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1 Introduction

Kahneman and Tversky (1979) and Tversky and Kahneman (1991; “TK”)
introduce a model of individual decisions in which people have preferences
over gains and losses relative to a reference point. Such reference-dependence
alters the domain of preferences from levels of outcomes to changes in
outcomes; but it remains consistent with a complete and transitive preference
ordering over changes, thus not inherently irrational. Although Kahneman and
Tversky and TK focus on changes alone, Kdszegi and Rabin (2006; “KR™)
and most subsequent analyses allow preferences over both levels and changes;
and such reference-dependence is also not inherently irrational.

Reference-dependent consumer theory has been a workhorse model in
behavioral microeconomics since Camerer et al.’s (1997) analysis of New
York City cabdrivers’ labor supply.! A standard neoclassical model of labor
supply is analogous to a model of consumer demand, with preferences over
levels of leisure and earnings—black-boxing the goods earnings can buy. In
such a model the elasticity of hours with respect to the wage is positive unless
there are very large income effects. However, Camerer et al., taking a driver’s
earnings per hour as a proxy for the wage, estimate negative wage elasticities.

To explain this anomaly, Camerer et al. propose a model in which drivers
bracket narrowly, evaluating their choices day by day instead of over their
working lifetimes; and have daily earnings targets. A reference-dependent
model in which the domain of preferences includes changes in earnings
relative to daily targets as well as levels of earnings and leisure can reconcile

such income-targeting with choice that is rational within the daily bracket.?

! See also Hardie et al.’s (1993) analysis of consumer demand. Cabdrivers are of particular
interest because many choose their own hours, unlike most workers in modern economies.

2 Such narrow bracketing is of course irrational from a lifetime point of view. Some have
argued that earnings-targeting is irrational even within the daily bracket, because it leads
drivers to trade off levels of earnings for changes that neoclassical preferences do not respond

to. In Farber’s (2008, p. 1070) words: “This [earnings-targeting] is clearly nonoptimal from a



For, experiments suggest that most people are loss-averse—more sensitive
to changes below their targets (losses) than above them (gains). Loss aversion
creates kinks in drivers’ preferences that make their daily earnings tend to
bunch around their targets, possibly leading them to work less on days with
higher wages. This allows a rationality-based account of Camerer et al.’s
negative daily wage elasticities, without unrealistically large income effects.

In a theory paper inspired by TK’s and Camerer et al.’s analyses, KR
propose a more general model of reference-dependent preferences. KR take
narrow bracketing as given. Within the bracket, KR assume that a person’s
utility is additively separable across neoclassical consumption utility and
reference-dependent “gain-loss” utility. They also assume that reference-
dependence is active for every good and , as a convenient simplification, that
gain-loss utility is determined, additively separably across goods, by the good-
by-good differences between realized and reference consumption utilities.
Finally, in the spirit of Camerer et al.’s proxying drivers’ targets via average
daily earnings, KR close their model by equating a consumer’s reference
points to her/his good-by-good rational expectations of future consumption.

KR’s expectations-based reference-dependent model, like Camerer et al.’s
earnings-targeting model, can give a rationality-based account of labor supply
with negative wage elasticities without invoking large income effects: With
perfectly anticipated changes in earnings and hours, gain-loss utility drops out
of their model, which then reproduces the neoclassical prediction that higher
anticipated wages increase labor supply. But with unanticipated changes in
earnings, loss aversion makes daily earnings tend to bunch around its

reference point, and earnings surprises can yield a negative overall correlation.

neoclassical perspective, since it implies quitting early on days when it is easy to make money
and working longer on days when it is harder to make money. Utility would be higher by
allocating time in precisely the opposite manner.” However, our use of “rational” refers to the

consistency of a driver’s choices in the larger domain of preferences over levels and changes.



TK’s and KR’s papers have spawned numerous empirical applications of
reference-dependent consumer theory: to consumer demand itself (Hardie et
al. 1993), labor supply (Camerer et al. 1997; Oettinger 1999; Fehr and Goette
2007; Farber 2005, 2008, 2015; Crawford and Meng 2011, “CM”; Thakral and
T6 2021; Anderson et al. 2023; Brandon et al. 2023; Crawford et al. 2025),
housing (Genesove and Mayer 2001, Andersen er al. 2022), and finance
(Odean 1998; Barberis and Thaler 2003; Barberis 2013; Meng and Weng
2018). However, the jury is still out on whether reference-dependent models
of consumer demand are empirically useful, particularly in labor supply.

This makes it natural to ask whether the empirical successes (or failures) of
reference-dependent models of consumer demand are due to reference-
dependence (or its absence) per se or are artifacts of the strong functional-
structure and functional-form assumptions that, to our knowledge, have been
maintained without testing in all applications to date.

This paper begins to answer such questions by deriving nonparametric
conditions for the existence of reference-dependent preferences that can
rationalize consumer demand behavior, taking daily bracketing as given.’

TK, KR, and the empirical papers all assume—in our view naturally—that
the reference-dependent utility function that represents preferences can be
written as the sum of a consumption utility function that depends only on
levels of consumption and a gain-loss utility function that depends on both
levels of consumption and a reference point. Without that assumption
reference-dependent models are unlikely to have any nonparametrically

refutable implications; and we maintain it.

3 There are several other nonparametric theoretical analyses of reference-dependent models,
including Gul and Pesendorfer (2006); Abdellaoui et al. (2007); Ok et al. (2015); Masatioglu
and Raymond (2016); Nishimura et al. (2017); Freeman (2017, 2019); and Kibris et al. (2021).
All but Gul and Pesendorfer (2006) and Freeman (2017), whose contributions are discussed in

Section 4, focus on different aspects of the problem than the ones we consider.



TK, KR, and the empirical papers also assume that gain-loss utility is
determined, additively separably across goods, by the good-by-good
differences between realized and reference consumption utilities—thus linking
gain-loss utility to consumption utility in a particular way. They also assume
(except in KR’s most general model) that the sum of consumption and gain-
loss utility that determines a consumer’s demand has constant sensitivity.*

These functional-structure assumptions have two strong implications: The
sum of consumption and gain-loss utility that determines consumer demand
must be additively separable across goods.’ And its marginal rates of
substitution vary across gain-loss regimes in a particular, knife-edge way.5

Assuming additive separability across goods would be a non-starter in a
neoclassical demand analysis. For reference-dependent preferences, neither
assumption is supported by theory. We show how to relax and test both
assumptions, which our empirical illustration suggests is important.

Under our assumptions, the empirically refutable implications of reference-
dependent models of consumer demand are limited by two factors. Proposition
1 shows that unless reference points are modelable, in the sense that the

available data allow them to be precisely predicted, one can construct a

4 TKs sign-dependence; KR’s A3'. Constant sensitivity is formally defined in Section 2.
Informally, how an observation’s consumption bundle relates to the observation’s reference
point puts the bundle into one of several gain-loss regimes, such as “earnings loss, hours gain”
in labor supply. With constant sensitivity a consumer’s gain-loss utility function can vary
freely across regimes, with the preferences over bundles determined by consumption plus
gain-loss utility independent of the reference point within a given regime.

> Additive separability across goods is distinct from KR’s and our assumption that the utility
function is additively separable across consumption and gain-loss utility.

¢ CM’s Table 1. In labor supply, for instance, the marginal rates of substitution are equal
across the (gain, gain) and (loss, loss) regimes and in constant proportions across the (gain,

loss) and (loss, gain) regimes.



reference-dependent utility function to rationalize any demand data.’
Proposition 2 then shows that even if reference points are modelable, unless
sensitivity is constant one can construct a well-behaved reference-dependent
utility function to rationalize any demand data, with a minor qualification.

Propositions 1 and 2 identify a grain of truth in the widespread belief that
allowing reference-dependence destroys the parsimony of neoclassical
consumer theory: Without both modelable reference points and constant
sensitivity, the hypothesis of reference-dependent preferences is
nonparametrically irrefutable, with Proposition 2’s minor qualification.

Proposition 3 paves the way for positive results by characterizing
continuous reference-dependent utility functions that satisfy constant
sensitivity. Assuming modelable reference points but relaxing TK’s and KR’s
functional-form and functional structure assumptions, it identifies the most
general class of reference-dependent utility functions with nonparametrically
refutable implications for consumer demand.

Empirically, Proposition 3’s characterization could be used to conduct a
more general structural econometric analysis of reference-dependent demand,
with conventional assumptions on the functional structure and forms of
consumption and gain-loss utility, using sample proxies like Camerer et al.’s
and CM’s for the targets. Several papers cited above provide suitable datasets.

In this paper, instead, we continue by deriving nonparametric conditions for
reference-dependent preferences that rationalize consumer demand behavior

and using them to assess our generalization’s empirical importance.

7 Examples of modelability include Camerer et al.’s use of average daily earnings as sample
proxies for earnings targets, KR’s rational-expectations model of reference-points, CM’s and
Farber’s (2015) implementations of KR’s model, Thakral and T6’s (2021) dynamic model of
reference points, and Crawford et al.’s (2025) elicitation of them. By contrast, Kahneman and
Tversky (1979) and TK take no clear position on how reference points are determined; and

Farber (2005, 2008) and most other empirical papers estimate them as latent variables.



Like Afriat’s (1967), Diewert’s (1973), and Varian’s (1982) classic
nonparametric analyses of neoclassical demand, our nonparametric analysis
makes essential use of rationality in the sense of consistency of choices across
budget sets. However, as in most reference-dependent analyses, consistency is
evaluated within the bracket (in this case daily) and over a preference domain
expanded in the disciplined way suggested by reference-dependence.

Our analysis raises issues beyond those resolved by the classic analyses
because levels of and changes in a good’s consumption are bundled and priced
together and a reference-dependent consumer can, in effect, change her/his
preferences by buying a bundle in a different gain-loss regime. And, although
Afriat’s Theorem shows that demand data are rationalizable via neoclassical
preferences if and only if the generalized axiom of revealed preference is
satisfied (“GARP”; Section 3), with reference-dependent preferences there is
no simple condition to determine whether demand data are rationalizable.

We approach these difficulties in two steps. Proposition 4 uses Proposition
3’s characterization of reference-dependent utility functions with constant
sensitivity and continuity to derive benchmark necessary and sufficient
conditions for a reference-dependent rationalization. Proposition 4’s
conditions are not directly applicable because with finite data there is normally
a range of preferences that rationalize a consumer’s choices within a gain-loss
regime (Varian 1982, Fact 4 and Figure 3), and those conditions rely on an
unspecified choice of such preferences. Proposition 5 then derives directly
applicable sufficient conditions based on a particular choice of rationalizing
regime preferences. Proposition 5’s conditions are not necessary, but they
should approach necessity as the data become rich enough to precisely
determine the rationalizing preferences within each gain-loss regime.

Proposition 5 immediately suggests an algorithm for nonparametric
estimation. We illustrate our results by adapting it to estimate neoclassical and
reference-dependent models, re-analyzing Farber’s (2005, 2008) data on

cabdrivers’ labor supply. We relax Farber’s and CM’s driver homogeneity



assumptions (which follow the labor supply literature) to estimate driver by
driver (as in the nonparametric demand literature). We control for models’
differences in flexibility using Beatty and Crawford’s (2011, pp. 2786-2787)
proximity-based variant of Selten and Krischker’s (1983) and Selten’s (1991)
nonparametric measures of predictive success, which judge flexibility by the
likelihood that random data would fit a model.

