers the 

reference-dependent model is more parsimonious despite its greater flexibility.  
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Figure 18. Proximities for neoclassical and unconditional expectations-based reference-dependent models 

 

Figure 19. Selten measures for neoclassical and unconditional expectations-based reference-dependent models 
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Figure 20. Proximities for neoclassical and unconditional experience-based reference-dependent models 

 

Figure 21. Selten measures for neoclassical and unconditional experience-based reference-dependent models 
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8 Conclusion 

 This paper presents a nonparametric analysis of the theory of consumer demand or, equivalently,  

labor supply with reference-dependent preferences. Our nonparametric model closely follows KR’s 

structural model, maintaining their and others’ assumption that preferences are additively separable 

across components of consumption and gain-loss utility but relaxing their and others’ unnecessarily 

restrictive assumptions on functional structure and form. 

 Propositions 1 and 2 show that unless reference points are precisely modelable or observable and 

sensitivity is constant, reference-dependent models of consumer demand are flexible enough to fit 

any data, with a minor exception when sensitivity is variable.  

 Assuming modelable reference points, Proposition 3 characterizes preferences that satisfy 

constant sensitivity and are continuous, paving the way for positive results. It identifies the most 

general class of reference-dependent utility functions that have nonparametrically refutable 

implications for consumer demand, relaxing the unnecessarily restrictive assumptions in all previous 

theoretical and empirical work, that the sum of consumption and gain-loss utility that determines 

consumer demand is additively separable across goods and that its marginal rates of substitution vary 

across gain-loss regimes in a particular way.  

 Proposition 3 directly suggests methods for structural estimation of reference-dependent consumer 

demand, with conventional assumptions on the now-separate functional forms of consumption and 

gain-loss utility and using sample proxies like Camerer et al.’s and CM’s for the targets. 

 In this paper, however, we continue our nonparametric theoretical analysis in Propositions 4 and 

5, which use Proposition 3’s characterization to derive sufficient and, with rich enough data, 

asymptotically necessary conditions for a reference-dependent rationalization, relaxing the 

unnecessarily restrictive assumptions maintained in all previous theoretical and empirical work. Like 

the classic nonparametric analyses of neoclassical consumer demand, our conditions make essential 

use of rationality, but now within the daily bracket and over a preference domain expanded in the 

disciplined way suggested by reference-dependence. Our analysis requires substantial generalizations 

of the neoclassical analyses, because levels of and changes in a good’s consumption are bundled and 

priced together, and a reference-dependent consumer can, in effect, change her/his preferences by 

buying a bundle in a different gain-loss regime.  

 We illustrate our results by re-analyzing Farber’s (2005, 2008) data. Although the GARP 

condition for a neoclassical rationalization is violated for most of Farber’s drivers, our methods yield 

coherent reference-dependent rationalizations for almost all of most drivers’ choices. For these 

drivers, models that relax the restrictive assumptions have significantly higher Selten measures of 
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predictive success than their counterparts imposing additive separability, showing that our 

relaxations of the assumptions in previous work are empirically important. 

 For many of Farber’s drivers an expectations-based reference-dependent model has at least as 

high or higher Selten measure than a neoclassical model, This suggests that reference-dependent 

models of consumer demand are a useful addition to the neoclassical consumer demand toolkit, 

which might allow parsimonious, rationality-based explanations of otherwise puzzling behaver in 

labor supply, consumer demand, housing, and finance. 
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Supplemental Appendix  

A.1 Data 

 Like CM, we use Farber’s (2005, 2008) data.28 As explained in the text, Farber collected 593 trip 

sheets for 13461 trips by 21 drivers between June 1999 and May 2001. Each sheet records the 

driver’s name, hack number, date, each fare’s start time and location, each fare’s end time and 

location, and the fare paid. Nine sheets duplicate the day and driver, so there are only 584 shifts. 

Because our methods make some allowance for sample size, in addition to the 15 drivers Farber and 

CM studied we include the 6 with samples of 10 or fewer shifts they excluded.  

 Table A.1 reports descriptive statistics driver by driver. The values are the same as those in 

Farber’s (2005) Table B1, except for the hourly wage variable and the Afriat efficiencies in the last 

two columns. Our earnings and wage variables differ from Farber’s and CM’s in two ways, which 

affect the Afriat efficiencies. First, we use the NY/NJ urban CPI to control for price level changes in 

the sample period. Second, Farber’s and CM’s wage variable is income per hour spent working, with 

working time defined as the sum of time driving with a passenger and time waiting for the next 

passenger. As explained in the text, we treat waiting time as an exogenous fixed cost and define the 

wage as earnings per hour driving. 

