Supplementary Handout on Integer Programming  Vhcent Crawford
Economics 172A Winter 2008

General Observations
Integer restrictions occur naturally in many settings:
Location decisions
Mutually exclusive alternatives
Zy;=1,y=00r1,i=1,...,n)
Contingent decisions
Vi<Yu¥i=0orl,i=jk)
K of your choice out of N constraints must hold
(X < by + My, X < b, + Mys,..., Zy; = N-K)
Functions with your choice among N values
(d(x) =2d(x)y;, Zyi=1,y=0o0r1,i=1,...,n)
Set-up costs/fixed charges

(replace {x;) = 6 + dx;if x;> 0, 0 if x= 0 by gyi+ dx;, x<My;, y;=0
orl)

Other nonconvexities

(approximate by several tangent lines with setagis; with
constraints that allow the program to “use” at nast of them; such
approximation is also possible for separable comreklems, but for
them no set-up costs are needed)



In general, solutions to problems ignoring integerestrictions need not
be close to solutions respecting them, though theege important
exceptions (assignment and transportation problemgroblems with
integer restrictions on only one variable)

Choose xand %to solve maximize X+ 6% st. %<3

X +10% <20
%>0,%=>0

Ignoring integer restrictions, solutiop*x= 3, X* = 1.7 (% 0on vertical axis).

But when both xand x are required to be integers, the solution “jumjos” t
X1 =0, % = 2. You can see this by shifting the objectivediion contour
downward in the graph:

=<

N




Optimal Assignment Problem and the Hungarian Method(see also
Section 3 of Prof. Sobel’'s Notes VIII. The Transpdation Problem)

Primal assignment problem (all sums are from 1)to n

Choose ¥ (i person, j job) O or 1 to solve

min ZZCinij
subject to Zx;j>1,j=1,...,n (all jobs filled)
2x;j<1,i=1,...,n (no person overused)

Dual (all sums are from 1 to n, and all constrainakl for all i,j):
Choose Y v; unrestricted to solve

maxXu; + v,
subject to Ut Vi < Gj

(Primal constraints must hold with equality for faasible assignments, so
dual shadow prices,w; are unrestricted.)

Can solve assignment problem as a standard limegrgm or transportation
problem using the simplex method or the transportagimplex method, but
the special structure allows a more powerful aleninating method.



OO0 w > 0O w>»

OO W >

Hungarian method (named for mathematicians Konig ad Egervary)

Example to show mechanics: four people, four jabsis alk> 0

1 2 3 4
94 1 54 68
74 10 88 82
62 88 8 76
11 74 81 21

Row reduction (subtract smallest number in eachfrom all numbers in
that row, obtaining a new reduced cost matrix):

1 2 3 4
93 0 53 67
64 0 78 12
54 80 0 68

0 63 70 10

Column reduction (subtract smallest number in eathmn from all
numbers in that column, obtaining a new reducet roasrix):

1 2 3 4
93 0 53 57
64 0 78 62
54 80 0 58

0 63 70 0




1 z 3 4

A 93 0 53 57
B 64 o* 78 62
C’ 54 80 o* 58
D* o* 63 70 0

Next, find a maximal set of k independent zerosananimal cover of k

lines, for example the zeros with *s and rows amidmns with's.

(There might be more than one way to do this. Aay will work.)

The fact that these three zeros can all be covsranhly three lines shows

that there cannot be more than three independerd zethe matrix.

(The Handout on the Hungarian Method for the assart problem on the
web page has on its second page an algorithm klkays finds a maximal
set of independent zeros and a minimal cover wighseame number of lines,
S0 you can always do this. But it's easy to do autithe algorithm even in

large problems and you are not required to knowhs.)



1 2 3 4
A 93 0 53 57
B 64 o* /8 62
C’ 54 80" 0* 58
D* o* 63" 70 0

Next, subtract the smallest uncovered cost entiy fall uncovered entries,
and add that same number to all double-coveredksritr). The smallest

uncovered entry is 53. The new matrix is:

1 z 3 4
A 40 0 0 4
B 11 o* 25 9
C 54 133 0* 58
D* o* 116™ 70" 0

Again find a maximal set of k independent zeros amainimal cover of k

lines, for example the zeros with *s and rows asidmons with's.