Farber’s drivers are highly heterogeneous. For most drivers, reference-
dependent models that relax TK’s and KR’s constant-sensitivity restrictions of
additive separability across goods and on how marginal rates of substitution
vary across gain-loss regimes have significantly higher Selten measures of
predictive success than their counterparts imposing the restrictions, suggesting
that Proposition 3’s generalizations are empirically important.

Although the GARP condition for a neoclassical rationalization is violated
for most drivers, our methods yield reference-dependent rationalizations for
almost all of most drivers’ choices. For many, a reference-dependent model
has a Selten measure as high or higher than a neoclassical model. And in
contrast to the focus on earnings-targeting in most previous theoretical and
empirical work, hours-targeting is more important than earnings-targeting.

The rest of paper is organized as follows. Section 2 introduces our model of
reference-dependent preferences. Section 3 reviews the classic nonparametric
analyses of neoclassical consumer demand. Section 4 shows that without both
modelable reference points and constant sensitivity, the hypothesis of
reference-dependent preferences is nonparametrically irrefutable. Section 5
characterizes the structure of reference-dependent preferences, assuming
constant sensitivity and continuity. Section 6 derives the model’s
nonparametric implications for demand. Section 7 uses using Farber’s (2005,

2008) data to illustrate Section 6’s methods. Section 8 is the conclusion.



2 Reference-dependent Preferences

We consider reference-dependent preferences with a finite number of
demand observations for a single consumer—or equivalently for a pooled
group of consumers assumed to have homogeneous preferences, but we will
speak of a single consumer. We index goods k= 1,..., K and observations ¢ =
1,..., T. We assume the consumer is a price-taker, choosing a consumption
bundle g € R with a linear budget constraint. Her/his preferences are
represented by a family of real-valued utility functions u(q, r), parameterized
by an exogenous reference point r € RX, which is conformable to a K—good
consumption bundle as in TK and CM.? If reference points are unmodelable,
the data are prices and quantities {p;, q¢};=1 . r, With hypothetical reference
points {r,};=1 _r. If reference points are modelable, the data are prices,
quantities, and reference points {p;, q¢, +};=1.. . The context will make the
interpretation of 1, clear. Sometimes we denote goods by scalars with
superscripts, so for k=1,..., K, q = (q*, ..., ¢%) and for observation = 1,...,
T, q; = (g3, ..., qX), with analogous notation for p, p,, r, and .

To describe preferences that respond positively to changes in consumption
relative to the reference point, as well as to levels, we take the reference-
dependent utility function u(q, r) to be strictly increasing in q and strictly
decreasing in r. Our specification is then at least as flexible as a general
strictly increasing function of levels q and changes q — 7. It nests the
neoclassical case where preferences respond only to levels; Kahneman and
Tversky’s (1979) and TK’s case where they respond only to changes; and
cases like Camerer et al.’s (1997), Farber’s (2005, 2008), KR’s, and CM’s

where preferences respond to both. As in those papers, we take u(q, r) to be

8 In KR’s theoretical model, which makes no allowance for errors, only probabilistic targets
make possible the unanticipated changes in outcomes that allow expectations-based reference-
dependence to have any effect. CM use the fact that sampling variation causes unanticipated

changes to simplify KR’s probabilistic targets to point expectations, as we do here.



continuous in g and r; and we assume that u(g, r) is additively separable in
the sense that it can be written as the sum of a consumption utility function,
which depends only on levels of consumption, and a gain-loss utility function,
which depends on both levels of consumption and a reference point.

We call the general case of preferences in the class just described variable
sensitivity. An important special case is constant sensitivity (TK’s sign-
dependence; KR’s assumption A3’). Let sign(q — r), the vector whose kth
component is sign(g® — r*), be the good-by-good sign pattern of gains and
losses. A reference point divides commodity space into gain-loss regimes
throughout each of which sign(q — r) remains constant. With constant
sensitivity a consumer has a separate reference-dependent utility function for
each regime, with preferences over consumption bundles g (but not the level
of utility) independent of 7 within that regime. Gain-loss regimes’ utility
functions can vary freely across regimes as long as the sum of consumption
and gain-loss utility is continuous across regimes.

Note that each gain-loss regime’s utility function must be defined for the
entire commodity space, because any q is in the regime for some r: Each

value of sign(q — r) “switches on” a different regime utility function.

DEFINITION 1: [Preferences and utility functions with constant sensitivity.]
A reference-dependent utility function u(q, r) satisfies constant sensitivity if
and only if, for any consumption bundles q and q*and reference points r and
r*such that sign(q — r) = sign(q* —r) = sign(q —r*) = sign(q* —r"),
u(q,r) = u(q’,r) ifand only ifu(q,r*) = u(q*,r").

With two goods, a reference point in the interior of the commodity space
divides it into four gain-loss regimes. Figure 1’s panels (a) and (b) show four
regime indifference maps and the associated global maps for reference points
r and r'. The shift from 7 to " does not alter the regime maps, but as r varies,

even locally, the shift alters how they connect across regimes, as in Figure 1.
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Figure 1. A set of gain-loss regime maps with constant sensitivity

and the associated global maps for alternative reference points

' ( q'

(a) (b)

Loss aversion is a concept that has strong experimental and empirical
support and figures in some of our results. Generalizing TK’s (pp. 1047-1048)
definition for the two-good case, Definition 2 gives a nonparametric definition

of loss aversion with constant sensitivity.’

DEFINITION 2: [Preferences with constant sensitivity and loss aversion.]
Assume that reference-dependent preferences and an associated utility
function u(q, 1) have constant sensitivity. A collection of gain-loss regime
preferences over consumption bundles satisfies loss aversion if and only if, for
any observation {p, q;, T}, given T, the preference ordering’s better-than-
q. set is weakly contained in each regime preference ordering’s better-than-

q; set.

Figure 2 illustrates Definition 2’s notion of loss aversion with one active
reference point and two gain-loss regimes. As loss aversion is a property of the
relationship between different regimes’ preferences over consumption bundles

given a reference point, it is independent of the reference points themselves.

? The idea of loss aversion is well defined with variable sensitivity, but formalizing it is more

complex, and Proposition 2 will show that it is then nonparametrically irrefutable anyway.
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Figure 2. Loss aversion with one active reference point
(solid curves for active parts of indifference maps,

dashed for inactive parts)

Q’

Definition 2’s nesting of better-than sets is equivalent to requiring that
gain-loss regimes’ indifference maps satisfy a global single-crossing property:
For any observation, across regimes that differ only in the gain-loss status of
good i, the loss-side marginal rate of substitution between good i and any other
good (generalized as needed for non-differentiable preferences) is weakly
more favorable to good i than the gain-side marginal rate of substitution.

It is this single-crossing property, not the kinks in global indifference maps
that it creates, that shapes loss aversion’s nonparametric implications, which
are testable with finite data. Loss aversion precludes nonconvex kinks, so if

the regime maps have convex better-than sets, so do the global maps.

3 Nonparametric Implications of Neoclassical Preferences

In preparation for our nonparametric analysis, this section reviews Afriat’s
(1967), Diewert’s (1973), and Varian’s (1982) nonparametric analyses of
consumer demand in the neoclassical case where preferences respond only to
levels of consumption. In the revealed-preference tradition of Samuelson

(1948) and Houthakker (1950), Afriat, Diewert, and Varian show that a
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consumer’s demand behavior can be nonparametrically rationalized by the
maximization of a nonsatiated utility function if and only if the data satisfy the
Generalized Axiom of Revealed Preference (“GARP”). They also show how

to construct a rationalizing utility function.

DEFINITION 3: [Rationalization with neoclassical preferences.] Preferences
and an associated utility function u(q) rationalize the data {p, Q¢}¢=1,..1 if

and only if u(q,) = u(q) for all q and t such that p; - q < p; * q;.

DEFINITION 4: [Generalized Axiom of Revealed Preference (“GARP”).]
qsRq. implies p; - q; < D¢ - qs, where R indicates that there is some

sequence of observations qn, q;, 4, ---,q¢ such that py - qn = Pr - qi, P; -

q; = p; “qj, -, Ps " qs 2 Ps " q;-

AFRIAT’S THEOREM: The following statements are equivalent:

[A] There exists a utility function u(q) that is continuous, non-satiated, and

.....

[B] There exist numbers {U, A, > 0}1_, such that
(1) Us<Ug+A4pe-(qs —qe) foralls,t €{1,.., T}

.....

In implementing Afriat’s Theorem, for given {U,, 1, > 0}'_, that satisfy
[B]’s inequalities (1), we can take u(q) = mineeq;, n{Us + A0 - (@ — q¢)}-
With finite data there are generally many possibilities for a rationalization
(Varian 1982, Fact 4 and Figure 3). However, a choice of u(q) we call the

Afriat utility function plays a central role in Proposition 5.

DEFINITION 5: [Afriat preferences and utility function.] For data
{Pe, Qc}e=1,..1 that satisfy GARP, or equivalently for {U;, A, > 0}[_; that

13



satisfy condition [B] of Afriat’s Theorem, the Afriat preferences follow the
associated utility function u(q) = mingey, m{Us + A:Pe - (@ — q0)}

Figure 3. Neoclassical Afriat preferences for data that satisty GARP

(a) (b)

Figure 3 illustrates the Afriat preferences for a three-observation dataset
that satisfies GARP. Figure 3a shows the observations’ budget sets and
consumption bundles. Figure 3b shows the Afriat indifference map, whose
marginal rates of substitution are determined by the budget lines. The Afriat

utility function is piecewise linear, continuous, non-satiated, and concave.

4 Nonparametric Implications of Reference-Dependent Preferences

This section begins our nonparametric analysis of reference-dependent
preferences. We assume that the reference-dependent utility function is
additively separable in the sense that it can be written as the sum of a
consumption utility function and a gain-loss utility function. Then, whether
reference-dependent preferences can rationalize demand behavior is limited by

whether sensitivity is constant and reference points are precisely modelable.
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4.1 Reference-dependent rationalization with unmodelable reference points
With unmodelable reference points, Definition 6 allows a reference point to
be chosen hypothetically for each observation—the nonparametric analogue of

Farber’s (2005, 2008) econometric treatment of targets as latent variables.

DEFINITION 6: [Rationalization with unmodelable reference points.]
Reference-dependent preferences, an associated utility function u(q,r), and
hypothetical reference points {r,}=1 1, rationalize the data {p;, q;}¢=1,..1 if

and only if u(qe,ry) = u(q,r.) for all q and t such that p; - q < p¢ * q;.

Proposition 1 shows that unless reference points are modelable in the sense
that they can be precisely predicted (possibly as functions of the data), one can
construct a reference-dependent utility function to rationalize any demand data
(even if the data violate Definition 4’s necessary and sufficient GARP

condition for the existence of a neoclassical rationalization,).

PROPOSITION 1: [Rationalization with unmodelable reference points via
preferences with variable or constant sensitivity.] For any data {py, Q¢}e=1, .1
with unmodelable reference points, there exist reference-dependent
preferences and an associated utility function u(q,r) that are continuous,

increasing in q, and decreasing in 1, and a sequence of hypothetical reference

.....

