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Theorem. The following four conditions on a pair of (increasing, twice differential) VN-M
utility functions ua(·) and ub(·) are equivalent:

(a1) ua(·) is a concave transformation of ub(·), i.e. ua(x) ≡ ρ(ub(x)) for some (necessarily
increasing) concave function ρ(·).

(a2) The Arrow-Pratt coefficients of absolute risk aversion satisfy the inequality

−u′′
a(x)

u′
a(x)

≥ −u′′
b (x)

u′
b(x)

for all x.

(a3) If ca and cb are such that ua(ca) = EF ua(x) and ub(cb) = EF ub(x) for some distribution
F (·), then ca ≤ cb.

(a4) Suppose that ua(·) and ub(·) are concave. If r is known and r > 0, x is uncertain with
EF x > r and Prob(x < r) > 0 , and αa and αb respectively solve

max
0≤α≤I

EF ua((I − α)r + αx)

and
max
0≤α≤I

EF ub((I − α)r + αx),

then αa ≤ αb.

Remarks 1. It is the equivalence of the mathematical conditions (a1) and (a2) to the
behavioral conditions (a3) and (a4) (and their respective equivalences to each other)
that makes (a1) and (a2) interesting.

2. Risk aversion is plainly related to concavity, hence to u′′
a(·) and u′′

b (·). But these, unlike

the Arrow-Pratt coefficients −u′′
a(·)

u′
a(·) and −u′′

b (·)
u′

b(·)
, are not invariant to increasing linear

transformations, and therefore cannot be linked as closely to the behavioral conditions
(a3) and (a4) as the theorem’s conclusion requires.
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3. The conclusions of (a3) and (a4), about certainty equivalents and absolute levels of
investment in safe vs. risky assets, are both intuitively equivalent to “ua(·) is more
risk averse than ub(·).” But it is somewhat surprising that they are equivalent to each
other (and it is not true for many plausible generalizations, e.g. if initial wealth is
uncertain).

4. The “extra” conditions in (a4) ensure that the investor who invests in the safe asset
can’t lose all his wealth, and that the risky asset has higher expected return than the
safe asset but some chance of yielding less. Otherwise, either the risky asset or the
safe asset would be unambiguously better, the problems would have corner solutions
even under concave u′′

a(·) and u′′
b (·), and these solutions could not be as sensitive to the

forms of u′′
a(·) and u′′

b (·) as the theorem’s conclusion requires. (a4) is concerned with
absolute amounts invested, which is why coefficients that appear in (a2) are called
“absolute.”

5. (a1) and (a2) clearly define partial orderings of the set of (increasing, concave) VN-M
utility functions, which is all you should expect given their equivalence to the strong
behavioral conditions (a3) and (a4), whose conclusions hold independent of F (·).

6. Weak inequality statements give strict inequality and equality statements in the usual
way.

The Arrow-Pratt theorem can be interpreted in several different ways, with u′′
a(·) and

u′′
b (·) viewed as the VN-M utility functions of different individuals, or of the same individual

with different levels of initial wealth, and with risks expressed in proportional or absolute
terms. The last two of these interpretations yield especially useful corollaries, stated here
before proving the theorem:

Corollary (“Decreasing Absolute Risk Aversion”). The following four conditions on
an (increasing, twice differentiable) VN-M utility function, denoted u(·) are equivalent:

(b1) u(Ir+x),viewed as a function of x, is a concave transformation of u(I∗r+x) whenever
I∗r > Ir.

(b2) −u′′(Ir+x)
u′(Ir+x)

≥ −u′′(I∗r+x)
u′(I∗r+x)

for all x, whenever I∗r > Ir.

(b3) If c and c∗ are such that u(Ir + c) = EF u(Ir + x) and u(I∗r + c∗) = EF u(I∗r + x) for
some distribution F (·), then c ≤ c∗ whenever I∗r > Ir.

(b4) Suppose that u(·) is concave. Then, if r is known and > 0, x is uncertain with EF x > r
and Prob(x < r) > 0, and α(I) solves max0≤α≤I EF u(Ir + α(x − r)), α(I) ≤ α(I∗)
whenever I∗r > Ir.

Remarks 1. Strange u(Ir + x) formulation is to simplify statement of (b4) and clarify
its relation to (a4); note that Ir + α(x− r) ≡ (I − α)r + αx, and that for r > 0 (as is
natural), I∗r > Ir iff I∗ > I.
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2. Given the definition of “absolutely more risk averse than” implicit in the Arrow-Pratt
Theorem, (b1)-(b4) can be viewed as equivalent translations of “absolute risk aversion
is decreasing in initial wealth.” The Corollary can be run “backwards” to give an
analogous characterization of increasing absolute risk aversion.