Again subtract the smallest uncovered cost entiy fall uncovered entries,
and add that number to all double-covered entfies.smallest uncovered

entry is now 4. The new matrix is:

We now have four independent zeros, which idermtifyoptimal assignment.

1 2 3 4
A 36 0 0 0*
B 7 0* 25 5
C 50 133 0* 54
D 0* 120 74 0




The total cost can be calculated from the origmatrix: 11+10 + 8 + 68 =
97.

1 2 3 4
A 94 1 54 68*
B 74 10* 88 82
C 62 88 8* 76
D 11* 74 81 21

Note that the optimal assignment doesn’t always @iyob to the person

who is best at it: person B gets job 2 even thquaylson A is better at it.

Neither does it always give a person the job Heegt at: person A is best at
job 2 but gets job 4, at which he is awful (thoungt as awful as B or C).

One might have expected person D to get job 4hathwhe is best; but it's
optimal to give D job 1, at which everyone elseeiglly awful: The optimal

assignment is determined by comparative advantagegbsolute advantage.

(The idea of comparative advantage here is clofigetalea as used in the
theory of international trade, but while both retf@properties of solutions to
linear programming problems (or the competitive kaés that implicitly
solve them in Ricardian trade theory), the modedd#ferent and the two
notions of comparative advantage are not matheaigtiequivalent.)



Using duality theory to explain why the Hungarian nethod works
Primal assignment problem (all sums are from 1)to n
Choose ¥ (i denotes a person, j a job) 0 or 1 to solve n Xiic;X;

subject to Zx;j>1,j=1,...,n (all jobs filled)
I=1,...,n (no person overused)

Dual (all sums are from 1 to n, and all constraimdtl for all i, j):
Choose Y v; unrestricted to solve mady; + ZV;
subject to Ut V< Cj

(Primal constraints must hold with equality for falasible assignments, so
dual shadow prices,w; are unrestricted.)

Duality Theorem for assignment problem:

Zu; +2v; < XXcjx; for all primal-feasible xand dual-feasible; @nd v.
Proof: y + V; < Cjj, SOZE(LH‘VJ' )Xij = ZUiEXiJ‘ + ZV]'ZX” =2Uu+ ZV]' < chijxij.

Corollary: If primal-feasible xand dual-feasible; and y have equal

objective function values, both are optimal.

Complementary Slackness Theorem: If all n persansbe assigned to jobs
such that x= 1 implies u+ v; = ¢; for some dual-feasiblg and vy, then the

assignment is optimal.

Proof: Since X= 0 if not l,ZZCinij = ZE(Ui'l'Vj )Xij = ZUiZXij + ZVjZXiJ' = 2U;

+2v;. Then use the Duality Theorem and the Corollary.



Initial u; = min, ci (ith row minimum)

Initial v; = min, [Cy; - U] (jth column minimum of {column - §)

Lemma: Initial yand yare dual-feasible. (Note: Ignore nonnegativity bjere

Proof: y + vi= u + min, [Cyj- U] < Ui + (G - W) = G.

After row-reduction and column reduction, entrieseduced cost matrix are

Cj - U - v; > 0, dual-feasible; and zeros (*) are entries wlhieeee’s no slack:

1 z 3 4
A 93 0 53 57
B 64 o* /8 62
C 54 80" o* 58
D* 0* 63" 70 0

The minimal cover of a single vertical line in cola 2 and two horizontal
lines in columns C and D covers all entries withstaxk in the dual

constraint. The uncovered entries all have slack tfast 53.

Raising the of uncovered rows by 53 and lowering thefcovered
columns by 53 removes slack but preserves duaikiébs It increases
slack in double-covered entries by 53, it doesnange slack in single-
covered entries (either neithemor v changes, or both change in opposite

directions), and it doesn’t take too much slackfrancovered entries.

More generally, raising the of uncovered rows and lowering theof
covered columns by the smallest uncovered entgises the dual objective
functionZu; + Zv; by S[(n-r)-c)], where r and c are the numbers of and

column lines. When—after a finite number of stepser=n, we are done.



Section 3 of Prof. Sobel’'s Notes X. Integer Programing, linked in
Section C of the reading list under “Integer Progranming”, discusses
using the branch and bound method to solve linearrpgrams with some
integer restrictions on the variables.