Proof: Recall that we denote goods by superscripts, so that q = (¢?, ..., g%),
q: = (g}, ..., qX), and so on. Let a* = min,—, _r{p¥} > 0 for each k and ¢
such that gf > r¥; and a¥ = max,—, _{p¥} > 0 for each k and ¢ such that
gk < rf. Define the utility function u(q,r) = Y a®q* + ¥ a*(q* — "),
which is strictly increasing in q, strictly decreasing in 7, and satisfies constant
sensitivity and Proposition 1°s conditions for continuity. For observation ¢, set

T+ = q, and consider any bundle q # q; = r, that (without loss of generality

15



given strict monotonicity) exactly satisfies #’s budget constraint. For such

bundles, ¥, p¥ (g% — q¥) = 0 and, by the definition of the a¥,

) Xr@* —pH(q* = qf) = Ze(a* = pf)(@* =) < 0and T a* (g —rf) <0
and
(3) u(q,ry) — u(qere) = 23X, a*(q" - q{rc) =2Y,a"(q" - Ttk) <0,

so u(q, r) rationalizes the choice of q,. Similarly for variable sensitivity.'’ m

The proof of Proposition 1 hypothesizes a reference point for each
observation with r, = q, and preferences that, with those reference points, put
the observation’s consumption bundle at the kink of an approximately
Leontief indifference curve (approximately to preserve strict monotonicity).
Those preferences satisfy continuity, constant sensitivity, and Farber’s, KR’s,
and CM’s functional-form assumptions, which shows that those assumptions
are nonparametrically irrefutable as well. Because the rationalization works
entirely by varying reference points across observations, it shows as directly as
possible that the empirical usefulness of reference-dependent consumer theory
depends on modeling reference points.

Implicitly, Proposition 1 also shows that analyses that treat targets as latent
variables may be influenced as much by how they constrain the estimation of
targets as by reference-dependence. This may be why Farber’s (2005, 2008)
model yields unstable estimates of earnings targets, which is the basis of his
argument that reference-dependence is not useful in modeling labor supply.
By contrast, CM’s sample-proxy model of the targets yields stable estimates.

Gul and Pesendorfer (2006) and Freeman (2017) prove results with
conclusions like Proposition 1’s.!! However, the preferences in Gul and

Pesendorfer’s proof do not satisfy KR’s and our assumption of additive

10 The 2 in (3) comes from the separate components of the hypothesized u(q, r) function.
! More precisely, Gul and Pesendorfer show that the choice function for reference-dependent

preferences is the same as that which maximizes a complete binary relation.
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separability across consumption and gain-loss utility, and they allow the
strength of loss aversion to vary wildly with the cardinality of their (finite)
choice set. Freeman’s Observation 1 does not restrict preferences, even to be
monotonic. By contrast, the rationalizing preferences in the proof of
Proposition 1 are credible candidates for an empirical explanation.

Cases with limited knowledge of reference points are plausible and may be

empirically relevant, but we have found no informative results for them.

4.2 Reference-dependent rationalization with modelable reference points and
variable sensitivity

Our next result shows that even if reference points are modelable, unless
sensitivity is constant the hypothesis of reference-dependent preferences is
refutable only via violations of Definition 4’s GARP condition within subsets
of observations that share exactly the same reference point. For such subsets,
reference-dependent preferences reduce to neoclassical preferences. Thus,
reference-dependence adds nothing empirically useful to a neoclassical model.

Put another way, our result shows that constant sensitivity, which is usually
seen as no more than a convenient simplification, is essential for a reference-

dependent model to have useful nonparametrically refutable implications.

DEFINITION 7: [Rationalization with modelable reference points.]
Reference-dependent preferences and an associated utility function u(q,r)

rationalize the data {p¢, q;, T}¢=1,. T with modelable reference points if and

only if u(qe,ry) = u(q,r;) for all q and t such that p; * q < P * Q.

PROPOSITION 2:'? [Rationalization with modelable reference points via

preferences with variable sensitivity.] For any data {p;, q¢,T¢}e=1,. 7 With

12 As Proposition 2’s proof shows, restricting sensitivity short of assuming that it is constant,
such as by assuming diminishing sensitivity, still does not yield refutable implications. Unlike

Proposition 1, Proposition 2 does not claim that u(q, r) is continuous in q and r or decreasing

17



modelable reference points, there exist reference-dependent preferences and
an associated utility function u(q, ) that for each observation t and reference
point ¢, are continuous and strictly increasing in q and that rationalize the
data, if and only if every subset of the data whose observations share exactly

the same reference point satisfies GARP.

Proof: Partition the observations into subsets T/, j=1,...,], such that if and
only if two observations {pg, qs, s} and {p, q;, 7} have the same reference
point r; = 1, they are in the same subset. If there exists a reference-
dependent utility function with the stated properties that rationalizes the data,
then the data must satisfy GARP within any such subset, by Afriat’s Theorem.
Conversely, suppose the data within each such subset satisfies GARP. Let

b* = min,_, 1 {pk}, so that 0 < b* < p¥, and let b = (b7, ..., bX). For any
subset 7/and observation t € 7/, let the indicator function I.j(t) = 1if the
observation t € 7/ and I_;(t) = 0 otherwise, and let u(q,r) =

Y1, ()U(q, 1), where U (q,1,) = mianTj{Ul{ + Al];pp (q-4q,)}-b-
1., which is Definition 5’s Afriat utility function for observations in 7/, with
the U ; and AZ; taken from 7/°’s binding condition B) inequalities (1) in Afriat’s
Theorem. If T/ is a singleton subset, the terms in U’ (q, r,) follow observation

#’s budget line. If not, those terms follow the minimum of 7/°s observations’

in 7. A rationalization might require discontinuous preferences if observations with nearby 7’s
have very different budget sets. We have not tried to characterize rationalizability via a
continuous u(q, r). But for data generated by continuous preferences, Proposition 2’s
rationalizations should converge to a continuous limiting u(q, r) as the data become rich. The
lack of refutable implications without constant sensitivity resembles the ambiguity of
neoclassical consumer demand, where in theory small changes in income can lead to large
changes in preferences and demand. In structural analyses such large income effects are ruled
out implicitly by conventional functional-form assumptions. A nonparametric analysis must

rule them out explicitly, as here via constant sensitivity.
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budget lines, as in Figure 3b. Either way, r; completely determines the p,, and
q, forall p € 7/, as required to determine U’ (q, ). For each r,, u(q, r,) and
U’(q,1,) are continuous and increasing in q. For any subset 7/and
observation t € 7/ and any q with p, - ¢ < p; - q;, using t/’s binding

condition B) inequalities (1) for the preferences in that subset,

4) Ui(q,r,) = mianT,-{Ul{ + A{;pp (q—4q,)}-b-1,

= Utj+/1ipt‘(‘h—‘h) —b-r,= Utj—b'rtEUj(qt,rt).l

5 Characterizing Reference-dependent Preferences with Constant
Sensitivity and Continuity

Sections 4’s results show that nonparametrically refutable implications of
reference-dependence depend on the modelability of reference points and
constant sensitivity. In this section, to prepare for Section 6’s analysis of
rationalization in that case, we characterize reference-dependent utility
functions with constant sensitivity and continuity.

Suppose that preferences and a reference-dependent utility function u(q, )
satisfy: additive separability across consumption and gain-loss utility; constant
sensitivity; and continuity in q and r; with the number of goods K > 2 and
reference-dependence active for all K goods;'? and, for any r, with preferences
over q differentiable in the interior of each gain-loss regime, and marginal
rates of substitution that differ across regimes throughout commodity space.

Let G(q, 1) be a vector of binary numbers of length K with Ath component

1if ¢* = r* and 0 otherwise. The gain-loss regime indicator I4(q, 1) = 1 if

13 In riskless environments with convex budget sets, if K = 1 all monotone preferences are
observationally equivalent, so reference-dependence cannot be empirically meaningful. And,
as Proposition 3’s wording suggests, its assumptions don’t tie down the functional structure
for goods for which reference-dependence is inactive. As we seek general characterizations,

Propositions 4 and 5 take Proposition 3’s conclusion, not its assumptions, as their premises.
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g = G(q,7) and 0 otherwise; and the gain-loss indicators G¥(q,7r) = 1 if

gk > rf and 0 otherwise and G*(q,7) = 1 if g¥ < r/and 0 otherwise.

PROPOSITION 3: [Preferences and utility functions with continuity and
constant sensitivity.] Suppose there are K > 2 goods, with reference-
dependence active for all K goods, and that a reference-dependent preference
ordering and an associated utility function have additively separable
consumption utility and gain-loss utility components. Then the ordering
satisfies constant sensitivity if and only if an associated utility function u(q,1)
can be written, for some consumption utility function U (+) and gain-loss

regime utility functions Vg (*,") and vy (*), as

©) u(q,r) =U(q) + Lglg(q,1)Vy(ve(q), 7).

Suppose further that the induced preferences over q are differentiable in the
interior of each regime, with marginal rates of substitution that differ across
regimes throughout commodity space. Then the ordering satisfies constant
sensitivity and continuity if and only if it is representable by a utility function
u(q,r) that can be written, for some consumption utility function U(+) and
gain-loss component utility functions v¥(-) and v¥(*) (with the indicator

functions GX(-) and GX(-,") doing the work of the indicator 14(:,")), as

(6) u(q,m) = U(q) + klGE(q. D{vE(") — vEE)} + GE(q, M {vE(g") — vEES)].

Conversely, any combination of induced regime preferences over q is consistent

with continuity and constant sensitivity for some gain-loss utility functions.

Proof: The “if” part of each claim is immediate. The “only if” part regarding
(5) follows from Definition 1 via the standard characterization of additively
separable preferences (Debreu 1960, Section 3). To prove the “only if” part

regarding (6), note that u(q, r) in (5) is continuous if and only if
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(7) V,(vg (@), ) = Vg, (vg, (@), 7)

for any g, r, and i with ¢' = r* and any gain-loss regimes g and g’ that differ
in the gain-loss status of good i. But (7) can hold under those conditions only
if each regime’s V (Ug (q), r) is additively separable in the components of q

and, for component utility functions vX(-) and v¥(-), k = 1, ..., K,

(8) Zg Ig(q! T)‘/g(vg(fI)'T) = Zk[G-{—((q' T){Uf(qk) - Uf(‘l’k)} + Gf(q! r){Vf(qk) - Uf(rk)}]'

First suppose that (7) is satisfied for some q, r, and i with ¢* = r*. Using the
hypothesized differentiability in the interior of each gain-loss regime, if

Vg (ve(q), r)/dq’ # 0, (7) implies that Vg, (vg(q), r)/0q’ # 0 as well.
Adding U(q) to each side of (7), partially differentiating each side with
respect to g/and then g, with r* = ¢*, and taking ratios would then show that
the marginal rates of substitution between goods 7 and j are equal across
regimes g and g’ for all ¢* = 7%, a contradiction. Thus with q* = r?,
al/zq(vg(q),r)/aqj = an,(vg(q),r)/aqj = 0 for any j # i, and standard
characterization results show that for a regime g, Vg(vg (), r) 1s additively
separable across the components of q. Given that, changing the gain-loss
status of a good j with g = r* would violate (7) and therefore continuity,

unless for some functions w¥(-) and w¥(-), k=1,..., K,
(9) Xg1g(q, )V (vg(@), 7) = Xi[GE(q, 7)) Wi (g, 1) + GE(q, M)WE(q*, 1)].

Finally, unless the w¥(:,-) and w¥(-,-) are also additively separable in r, with
good-by-good responses to reference points that exactly mirror their good-by-
good responses to bundles as in (8) (with w¥(g*,r) = {(v¥(g*) — vE(E*)}
and wk(g*, 1) = {v¥(¢*) — v¥(r¥)}), for some q, , and k, changing q* and
r¥ with r* = g*would induce different changes in V, (v,(q),r) and

Vg,(vg,(q), r), violating (7) and continuity. The contradiction establishes our
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claim regarding (8) and completes the proof of (6). A similar argument shows
that any combination of induced regime preferences over q is consistent with

continuity and constant sensitivity for some gain-loss utility functions. m

Proposition 3’s class of reference-dependent utility functions generalizes
the constant-sensitivity functional-structure assumptions maintained in TK’s
and KR’s theoretical analyses and all previous empirical studies.

