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General Observations 
 
Integer restrictions occur naturally in many settings: 
 
Location decisions 
 
Mutually exclusive alternatives 

 
(Σyi = 1, yi = 0 or 1, i = 1,…,n) 

 
Contingent decisions 

 
(yj ≤ yk, yi = 0 or 1, i = j,k) 

 
K of your choice out of N constraints must hold 

 
(a1x ≤ b1 + My1 , a2x ≤ b2 + My2,…, Σyi = N-K) 

 
Functions with your choice among N values 
  

(d(x) = Σdi(x)yi, Σyi = 1, yi = 0 or 1, i = 1,…,n) 
 
Set-up costs/fixed charges  
  

(replace fi(xi) = ci + dixi if x i > 0, 0 if xi = 0 by ciyi+ dixi, xi ≤ Myi, yi = 0 
or 1) 

 
Other nonconvexities 

 
(approximate by several tangent lines with set-up costs, with 
constraints that allow the program to “use” at most one of them; such 
approximation is also possible for separable convex problems, but for 
them no set-up costs are needed) 

 
 



In general, solutions to problems ignoring integer restrictions need not 
be close to solutions respecting them, though there are important 
exceptions (assignment and transportation problems, problems with 
integer restrictions on only one variable) 
 
Choose x1 and x2 to solve maximize  x1 + 6x2  s.t. x1 ≤ 3  
         x1 + 10x2  ≤ 20 
         x1 ≥ 0, x2 ≥ 0 
 

Ignoring integer restrictions, solution x1* = 3, x2* = 1.7 (x2 on vertical axis).  

 

But when both x1 and x2 are required to be integers, the solution “jumps” to 
x1 = 0, x2 = 2. You can see this by shifting the objective function contour 
downward in the graph: 

 



Optimal Assignment Problem and the Hungarian Method (see also 
Section 3 of Prof. Sobel’s Notes VIII. The Transportation Problem) 
 
Primal assignment problem (all sums are from 1 to n): 
 
Choose xij (i person, j job) 0 or 1 to solve 

 
  min ΣΣcijxij 

 
subject to      Σxij ≥ 1, j = 1,…,n (all jobs filled) 
     Σxij ≤ 1, i = 1,…,n (no person overused)  

  
Dual (all sums are from 1 to n, and all constraints hold for all i,j): 
 
Choose ui, vj unrestricted to solve  
 

max Σui + Σvj  
 
subject to     ui + vj ≤ cij 

 
(Primal constraints must hold with equality for all feasible assignments, so 
dual shadow prices ui, vj are unrestricted.) 
 
Can solve assignment problem as a standard linear program or transportation 
problem using the simplex method or the transportation simplex method, but 
the special structure allows a more powerful and illuminating method. 
 



Hungarian method (named for mathematicians König and Egervary)  
 
Example to show mechanics: four people, four jobs, costs all ≥ 0 
 

 1 2 3 4 

A 94 1 54 68 

B 74 10 88 82 

C 62 88 8 76 

D 11 74 81 21 
 
Row reduction (subtract smallest number in each row from all numbers in 
that row, obtaining a new reduced cost matrix): 
  

 1 2 3 4 

A 93 0 53 67 

B 64 0 78 72 

C 54 80 0 68 

D 0 63 70 10 
 
Column reduction (subtract smallest number in each column from all 
numbers in that column, obtaining a new reduced cost matrix): 
 

 1 2 3 4 

A 93 0 53 57 

B 64 0 78 62 

C 54 80 0 58 

D 0 63 70 0 
 



 

 1 2+ 3 4 

A 93 0 53 57 

B 64 0* 78 62 

C+ 54 80 0* 58 

D+ 0* 63 70 0 
 

Next, find a maximal set of k independent zeros and a minimal cover of k 

lines, for example the zeros with *s and rows and columns with +s.  

 

(There might be more than one way to do this. Any way will work.) 