Table A.1: Descriptive statistics, driver by driver  

T Working 

Hours 

Driving 

Hours 

Waiting 

Hours 

Break 

Hours 

Earnings 

($/CPI) 

Wage 

($/hr) 

Afriat 

Efficiency 

Driver 1 39 6.85 4.32 2.53 0.90 153.01 36.41 0.9952 
Driver 2 14 3.89 2.78 1.11 2.41 95.98 34.68 1 
Driver 3 6 6.66 4.61 2.05 0.74 160.07 36.19 1 
Driver 4 40 6.28 4.52 1.76 0.39 145.89 33.02 0.9978 
Driver 5 23 6.46 3.98 2.48 2.11 144.00 38.12 0.9971 
Driver 6 6 8.62 6.48 2.14 2.42 202.71 33.49 1 
Driver 7 24 6.47 4.42 2.05 0.74 159.50 36.69 0.9991 
Driver 8 37 7.78 5.13 2.64 0.86 170.33 34.23 0.9897 
Driver 9 19 7.17 5.47 1.70 0.54 158.82 30.61 1 
Driver 10 45 6.35 3.90 2.45 1.65 129.68 33.83 0.9954 
Driver 11 6 7.15 5.22 1.93 0.71 182.40 35.50 1 
Driver 12 13 6.15 4.03 2.13 0.55 155.57 39.44 0.9972 
Driver 13 10 7.03 4.72 2.31 0.53 153.99 33.26 1 
Driver 14 17 7.06 4.49 2.57 0.64 157.15 37.37 0.9930 
Driver 15 8 10.82 7.64 3.17 0.19 217.29 29.92 1 
Driver 16 70 6.84 4.56 2.28 0.93 163.56 37.72 0.9936 
Driver 17 10 5.88 3.71 2.17 0.54 137.28 39.10 0.9946 
Driver 18 72 8.53 5.84 2.69 0.60 194.88 35.07 0.9849 
Driver 19 33 6.91 4.63 2.29 0.97 155.65 36.01 0.9870 
Driver 20 46 7.10 4.80 2.30 0.67 148.76 32.73 0.9842 
Driver 21 46 5.32 3.66 1.66 0.24 123.57 35.62 0.9915 

 
 

28 The datasets are posted at https://www.aeaweb.org/aer/data/june08/20030605_data.zip, and  

https://www.aeaweb.org/aer/data/aug2011/20080780_data.zip. The CPI data are posted at 

https://data.bls.gov/timeseries/CUURS12ASA0, under the years 1999-2001. 

https://www.aeaweb.org/aer/data/june08/20030605_data.zip
https://www.aeaweb.org/aer/data/aug2011/20080780_data.zip
https://data.bls.gov/timeseries/CUURS12ASA0
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 Table A.1’s last column reports each driver’s Afriat efficiency index. The index is 1 for a driver 

whose data satisfy WARP; otherwise less than 1. Only seven of Farber’s 21 drivers satisfy WARP. 

Except for drivers 12 (sample size 13), 14 (sample size 17), and 17 (sample size 10), the drivers with 

exact neoclassical fits (2, 3, 6, 9, 11, 13, and 15) are the ones with the smallest sample sizes among 

the 21 drivers. Except for drivers 2 (sample size 14), 9 (sample size 19), and 17 (sample size 10), 

those drivers are the same as the six (3, 6, 11, 13, 15, and 17) Farber and CM excluded due to small 

(≤ 10) sample sizes. Small samples make it easier to satisfy WARP by chance, and those drivers’ 

data may simply be too under-powered to reject the neoclassical model. Discuss the issue of 

correcting for power to reject in Section 7.3. 

 Figure A.1 shows that with our wage definition drivers’ budget lines cross frequently, making 

WARP a meaningful restriction and allowing a nonparametric analysis to provide a meaningful 

interpretation of the data. 

 Tables A.2-A.5 give the precise numerical values behind the driver-by-driver plots for 

neoclassical and expectations-based and experience-based reference-dependent models’ proximities 

and Selten measures in Figures 18-21. The Selten measures are Section 7.4’s lower bounds, the 

estimates imposing Proposition 5’s full conditions [A]-[C].
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Figure A.1: Farber’s (2005, 2008) drivers’ hours and earnings choices 
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Table A.2: Proximities for neoclassical and unconditional expectations-based 

reference-dependent models 

 T Neoclassical Hours and Earnings  Earnings alone Hours alone 

Driver 1 39 0 0 0 1 
Driver 2 14 1 1 1 1 
Driver 3 6 1 1 1 1 
Driver 4 40 0 0 0 0 
Driver 5 23 0.048492 

 