In particular, a gain-loss utility function must be additively separable across
gain-loss regimes, across q and r, and across goods within each regime, with
good-by-good responses to reference points that exactly mirror their responses
to the components of consumption. Thus, KR’s assumption that gain-loss
utility is determined by good-by-good differences between realized and
reference utilities is necessary as well as sufficient for continuity. However,
KR’s further assumption that gain-loss utility is governed by the same
function that governs consumption utility is not necessary for continuity.
When the utility function is additively separable across consumption and gain-
loss utility, continuity does not restrict the consumption utility function, which
1s constant across gain-loss regimes by definition. Thus, with nonparametric
flexibility, Proposition 3’s characterization enables us to relax the restrictions
that the sum of consumption and gain-loss utility that determines a consumer’s
demand is additively separable across goods, and on how that sum’s marginal
rates of substitution vary across gain-loss regimes (CM’s Table 1). As will be
seen, both generalizations can be very important empirically.

Proposition 3’s characterization (6) also plays a central role in Proposition
4’s and 5’s conditions for a rationalization with modelable reference points
and constant sensitivity. With constant sensitivity a consumer’s induced
preferences over q and her/his optimal choice of q are independent of r within
a gain-loss regime, but the maximized value of u(q, r) varies with r within a
regime. (6)’s terms in vX (%) and v¥(r*) ensure continuity of u(q, r) despite

such variation, by subtracting a regime-by-regime “loss cost”. Because the
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loss costs depend on r, not q, a consumer faces a menu of fixed, exogenous
regime charges, which influence her/his incentive to “defect” from an
observation’s consumption bundle to bundles in other regimes. This incentive

constraint figures in Proposition 4’s and 5’s conditions for a rationalization.

6 Nonparametric Implications of Reference-Dependent Preferences with
Modelable Reference Points, Constant Sensitivity, and Continuity

This section uses Proposition 3’s characterization of reference-dependent
utility functions that satisfy constant sensitivity and continuity to derive
nonparametric conditions for a reference-dependent rationalization with
modelable reference points, constant sensitivity, and continuity.

With modelable reference points and constant sensitivity, observations’
consumption bundles can be objectively sorted into gain-loss regimes. By
Afriat’s Theorem (Section 3), GARP for each regime’s observations is
required for the existence of preferences that preclude defections from an
observation’s bundle to affordable bundles within the same regime, hence
necessary for a rationalization. However, it is not sufficient, for two reasons.
First, the gain-loss regime utility functions that rationalize the consumer’s
choices within each regime must satisfy Proposition 3’s restrictions that their
component utility functions must be the same across all regimes, and GARP
regime-by-regime does not ensure that that is possible. Second, the
rationalizing regime utility functions must also prevent defections from an
observation’s consumption bundle to affordable bundles in other regimes, in
which the consumer’s preferences may differ. This involves Section 5’s loss
costs, which are determined by the rationalizing regime utility functions.

Another difficulty in deriving conditions for a rationalization is that there is
normally a range of rationalizing gain-loss regime utility functions, as in the
neoclassical case (Varian 1982, Fact 4 and Figure 3). Choosing among them
involves complex trade-offs, because a choice that lowers the gain from

defecting from bundles in a regime raises the gain from defecting to them.
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Propositions 4 and 5 approach these difficulties in two steps. Proposition 4
derives benchmark necessary and sufficient conditions for a rationalization,
conditional on the choice of rationalizing gain-loss regime utility functions.
Because those conditions are conditional, they are not directly applicable.
Proposition 5 then derives directly applicable sufficient conditions based on
rationalizing regime utility functions like Definition 3’s Afriat utility
functions. Because there are usually other rationalizing regime utility
functions, Proposition 5’s sufficient conditions are not necessary; but with rich
enough data they should be asymptotically necessary, as explained below.

Let I'(g; 1)} be the set of q in regime g for r. Let 0({q, " }e=1,.139) =

{te{1,..,T} | q: € I'(g; r;)} be the set of t with q; in regime g for 1.

PROPOSITION 4: [Rationalization with modelable reference points via
preferences and utility functions with constant sensitivity.] Suppose that
reference-dependent preferences and an associated utility function are defined
over K > 2 goods, that reference-dependence is active for all K goods, that the
preferences satisfy constant sensitivity and are continuous, and that the utility
Junction satisfies Proposition 3’s (6). Consider data {p¢, q¢, T¢}¢=1,. 7 With
modelable reference points. Then the statements [A] and [B] are equivalent:
[A] There exists a continuous reference-dependent utility function u(q,r) that
satisfies constant sensitivity; is strictly increasing in q and strictly decreasing
in r; and that rationalizes the data {p;, ¢, T¢}e=1,.1-

[B] Each gain-loss regime’s data satisfy GARP within the regime, and there is
some combination of preferences over consumption bundles, with continuous,
strictly increasing consumption utility function U (+) and gain-loss component
utility functions v¥(+) and v¥(*), such that, for any regime g and any pair of
observations 6,7 € 0({q¢, Tt }t=1,..13 g) (with the indicator functions G¥ (-,")

and G¥*(-;") again doing the work of 1,(-,")),

(10) U(q,) + Xk[GE(qo rOVEQE) + GF(q,, 1) vE(g¥)]
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< U(q,) + Z[G’i(qr,rr)v’i(qi‘) +GX(qr, v )vE(@D)] + A4p: - (45— a7)
k

and for each observation {p;, @y, 71 }t=1, .7 witht € 0({q, Tt }t=1,.13 9) and

each q € I'(g';1,) with g' #+ g for whichp,; - q < P; - q.

(1) U(q) + ZklGE(q.r)wE(@") — vEE)} + GE(q, r)vE(d") — vEE))
< U(qo) + ZilGE(qr rwk(a7) — vEO} + GE(qr r) (vE(ar) — vEGON.

Proof: That [B] implies [A] is immediate. To prove that [A] implies [B], take
the rationalizing regime preferences represented by U(-) and the v¥(-) and

v¥(+), which satisfy (10). Use Proposition 3 to write the condition preventing
defections from the bundle of observation 7 € 0({qt, Tede=1..15 g) in regime

gtoabundleq € I'(g';r;) inregime g’ # g forr, withp, - q < p; - q.:

u(q,ro) = U(ry) = U(q) + ZilGE(q, m) wh(@") — vi()} +

GE(q 1 5@ —vEEDN - UG
(12) = {U(q) + Zk[GE(q, T)VE(") + GE(q, r)vE(@)]} - (UGro) +
ZilGE(q r) i) + GE(q, mIvE (O]}

< {U(q0) + ZklGE(qr, m)vE(ar) + GE(qe TIVE (@O} — (UG +
ZilGE(qe T WEE) + GE(qr TIVEEI])

= U(qo) + ZilGE(qr, T (ar) — vE(EO)} + 6 (e m) (vE(a7) —

vEr)}] = w(qe 1) — U(ry).

(12)’s central inequality can then be rearranged to yield (11). m

Proving Proposition 4 requires linking Section 4’s loss costs to things that
can be estimated from the data, not only at given points but as functions of r.
The proof shows that this can be done, as in (12).

Figures 4 and 5 illustrate Proposition 4. In each case the entire dataset
violates GARP, with observation 1’s consumption bundle chosen in 1’s budget

set over observation 2’s bundle, and vice versa. In each case the observations’
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reference points put their bundles in different gain-loss regimes, so constant

sensitivity allows different preferences for each observation. And in each case

each regime’s single observation trivially satisfies GARP within its regime.
Figures 4a-b depict Afriat and non-Afriat rationalizing regime preferences.

In each case condition (11) is satisfied, so that a rationalization is possible.

Figure 4. Rationalizing data that violate GARP via reference-dependent
preferences with constant sensitivity

(Solid lines for loss maps, dashed lines for gains maps)

q i i q

(a) (b)

Figure 5. Failing to rationalize data that violate GARP via reference-
dependent preferences with constant sensitivity

(Solid lines for (a)’s loss maps, dashed lines for (a)’s gains maps)

(2) (b)

By contrast, in Figure 5a Afriat rationalizing regime preferences do not
satisfy (11) and Figure 5b shows that there can be no choice of rationalizing
regime preferences (Afriat or not) for which (11) is satisfied, so that a

rationalization is impossible. A rationalization in Figure 5b would require
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regime preferences that connect a loss-regime indifference curve through
observation 1’s bundle to a gain-regime curve that cuts into observation 2’s
budget set and stays outside observation 1’s budget set, thus passing northeast
of 2’s bundle; and also loss- and gain-regime indifference curves satisfying the
analogous conditions interchanging observations 1 and 2. Such curves are
inconsistent with optimality of each observation’s consumption bundle.

The difference between Figure 4’s and Figure 5’s examples can be
understood in terms of loss aversion (Definition 2). The change in
rationalizing Afriat preferences across the gain-loss regimes in Figure 4a is
consistent with loss aversion, but the analogous change in Figure 5a is not.

A Corollary shows that if the rationalizing regime preferences satisfy loss
aversion, Proposition 4’s no-cross-regime-defections constraints (11) must be
satisfied, so that its conditions (10) are then sufficient for a rationalization.
Thus loss aversion, which is empirically well-established but not usually seen
as essential to modelling reference-dependent demand, plays a substantial role
in the sufficient conditions for a reference-dependent rationalization.

Recall that the gain-loss indicator functions G¥(q,7) = 1 if g¥ > ¥ and 0

otherwise and G¥(q,1) = 1if qF < rand 0 otherwise; and that
0({qer}e=1..139) ={t €{1,..,T} | q: € I'(g; r:)} is the set of observation

indicators t for which q; is in regime g for r.

COROLLARY : [Rationalization with modelable reference points via
preferences and utility functions with constant sensitivity that satisfy a
condition weaker than loss aversion.] Suppose that reference-dependent
preferences and an associated utility function are defined over K > 2 goods,
that reference-dependence is active for all K goods, that the preferences
satisfy constant sensitivity and are continuous, and that the utility function
therefore satisfies Proposition 3’s (6). Consider data {py, Q¢, Tt}¢=1,. 1 With
modelable reference points. If each gain-loss regime’s data satisfy GARP

within the regime; and there is some combination of preferences over
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consumption bundles, with continuous, strictly increasing consumption utility

function U(+) and gain-loss component utility functions vX(-) and vE¥(-), such

that, for any regime g and any pair of observations g, T €

9({qt, Tidee1..15 g)for which P; - Qg < Pz - Q (With the indicator functions

G (") and G*(-,") doing the work of a regime indicator function I,(),

(13) U(qo) + Zik[GE (qo, rVE(ad) + GE(qo )V (48)]
< U(q‘r) + Zk[G-IIf(qT: r‘r)v-llf(q;() + Gi{ (q‘r' TT)UE(C[.{-()] + A‘rp‘r ' (qa - qr)a

and there are no observations for which q; is not on the boundary of the
convex hull of q;’s upper contour set for the associated candidate global
preference ordering for 1y, then the consumption utility function U(*) and

gain-loss component utility functions v¥(-) and v¥(-) rationalize the data.