 

The fact that these three zeros can all be covered by only three lines shows 

that there cannot be more than three independent zeros in the matrix. 

 

(The Handout on the Hungarian Method for the assignment problem on the 

web page has on its second page an algorithm that always finds a maximal 

set of independent zeros and a minimal cover with the same number of lines, 

so you can always do this. But it’s easy to do without the algorithm even in 

large problems and you are not required to know that part.) 



 

  1 2+ 3 4 

A 93 0 53 57 

B 64 0* 78 62 

C+ 54 80++ 0* 58 

D+ 0* 63++ 70 0 
 

Next, subtract the smallest uncovered cost entry from all uncovered entries, 

and add that same number to all double-covered entries (++). The smallest 

uncovered entry is 53. The new matrix is:   

 1 2+ 3+ 4 

A 40 0 0 4 

B 11 0* 25 9 

C 54 133 0* 58 

D+ 0* 116++ 70++ 0 

Again find a maximal set of k independent zeros and a minimal cover of k 

lines, for example the zeros with *s and rows and columns with +s. 

 

Again subtract the smallest uncovered cost entry from all uncovered entries, 

and add that number to all double-covered entries. The smallest uncovered 

entry is now 4. The new matrix is: 

 

 1 2 3 4 

A 36 0 0 0* 

B 7 0* 25 5 

C 50 133 0* 54 

D 0* 120 74 0 
 

We now have four independent zeros, which identify an optimal assignment. 



The total cost can be calculated from the original matrix: 11+10 + 8 + 68 = 

97. 

  1 2 3 4 

A 94 1 54 68* 

B 74 10* 88 82 

C 62 88 8* 76 

D 11* 74 81 21 
 

Note that the optimal assignment doesn’t always give a job to the person 

who is best at it: person B gets job 2 even though person A is better at it. 

 

Neither does it always give a person the job he is best at: person A is best at 

job 2 but gets job 4, at which he is awful (though not as awful as B or C).  

 

One might have expected person D to get job 4, at which he is best; but it’s 

optimal to give D job 1, at which everyone else is really awful: The optimal 

assignment is determined by comparative advantage, not absolute advantage. 

 

 

(The idea of comparative advantage here is close to the idea as used in the 

theory of international trade, but while both refer to properties of solutions to 

linear programming problems (or the competitive markets that implicitly 

solve them in Ricardian trade theory), the models are different and the two 

notions of comparative advantage are not mathematically equivalent.)       



Using duality theory to explain why the Hungarian method works  
 
Primal assignment problem (all sums are from 1 to n): 
 
Choose xij (i denotes a person, j a job) 0 or 1 to solve   min ΣΣcijxij 
 
subject to      Σxij ≥ 1, j = 1,…,n (all jobs filled) 
     Σxij ≤ 1, i = 1,…,n (no person overused)  

  
Dual (all sums are from 1 to n, and all constraints hold for all i, j): 
 
Choose ui, vj unrestricted to solve max Σui + Σvj  
 
subject to     ui + vj ≤ cij 

 
(Primal constraints must hold with equality for all feasible assignments, so 
dual shadow prices ui, vj are unrestricted.) 
 
Duality Theorem for assignment problem: 

Σui + Σvj ≤ ΣΣcijxij for all primal-feasible xij and dual-feasible ui and vj. 

 

Proof: ui + vj ≤ cij, so ΣΣ(ui+vj )xij = ΣuiΣxij + ΣvjΣxij = Σui + Σvj ≤ ΣΣcijxij. 

 

Corollary: If primal-feasible xij and dual-feasible ui and vj have equal 

objective function values, both are optimal. 

 

Complementary Slackness Theorem: If all n persons can be assigned to jobs 

such that xij = 1 implies ui + vj = cij for some dual-feasible ui and vj, then the 

assignment is optimal. 

  

Proof: Since xij = 0 if not 1, ΣΣcijxij = ΣΣ(ui+vj )xij = ΣuiΣxij + ΣvjΣxij = Σui 

+Σvj. Then use the Duality Theorem and the Corollary.  