0.384315 0.406994 0.43469

9 
Driver 6 6 1 1 1 1 
Driver 7 24 0 0.162525 0.203046 0.15848

1 
Driver 8 37 0 0.146842 0 0.17589

1 
Driver 9 19 1 1 1 1 
Driver 10 45 0 0 0 0 
Driver 11 6 1 1 1 1 
Driver 12 13 0.256557 

 

1 0.15315 0.13958

5 
Driver 13 10 1 1 1 1 
Driver 14 17 0.265625 

 

0.172794 0.280798 0.27437

5 
Driver 15 8 1 1 1 1 
Driver 16 70 0 0 0 0 
Driver 17 10 0.207382 

 

1 1 1 
Driver 18 72 0 0 0 0 
Driver 19 33 0 0.185454 0.057727 0 
Driver 20 46 0 0 0 0 
Driver 21 46 0 0 0 0 
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Table A.3: Selten measures for neoclassical and unconditional expectations-

based reference-dependent models 

 T Neoclassical Hours and Earnings  Earnings alone Hours alone 

Driver 1 39 0 0 0 1 
Driver 2 14 0.942 0.788 0.803 0.82 
Driver 3 6 0.505 0.343 0.344 0.361 
Driver 4 40 0 0 0 0 
Driver 5 23 0.047492 0.328315 0.367994 0.416699 
Driver 6 6 0.665 0.466 0.499 0.497 
Driver 7 24 0 0.148525 0.193046 0.145481 
Driver 8 37 0 0.144842 0 0.174891 
Driver 9 19 0.987 0.912 0.913 0.941 
Driver 10 45 0 0 0 0 
Driver 11 6 0.421 0.303 0.287 0.279 
Driver 12 13 0.187557 0.714 -0.09685 -0.09742 
Driver 13 10 0.832 0.659 0.632 0.669 
Driver 14 17 0.261625 0.084794 0.217798 0.222375 
Driver 15 8 0.8 0.504 0.604 0.594 
Driver 16 70 0 0 0 0 
Driver 17 10 -0.01062 0.677 0.604 0.685 
Driver 18 72 0 0 0 0 
Driver 19 33 0 0.178454 0.056727 -0.002 
Driver 20 46 0 0 0 0 
Driver 21 46 0 0 0 0 
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Table A.4: Proximities for neoclassical and unconditional experience-based 

reference-dependent models 

 T Neoclassical Hours and Earnings  Earnings alone Hours alone 

Driver 1 39 0 0 0 0 
Driver 2 14 1 1 1 1 
Driver 3 6 1 1 1 1 
Driver 4 40 0 0.078039 0 0 
Driver 5 23 0.048492 

 

0.016492 0.212637 0.187298 
Driver 6 6 1 1 1 1 
Driver 7 24 0 1 0.278643 0.157611 
Driver 8 37 0 1 0 0 
Driver 9 19 1 1 1 1 
Driver 10 45 0 0 0 0 
Driver 11 6 1 1 1 1 
Driver 12 13 0.256557 

 

0.13873 0.265933 0.226169 
Driver 13 10 1 1 1 1 
Driver 14 17 0.265625 

 

0.313394 0.416434 0.251828 
Driver 15 8 1 1 1 1 
Driver 16 70 0 0 0 0 
Driver 17 10 0.207382 

 

0.500883 0.326962 0.304039 
Driver 18 72 0 0 0 0 
Driver 19 33 0 0.322158 0 0 
Driver 20 46 0 0 0 0 
Driver 21 46 0 0 0 0 
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Table A.5: Selten measures for neoclassical and unconditional experience-

based reference-dependent models 

 T Neoclassical Hours and Earnings  Earnings alone Hours alone 

Driver 1 39 0 0 0 0 
Driver 2 14 0.942 0.804 0.856 0.814 
Driver 3 6 0.505 0.373 0.401 0.381 
Driver 4 40 0 0.077039 0 0 
Driver 5 23 0.047492 -0.00751 0.197637 0.175298 
Driver 6 6 0.665 0.267 0.274 0.285 
Driver 7 24 0 0.994 0.276643 0.153611 
Driver 8 37 0 1 0 0 
Driver 9 19 0.987 0.924 0.935 0.938 
Driver 10 45 0 0 0 0 
Driver 11 6 0.421 0.271 0.261 0.261 
Driver 12 13 0.187557 -0.08827 0.081933 0.036169 
Driver 13 10 0.832 0.575 0.616 0.577 
Driver 14 17 0.261625 0.270394 0.381434 0.219828 
Driver 15 8 0.8 0.527 0.505 0.49 
Driver 16 70 0 0 0 0 
Driver 17 10 -0.01062 0.124883 -0.02104 -0.03996 
Driver 18 72 0 0 0 0 
Driver 19 33 0 0.321158 0 0 
Driver 20 46 0 0 0 0 
Driver 21 46 0 0 0 0 

 

 