Proof: As in Proposition 4, by Afriat’s Theorem, the hypothesized
combination of preferences over bundles with consumption utility function
U(-) and gain-loss component utility functions v¥(-) and v*(-) prevent
defections from any observation’s consumption bundle to any affordable
bundle in the same own gain-loss regime. If the hypothesized preferences are
such that there are no observations ¢ for which q, is not on the boundary of the
convex hull of the better-than-q, set for the candidate global preference
ordering given r,, then we can assume that they satisfy loss aversion without
loss of generality. For, the candidate global ordering can then be replaced by a
convexified ordering whose better-than-q, sets are the convex hulls of the
candidate global ordering, without changing any observation’s optimal bundle.
Definition 2 then implies that U(+) and the v¥(-) and v¥(-) also prevent
defections from any observation’s bundle to any affordable bundle in a
different regime. Alternatively, consider a defection from q, € I'(g; r;) to
some q € I'(g’;r,) with g’ # g and p; - q < p; - q.. If q were in regime g,

we would have, by Afriat’s Theorem,
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(14)  U(q) + Zk[GE(qr){vE(d") — vEE)} + GE(q r) vk (d¥) — vEEON
< U(qr) + ZR[G-E (q‘r; r‘r){v-llE (q'lrc) - UI-E (rrk)} + Gf (q‘rr TT){UE (Q‘?) - UE (rrk)}]-

Given that q is actually in regime g', the interpretation of loss aversion in
terms of marginal rates of substitution implies that the left-hand side of (14) is
lower or at least no higher than if q were in regime g. (14) thus prevents

defections from q, to affordable bundles in different regimes. m

Loss aversion is an empirically well-supported assumption known to have
important implications, but to our knowledge it has not previously been linked
to the existence of a reference-dependent rationalization. As the Corollary’s
proof suggests, loss aversion’s testability is limited for the same reason that
the convexity of neoclassical preferences is not nonparametrically testable.

The Corollary’s final “no observations for which q; is not on the boundary”
condition rules out bunching of consumption bundles in regions of commodity
space where the rationalizing regime preferences violate loss aversion and is
vacuously satisfied for preferences that satisfy loss aversion. Such restrictions
on bunching are unusual in a nonparametric analysis.

In Figure 6 the entire dataset violates GARP, the Afriat gain-loss regime
preferences violate loss aversion, but the data satisfy the Corollary’s final
conditions, thus allowing a rationalization. Only reference point r4 is shown
and observation 1 is in the good-2 loss regime. Assume that r, = [0, 0], so
that observation 2’s budget set is entirely in the good-2 gain regime; and that
r; = [0, m], where m is large enough that observation 3’s budget set is
entirely in the good-2 loss regime. The Afriat regime preferences yield a
candidate for global preferences that make all three observations’ consumption
bundles optimal: Observations 2’s and 3’s budget sets are entirely in their
regimes (good-2 gain and good-2 loss, respectively), so their bundles’

optimality in their regimes suffices for global optimality. Observation 1’s
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bundle is optimal for its good-2 loss regime preferences and Corollary 1

ensures that its bundle’s optimality extends to its entire budget set.

Figure 6. Rationalizing data that violate GARP when preferences violate loss
aversion but satisfy the Corollary’s sufficient conditions for a rationalization

(solid curves for active parts of indifference maps, dashed for inactive parts)

q

As already noted, Proposition 4’s necessary and sufficient conditions for a
rationalization are not directly applicable because they are conditional on the
choice of rationalizing gain-loss regime utility functions. Proposition 5 derives
directly applicable sufficient conditions by specifying rationalizing regime
utility functions in the style of the regime’s Afriat utility functions (Definition
5). Those conditions include inequalities like (1) in Afriat’s Theorem or
Proposition 4’s (10), which prevent defections from an observation’s
consumption bundle to affordable bundles in the same gain-loss regime, while
enforcing Proposition 3’s restrictions (6) on the component gain-loss utility
functions. The conditions also include inequalities like Proposition 4’s (11),

which prevent defections to affordable bundles in other regimes.

PROPOSITION 5: [Sufficient conditions for rationalization with modelable
reference points, via reference-dependent preferences and utility function with

constant sensitivity and continuity.] The following conditions are sufficient for
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the existence of continuous reference-dependent preferences and utility
function with constant sensitivity u(q,r) that rationalize data with modelable
reference points {pP¢, Q, T¢}e=1,. 1 There exist numbers Uy, vk, vk and

At >0foreachk =1,..,Kandt =1, ...,T such that:

[A] For any gain-loss regime g and any pair of observations o, T €

0({q¢, T¢}e=1,..13 ) (With the indicator functions G¥ (") and G*(-") again
doing the work of 14(:,")),

(15) Uy + 2ilGE (g0, m)VEL + GE(qq, ) vE]
< Ur + Zk[G-I}f (qu rr)vé& + Gf (qu rT)v‘LI'(—] + /11-171- ' (qa - qr)~

[B] For observations 0,7, qk > q¥ fork=1,..., K, Uy = U,; and for
observations o,T and any k= 1,..., K, q¥ > q¥, vk, > vk, and vk_ > vk.
[C] For any pair of regimes g and g' + g, observation T €
0({qe,73¢=1,..13 9). and bundle q € I'(g'; 1) for whichp; - q < p; - .

(16) _minpe@({qt.rt}t=1 ..... T;g'){Up + Zk[Gf(qp' rr)v/)‘+ + Gi‘(qp,rr)v;‘_] + APy - (1 = qp)}
S MiNpeo((qpridems.. T;g){Up + SklGE(ap T)vps + GE(ap 1)1 + 2,0, - (40— q,)}

_minpe@({qt,rt}t=1,m,T;g){UP + XilG¥ (qp,rr)v},ﬁ, +GX (qp,rr)v;‘_] + APy - (1 = qp)}-

Proof: Given choices of Uy, v¥,, vk  and A,, t=1,..., T, that satisfy [A] and
[B], let u9(q, r) denote the rationalizing Afriat regime utility function for
regime g, including (6)’s loss costs, which exists by Afriat’s Theorem. For

q € I'(g; ), using (10) as in the proof of Afriat’s Theorem:
ud(qr) U™ =U(q + Z[Gi‘(% i) — v} + (g, —vEE)N - U@
k
= {U(q) + ) [6E@mvEEH) + 64, r)vf(qk)]}
k

- {U(r) + ) 16H@ NI + 64, r)vf(rk)]}
k
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17)
= it U+ DG Ik + G0+, 0 0)
T

- mian@({qt’rthzlmﬂg){Up +Xk[GY(a, vk + GE(q, T)vE] + A0, - (r —a))),
where the last identities follow as in Afriat’s Theorem in the neoclassical case.
The rationalizing reference-dependent utility function, including loss costs, is
thenu(q,r) = U(q) + X414(q,7)u9(q, 7). By construction, u(q,r) is
continuous, strictly increasing in q, and strictly decreasing in 7.

For observations o, T € 6({qt, Tede=1..15 g) in the same gain-loss regime
g, withp; - q, < P - q., loss costs cancel out and (16) reduces to the usual
Afriat inequalities (with its utilities expressed not as single numbers but as
sums of consumption plus gain-loss utilities). Thus by Afriat’s Theorem, [A]
prevents defections to affordable bundles in the same regime.

For gain-loss regimes g and g’ # g, observation 7 € @({q;, 7 }¢=1,..159)>

and bundle q € I'(g’;r;) withp, - q < p; - qq,

u(q, rr) - U(r‘c)

=U(q)+ z[G’i(q, r){i(q") — vEEOY + GE(q r D{wE (") — vEE)N - UG
k
= {U (@) + E[Gi‘ (@, 7)vE(d") + GE(q, r)vE (q")]}
k
- {U(rr) + ) (65 @ rokh) +6K(a, rf)vk(rﬁ)]}
k

(18) = minpee({%:rt}t=1 T;g){UP + Zk[G,‘z(qP’rT)v/I;' + Gf(qp’r‘f)v/]’(_] + Appp : (q‘f - qP)}

_mmpeg({qt.rf}m,...,r:g){Up + Xil[GE(qp o) vhs + GE(ap T)VS] + 4P, - (re — q,)}

= {U(qf) + D 165 @urvE @) + ¥ (g rr)vf(qﬁ)]}
k

- {U(rf) + Z[G’i(qp rEE) + GE(ge vk (r,k)]}
k
=u(q,, 1)) —U(ry),

which prevents defections across regimes. m
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Figure 7. A rationalization may require non-Afriat rationalizing regime

preferences (solid lines for the loss map, dashed for the gain map)

(a) (b)

Proposition 5 depends on the choice of Afriat rationalizing regime utility
functions.!* As other choices might also suffice, its sufficient conditions are
not necessary. For example, the Afriat regime preferences in Figure 7a do not
yield a rationalization but the non-Afriat regime preferences in Figure 7b do.

In the neoclassical case, Mas-Colell (1978) and Forges and Minelli (2009)
results study the limit of the rationalizing preferences as the data become
“rich” in the sense that as 7 — oo they include budget sets as close as desired
to any possible budget set. They show that the range of convexified
rationalizing preferences then collapses on Definition 5°s Afriat preferences.!”
In the reference-dependent case with constant sensitivity, this result cannot be
immediately applied gain-loss regime by regime, because of Proposition 3’s
constraint that the gain-loss utility functions must be the same in all regimes.
But we conjecture that in the limit, as the data become rich in the sense of

including {reference point x budget set} combinations as close as desired to

14 Varian’s (1982, Fact 4) bounds for the neoclassical case don’t imply that all rationalizing
preferences are convex, but examples show that requiring such convexity involves a loss of
generality for some rationalizing regime preferences in Proposition 4. Proposition 5 avoids
that difficulty by using the Afriat regime preferences, which are convex by construction.

15 Also requiring richness of consumption bundles would rule out non-convex preferences.
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any possible combination, if the Afriat regime preferences do not yield a
reference-dependent rationalization, neither can any other regime preferences,
so that Proposition 5’s sufficient conditions are asymptotically necessary.
Propositions 4 and 5 somewhat refocus the view of reference-dependent
consumer demand from structural models. Constant sensitivity, usually seen as
a convenient simplification, is essential for reference-dependent models to
have any nonparametrically refutable implications, as explained in footnote 4.
And loss aversion, usually seen as empirically well-established but not as
essential to the existence of a reference-dependent rationalization, now plays a

role in the sufficient conditions for existence.

7 Empirical Illustration

Proposition 5’s sufficient conditions for a reference-dependent
rationalization with modelable reference points and constant sensitivity
suggest methods for recovering rationalizing preferences when they exist.
Although Proposition 3’s characterization of reference-dependent preferences
in that case would be well suited to a structural econometric analysis, here we
illustrate our methods by reconsidering Farber’s and CM’s econometric
analyses nonparametrically, using sample proxies like CM’s for the targets.
Our choice is motivated by curiosity regarding the robustness of Farber’s and
CM’s structural analyses and by the computational difficulty of nonparametric
estimation using more recent datasets, which are much larger than Farber’s. !¢

We consider preferences over levels of and changes in earnings and leisure.
With two goods, GARP (Definition 4) reduces to the Weak Axiom of
Revealed Preference (“WARP”). WARP is then necessary and sufficient for a

neoclassical rationalization. In this section we use “WARP” for “GARP”.

16 We are just as curious about Camerer et al.’s data, but they are no longer fully available.
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DEFINITION 6: [Weak Axiom of Revealed Preference (“WARP”).] qsRq;

and qg #* q. implies not q;Rqs, where R indicates that there is some sequence
of observations qp, q;, q;, .-, Q¢ such that pp - qn = Pr - qi, Pi " qi = Pi
qj, - Ps " qs 2 Ps -4

We relax Camerer et al.’s (1997), Farber’s (2005, 2008), and CM’s
assumption that drivers have homogeneous preferences, instead allowing
unrestricted heterogeneity of preferences. (Our theory covers both cases,
distinguished only by whether the data are pooled across drivers.)