Initial  ui = mink cik (ith row minimum) 

Initial vj = minh [chj - uh] (jth column minimum of {column - ui}) 

 

Lemma: Initial ui and vj are dual-feasible. (Note: Ignore nonnegativity here.) 

Proof: ui + vj = ui + minh [chj - uh] ≤ ui + (cij - ui) = cij. 

 

After row-reduction and column reduction, entries in reduced cost matrix are 

cij - ui - vj  ≥ 0, dual-feasible; and zeros (*) are entries where there’s no slack: 

 1 2+ 3 4 

A 93 0 53 57 

B 64 0* 78 62 

C+ 54 80++ 0* 58 

D+ 0* 63++ 70 0 
 

The minimal cover of a single vertical line in column 2 and two horizontal 

lines in columns C and D covers all entries with no slack in the dual 

constraint. The uncovered entries all have slack of at least 53. 

 

Raising the ui of uncovered rows by 53 and lowering the vj  of covered 

columns by 53 removes slack but preserves dual-feasibility: It increases 

slack in double-covered entries by 53, it doesn’t change slack in single-

covered entries (either neither ui nor vj changes, or both change in opposite 

directions), and it doesn’t take too much slack from uncovered entries.  

 

More generally, raising the ui of uncovered rows and lowering the vj  of 

covered columns by the smallest uncovered entry S raises the dual objective 

function Σui + Σvj by S[(n-r)-c)], where r and c are the numbers of row and 

column lines. When—after a finite number of steps—r + c = n, we are done. 



Section 3 of Prof. Sobel’s Notes X. Integer Programming, linked in 

Section C of the reading list under “Integer Programming”, discusses 

using the branch and bound method to solve linear programs with some 

integer restrictions on the variables.  

Here is Professor Sobel’s general statement of the branch and bound method 

for this case (with some comments added): 

 

1. Set v_ = −∞. (v_ is the current lower bound on how well you know how 

to do so far in a maximization problem)  

 

2. Bound the original problem by solving the “relaxed” problem (ignoring 

the integer constraints) and rounding the value down to the nearest integer. 

 

3. If the solution to the relaxed problem satisfies the integer constraints, stop. 

You have a solution to the original problem. Otherwise, call the original 

problem a “remaining subproblem” and go to Step 4. 

 

4. Among all remaining subproblems, select the one created most recently. If 

more than one has been created most recently, pick the one with the larger 

bound. If they have the same bound, pick randomly. (These rules are fine 

points, and are not essential. It’s simplest just to branch first on the xi with 

lower i.) “Branch” from this subproblem to create two new subproblems by 

fixing the value of the next available variable to either 0 or 1. (Professor 

Sobel’s statement and his linear programming examples all have the xi 

restricted to be either 0 or 1. You can use the method for more general 

integer restrictions, branching by adding constraints like (i) xi ≥ k in one 

branch and (ii) xi ≤ k in the other. See below.) 



5. For each new subproblem, obtain its bound z by solving a relaxed version 

of the subproblem and rounding the value down to the nearest integer (if the 

relaxed solution is not an integer). 

 

6. Attempt to “fathom” each new subproblem. A subproblem is fathomed if 

one of three things happens: 

(a) Its relaxation is not feasible (so it cannot possibly help). 

(b) Its relaxed value is less than or equal to v_ (so it cannot help). 

(c) Its relaxation has an integer solution (so it could help, but you 

don’t need to know any more about it to know if it does). 

All subproblems that are not fathomed are “remaining subproblems”. 

 

7. If a subproblem is fathomed because its relaxation has an integer solution, 

update v_ by setting it equal to the largest of the old value of v_ and the 

value of the relaxed subproblem. Call a subproblem that attains v_ the 

“incumbent” or “candidate” solution. 

