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Example: Pure-strategy security levels (floors orefft, floor and ceiling on right)

T (1¥)
M (0)

B (0)

L(-1) C(2) R(-5)

1 2 4
1 2 4

0 0 5
0 0 5

0 1 0
0 1 0

Both Players’ Payoffs Shown

T (1¥)
M (0)

B (0)

LAY CR) R
1 2 4
0 0 5
0 1 0

Only Row’s Payoffs Shown

Because Row’s and Column’s pure-strategy secuwaiglé are consistent (*s mark
maximal floors 1 and -1 on left; maximal floor 1daminimal ceiling 1 on right),
there is no role for mixed strategies in this game.

Example: Mixed-strategy security levels (floors oneft, floor and ceiling on right)

T(-1)
M(-1)

B (-2)

L(-1) C(1) R(2)
1 1 -2

1 1 2
1 1 2

1 1 2
2 2 2

-2 -2 -2

Both Players’ Payoffs Shown

T(-1)
M(-1)

B (-2)

L(1) C@) R(2
1 1 2
1 1 2
-2 -2 -2

Only Row’s Payoffs Shown

Because Row’s and Column’s pure-strategy secugitglé are inconsistent
(maximal floors -1 for Row + -1 for Column on leftld to < 0; maximal floor for
Row -1 < minimal ceiling for Column on right), midtestrategies play a role.

On the left, Row’s security level for Pr{T} = Pr{M¥ Y2 is an expected payoff of
0; and Column’s for Pr{L} = Pr{C} = Y2 is an exped@ayoff of 0. Equivalently
on the right, Row’s maximal floor is 0 and Colummigmimal ceiling is 0. Thus

Row’'s and Column’s mixed-strategy security levebs @nsistent.




Using linear programming to find security-level maxmizing strategies

T (1%)
M (0)

B (0)

L(19 C(2) R(-5)
-1 -2 4
1 2 4
0 0 5
0 0 5
0 -1 0
0 0

Both Players’ Payoffs Shown

T (1%)
M (0)

B (0)

L(1Y) C((2) R(5)
1 2 4
0 0 5
0 1 0

Only Row’s Payoffs Shown

In this game one can easily find security-level mmazing strategies by iterated

elimination of dominated strategies, which nevenilates all security-level

maximizing strategies: Iterated elimination firstrenates R for Column and B for

Row, then M for Row and C for Column, leaving ofilyor Row and L for

Column, which we have already seen are the sedexigt maximizing strategies.

But often it's not so easy, as in the game withedistrategy security-level
maximizing strategies, and we need a systematibadetinear programming.




Consider this game again:

L(-1) C(1) R(2) LA C@ R(
T(-D|, B 1 ! ) e T(1)| 1 1 2
M (D) 4 1 L -1 5 2 M-1)| -1 1 2
B (-2)|_, 2 5 2 5 2 B(-2)| -2 -2 -2

Both Players’ Payoffs Shown Only Row’s Payoffs Shown

Row'’s linear programming problem would be:

VX — 1% — 2% (Y1)
W= 1x+ 1o—2%(Y2)
VS 2% + 2% — 2%3 (Y3)

X1+ X+ X3=1 (W)
X1, Xo, X3=> 0.

Choose x, X, X3, and v to maximize v S.t.

(Ignore the dual shadow prices v», y3, and w for now. A more standard way to
write the first constraint would be v — 1% + 2x<0.)

The constraints define v as a floor under Row'seexgd payoff, saying that v is
no greater than Row’s expected payoff if Columryplg, C, or R respectively.

(What if Column plays a mixed strategy? v is stifloor, because Row’s expected
payoff is a weighted average of his payoffs whetu@a plays pure strategies.)

Thus the problem finds the@* x,*, x5* that put the highest possible floor, v*,
under Row’s payoff: Row’s security-level maximiziatjategy.



If we note that B can never be played with posipvebability in a security-level-
maximizing strategy for Row (why?), we can solvenRoproblem graphically.

Setting ¥ = 0 and x = 1— %, the problem

Choose X X, X3, and v to maximize v S.t. VIX — 1% — 2%
W =1x+ 1% — 2%
= 2X1 + 2X2 —2X3

X1+ Xo+ X3= 1
X1, Xo, X3=> 0.
becomes

Choose x X, and v to maximize \Y; st. vIx—1x=2x-1
V< —1x+ 1%=1-2%
W< 2% + 2%, = 2
X1+ X+ X3=1
X1, X2, X3=> 0.,

With x; on the horizontal axis and v on the vertical axésget the graph::

e

Not drawn to scale.

The top horizontal line is at height 2 and the dothorizontal line is at height O;
the other lines intersect the v axis at 1 and Kk donstraint ¥ 2 is slack at the
solution. The solution is at the intersection of 2x,— 1 and v = 1— 2X S0 %* =
Xo* =14, x* =0, and v* = 0.

The optimal mixed strategy yields a security levgher than any pure strategy’s.



Linear Programming Duality and Zero-Sum Two-PersonGames
Row'’s security-level-maximizing problem with coratits put into standard form:

Choose x X, X3, and v to maximize Vv st v—X1x + 2%<0 (y)
V+ 1x— 1%+ 2%< 0 (y)
V= 2X— 2%+ 2%< 0(y3)
X1+ X+ X3= 1 (W)
X1, Xo, X3=> 0.