To guide future work, we compare several models of reference points,
including expectations-based and recent-experience-based alternatives to
CM’s sample proxies. Like CM, but unlike Camerer et al. and Farber, we
allow three different forms of reference-dependence: in earnings alone, in
hours alone, or in both earnings and hours.

Section 7.1 reviews Farber’s data. Section 7.2 outlines the models of
reference-dependent preferences we compare. Section 7.3 discusses Selten and
Krischker’s (1983), Selten’s (1991), and Beatty and Crawford’s (2011)
nonparametric notions of predictive success. Section 7.4 describes our

estimation procedure. Section 7.5 reports our results.

7.1 Data

Like CM, we use Farber’s (2005, 2008) data.!” Farber collected 593 trip
sheets for 13461 trips by 21 drivers between June 1999 and May 2001. Each
sheet records the driver’s name, hack number, date, each fare’s start time and
location, each fare’s end time and location, and the fare paid. Nine sheets

duplicate the day and driver, so there are only 584 shifts. Because our methods

17 The datasets are posted at https://www.aeaweb.org/aer/data/june08/20030605_data.zip, and

https://www.aeaweb.org/aer/data/aug2011/20080780 _data.zip. The CPI data are posted at
https://data.bls.gov/timeseries/ CUURS 12ASAQ, under the years 1999-2001.
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make some allowance for sample size, in addition to the 15 drivers Farber and
CM studied we include the 6 with samples of 10 or fewer shifts they excluded.

The Supplemental Appendix’s Table A.1 reports descriptive statistics
driver by driver. The values are the same as those in Farber’s (2005) Table B1,
except for the hourly wage variable and the Afriat efficiencies in the last two
columns. Our earnings and wage variables differ from Farber’s and CM’s in
two ways, which affect the Afriat efficiencies. First, we use the NY/NJ urban
CPI to control for price level changes in the sample period. Second, Farber’s
and CM’s wage variable is income per hour spent working, with working time
defined as the sum of time driving with a passenger and time waiting for the
next passenger. However, as waiting time varies randomly from shift to shift
with weather, the flow of customers, etc., and is not directly linked to
earnings, it appears largely exogenous. Accordingly, we define the wage as
earnings per hour driving, treating waiting time as an exogenous fixed cost.
This seems a natural choice in a model where income targeting is day by day.

Our redefinition of the wage matters more in our nonparametric analysis
than it would in Farber’s and CM’s structural analyses. Drivers’ waiting times
range from about 25-40% of their shifts. If we included waiting in driving
time, shift-to-shift wage variation would make a driver’s observations’ budget
lines pivot around their common zero-hours end, they would never cross, he
would trivially satisfy WARP, and a nonparametric analysis would give only a
meaningless recapitulation of his data. By contrast, treating waiting times as a
fixed cost allows a driver’s budget lines to cross. The Appendix’s Figure A.1
shows that with our wage definition drivers’ budget lines cross frequently,
making WARP a meaningful restriction and allowing a nonparametric analysis
to provide a meaningful interpretation of the data.

Table A.1’s last column reports each driver’s Afriat efficiency index. The
index is 1 for a driver whose data satisfy WARP but is otherwise less than 1.
Only 7 of Farber’s 21 drivers satisfy WARP. Except for drivers 12 (sample

size 13), 14 (sample size 17), and 17 (sample size 10), the drivers with exact
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neoclassical fits (2, 3, 6,9, 11, 13, and 15) are the ones with the smallest
sample sizes among the 21 drivers. Except for drivers 2 (sample size 14), 9
(sample size 19), and 17 (sample size 10), those drivers are the same as the six
(3,6, 11,13, 15, and 17) that Farber and CM excluded due to sample sizes <
10. Small samples make it easier to satisfy WARP by chance, and those
drivers’ data may simply be too under-powered to reject the neoclassical

model. We return to the issue of correcting for power to reject in Section 7.3.

7.2 Alternative models of reference-dependent preferences

Our reference-dependent models vary in three dimensions.'® The first
distinguishes models based on proxied rational expectations from those based
on recent experience. Our expectations-based models are sample averages of a
driver’s choices, excluding the current shift. Our experience-based models are
one-shift lags. For each kind of model we consider both unconditional models
and models that condition on Farber’s and CM’s variables that shift demand
and influence waiting time: weather (rain, snow, or dry) and time of day (day
or night). This yields 18 different kinds of reference-point model.

The second dimension distinguishes three forms of reference-dependence:
with respect to hours, earnings, or both hours and earnings.

The third dimension distinguishes reference-dependent or neoclassical

models that do or do not impose additive separability across goods.

7.3 Nonparametric notions of predictive success

The simplest possible measure of a model’s predictive success is its pass
rate. A model’s pass rate for driver i, denoted r* € [0,1], is defined as the
maximal proportion of the driver’s observations that are consistent with the

model. A closely related measure replaces r* with a model’s proximity ',

18 We explicitly compare only static models of reference points, but our theory covers cases

where reference points are dynamic, as long as they are modelable.
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defined as one minus the Euclidean distance, rescaled as a proportion of the
maximum possible distance, between i’s set of observations and the set of sets
of observations that fit the model exactly (Beatty and Crawford 2011, pp.
2786-87). Like rt, m* € [0,1], with higher values for more successful models.

However, neither measure is adequate for comparing models of varying
flexibility. Reference-dependent models are more flexible than neoclassical
models and must have pass rates and proximities at least as high. This
accounts for much of the profession’s skepticism about their parsimony. Even
neoclassical models can be highly restrictive or without nonparametric content
depending on the number of observations and whether budget lines cross.

To control for flexibility, Selten and Krischker (1983) and Selten (1991)
penalize a model’s pass rate for flexibility using what they call the model’s
“area”, a' € [0,1]. The area is the size of the set of all model-consistent sets of
observations for driver i, relative to the size of the set of all feasible sets of
observations of the same size, or equivalently the probability that uniformly
random data are consistent with the model. Noting that successful models have
small values of a‘ and large values of 7, Selten and Krischker define a
measure of predictive success, m(r,a’) = r‘ —a' € [-1,1].19Asm > 1a
model’s restrictions grow tighter but behavior satisfies them: a highly
successful model. As m — —1 a model’s restrictions become looser but
behavior fails to satisfy them: a pathologically bad model. Asm — 0 a
model’s compliance approaches random: a harmless but useless model.

Selten and Krischker’s all-or-nothing pass rate r' is not discriminating
enough for our application, in which drivers with more than a few trips have
little chance of satisfying even a reference-dependent model exactly.

Accordingly, we replace their pass rate ' with Beatty and Crawford’s

19 Selten (1991) shows that three axioms, monotonicity m(1,0) > m(0,1); equivalence of
trivial theories m(1,1) = m(0,0); and aggregability m(Ar; + (1 — D)y, da; + (1 — Day) =

Am(ry,ay) + (1 — )m(ry, a,) for A € [0,1], characterize the measure m(r?,a’) = r* — a’.
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proximity measure m', following Beatty and Crawford in continuing to
penalize it via Selten and Krischker’s area. Thus our proposed measure is
n(nt,a') = n* — a' € [-1,1]. Like Selten and Krischker’s measure, n(r‘, a')
levels the playing field between more- and less-flexible models in a well-
defined, objective way. Both measures are similar in spirit to the adjusted R?
or the Akaike Information Criteria in structural econometrics, which penalize
model fit and likelihood for a model’s number of free parameters. From now
on we use “Selten measure” loosely for Beatty and Crawford’s proximity-

based measure of predictive success.

7.4 Estimation procedure

1.2° For each model we fix

We estimate driver by driver and model by mode
whether preferences are additively separable across goods and the form and
kind of reference-dependence.?! The details are in our replication materials.

Proposition 5 immediately suggests an estimation procedure:*>

(1) Use the observations’ modeled reference points to sort their

consumption bundles into gain-loss regimes.

20 Rather than nesting and estimating the form and kind of reference-dependence we condition
on them and compare the resulting models. Nesting and estimating would be computationally
complex, in part because the Afriat regime preferences are not invariant to merging regimes.
21 With regard to additive separability across goods, Debreu’s (1960) necessary and sufficient
“double cancellation” condition shows that with two goods the Afriat rationalizing regime
preferences preclude it in gain-loss regimes with more than one observation. We therefore use
Varian’s (1983, Theorem 6) linear program, specializing inequalities like those in condition
[B] of Afriat’s Theorem, and a version of condition (14) modified to require such separability.
For proximities and Selten measures, we design and implement a computationally efficient
search algorithm using the fact that that the proximity for a separable model cannot exceed
that for its non-separable counterpart. Details and code are in our Replication files.

22 This description ignores the choice of rationalizing regime preferences for drivers who are
reference-dependent on less than K dimensions, or who are neoclassical. But Propositions 3-5

continue to hold, mutatis mutandis, for such preferences and our arguments extend to them.
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(i1) Pooling the data from all regimes, use linear programming to find
Afriat numbers U,, v¥,, v¥_, and A4, > 0 for each k = 1, ..., K and
t =1, ..., T that satisfy [A]’s Afriat inequalities (15).

(ii1))  Use the fact that for each observation in a regime, (15) can hold
with equality for another observation in the regime, to choose
numbers so that for observation 7 in regime g, the rationalizing
Afriat utilities are given as in (17) in the proof of Proposition 5:

(i) U =u9(qe,7e) = Milpeo((gurgyey. ma)Up +

ZilG¥(ap ) vps + GE(p T )vp-] + 40P, - (4 = 4)} -
(v) Use (ii)’s Afriat numbers U,, vf,, and v to check that [B]’s

monotonicity restrictions are satisfied.
(vi)  Use (ii1)’s rationalizing Afriat utilities to check, regime by regime
and observation by observation, that [C]’s conditions (16) are

satisfied by scanning along the budget surface.

Proposition 5’s conditions (15) involve linear inequalities in a finite
number of variables; and its conditions (16) involve nonlinear inequalities in a
continuum of q values. Both sets of inequalities are finitely parameterized by
the U,, vf,, vk, and A, that satisfy [A]’s (15).

Thus, as with Diewert’s (1973) and Varian’s (1982) methods for the
neoclassical case, our procedure rests on inequality restrictions that can be
checked directly in the data, without estimating econometric models of
unobservable objects such as demand or labor supply curves. It also largely
avoids the need for the auxiliary statistical assumptions that structural
econometric approaches require for consistent estimation. Measurement error
1s an exception, but it too can be handled nonparametrically (Varian 1985).

For computational efficiency, instead of using the estimation procedure
directly suggested by Proposition 5, or analogues of Varian’s (1982, Appendix
I) methods for finding solutions to (15), we use linear programming methods

analogous to Diewert’s (1973, Section 3) methods for the neoclassical case.
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We estimate Selten and Krischker’s area a’ by checking the conditions for
a rationalization repeatedly for random data, as in Beatty and Crawford.?* For
a neoclassical model we use WARP or, for models that impose additive
separability across goods, Varian’s (1983, Theorem 6) conditions.?* For a
reference-dependent model we use Proposition 5’s conditions [A]-[C], with
Varian’s (footnote 21) modifications for additive separability across goods.

When a model of either type does not fit exactly for driver i, we define its
proximity 7 as the Euclidean distance, rescaled as a proportion of the
maximum possible distance, between driver i’s set of observations and the set
of sets of observations that fit exactly, with the latter estimated in the process
of estimating the area a’ (Beatty and Crawford 2011, pp. 2786-87). However,
the conditions for fitting a model exactly greatly increase in stringency with
the number of observations, and for the drivers with the seven largest sample
sizes of the 21 (1, 4, 10, 16, 18, 20, and 21; sample sizes 39 to 70), repeated
sampling (up to 20,000 times) yielded no passes. For such drivers we set * =
0, as if we found passing observations only at the maximum possible distance.