 

8. If there are no remaining subproblems, stop. The incumbent or candidate 

solution is optimal. (If you stop and there are no candidate solutions, then 

the original problem is not feasible.) If v_ is equal to the highest upper 

bound z of all remaining subproblems, stop. The candidate solution is 

optimal. Otherwise, return to Step 4. 

 

Professor Sobel’s Notes X. Integer Programming, linked in Section C 

under “Integer Programming”, give an example using the branch and 

bound method to solve the “knapsack problem”; see his pp. 2-4 and 8.  



Example: Integer linear programming by the branch and bound 
method  
 
You are asked to do the integer linear programming used above to show that 
rounding doesn’t work by the branch and bound method in PS 2 # 2(d). Here 
I will do a slightly different example (with a completely different solution). 
 
Consider the problem: 
 
Choose integers x1 and x2 to solve maximize  x1 + 5x2   s.t.        2x1 ≤ 3  
                x1 + 10x2  ≤ 20 
         x1 ≥ 0, x2 ≥ 0 
 
v_ = −∞. Start by solving the “relaxed” problem with no integer restrictions, 
graphically (with x1 on the horizontal axis and x2 on the vertical axis): 

 
x1* = 1.5, x2* = 1.85 (from 2x1 = 3 and x1 + 10x2 = 20). 

 
This solution is infeasible because it violates the integer restrictions, so the 
original problem is unfathomed, a “remaining subproblem.” v_ = −∞ still, 
and there is no incumbent solution yet.  
 
Branch on the first variable (as the xi are numbered) that is restricted to be 
an integer, and isn’t an integer in the solution to the relaxed problem: x1 = 
1.5. Branch by creating two subproblems from the original problem, one 
with added constraint (i) x1 ≤ 1 and one with added constraint (ii) x1 ≥ 2. 
You could also just pick randomly, or using bounds, but do it this way here. 



Choose integers x1 and x2 to solve maximize  x1 + 5x2   s.t.        2x1 ≤ 3  
                x1 + 10x2  ≤ 20 
         x1 ≥ 0, x2 ≥ 0 

 
Next, attempt to fathom the two branch subproblems, starting with the first, 
by solving their relaxed versions. 
 
Solving branch subproblem (i) x1 ≤ 1 yields x1 = 1, x2 = 1.9; this is infeasible 
because it violates the integer restrictions. v_ = −∞ still.    
 
Branch subproblem (ii) x1 ≥ 2 is infeasible (because 2x1 ≤ 3), so this branch 
is fathomed. v_ = −∞ still.    
 
Further branching in subproblem (i) x1 ≤ 1 yields (ia) x1 ≤ 1, x2 ≤ 1 and (ib) 
x1 ≤ 1, x2 ≥ 2. 
 
Solving  branch subproblem (ia) yields x1 = 1, x2 = 1; this is feasible because 
it satisfies the integer restrictions, so this branch is fathomed; because there 
is no incumbent solution yet, x1 = 1, x2 = 1 becomes the incumbent solution, 
with objective function value 6, a lower bound on attainable values v_ = 6. 
 
[Corrected: Solving  branch subproblem (ib) yields x1 = 0, x2 = 2; this is 
feasible, so this branch is fathomed; its objective function value is 10 > 6, so 
x1 = 0, x2 = 2 is the new incumbent solution and v_ = 10. 
 
Because all branches have now been fathomed, the latest incumbent solution 
x1 = 0, x2 = 2 is optimal.] 



Another example: Optimal assignment problem by the branch and 

bound method (this is computationally very inefficient, given the 

excellent alternatives available; I use it only to illustrate the method and 

its adaptability; see also Problem 3(c) on Problem Set #2)  

Same assignment problem as before: 
 

 1 2 3 4 

A 94 1 54 68 

B 74 10 88 82 

C 62 88 8 76 

D 11 74 81 21 
 
Set v¯  = ∞. (v¯  is the current upper bound on how “well” you know how to 

do so far in a minimization problem; note the adaptation of the algorithm.) 