Here is Professor Sobel’'s general statement dbrtwech and bound method

for this case (with some comments added):

1. Setv_ = . (v_is the current lower bound on how well yowWwnhow

to do so far in a maximization problem)

2. Bound the original problem by solving the “regdX problem (ignoring
the integer constraints) and rounding the valuerdtmathe nearest integer.

3. If the solution to the relaxed problem satisfiesinteger constraints, stop.
You have a solution to the original problem. Othseycall the original

problem a “remaining subproblem” and go to Step 4.

4. Among all remaining subproblems, select the@pated most recently. If
more than one has been created most recentlytipmoine with the larger
bound. If they have the same bound, pick randoffilyese rules are fine
points, and are not essential. It's simplest jadiranch first on the; xvith
lower i.) “Branch” from this subproblem to createotnew subproblems by
fixing the value of the next available variable ithher O or 1. (Professor
Sobel’'s statement and his linear programming exasnall have the;x
restricted to be either O or You can use the method for more general
integer restrictions, branching by adding constsdiike (i) x > k in one

branch and (ii) x< k in the other. See below.)



5. For each new subproblem, obtain its bound zobyrsy a relaxed version
of the subproblem and rounding the value down éanmarest integer (if the

relaxed solution is not an integer).

6. Attempt to “fathom” each new subproblem. A suiypem is fathomed if
one of three things happens:
(a) Its relaxation is not feasible (so it cannaggibly help).
(b) Its relaxed value is less than or equal toso i{ cannot help).
(c) Its relaxation has an integer solution (saitld help, but you
don’t need to know any more about it to know daes).

All subproblems that are not fathomed are “remajrgnbproblems”.

7. If a subproblem is fathomed because its relardias an integer solution,
update v_ by setting it equal to the largest ofdldevalue of v_ and the
value of the relaxed subproblem. Call a subprolifeanhattains v_ the

“incumbent” or “candidate” solution.

8. If there are no remaining subproblems, stop.ifbembent or candidate
solution is optimal. (If you stop and there arecaadidate solutions, then
the original problem is not feasible.) If v_ is efjto the highest upper
bound z of all remaining subproblems, stop. Thalikate solution is

optimal. Otherwise, return to Step 4.

Professor Sobel's Notes X. Integer Programming, liked in Section C
under “Integer Programming”, give an example usingthe branch and

bound method to solve the “knapsack problem”; seeik pp. 2-4 and 8.



Example: Integer linear programming by the branch aad bound
method

You are asked to do the integer linear programmsey above to show that
rounding doesn’t work by the branch and bound nethd®S 2 # 2(d). Here
| will do a slightly different example (with a cohepely different solution).

Consider the problem:
Choose integerspand %to solve maximize x+ 5% s.t. 2x< 3
X+ 10% <20
%=>0,%>0

v_ = —oo. Start by solving the “relaxed” problem with nadger restrictions,
graphically (with x on the horizontal axis ang ®gn the vertical axis):

X1* = 1.5, %* = 1.85 (from 2% = 3 and x + 10% = 20).

This solution is infeasible because it violatesittieger restrictions, so the
original problem is unfathomed, a “remaining sullyem.” v_ = —o still,
and there is no incumbent solution yet.

Branch on the first variable (as theaxe numbered) that is restricted to be
an integer, and isn’t an integer in the solutioth®relaxed problem:;x
1.5. Branch by creating two subproblems from theioal problem, one
with added constraint (i);>< 1 and one with added constraint (i)2.

You could also just pick randomly, or using bourtuls, do it this way here.



Choose integerspand % to solve maximize x+ 5% s.t. 2x< 3
X+ 10x% <20
%X>0,%>0

Next, attempt to fathom the two branch subproblestasting with the first,
by solving their relaxed versions.

Solving branch subproblem (i) X 1 yields x = 1, % = 1.9; this is infeasible
because it violates the integer restrictions. v-ostill.

Branch subproblem (ii)p2 2 is infeasible (because2x3), so this branch
Is fathomed. v_ =0 still.

Further branching in subproblem ()% 1 yields (ia) X< 1, % <1 and (ib)
X1<1, %> 2.

Solving branch subproblem (ia) yields % 1, % = 1, this is feasible because
it satisfies the integer restrictions, so this lofais fathomed; because there
IS no incumbent solution yet; x 1, % = 1 becomes the incumbent solution,
with objective function value 6, a lower bound dtamable values v_ = 6.