Given Propositions 5’s gap between the sufficient and necessary conditions
for a reference-dependent rationalization, which precludes precise estimation
of proximities and Selten measures for reference-dependent models, we bound
them as follows.?> Imposing Proposition 5’s within-regime conditions [A]

((15)) and monotonicity conditions [B], but not its cross-regime conditions [C]

23 We calculate the area by numerical (Monte Carlo) integration over the budget sets. New sets
of choices that satisfy the budget constraints are repeatedly drawn and the conditions of
interest are tested for each draw. The area is the proportion of those draws that satisfy the
conditions. The area estimate converges as the square root of the number of draws. We draw
until the uncertainty of the estimate is confined to the fifth decimal place.

24 Because we only need WARP, not GARP, this is easily implemented for the non-additively
separable model using R’s igraph package. Details and code are in our Replication files.

25 Such bounds are unnecessary for a neoclassical model because GARP is necessary and

sufficient for a rationalization without regard to Varian’s (1982, Fact 4).
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((16)), yields an approximate upper bound on the proximity—*‘approximate”
because conditions [A] assume the Afriat regime utilities and so are sufficient
but not necessary; so the true proximity could be higher than the upper bound.
Imposing [A]-[C] yields an approximate lower bound on the proximity, which
could also be higher than the lower bound. The approximate lower and upper
bounds on a reference-dependent model’s Selten measure follow similarly. In

each case a one-sided approximate lower bound suffices for our purposes.

7.5 Results

We now summarize our estimation results. To create a comprehensible path
through the large number of models considered, we proceed sequentially. We
first compare neoclassical and reference-dependent models that impose or
relax additive separability across goods. This comparison so strongly favors
relaxing separability that that can be seen by looking at aggregate summaries.

Next, relaxing additive separability across goods, we compare reference-
dependent models that differ in the kind and form of reference-dependence.
Although reference-dependent models differ significantly from neoclassical
models for many drivers, the kind and form of reference-dependence make
little difference, as we show again via aggregate summaries.

Finally, continuing to relax additive separability across goods, we compare
neoclassical and reference-dependent models more comprehensively, first via

aggregate summaries and then driver by driver.

7.5a Additive separability across goods
Additive separability across goods has been assumed in all previous
theoretical and empirical work on this topic, but it lacks theoretical or
empirical justification, and Proposition 3’s characterization of reference-
dependent preferences with constant sensitivity shows that it is unnecessary.
Figures 8-11 give the empirical cumulative distribution functions (“CDFs”)

of proximities and Selten measures for neoclassical and reference-dependent

42



models that impose or relax additive separability across goods.?® Each CDF
pools over all 21 drivers. For reference-dependent models each CDF also

pools over all 18 kinds and three forms of reference-dependent model.

Figure 8: Empirical CDFs of Proximities for Neoclassical Models
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Figure 9: Empirical CDFs of Selten Measures for Neoclassical Models
Imposing and Relaxing Additive Separability Across Goods
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Figures 8-9 show that neoclassical models that relax additive separability
across goods have higher proximities and Selten measures than models that

impose it. These aggregate summaries don’t show for how many drivers

26 These comparisons also relax KR’s constant-sensitivity constraints on how marginal rates of
substitution vary across gain-loss regimes. A reference-dependent model must have at least as
high a proximity as its neoclassical counterpart, but its Selten measure could be higher or
lower. There is a minor exception for experience-based reference-point models, in which we
lose one observation (two for models that condition on something) due to the construction of

the lag. This can yield a slightly higher upper proximity bound for the neoclassical model.
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relaxing additive separability improves a neoclassical model’s fit enough to
justify the added flexibility but the gap in Selten measures is large enough to
confirm that relaxing separability is preferable for neoclassical models.
Figures 10-11 show that reference-dependent models that relax additive
separability across goods also have significantly higher proximities and Selten
measures than models that impose it. Figure 11°s gap in Selten measures is
large enough to confirm that relaxing separability is also preferable for
reference-dependent models. From now on, we set aside models that impose

additive separability across goods and focus on models that relax it.

Figure 10: Empirical CDFs of Proximities for Reference-dependent

Models Imposing and Relaxing Additive Separability Across Goods
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Figure 11: Empirical CDFs of Selten Measures for Reference-dependent

Models Imposing and Relaxing Additive Separability Across Goods
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7.5b. Reference-point models
Figures 12-15 give the empirical CDFs of proximities and Selten measures

for the unconditional reference-dependent models we consider, again relaxing
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additive separability across goods. Figures 12 and 13 compare the CDFs for
our 18 different kinds of reference-point model, again pooling over all 21
drivers. Figures 14 and 15 compare the CDFs for our three forms of reference-

dependence, also pooling over all 21 drivers.

Figure 12: Empirical CDFs of Proximities
for Different Kinds of Reference-dependent Model
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Figure 13: Empirical CDFs of Selten Measures
for Different Kinds of Reference-dependent Model
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Figure 14: Empirical CDFs of Proximities

for Different Forms of Reference-dependence
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Figure 15: Empirical CDFs of Selten Measures
for Different Forms of Reference-dependence
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Figures 13’s and 15°s Selten measures show that in these data there are
comparatively small differences among models’ kinds and forms of reference-
dependence. Expectations-based models usually have higher Selten measures
than experience-based models, and unconditioned expectations-based models
have measures almost as high as conditioned ones, though expectations-based
models that are conditioned on day/night usually have even higher Selten

measures. Expectations-based models with hours- and earnings-targeting have
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measures approximately as high as such models with only hours-targeting and
somewhat higher measures than such models with only earnings-targeting.?’
Accordingly, from now on we focus on unconditioned expectations-based
models (also relaxing additive separability across goods), but we also report
results for unconditioned experience-based reference-point models, in each

case considering all three forms of reference-dependence.

7.5¢c Comparing neoclassical and reference-dependent models

Figures 16 and 17 give the empirical CDFs of proximities and Selten
measures for neoclassical versus expectations-based reference-dependent
models, pooling over drivers and kinds and forms of reference-dependent
model. In these aggregate summaries, neoclassical models have higher Selten
measures than reference-dependent models for measure values from 0 to 0.5,
but slightly lower Selten measures for values from 0.5 to 1.0, so the
comparison is inconclusive, we believe due mainly to driver heterogeneity.

Figure 16: Empirical CDFs of Proximities

for Neoclassical and Reference-dependent Models
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%7 Figure 15’s demonstration that expectations-based models with only hours-targeting
perform better than those with only earnings-targeting is surprising, given the exclusive focus
in most previous empirical work on earnings-targeting. We stress that our analysis uses
modelable targets to identify and distinguish the influences of hours through consumption

versus via gain-loss utility (see (12) and (15)), so this is not a “neoclassical” effect.
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Figure 17: Empirical CDFs of Selten Measures

for Neoclassical and Reference-dependent Models
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Figures 18-21 give driver-by-driver plots for neoclassical and expectations-
based and experience-based reference-dependent models’ proximities and
Selten measures. (The Appendix’s Tables A.2-A.5 give the precise numerical
values behind the plots.) Each figure has separate plots for different forms of
reference-dependence, with a separate “spoke” for each driver. Figures 14’s
and 16’s proximity plots are centered at -0.25, for clarity a tick below the
lowest possible value of 0; with outer rims at the highest possible value of 1.
The solid lines trace proximities for the neoclassical model. The shaded areas
depict Section VII.D’s approximate bounds on the proximities for the
reference-dependent models. Figures 19°s and 21°s Selten measure plots are
centered at the lowest possible value of -1, with outer rims at the highest
possible value of 1. The solid lines trace measures for the neoclassical model.

Overall, the qualitative model comparisons differ only slightly across forms
of reference-dependence, so we focus on models with reference-dependence in
both hours and earnings, whose plots are in the left-most panels.

Neither model has uniformly higher Selten measures. In Figure 19, the
expectations-based reference-dependent model has the same bounded Selten
measure as the neoclassical model (thus possibly higher, Section 7.3) for

seven of 21 drivers (1, 4, 10, 16, 18, 20, and 21); an unambiguously higher
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measure for six (5, 7, 8, 12, 17, and 19); and an unambiguously lower measure
for eight (2, 3, 6,9, 11, 13, 14, and 15). Similarly, in Figure 21, the
experience-based reference-dependent model has the same (possibly higher)
bounded Selten measure as the neoclassical model for six drivers: 1, 10, 16,
18, 20, and 21; a higher measure for four: 4, 8, 17, and 19; a lower measure for
nine: 2, 3, 6,9, 11, 12, 13, 14, and 15; and ambiguous bounds for two: 5 and 7.

However, not all drivers’ comparisons are equally informative. Consider
first the expectations-based model with reference-dependence in both hours
and earnings. With our CPI adjustment, all but one of the six drivers Farber
and CM excluded due to small (< 10) sample sizes (3, 6, 11, 13, 15, and 17)
has an exact neoclassical fit, and the neoclassical model has a higher Selten
measure than its more flexible reference-dependent counterpart. This is good
news for the neoclassical model, but might only reflect overfitting. For seven
other drivers (1, 4, 10, 16, 18, 20, and 21) the sample sizes were too large for
us to estimate the set of sets of observations that fit exactly. So for them the
proximities are set to 0 for both models and the neoclassical model again has a
higher Selten measure; but that does not truly favor the neoclassical over the
reference-dependent model. For the eight remaining drivers (2, 5, 7, 8, 9, 12,
14, and 19), the expectations-based model with reference-dependence in hours
and earnings has a higher Selten measure for five (5, 7, 8, 12, and 19) and the
neoclassical model has a higher Selten measure for three (2, 9, and 14).

Similarly, the experience-based model with reference-dependence in hours
and earnings has a higher Selten measure for four drivers (7, 8, 14, and 19)
and the neoclassical model has a higher measure for four (2, 5, 9, and 12).

Thus, for many of Farber’s drivers who violate rationality for a neoclassical
model a reference-dependent model gives a coherent rationality-based account
of their choices. Judging by Selten measures, for many of these drivers the

reference-dependent model is more parsimonious despite its greater flexibility.
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Figure 18. Proximities for neoclassical and unconditional expectations-based reference-dependent models
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Figure 19. Selten measures for neoclassical and unconditional expectations-based reference-dependent models
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Figure 20. Proximities for neoclassical and unconditional experience-based reference-dependent models
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Figure 21. Selten measures for neoclassical and unconditional experience-based reference-dependent models
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8 Conclusion

This paper presents a nonparametric analysis of the theory of consumer demand or, equivalently,
labor supply with reference-dependent preferences. Our nonparametric model closely follows KR’s
structural model, maintaining their and others’ assumption that preferences are additively separable
across components of consumption and gain-loss utility but relaxing their and others’ unnecessarily
restrictive assumptions on functional structure and form.

Propositions 1 and 2 show that unless reference points are precisely modelable or observable and
sensitivity is constant, reference-dependent models of consumer demand are flexible enough to fit
any data, with a minor exception when sensitivity is variable.

Assuming modelable reference points, Proposition 3 characterizes preferences that satisfy
constant sensitivity and are continuous, paving the way for positive results. It identifies the most
general class of reference-dependent utility functions that have nonparametrically refutable
implications for consumer demand, relaxing the unnecessarily restrictive assumptions in all previous
theoretical and empirical work, that the sum of consumption and gain-loss utility that determines
consumer demand is additively separable across goods and that its marginal rates of substitution vary
across gain-loss regimes in a particular way.