 

Solve the relaxed version of the problem in which you can fill each job with 

whomever you wish, without regard to duplication. (You could also do this 

by assigning each worker however you wish. Note the adaptation of the 

algorithm, with a new definition of “relaxation” for assignment problems.)  

 

This yields the assignment D1, A2, C3, D4, with (hypothetical) cost 11 + 1 + 

8 + 21 = 41. It’s not feasible because person B is not assigned and person D 

has two jobs, so it yields no bound on attainable cost and nothing is yet 

fathomed. The entire problem is therefore a “remaining subproblem.” 

 

 

 



 1 2 3 4 

A 94 1 54 68 

B 74 10 88 82 

C 62 88 8 76 

D 11 74 81 21 
 

Next, branch this remaining subproblem on how to fill job 1. (Again, this is 

not the only way to do it, but it’s a natural way.) There are four new branch 

subproblems, using the obvious notation: A1, B1, C1, and D1. 

 

In branch A1, solving the relaxed subproblem in which you imagine you can 

fill each job other than job 1 with whomever you wish other than person 

A—crossing out job 1 and person A but otherwise not enforcing 

feasibility in the rest of the problem—yields A1, B2, C3, D4, which is 

feasible and yields cost 94 + 10 + 8 + 21 = 133. So branch A1 is fathomed; 

A1, B2, C3, D4 becomes the incumbent solution; and we reset v¯  = 133.  

 

In branch B1, solving the relaxed subproblem yields B1, A2, C3, D4, which 

is feasible and yields cost 74 + 1 + 8 + 21 = 104. So branch B1 is fathomed; 

B1, A2, C3, D4 becomes the new incumbent solution; and we reset v¯ = 104.  

 

In branch C1, solving the relaxed subproblem yields C1, A2, A3, D4, which 

is infeasible and yields (hypothetical) cost 62 + 1 + 54 + 21 = 138. But 

because 138 > 104 (> for minimization), branch C1 is fathomed anyway. 

 

[corrected: In branch D1, solving the relaxed subproblem yields D1, A2, C3, 

A4, which is infeasible and yields (hypothetical) cost bound 11 + 1 + 8 + 68 

= 88 < 104. So branch D1 is a remaining subproblem.]  



 1 2 3 4 

A 94 1 54 68 

B 74 10 88 82 

C 62 88 8 76 

D 11 74 81 21 
 

D1 is the only remaining subproblem. Further branch it on how to fill job 2. 

There are three new branch subproblems (ruling out infeasible reassignments 

of D, which is only one way to do it): D1, A2; D1, B2; and D1, C2. 

 

[corrected: In branch D1, A2, solving the relaxed subproblem in which you 

imagine you can fill each job other than 1 and 2 with whomever you 

wish other than D and A—crossing out jobs 1 and 2 and persons D and 

A but otherwise not enforcing feasibility—yields D1, A2, C3, C4, which 

is infeasible and yields (hypothetical) cost bound 11 + 1 + 8 + 21 = 41 < 

104. So branch D1, A2 is a remaining subproblem.] 

 

In branch D1, B2, solving the relaxed subproblem yields D1, B2, C3, A4, 

which is feasible and yields cost 11 + 10 + 8 + 68 = 97 < 104. So branch D1, 

B2 is fathomed; D1, B2, C3, A4 becomes the incumbent solution; and we 

reset v¯  = 97. Because 97 < 102, branch D1, A2 is now also fathomed. 

 

[corrected: In branch D1, C2, solving the relaxed subproblem yields D1, C2, 

A3, A4, which is feasible and yields cost 11 + 88 + 54 + 68 = 221 > 97. So 

branch D1, C2 is fathomed. Because all remaining subproblems are now 

fathomed, the last incumbent solution, D1, B2, C3, A4 with total cost 97, is 

optimal. (This is the same answer we got with the Hungarian Method.)] 