Proof (given Arrow-Pratt Theorem) Let u(Ir + x)
x≡ua(x), u(I∗r + x) ≡ ub(x), α(I) =

αa, α(I∗) = αb and apply the Theorem.

Corollary (“Decreasing Relative Risk Aversion”). The following four conditions on
an (increasing, twice-differentiable) VN-M utility function, denoted u(·), are equivalent:

(c1) u(Iε), viewed as a fundtion of ε, is a concave transformation of u(I∗ε) whenever I < I∗.

(c2) − Iεu′′(Iε)
u′(Iε)

≥ − I∗εu′′(I∗ε)
u′(I∗ε)

for all ε, whenever I < I∗. (These are the Arrow-Pratt co-
efficients of relative risk aversion for wealth levels I and I∗, so called because of the
equivalence of (c2) and (c4) below.)

(c3) If e and e∗ are such that u(Ie) = EF u(Iε) and u(I∗e∗) = EF u(I∗ε) for some distribution
F (·), then e ≤ e∗ whenever I ≤ I∗.

(c4) Suppose that u(·) is concave. Then, if γ is known and > 0, ξ is uncertain with Eξ > γ
and Prob(ξ ≤ γ) > 0, and β(I) solves max0≤β Eu((1−β)Iγ +βIξ), then β(I) ≤ β(I∗)
whenever I ≤ I∗.

Proof (given Arrow-Pratt Theorem) Let u(Iε)
ε≡ua(ε), u(I∗ε)

ε≡ub(ε), note that β in
(c4) plays a role analogous to that of α in (a4) (because (1− β)Iγ + βIξ ≡ I(γ + β(ξ− γ)),
which is linear in β with mean increasing in β, just as (I − α)r + αx = Ir + α(x − r)
is in α), and apply the Theorem again. Note, in particular, that if ua(ε)

ε≡u(Iε), then

−u′′
a(ε)

u′
a(ε)

≡ − I2u′′(Iε)
Iu′(Iε)

≡ − Iu′′(Iε)
u′(Iε)

, hence (c2) (cancelling the ε’s from both sides, with ε > 0).

Remarks 1. Note that (c4) deals with proportions invested in safe and risky assets,
whereas (a4) and (b4) deal with absolute amounts.

2. Can run “backwards” to characterise increasing relative risk aversion.

Proof of Arrow-Pratt Theorem We need a complete set of implication arrows linking
(a1) - (a4). Given transitivity, this can be built up out of 1. (a1) ⇔ (a2), 2. (a1) ⇔ (a3),
and 3. (a2) ⇔ (a4). I shall prove 1, 2, and 3’ (b2) ⇔ (b4), which is equivalent to 3 (a2) ⇔
(a4), less tedious, and just as illuminating.

1. (a1) ⇔ (a2).
ua(x) ≡ ρ(ub(x)) ⇒

u′
a(x) ≡ ρ′(ub(x))ub(x), u′′

a(x) ≡ ρ′(·)u′′
b (x) + ρ′′(·)(u′

b(x))2
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Thus

−u′′
a(x)

u′
a(x)

≡ −ρ(·)u′′
b (x)− ρ′′(·)(u′

b(x))2

ρ′(·)u′
b(x)

≡ −u′′
b (x)

u′
b(x)

− ρ′′(·)
ρ′(·)

u′
b(x) ≥ −u′′

b (x)

u′
b(x)

because ρ(·) is increasing and concave. This proves (a1) ⇒ (a2). To prove (a1) ⇐
(a2), note that since ua(·) and ub(·) are both increasing functions of one variable, they
can always be related, as in (a1), by an increasing transformation ρ(·). (a2) then shows
that this ρ(·) must be concave.

2. (a1) ⇒ (a3) depends on an important lemma known as Jensen’s Inequality, which is
true “in general”, but is proven here assuming twice differentiability:

Lemma. If f(y) is a concave function of one variable, then Ef(y) ≤ f(y).

Proof. By Taylor’s Theorem

f(y) = f(Ey) + (y − Ey)f ′(y) +
(y − (E)y)2

2
f ′′(z)

for some z between y and Ey. Since f(·) is concave, f ′′(y) ≤ 0 everywhere, hence at
y = z. Taking expectations then yields

Ef(y) = Ef(Ey) + E [(y − Ey)f ′(Ey)] + E
[
(y − Ey)2

2
f ′′(z)

]

= f(Ey) + E
[
(y − Ey)2

2
f ′′(z)

]
≤ f(Ey)

as desired.

Now, by Jensen’s Inequality and (a1), for any F (·),

ua(ca) = EF ua(x) = EF ρ(ub(x)) ≤ ρ(EF ub(x)) = ρ(ub(cb)) = ua(cb);

since ua(·) is increasing, this implies that ca ≤ cb as desired.
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