Proposition 3 directly suggests methods for structural estimation of reference-dependent consumer
demand, with conventional assumptions on the now-separate functional forms of consumption and
gain-loss utility and using sample proxies like Camerer et al.’s and CM’s for the targets.

In this paper, however, we continue our nonparametric theoretical analysis in Propositions 4 and
5, which use Proposition 3’s characterization to derive sufficient and, with rich enough data,
asymptotically necessary conditions for a reference-dependent rationalization, relaxing the
unnecessarily restrictive assumptions maintained in all previous theoretical and empirical work. Like
the classic nonparametric analyses of neoclassical consumer demand, our conditions make essential
use of rationality, but now within the daily bracket and over a preference domain expanded in the
disciplined way suggested by reference-dependence. Our analysis requires substantial generalizations
of the neoclassical analyses, because levels of and changes in a good’s consumption are bundled and
priced together, and a reference-dependent consumer can, in effect, change her/his preferences by
buying a bundle in a different gain-loss regime.

We illustrate our results by re-analyzing Farber’s (2005, 2008) data. Although the GARP
condition for a neoclassical rationalization is violated for most of Farber’s drivers, our methods yield
coherent reference-dependent rationalizations for almost all of most drivers’ choices. For these

drivers, models that relax the restrictive assumptions have significantly higher Selten measures of
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predictive success than their counterparts imposing additive separability, showing that our
relaxations of the assumptions in previous work are empirically important.

For many of Farber’s drivers an expectations-based reference-dependent model has at least as
high or higher Selten measure than a neoclassical model, This suggests that reference-dependent
models of consumer demand are a useful addition to the neoclassical consumer demand toolkit,
which might allow parsimonious, rationality-based explanations of otherwise puzzling behaver in

labor supply, consumer demand, housing, and finance.
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Supplemental Appendix
A.1 Data

Like CM, we use Farber’s (2005, 2008) data.?® As explained in the text, Farber collected 593 trip
sheets for 13461 trips by 21 drivers between June 1999 and May 2001. Each sheet records the
driver’s name, hack number, date, each fare’s start time and location, each fare’s end time and
location, and the fare paid. Nine sheets duplicate the day and driver, so there are only 584 shifts.
Because our methods make some allowance for sample size, in addition to the 15 drivers Farber and
CM studied we include the 6 with samples of 10 or fewer shifts they excluded.

Table A.1 reports descriptive statistics driver by driver. The values are the same as those in
Farber’s (2005) Table B1, except for the hourly wage variable and the Afriat efficiencies in the last
two columns. Our earnings and wage variables differ from Farber’s and CM’s in two ways, which
affect the Afriat efficiencies. First, we use the NY/NJ urban CPI to control for price level changes in
the sample period. Second, Farber’s and CM’s wage variable is income per hour spent working, with
working time defined as the sum of time driving with a passenger and time waiting for the next
passenger. As explained in the text, we treat waiting time as an exogenous fixed cost and define the

wage as earnings per hour driving.

Table A.1: Descriptive statistics, driver by driver

T Working Driving  Waiting  Break  Earnings = Wage Afriat
Hours Hours Hours Hours ($/CPI) ($/hr) Efficiency

Driver 1 39 6.85 4.32 2.53 0.90 153.01 36.41 0.9952
Driver 2 14 3.89 2.78 1.11 241 95.98 34.68 1
Driver 3 6 6.66 4.61 2.05 0.74 160.07 36.19 1
Driver 4 40 6.28 4.52 1.76 0.39 145.89 33.02 0.9978
Driver 5 23 6.46 3.98 2.48 2.11 144.00 38.12 0.9971
Driver 6 6 8.62 6.48 2.14 242 202.71 33.49 1
Driver 7 24 6.47 4.42 2.05 0.74 159.50 36.69 0.9991
Driver 8 37 7.78 5.13 2.64 0.86 170.33 34.23 0.9897
Driver 9 19 7.17 5.47 1.70 0.54 158.82 30.61 1
Driver 10 45 6.35 3.90 2.45 1.65 129.68 33.83 0.9954
Driver 11 6 7.15 5.22 1.93 0.71 182.40 35.50 1
Driver 12 13 6.15 4.03 2.13 0.55 155.57 39.44 0.9972
Driver 13 10 7.03 4.72 2.31 0.53 153.99 33.26 1
Driver 14 17 7.06 4.49 2.57 0.64 157.15 37.37 0.9930
Driver 15 8 10.82 7.64 3.17 0.19 217.29 29.92 1
Driver 16 70 6.84 4.56 2.28 0.93 163.56 37.72 0.9936
Driver 17 10 5.88 3.71 2.17 0.54 137.28 39.10 0.9946
Driver 18 72 8.53 5.84 2.69 0.60 194.88 35.07 0.9849
Driver 19 33 6.91 4.63 2.29 0.97 155.65 36.01 0.9870
Driver 20 46 7.10 4.80 2.30 0.67 148.76 32.73 0.9842
Driver21 46 5.32 3.66 1.66 0.24 123.57 35.62 0.9915

28 The datasets are posted at https://www.aeaweb.org/aer/data/june08/20030605_data.zip, and
https://www.aecaweb.org/aer/data/aug2011/20080780_data.zip. The CPI data are posted at
https://data.bls.gov/timeseries/ CUURS12ASAOQ, under the years 1999-2001.
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Table A.1’s last column reports each driver’s Afriat efficiency index. The index is 1 for a driver
whose data satisfy WARP; otherwise less than 1. Only seven of Farber’s 21 drivers satisfy WARP.
Except for drivers 12 (sample size 13), 14 (sample size 17), and 17 (sample size 10), the drivers with
exact neoclassical fits (2, 3, 6, 9, 11, 13, and 15) are the ones with the smallest sample sizes among
the 21 drivers. Except for drivers 2 (sample size 14), 9 (sample size 19), and 17 (sample size 10),
those drivers are the same as the six (3, 6, 11, 13, 15, and 17) Farber and CM excluded due to small
(< 10) sample sizes. Small samples make it easier to satisfy WARP by chance, and those drivers’
data may simply be too under-powered to reject the neoclassical model. Discuss the issue of
correcting for power to reject in Section 7.3.

Figure A.1 shows that with our wage definition drivers’ budget lines cross frequently, making
WARP a meaningful restriction and allowing a nonparametric analysis to provide a meaningful
interpretation of the data.

Tables A.2-A.5 give the precise numerical values behind the driver-by-driver plots for
neoclassical and expectations-based and experience-based reference-dependent models’ proximities
and Selten measures in Figures 18-21. The Selten measures are Section 7.4’s lower bounds, the

estimates imposing Proposition 5’s full conditions [A]-[C].
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Table A.2: Proximities for neoclassical and unconditional expectations-based

reference-dependent models

T Neoclassical Hours and Earnings Earnings alone Hours alone

Driver 1 39 0 0 0 1
Driver 2 14 1 1 1 1
Driver 3 6 1 1 1 1
Driver 4 40 0 0 0 0
Driver 5 23 0.048492 0.384315 0.406994 0.43469
Driver 6 6 1 1 1 1
Driver 7 24 0 0.162525 0.203046 0.15848
Driver 8 37 0 0.146842 0 0.17589
Driver 9 19 1 1 1 1
Driver 10 45 0 0 0 0
Driver 11 6 1 1 1 1
Driver 12 13 0.256557 1 0.15315 0.13958
Driver 13 10 1 1 1 1
Driver 14 17 0.265625 0.172794 0.280798 0.27437
Driver 15 8 1 1 1 1
Driver 16 70 0 0 0 0
Driver 17 10 0.207382 1 1 1
Driver 18 72 0 0 0 0
Driver 19 33 0 0.185454 0.057727 0
Driver 20 46 0 0 0 0
Driver 21 46 0 0 0 0

60



Table A.3: Selten measures for neoclassical and unconditional expectations-

based reference-dependent models

T Neoclassical Hours and Earnings Earnings alone Hours alone
Driver 1 39 0 0 0 1
Driver 2 14 0.942 0.788 0.803 0.82
Driver 3 6 0.505 0.343 0.344 0.361
Driver 4 40 0 0 0 0
Driver 5 23 0.047492 0.328315 0.367994 0.416699
Driver 6 6 0.665 0.466 0.499 0.497
Driver 7 24 0 0.148525 0.193046 0.145481
Driver 8 37 0 0.144842 0 0.174891
Driver 9 19 0.987 0912 0.913 0.941
Driver 10 45 0 0 0 0
Driver 11 6 0.421 0.303 0.287 0.279
Driver 12 13 0.187557 0.714 -0.09685 -0.09742
Driver 13 10 0.832 0.659 0.632 0.669
Driver 14 17 0.261625 0.084794 0.217798 0.222375
Driver 15 8 0.8 0.504 0.604 0.594
Driver 16 70 0 0 0 0
Driver 17 10 -0.01062 0.677 0.604 0.685
Driver 18 72 0 0 0 0
Driver 19 33 0 0.178454 0.056727 -0.002
Driver 20 46 0 0 0 0
Driver 21 46 0 0 0 0
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Table A.4: Proximities for neoclassical and unconditional experience-based

reference-dependent models

T Neoclassical Hours and Earnings Earnings alone Hours alone
Driver 1 39 0 0 0 0
Driver 2 14 1 1 1 1
Driver 3 6 1 1 1 1
Driver 4 40 0 0.078039 0 0
Driver 5 23 0.048492 0.016492 0.212637 0.187298
Driver 6 6 1 1 1 1
Driver 7 24 0 1 0.278643 0.157611
Driver 8 37 0 1 0 0
Driver 9 19 1 1 1 1
Driver 10 45 0 0 0 0
Driver 11 6 1 1 1 1
Driver 12 13 0.256557 0.13873 0.265933 0.226169
Driver 13 10 1 1 1 1
Driver 14 17 0.265625 0.313394 0.416434 0.251828
Driver 15 8 1 1 1 1
Driver 16 70 0 0 0 0
Driver 17 10 0.207382 0.500883 0.326962 0.304039
Driver 18 72 0 0 0 0
Driver 19 33 0 0.322158 0 0
Driver 20 46 0 0 0 0
Driver 21 46 0 0 0 0
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Table A.5: Selten measures for neoclassical and unconditional experience-

based reference-dependent models

T Neoclassical ~ Hours and Earnings Earnings alone Hours alone

Driver 1 39 0 0 0 0
Driver 2 14 0.942 0.804 0.856 0.814
Driver 3 6 0.505 0.373 0.401 0.381
Driver 4 40 0 0.077039 0 0
Driver 5 23 0.047492 -0.00751 0.197637 0.175298
Driver 6 6 0.665 0.267 0.274 0.285
Driver 7 24 0 0.994 0.276643 0.153611
Driver 8 37 0 1 0 0
Driver 9 19 0.987 0.924 0.935 0.938
Driver 10 45 0 0 0 0
Driver 11 6 0.421 0.271 0.261 0.261
Driver 12 13 0.187557 -0.08827 0.081933 0.036169
Driver 13 10 0.832 0.575 0.616 0.577
Driver 14 17 0.261625 0.270394 0.381434 0.219828
Driver 15 8 0.8 0.527 0.505 0.49
Driver 16 70 0 0 0 0
Driver 17 10 -0.01062 0.124883 -0.02104 -0.03996
Driver 18 72 0 0 0 0
Driver 19 33 0 0.321158 0 0
Driver 20 46 0 0 0 0
Driver 21 46 0 0 0 0
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