The linear programming dual of Row’s security-lem®ximizing problem:

Choosey, y», ¥3, and w to minimize w s.t. w—1¥ 1y— 2> 0(Xy)
W+ 1y — 1y — 2y5> 0 (%)
W+ 2y + 2y, + 2y3> 0 (%)
Yit Y2+ ys=1(v)
Y1, Y2 Y32 0.

In constructing the dual, and checking the relatmn between the primal and the
dual, note that v and w are variables just likexlhend y; that all constraint
constants are 0 but those on the equality contdrain X+ x3=1 and y+ Yy, + y3
=1, whose shadow prices are v and w. This is wagd/w are unrestricted but the
x;j and y must be> 0, and why thepand ydon’t appear in the objective functions.

Finally, note that the first three dual constragimtbose coefficients are the
transposes of those of the first three primal qaidss, define w as a ceiling over
Row’s expected payoff (as we did in the right-hardmples above), saying that w
IS no less than Row’s expected payoff if Row play#, or B respectively.

Because minimizing the height of the ceiling isigglent to maximizing the
height of the floor —w under Column’s expected ghybe dual determines
Column’s security-level maximizing strategy.

Duality and complementary slackness yields usefnthusions about the optimal
strategies: All pure strategies played with styigtbsitive probability must yield a
player exactly his security level. And slack coastts in the primal (dual) must be
associated with strategies played with zero prdiam the dual (primal).



Morra

12 13 23 24
12 0 2 -3 0
13 -2 0 0 3
23 3 0 0 -4
24 0 -3 4 0

Recall the rules of Morra: Players simultaneouslighup either one or two fingers
(i) and call out a number (j); call this “ij”. Ifgur number equals the total of your
and the other’s fingers, you win that amount fréwa other player. (Both can win.)

If Row’s mixed-strategy probabilities of playing,123, 23, 24, are;xX,, X3, X4
and Column’s mixed-strategy probabilities of playit®, 13, 23, 24 are -, Vs,
Ya, then any(xy, Xo, X3, Xq) = (0,p, 1—p, 0) where 4/& p < 3/5 (and only those) is
security-level maximizing for Row; and afy, Y2, Yz, Y1) = (0,0, 1-0, 0) where
4/7 < 6 < 3/5 (and only those) is security-level maximiziog Column.

You can verify directly that those strategies yiRlolw and Column security levels
of zero and no other strategy yields a securitgll@g high as zero. (In a symmetric
zero-sum game, the players can’'t have positiveegative security levels.)

For example, suppose Row plays, &, X3, Xs) = (0,p, 1—p, 0) with 4/7<p < 3/5.
Then if Column plays 12 Row’s expected payoff is +23(1—p) > 0 (as long ap
< 3/5); if Column plays 13 or 23 Row’s expected f&i®0; and if Column plays
24 Row’s expected payoff ip3- 4(1-p) > 0 (as long as 4/& p).

If both players play security-level-maximizing $&gies, the game is boring
because they always tie. But unlike in matchingnpes) the security-level-
maximizing strategy yields a chance of gain agansbpponent’s 12 or 24.

(Note the typo on this in Prof. Sobel’s notes IXvoFPerson Zero-Sum Game
Theory, p. 12: It is not correct that “Game-themrahalysis recommends that you
mix between your first three strategies (therenaiseed strategies that guarantee an
expected payoff of zero that use 12 with positikabpbility).” The only optimal
strategies are those that mix in the stated praparbetween 13 and 23.)

It's a little surprising (though not truly surpms)) that 12 and 24 must be played
with zero probability even though they are not duaed by 23 or 24. They are,
however, dominated by any optimal mixture of 23 aAdd



12 13 23 24
12 0 2 -3 0
13 -2 0 0 3
23 3 0 0 -4
24 0 -3 4 0

You can also verify the security-level-maximizirtgasegies from the primal and
dual security-level-maximizing linear programs:
Row’s problem is:
Choose X, X, X3, Xa, and v to maximize v S.t. V2% + 3% (Y1)

VS 2% —3%4(Y2)

VS 3% +4X4 (Ya)
V < 3% —4X3 (Ya)
X1+ Xo+ X3+ X3= 1 (W)
X1, X2, X3, X4=> 0.
Column’s problem is:
Choose y, Yo, Ys, V4, and w to minimize w s.t. w2y, —3%(X)

W= =2y + 3y, (X2)

W= 3y1 — 4y, (X3)
W > =3y +4y5 (Xa)
Yit Yo+ Y3+ Ys=1(V)
Y1, Y2i Y3, Ya= 0.

You can solve one or both of these using SolvédreyTe way too big to graph.)

It's not hard to check that {xx, X3, X4) = (0,p, 1—p, 0) where 4/ p < 3/5 and
(Y1, Y2 V3 Va) = (0,0, 1—0, 0) where 4/% ¢ < 3/5 are feasible for the primal and
the dual, and yield the same objective functiom&aD.

Or you can check that they are feasible and satmfyplementary slackness.
Thus either way, by the Duality Theorem, both grenoal.

Unlike for Matching Pennies, it's hard to imagimeding the optimal strategies for
Morra by intuition or luck. (Even if you know it isrong to play 12 or 24 with

positive probabilityp (or o) must be between 0.587 and 0.6, a very narrowerang

Thus knowing the solution (and being immune to dore) may allow you to
make some money.