[Corrected:Solving branch subproblem (ib) yields % 0, % = 2; this is
feasible, so this branch is fathomed; its objechinection value is 10 > 6, so
X1 =0, % = 2 is the new incumbent solution and v_ = 10.

Because all branches have now been fathomed,tdst incumbent solution
X1 =0, % = 2 is optimal,.



Another example: Optimal assignment problem by thdranch and
bound method (this is computationally very inefficent, given the
excellent alternatives available; | use it only tdlustrate the method and
its adaptability; see also Problem 3(c) on ProblerSet #2)

Same assignment problem as before:

1 2 3 4
A 94 1 54 68
B 74 10 88 82
C 62 88 8 76
D 11 74 81 21

Setv =o. (v is the current upper bound on how “well” ymow how to

do so far in a minimization problem; note the adaph of the algorithm.)

Solve the relaxed version of the problem in whiok gan fill each job with
whomever you wish, without regard to duplicatiovio could also do this
by assigning each worker however you wish. Noteattegpotation of the

algorithm, with a new definition of “relaxation” f@ssignment problems.)

This yields the assignment D1, A2, C3, D4, withgbthetical) cost 11 + 1 +
8 + 21 = 41. It's not feasible because personriiisassigned and person D
has two jobs, so it yields no bound on attainabkt and nothing is yet

fathomed. The entire problem is therefore a “remagiisubproblem.”



1 2 3 4

A 94 1 54 68
B 74 10 88 82
C 62 88 8 76
D 11 74 81 21

Next, branch this remaining subproblem on howltgdb 1. (Again, this is
not the only way to do it, but it's a natural waylere are four new branch
subproblems, using the obvious notation: Al, B1, &M D1.

In branch A1, solving the relaxed subproblem inclkhyou imagine you can
fill each jobother than job 1 with whomever you wisbther than person
A—crossing out job 1 and person A but otherwis@ot enforcing
feasibility in the rest of the problem—yieldsAl, B2, C3, D4, which is
feasible and yields cost 94 + 10 + 8 + 21 = 133biBmch Al is fathomed,;
Al, B2, C3, D4 becomes the incumbent solution;wadeset v = 133.

In branch B1, solving the relaxed subproblem yi&ds A2, C3, D4, which
Is feasible and yields cost 74 + 1 + 8 + 21 = Bitbranch Bl is fathomed;

B1, A2, C3, D4 becomes the new incumbent solutioiat we reset v = 104.

In branch C1, solving the relaxed subproblem yi€lds A2, A3, D4, which
Is infeasible and yields (hypothetical) cost 62 + 34 + 21 = 138. But
because 138 > 104 (> for minimization), branch €fathomed anyway.

[corrected:In branch D1, solving the relaxed subproblem wdd, A2, C3,
A4, which is infeasible and yields (hypothetical) tdosundl1l + 1 + 8 468

=88<104. So branch D1 is a remaining subproblem.



1 2 3 4

A 94 1 54 68
B 74 10 88 82
C 62 88 8 76
D 11 74 81 21

D1 is the only remaining subproblem. Further bramcim how to fill job 2.
There are three new branch subproblems (rulingndedsible reassignments
of D, which is only one way to do it): D1, A2; D&2; and D1, C2.

[corrected:In branch D1, A2, solving the relaxed subproblamwhich you
imagine you can fill each job other than 1 and 2 wh whomever you
wish other than D and A—crossing out jobs 1 and 2ral persons D and
A but otherwise not enforcing feasibility—yields D1, A2, C3{C4, which
is infeasible and yields (hypothetical) cost bodrdd+ 1 + 8 R21=41<
104. So branch D1, A2 is a remaining subproblem.

In branch D1, B2, solving the relaxed subprobleaids D1, B2, C3, A4,
which is feasible and yields cost 11 + 10 + 8 =68 < 104. So branch D1,
B2 is fathomed; D1, B2, C3, A4 becomes the incurhbelution; and we
resetv = 97. Because 97 < 102, branch D1, A@visatso fathomed.

[corrected:n branch D1, C2, solving the relaxed subproblésidg D1, C2,
A3, A4, which is feasible and yields cost 11 + 88 + 3B+ 221> 97. So
branch D1, C2 is fathomed. Because all remainitgp<ablems are now
fathomed, the last incumbent solution, D1, B2, &8 with total cost 97, is

optimal. (This is the same answer we got with tladhrian Method])



